Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin
We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down tomore » the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.« less
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
High-performance semiconductor quantum-dot single-photon sources
NASA Astrophysics Data System (ADS)
Senellart, Pascale; Solomon, Glenn; White, Andrew
2017-11-01
Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Direct photonic coupling of a semiconductor quantum dot and a trapped ion.
Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M
2015-03-27
Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Gate-controlled electromechanical backaction induced by a quantum dot
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi
2016-04-01
Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
NASA Astrophysics Data System (ADS)
Hughes, Stephen; Agarwal, Girish S.
2017-02-01
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Single photon sources with single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei
2014-04-01
In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas
2009-08-01
The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.
Theory of few photon dynamics in light emitting quantum dot devices
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas
2009-10-01
We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.
Hybrid quantum-classical modeling of quantum dot devices
NASA Astrophysics Data System (ADS)
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Interfacing a quantum dot with a spontaneous parametric down-conversion source
NASA Astrophysics Data System (ADS)
Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor
2017-09-01
Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.
Silicon Quantum Dots with Counted Antimony Donor Implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee
2015-10-01
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.
2016-05-16
We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
NASA Astrophysics Data System (ADS)
Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2003-11-01
CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (
Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.
Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M
2012-12-03
Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.
NASA Astrophysics Data System (ADS)
Hughes, S.; Gotoh, H.; Kamada, H.
2006-09-01
We present a theoretical study of photon-coupled single quantum dots in a semiconductor. A series of optical effects are demonstrated, including a subradiant dark resonance, superradiance, reversible spontaneous emission decay, and pronounced exciton entanglement. Both classical and quantum optical approaches are presented using a self-consistent formalism that treats real and virtual photon exchange on an equal footing and can account for different quantum dot properties, surface effects, and retardation in the dipole-dipole coupling, all of which are shown to play a non-negligible role.
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
NASA Astrophysics Data System (ADS)
Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.
2017-10-01
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.
Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique
Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N
2006-01-01
An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Observation of entanglement between a quantum dot spin and a single photon.
Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A
2012-11-15
Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
2016-03-24
for and success in achieving single quantum dot vacuum Rabi splitting in 2004 (quantum strong coupling, currently 1,354 citations) [6, 7] was...Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.” Nature 432, 200-203 (2004...7. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors.” Nature Physics 2, 81 (2006). 8. G
Room-temperature lasing in a single nanowire with quantum dots
NASA Astrophysics Data System (ADS)
Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko
2015-08-01
Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.
Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan
2014-01-01
We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809
NASA Astrophysics Data System (ADS)
Pinaud, Fabien Florent
2007-12-01
A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.
Exciton shelves for charge and energy transport in third-generation quantum-dot devices
NASA Astrophysics Data System (ADS)
Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant
2014-03-01
Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.
Quantum memory on a charge qubit in an optical microresonator
NASA Astrophysics Data System (ADS)
Tsukanov, A. V.
2017-10-01
A quantum-memory unit scheme on the base of a semiconductor structure with quantum dots is proposed. The unit includes a microresonator with single and double quantum dots performing frequencyconverter and charge-qubit functions, respectively. The writing process is carried out in several stages and it is controlled by optical fields of the resonator and laser. It is shown that, to achieve high writing probability, it is necessary to use high-Q resonators and to be able to suppress relaxation processes in quantum dots.
Biocompatible Quantum Dots for Biological Applications
Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.
2011-01-01
Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Anisotropic exchange interaction induced by a single photon in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.
2005-12-01
We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-01-01
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-07-28
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-01-15
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
On-demand semiconductor single-photon source with near-unity indistinguishability.
He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei
2013-03-01
Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Effect of the depolarization field on coherent optical properties in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu
2018-06-01
We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.
Electrostatically defined silicon quantum dots with counted antimony donor implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.
2016-02-08
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
Electrostatically defined silicon quantum dots with counted antimony donor implants
NASA Astrophysics Data System (ADS)
Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.
2016-02-01
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.
2017-04-01
Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
Fast current blinking in individual PbS and CdSe quantum dots.
Maturova, Klara; Nanayakkara, Sanjini U; Luther, Joseph M; van de Lagemaat, Jao
2013-06-12
Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.
2017-01-01
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
NASA Astrophysics Data System (ADS)
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Designing quantum dots for solotronics.
Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.
Designing quantum dots for solotronics
Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946
NASA Astrophysics Data System (ADS)
Nötzel, Richard
2009-07-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers that were presented at the special symposium K at the EMRS 2009 Spring Meeting held 8-12 June in Strasbourg, France, which was entitled 'Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II'. Thanks to the broad interest a large variety of quantum dots and quantum wires and related nanostructures and their application in devices could be covered. There was significant progress in the epitaxial growth of semiconductor quantum dots seen in the operation of high-power, as well as mode locked laser diodes and the lateral positioning of quantum dots on patterned substrates or by selective area growth for future single quantum dot based optoelectronic and electronic devices. In the field of semiconductor nanowires high quality, almost twin free structures are now available together with a new degree of freedom for band structure engineering based on alternation of the crystal structure. In the search for Si based light emitting structures, nanocrystals and miniband-related near infrared luminescence of Si/Ge quantum dot superlattices with high quantum efficiency were reported. These highlights, among others, and the engaged discussions of the scientists, engineers and students brought together at the symposium emphasize how active the field of semiconductor nanostructures and their applications in devices is, so that we can look forward to the progress to come. Guest Editor Richard Nötzel COBRA Research Institute Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands Tel.: +31 40 247 2047; fax: +31 40 246 1339 E-mail address: r.noetzel@tue.nl
Multi-Excitonic Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.
Towards zero-threshold optical gain using charged semiconductor quantum dots
Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon; ...
2017-10-16
Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less
Towards zero-threshold optical gain using charged semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon
Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less
Non-blinking quantum dot with a plasmonic nanoshell resonator
NASA Astrophysics Data System (ADS)
Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit
2015-02-01
Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-02-07
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.
Functionalization of Semiconductor Nanomaterials for Optoelectronic Devices And Components
2015-03-04
conversion efficiency of InAs quantum dot solar cell by using a single layer anatase TiO2 anti-reflection coating,” R. Vasan, Y. F. Makableh, J. C...dx.doi.org/10.1557//opl.2013.742 9. “The Optimization of InP/ZnS Core/Shell Nanocrystals and TiO2 Nanotubes for Quantum Dot Sensitized Solar Cells ...Quantum Dots Solar Cells Performance,” J. C. Sarker, Y. F. Makableh, R. Vasan, S. Lee, M. O. Manasreh, and M. Benamara, IEEE J. Photovoltaic. (submitted
Yuan, Chi-Tsu; Wang, Yong-Gang; Huang, Kuo-Yen; Chen, Ting-Yu; Yu, Pyng; Tang, Jau; Sitt, Amit; Banin, Uri; Millo, Oded
2012-01-24
We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-10-01
Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.
NASA Astrophysics Data System (ADS)
Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val
2018-04-01
The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D
2017-01-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219
NASA Astrophysics Data System (ADS)
Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo
2018-07-01
More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Strong coupling of a single electron in silicon to a microwave photon.
Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R
2017-01-13
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.
Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J
2016-02-19
We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.
Fast Single-Shot Hold Spin Readout in Double Quantum Dots
NASA Astrophysics Data System (ADS)
Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry
Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications.
Nanda, Sitansu Sekhar; Kim, Min Jik; Kim, Kwangmeyung; Papaefthymiou, Georgia C; Selvan, Subramanian Tamil; Yi, Dong Kee
2017-11-01
Quantum confinement in inorganic semiconductor nanocrystals produces brightly luminescent nanoparticles endowed with unique photo-physical properties, such as tunable optical properties. These have found widespread applications in nanotechnology. The ability to render such nanostructures biocompatible, while maintaining their tunable radiation in the visible range of the electromagnetic spectrum, renders them appropriate for bio-applications. Promising in vitro and in vivo diagnostic applications have been demonstrated, such as fluorescence-based detection of biological interactions, single molecule tracking, multiplexing and immunoassaying. In particular, these fluorescent inorganic semiconductor nanocrystals, generally known as quantum dots, have the potential of remarkable immunobiological applications. This review focuses on the current status of biocompatible quantum dots and their applications in immunobiology - immunosensing, immunofluorescent imaging and immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Quantum dot-polymer conjugates for stable luminescent displays.
Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai
2018-05-23
The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.
Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S
2007-06-01
We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-01-01
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357
Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan
2015-10-05
Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.
Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.
Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A
2017-07-13
Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles
Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.
2014-01-01
Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488
On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets
NASA Astrophysics Data System (ADS)
Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.
2018-05-01
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell
NASA Astrophysics Data System (ADS)
Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.
2018-05-01
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.
A two-qubit logic gate in silicon.
Veldhorst, M; Yang, C H; Hwang, J C C; Huang, W; Dehollain, J P; Muhonen, J T; Simmons, S; Laucht, A; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S
2015-10-15
Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.
Semiconductor quantum dot scintillation under gamma-ray irradiation.
Létant, S E; Wang, T-F
2006-12-01
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.
2003-01-01
Kramer Fabrication of hcp-Co nanocrystals via rapid pyrolysis in inverse PS - b - P2VP micelles and thermal annealing Nano Letters In Press ...the figure) and different pump photon energies. a) hν=1.684eV, b ) hν= 1.536eV and c) hν= 1.433eV. All spectra are normalized to the maximum value of...correlation functions of two consecutively emitted photons from a single excited semiconductor quantum dot. We have shown that a 6 a) b ) 0.10 [ML/s] 250 nm 3.0
Vacuum-induced coherence in quantum dot systems
NASA Astrophysics Data System (ADS)
Sitek, Anna; Machnikowski, Paweł
2012-11-01
We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.
Evolution of entanglement between distinguishable light states.
Stevenson, R Mark; Hudson, Andrew J; Bennett, Anthony J; Young, Robert J; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2008-10-24
We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarization splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; ...
2017-02-14
Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement withmore » the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.« less
Spin-orbit qubit in a semiconductor nanowire.
Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P
2010-12-23
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.
Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo
2017-05-26
The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.
Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots
Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo
2017-01-01
The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081
Towards Violation of Classical Inequalities using Quantum Dot Resonance Fluorescence
NASA Astrophysics Data System (ADS)
Peiris, Manoj
Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the scattered light exhibits a rich spectrum containing many spectral features that lead to a range of nonlinear multiphoton dynamics. These observations are discussed and compared with a theoretical model. Second, we investigated the light scattered by a quantum dot in the presence of spectral filtering. By scanning the tunable filters placed in front of each detector of a Hanbury-Brown and Twiss setup and recording coincidence measurements, a \\two-photon spectrum" has been experimentally reconstructed for the first time. The two-photon spectrum contains a wealth of information about the cascaded emission involved in the scattering process, such as transitions occurring via virtual intermediate states. Our measurements also reveal that the scattered frequency-filtered light from a quantum dot violates the Cauchy-Schwarz inequality. Finally, Franson-interferometry has been performed using spectrally filtered light from quantum dot resonance fluorescence. Visibilities exceeding the classical limit were demonstrated by using a pair of folded Mach-Zehnder interferometers, paving the way for producing single time-energy entangled photon pairs that could violate Bell's inequalities.
Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell
NASA Astrophysics Data System (ADS)
Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo; Gregersen, Niels; Bellet-Amalric, Edith; Nogues, Gilles; Kheng, Kuntheak
2017-11-01
Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA =0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining microphotoluminescence, decay time measurements, and numerical simulations, we obtain a fourfold increase in the collected photoluminescence from the quantum dot. We show that this improvement is due to an increase of the quantum-dot emission rate and a redirection of the emitted light. Our ex situ fabrication technique allows a precise and reproducible fabrication on a large scale. Its improved extraction efficiency is compared to state-of-the-art top-down devices.
Quantum dot SOA/silicon external cavity multi-wavelength laser.
Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael
2015-02-23
We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.
Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna
2018-06-01
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiangming; Tomita, Yasuo; Oshima, Juro; Chikama, Katsumi; Matsubara, Koutatsu; Nakashima, Takuya; Kawai, Tsuyoshi
2009-12-01
We report on the fabrication of centimeter-size transmission Bragg gratings in semiconductor CdSe quantum dots dispersed 50 μm thick photopolymer films. This was done by holographic assembly of CdSe quantum dots in a photopolymerizable monomer blend. Periodic patterning of CdSe quantum dots in polymer was confirmed by a fluorescence microscope and confocal Raman imaging. The diffraction efficiency from the grating of 1 μm spacing was near 100% in the green with 0.34 vol % CdSe quantum dots, giving the refractive index modulation as large as 5.1×10-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawicki, K.; Malinowski, F. K.; Gałkowski, K.
2015-01-05
A simple, single-color method for permanent marking of the position of individual self-assembled semiconductor Quantum Dots (QDs) at cryogenic temperatures is reported. The method combines in situ photolithography with standard micro-photoluminescence spectroscopy. Its utility is proven by a systematic magnetooptical study of a single CdTe/ZnTe QD containing a Mn{sup 2+} ion, where a magnetic field of up to 10 T in two orthogonal, Faraday and Voigt, configurations is applied to the same QD. The presented approach can be applied to a wide range of solid state nanoemitters.
III-V quantum light source and cavity-QED on silicon.
Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.
Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P
2013-06-21
We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
Charge noise in quantum dot qubits: beyond the Markovian approximation.
NASA Astrophysics Data System (ADS)
Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.
Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.
NASA Astrophysics Data System (ADS)
Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng
2017-05-01
This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Spontaneous generation of frequency combs in QD lasers
NASA Astrophysics Data System (ADS)
Columbo, Lorenzo Luigi; Bardella, Paolo; Gioannini, Mariangela
2018-02-01
We report a systematic analysis of the phenomenon of self-generation of optical frequency combs in single section Fabry-Perot Quantum Dot lasers using a Time Domain Travelling Wave model. We show that the carriers grating due to the standing wave pattern (spatial hole burning) peculiar of Quantum Dots laser and the Four Wave Mixing are the key ingredients to explain spontaneous Optical Frequency Combs in these devices. Our results well agree with recent experimental evidences reported in semiconductor lasers based on Quantum Dots and Quantum Dashes active material and pave the way to the development of a simulation tool for the design of these comb laser sources for innovative applications in the field of high-data rate optical communications.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Long-range energy transfer in self-assembled quantum dot-DNA cascades
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant
2015-11-01
The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04778a
Fine structure and optical pumping of spins in individual semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.
2008-11-01
We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.
Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol
2017-10-10
We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2 V -1 s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.
Isotopically enhanced triple-quantum-dot qubit
Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.
2015-01-01
Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186
Valley splitting of single-electron Si MOS quantum dots
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; ...
2016-12-19
Here, silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physicsmore » between the two samples is essentially the same.« less
Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities
NASA Astrophysics Data System (ADS)
Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.
2017-12-01
A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike
2011-05-15
We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.
Coherent coupling between a quantum dot and a donor in silicon
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...
2017-10-18
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids
NASA Astrophysics Data System (ADS)
Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.
2017-11-01
We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.
Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet
2011-04-26
Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
III–V quantum light source and cavity-QED on Silicon
Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621
Semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit [Knoxville, TN
2011-03-15
Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik
2015-01-01
Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment
ERIC Educational Resources Information Center
Rice, Charles V.; Giffin, Guinevere A.
2008-01-01
Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…
NASA Astrophysics Data System (ADS)
Shen, Yaoming
Quantum dots (QDs)and Nano-crystals (NCs) have been studies for decades. Because of the nanoscale quantum confinement, delta shape like energy density states and narrowband emitters properties, they hold great promise for numerous optoelectronics and photonics applications. They could be used for tunable lasers, white LED, Nano-OLED, non-volatile memory and solar cells. They are also the most promising candidates for the quantum computing. The benefits for NCs over QDs is that NCs can be incorporated into a variety of polymers as well as thin films of bulk semiconductors. These exceptional flexibility and structural control distinguish NCs from the more traditional QD structures fabricated using epitaxial growth techniques. In my research of work, I studied the photoluminescence (PL) and absorption character of ensemble NCs incorporated in Polymethyl methacrylate (PMMA). To understand the behavior of the NCs in PMMA, it is important to measure a singe NC to avoid the inhomogenous broading of many NCs. So I particularly studied the behavior of a single NC in PMMA matrix. A microphotoluminescence setup to optically isolate a single nanocrystal is used. Random spectral shift and blinking behavior (on and off) are found. Addition to that, two color spectral shifting, is a major phenomena found in the system. Other interesting results such as PL intensity changes (decreasing or increasing with time) and quenching effect are observed and explained too. From the correlation function, we can distinguish the phonon replicas. The energy of these phonons can be calculated very accurately from the experiment result. The Huang-Rhys factors can be estimated too. Self-assembled semiconductor quantum dots (QDs), from highly strained-layer heteroepitaxy in the Stranski-Krastanow (S-K) growth mode, have been intensively studied because of the delta-function-like density of states, which is significant for optoelectronic applications. Spontaneous formation of semiconductor quantum-dot molecules (QDMs), which are clusters of a few QDs, has attracted attention as a possible implementation of future quantum devices such as quantum cellular antomata. With the advances in crystal growth techniques, the fabrication methods for nanostructures have been improved continuously. Lateral QDMs have been achieved. As a side topic, lateral QDMs have been studied and the result is presented in the last chapter.
Operating single quantum emitters with a compact Stirling cryocooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlehahn, A.; Krüger, L.; Gschrey, M.
2015-01-15
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, wemore » perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.« less
Operating single quantum emitters with a compact Stirling cryocooler.
Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S
2015-01-01
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in; Kaur, Gurvir
2015-08-28
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
CNOT sequences for heterogeneous spin qubit architectures in a noisy environment
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco
Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.
Lee, Kyu Seung; Shim, Jaeho; Lee, Hyunbok; Yim, Sang-Youp; Angadi, Basavaraj; Lim, Byungkwon; Son, Dong Ick
2018-06-08
Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons
NASA Astrophysics Data System (ADS)
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp
2017-08-01
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp
2017-08-11
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66 GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50 ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.
Evaporation-Induced Assembly of Quantum Dots into Nanorings
Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.
2011-01-01
Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264
Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.
Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani
2016-07-07
Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin
2011-01-01
Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633
Forrest, Stephen R.
2008-08-19
A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.
NASA Astrophysics Data System (ADS)
Hefti, Ryan Alf
Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists. The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns. In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are displaced into a wide distribution of trap sites in the surrounding matrix, resulting in the expected power-law probability distribution of off times ubiquitous in quantum dots. Our discovery also implies that quantum dot blinking can be controlled, advocating the creation of switchable nanoscale emitters.
Nanoscale solid-state quantum computing
NASA Astrophysics Data System (ADS)
Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.
2003-07-01
Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G
2018-05-09
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela
2017-10-16
Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.
Semiconductor Quantum Dots with Photoresponsive Ligands.
Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume
2016-10-01
Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.
Unbound states in quantum heterostructures
Bastard, G
2006-01-01
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand
NASA Astrophysics Data System (ADS)
Linkov, P. A.; Vokhmintcev, K. V.; Samokhvalov, P. S.; Laronze-Cochard, M.; Sapi, J.; Nabiev, I. R.
2018-02-01
The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot
NASA Astrophysics Data System (ADS)
Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.
2015-06-01
The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.
Robust Population Inversion by Polarization Selective Pulsed Excitation
Mantei, D.; Förstner, J.; Gordon, S.; Leier, Y. A.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Zrenner, A.
2015-01-01
The coherent state preparation and control of single quantum systems is an important prerequisite for the implementation of functional quantum devices. Prominent examples for such systems are semiconductor quantum dots, which exhibit a fine structure split single exciton state and a V-type three level structure, given by a common ground state and two distinguishable and separately excitable transitions. In this work we introduce a novel concept for the preparation of a robust inversion by the sequential excitation in a V-type system via distinguishable paths. PMID:26000910
Optical Fiber Sensing Using Quantum Dots
Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz
2007-01-01
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308
Synthesis and Characterization of Quantum Dots: A Case Study Using PbS
ERIC Educational Resources Information Center
Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.
2015-01-01
A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…
Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.
de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom
2017-10-31
Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses
NASA Astrophysics Data System (ADS)
Nagpal, Swati
2002-12-01
Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.
Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots
NASA Astrophysics Data System (ADS)
Mongin, Cédric; Moroz, Pavel; Zamkov, Mikhail; Castellano, Felix N.
2018-02-01
The generation and transfer of triplet excitons across semiconductor nanomaterial-molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet-triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state 'reservoir' that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet-triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot-molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
Sadeghi, S. M.; Hood, B.; Patty, K. D.; Mao, C.-B.
2013-01-01
We use quantum coherence in a system consisting of one metallic nanorod and one semi-conductor quantum dot to investigate a plasmonic nanosensor capable of digital optical detection and recognition of single biological molecules. In such a sensor the adsorption of a specific molecule to the nanorod turns off the emission of the system when it interacts with an optical pulse having a certain intensity and temporal width. The proposed quantum sensors can count the number of molecules of the same type or differentiate between molecule types with digital optical signals that can be measured with high certainty. We show that these sensors are based on the ultrafast upheaval of coherent dynamics of the system and the removal of coherent blockage of energy transfer from the quantum dot to the nanorod once the adsorption process has occurred. PMID:24040424
Input-output theory for spin-photon coupling in Si double quantum dots
NASA Astrophysics Data System (ADS)
Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido
2017-12-01
The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.
Multifunctional quantum dots and liposome complexes in drug delivery
Wang, Qi; Chao, Yimin
2018-01-01
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655
Multifunctional quantum dots and liposome complexes in drug delivery.
Wang, Qi; Chao, Yi-Min
2017-09-03
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.
Static strain tuning of quantum dots embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Tumanov, D.; Vaish, N.; Nguyen, H. A.; Curé, Y.; Gérard, J.-M.; Claudon, J.; Donatini, F.; Poizat, J.-Ph.
2018-03-01
We use strain to statically tune the semiconductor band gap of individual InAs quantum dots (QDs) embedded in a GaAs photonic wire featuring very efficient single photon collection. Thanks to the geometry of the structure, we are able to shift the QD excitonic transition by more than 25 meV by using nano-manipulators to apply the stress. Moreover, owing to the strong transverse strain gradient generated in the structure, we can relatively tune two QDs located in the wire waveguide and bring them in resonance, opening the way to the observation of collective effects such as superradiance.
Breakdown of the Wigner-Mattis theorem in semiconductor carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Secchi, Andrea; Manghi, Franca
2009-03-01
The Wigner-Mattis theorem states the ground state of two bound electrons, in the absence of the magnetic field, is always a spin-singlet. We predict the opposite result --a triplet- for two electrons in a quantum dot defined in a semiconductor carbon nanotube. The claim is supported by extensive many-body calculations based on the accurate configuration interaction code DONRODRIGO (www.s3.infm.t/donrodrigo). The crux of the matter is the peculiar two-valley structure of low-energy states, which encodes a pseudo-spin degree of freedom. The spin polarization of the ground state corresponds to a pseudo-spin singlet, which is selected by the inter-valley short-range Coulomb interaction. Single-electron excitation spectra and STM wave function images may validate this scenario, as shown by our numerical simulations.
Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun
2017-10-16
We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.
Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics
NASA Astrophysics Data System (ADS)
Tisdale, William A., III
Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots. A TR-SHG study of these electronically-coupled quantum-dot films reveals temperature-activated cooling of hot charge carriers and coherent excitation of a previously-unidentified surface optical phonon. Finally, I report the first experimental observation of ultrafast electron transfer from the higher excited states of a colloidal quantum dot (PbSe) to delocalized conduction band states of a widely-used electron acceptor (TiO2). The electric field resulting from ultrafast (<50fs) separation of charge carriers across the PbSe/TiO2(110) interface excites coherent vibration of the TiO2 surface atoms, whose collective motions can be followed in real time.
Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout
NASA Astrophysics Data System (ADS)
House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.
2011-03-01
Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.
The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049
2015-12-14
Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
Quantum quench of Kondo correlations in optical absorption.
Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A
2011-06-29
The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.
Microwave-driven coherent operation of a semiconductor quantum dot charge qubit
Kim, Dohun; Ward, D. R.; Simmons, C. B.; ...
2015-02-16
An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin
We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductormore » nanostructures for applications in quantum information technologies.« less
High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities
NASA Astrophysics Data System (ADS)
Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu
2018-04-01
We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.
Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A
2011-09-25
Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.
NASA Astrophysics Data System (ADS)
Kinnischtzke, Laura A.
We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.
Charge reconfiguration in arrays of quantum dots
NASA Astrophysics Data System (ADS)
Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.
2017-12-01
Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.
NASA Astrophysics Data System (ADS)
Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.
2016-04-01
Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.
Controlling the Properties of Matter with Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimov, Victor
2017-03-22
Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
NASA Technical Reports Server (NTRS)
Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.
2000-01-01
Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.
Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.
2018-05-01
Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.
NASA Astrophysics Data System (ADS)
Saha, Dipika; Negi, Devendra P. S.
2018-01-01
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2014-10-01
We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
Giansante, Carlo; Infante, Ivan
2017-10-19
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
NASA Astrophysics Data System (ADS)
Bayramov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Sprung, C.; Lipsanen, H. K.; Bairamov, B. Kh.
2018-01-01
Results of studying nanocrystalline nc-Si/SiO2 quantum dots (QDs) functionalized by short oligonucleotides show that complexes of isolated crystalline semiconductor QDs are unique objects for detecting the manifestation of new quantum confinement phenomena. It is established that narrow lines observed in high-resolution spectra of inelastic light scattering can be used for determining the characteristic time scale of vibrational excitations of separate nucleotide molecules and for studying structural-dynamic properties of fast oscillatory processes in biomacromolecules.
Growing High-Quality InAs Quantum Dots for Infrared Lasers
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Uhl, David
2004-01-01
An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.
Physics of frequency-modulated comb generation in quantum-well diode lasers
NASA Astrophysics Data System (ADS)
Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.
2018-05-01
We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.
NASA Astrophysics Data System (ADS)
Elward, Jennifer Mary
Semiconductor nanoparticles, or quantum dots (QDs), are well known to have very unique optical and electronic properties. These properties can be controlled and tailored as a function of several influential factors, including but not limited to the particle size and shape, effect of composition and heterojunction as well as the effect of ligand on the particle surface. This customizable nature leads to extensive experimental and theoretical research on the capabilities of these quantum dots for many application purposes. However, in order to be able to understand and thus further the development of these materials, one must first understand the fundamental interaction within these nanoparticles. In this thesis, I have developed a theoretical method which is called electron-hole explicitly correlated Hartee-Fock (eh-XCHF). It is a variational method for solving the electron-hole Schrodinger equation and has been used in this work to study electron-hole interaction in semiconductor quantum dots. The method was benchmarked with respect to a parabolic quantum dot system, and ground state energy and electron-hole recombination probability were computed. Both of these properties were found to be in good agreement with expected results. Upon successful benchmarking, I have applied the eh-XCHF method to study optical properties of several quantum dot systems including the effect of dot size on exciton binding energy and recombination probability in a CdSe quantum dot, the effect of shape on a CdSe quantum dot, the effect of heterojunction on a CdSe/ZnS quantum dot and the effect of quantum dot-biomolecule interaction within a CdSe-firefly Luciferase protein conjugate system. As metrics for assessing the effect of these influencers on the electron-hole interaction, the exciton binding energy, electron-hole recombination probability and the average electron-hole separation distance have been computed. These excitonic properties have been found to be strongly infuenced by the changing composition of the particle. It has also been found through this work that the explicitly correlated method performs very well when computing these properties as it provides a feasible computational route to compare to both experimental and other theoretical results.
MURI Center for Photonic Quantum Information Systems
2009-10-16
conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity
Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo
2016-10-01
Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.
Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W
2012-05-06
Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.
Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles
2014-11-07
Theoretical studies of spin- photon entangled complementarity”. Mr. Anderson Hayes in physics finished B.S. degree in May 2013 with a capstone thesis entitled...working on “Semiconductor quantum dots and photon entanglement ”. Mr. Quinn Allen Hailes, undergraduate student in physics completed B.S. degree in...great interests for the Department of Defense’s (DoD) photonic applications. Our research focused on developing and characterizing advanced optical
Quantum Dots Based Rad-Hard Computing and Sensors
NASA Technical Reports Server (NTRS)
Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.
2001-01-01
Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.
NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |
and quantum size effects in semiconductors and carrier dynamics in semiconductor quantum dots and using hot carrier effects, size quantization, and superlattice concepts that could, in principle, enable
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective
2017-01-01
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763
Synthetic Developments of Nontoxic Quantum Dots.
Das, Adita; Snee, Preston T
2016-03-03
Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Current Application of Quantum Dots (QD) in Cancer Therapy: A Review.
Babu, Lavanya Thilak; Paira, Priyankar
2017-01-01
Semiconductor quantum dots proved themselves as efficient fluorescent probes in cancer detection and treatment. Their size, high stability, non-photobleaching and water solubility made them a unique fluorophore in place of conventional organic dyes. Newly emerged theranostic drug delivery system using quantum dots helped us in better understanding of the drug delivery mechanism inside the cells. Surface modified Quantum dots and their applications became wide in bioimaging, immunohistochemistry, tracking intracellular drug and intracellular molecules target. We have highlighted various applications of quantum dots in cancer treatment, drug delivery, flow cytometry, and theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ultracoherent operation of spin qubits with superexchange coupling
NASA Astrophysics Data System (ADS)
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.
Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan
2016-01-01
Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Fan, Hongyou; Brener, Igal
2015-09-01
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. Duringmore » the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.« less
Tuning and Switching a Plasmonic Quantum Dot "Sandwich" in a Nematic Line Defect.
Mundoor, Haridas; Sheetah, Ghadah H; Park, Sungoh; Ackerman, Paul J; Smalyukh, Ivan I; van de Lagemaat, Jao
2018-03-27
We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the "sandwich" confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that "push" the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon antibunching behavior of the QD and its luminescence lifetime. The QD behaves as a single emitter when nanorods are far away from the QD but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic "sandwich". These findings demonstrate that LC defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.
Tuning and Switching a Plasmonic Quantum Dot “Sandwich” in a Nematic Line Defect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundoor, Haridas; Sheetah, Ghadah H.; Park, Sungoh
We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the 'sandwich' confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that 'push' the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon antibunching behavior of the QD and its luminescence lifetime. The QD behaves as a single emitter whenmore » nanorods are far away from the QD but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic 'sandwich'. These findings demonstrate that LC defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.« less
Tuning and Switching a Plasmonic Quantum Dot “Sandwich” in a Nematic Line Defect
Mundoor, Haridas; Sheetah, Ghadah H.; Park, Sungoh; ...
2018-02-28
We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the 'sandwich' confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that 'push' the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon antibunching behavior of the QD and its luminescence lifetime. The QD behaves as a single emitter whenmore » nanorods are far away from the QD but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic 'sandwich'. These findings demonstrate that LC defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.« less
Saha, Dipika; Negi, Devendra P S
2018-01-15
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Semiconductor quantum dot-sensitized solar cells.
Tian, Jianjun; Cao, Guozhong
2013-10-31
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.
NASA Astrophysics Data System (ADS)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less
Senior Research Fellow Wins Major International Science Award | News | NREL
generation (MEG) in semiconductor nanocrystals, also called quantum dots, and recently found efficient MEG in silicon quantum dots. He shares the award with Stefan W. Glunz of the Fraunhofer Institute in Germany
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
NASA Astrophysics Data System (ADS)
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-06-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor quantum dots for bioimaging and biodiagnostic applications.
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Engel, Jesse Hart
Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.
Fiber-Coupled Cavity-QED Source of Identical Single Photons
NASA Astrophysics Data System (ADS)
Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.
2018-03-01
We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.
Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...
2016-02-16
Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II–VI nanocrystals.« less
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers
NASA Astrophysics Data System (ADS)
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-01
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-21
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.
Andreev molecules in semiconductor nanowire double quantum dots.
Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M
2017-09-19
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.
Basics for the preparation of quantum dots and their interactions with living cells.
Jiang, Xiue; Bai, Jing; Wang, Tiantian
2014-01-01
A study of the interactions between nanoparticles and living cells is invaluable in understanding the nano-biological effect and the mechanism of cellular endocytosis. Here we describe two methods for the preparation of semiconductor quantum dots with different physiochemical properties. Furthermore, we describe how to study the interaction of the two quantum dots with living HeLa cells and red blood cells with confocal microscopy.
Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer
Juzenas, Petras; Chen, Wei; Sun, Ya-Ping; Coelho, Manuel Alvaro Neto; Generalov, Roman; Generalova, Natalia; Christensen, Ingeborg Lie
2009-01-01
Semiconductor quantum dots and nanoparticles composed of metals, lipids or polymers have emerged with promising applications for early detection and therapy of cancer. Quantum dots with unique optical properties are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous, and toxicity of such quantum dots to living cells, and humans, is not yet systematically investigated. Therefore, search for less toxic materials with similar targeting and optical properties is of further interest. Whereas, the investigation of luminescence nanoparticles as light sources for cancer therapy is very interesting. Despite advances in neurosurgery and radiotherapy the prognosis for patients with malignant gliomas has changed little for the last decades. Cancer treatment requires high accuracy in delivering ionizing radiation to reduce toxicity to surrounding tissues. Recently some research has been focused in developing photosensitizing quantum dots for production of radicals upon absorption of visible light. In spite of the fact that visible light is safe, this approach is suitable to treat only superficial tumours. Ionizing radiation (X-rays and gamma rays) penetrate much deeper thus offering a big advantage in treating patients with tumours in internal organs. Such concept of using quantum dots and nanoparticles to yield electrons and radicals in photodynamic and radiation therapies as well their combination is reviewed in this article. PMID:18840487
Quantum Dots in Diagnostics and Detection: Principles and Paradigms
Pisanic, T. R.; Zhang, Y.; Wang, T. H.
2014-01-01
Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716
NASA Astrophysics Data System (ADS)
Tsukanov, A. V.; Kateev, I. Yu
2017-08-01
The concept of a quantum node consisting of a memory qubit and a frequency convertor is proposed and analysed. The memory qubit is presented by a semiconductor four-level double quantum dot (DQD) placed in an optical microresonator (MR). The DQD contains an electron in the quantised part of the conduction band and the MR can be populated by a certain number of photons. The DQD and MR states are controlled be applying the laser and electrostatic fields. The difference between the telecommunication frequency of the photon (transport qubit) supplied to the system through a waveguide and the frequency of the electronic transition in the DQD is compensated for using an auxiliary element, i.e. a frequency convertor based on a single quantum dot (QD). This design allows the electron - photon state of the hybrid system to be controlled by an appropriate variation of the field parameters and the switching between resonance and nonresonance DQD and MR interaction regimes. As an example, a GaAs DQD placed in a microdisk MR is studied. A numerical technique for modelling an optical spectrum of a microdisk MR with an additional layer (AL) deposited on its surface is developed. Using this technique, the effect of the AL on the MR eigenmode properties is investigated and the possibility of tuning its frequency to the QD electronic transition frequency by depositing an AL on the disk surface is demonstrated.
Time Division Multiplexing of Semiconductor Qubits
NASA Astrophysics Data System (ADS)
Jarratt, Marie Claire; Hornibrook, John; Croot, Xanthe; Watson, John; Gardner, Geoff; Fallahi, Saeed; Manfra, Michael; Reilly, David
Readout chains, comprising resonators, amplifiers, and demodulators, are likely to be precious resources in quantum computing architectures. The potential to share readout resources is contingent on realising efficient means of time-division multiplexing (TDM) schemes that are compatible with quantum computing. Here, we demonstrate TDM using a GaAs quantum dot device with multiple charge sensors. Our device incorporates chip-level switches that do not load the impedance matching network. When used in conjunction with frequency multiplexing, each frequency tone addresses multiple time-multiplexed qubits, vastly increasing the capacity of a single readout line.
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
2002-05-31
Arizona Jagdeep Shah Lucent Technologies Advisory Committee Yasuhiko Arakawa University of Tokyo David Citrin Washington State University Hartmut...the dipole moment of the exciton in the dot. WA2 Fabrication and Optical Properties of Quantum Dots: GaN-Based and InAs Quantum Dots Yasuhiko
Microwave-Driven Coherent Operation of a Semiconductor Quantum Dot Charge Qubit
2015-02-16
indicating that understanding high frequency charge noise as well as charge relaxation at the sweet spot will be important for further development. The...Microwave-driven coherent operation of a semiconductor quantum dot charge qubit Dohun Kim,1 D. R. Ward,1 C. B. Simmons,1 John King Gamble,2 Robin...University of Wisconsin-Madison, Madison, WI 53706, USA A most intuitive realization of a qubit is a sin- gle electron charge sitting at two well -defined
Computational models for the berry phase in semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.
2014-10-06
By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.
NASA Astrophysics Data System (ADS)
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.
2016-07-25
The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less
Photon-assisted tunneling in an asymmetrically coupled triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao
The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less
Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry
NASA Astrophysics Data System (ADS)
Lüker, S.; Kuhn, T.; Reiter, D. E.
2017-12-01
Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.
Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate
NASA Astrophysics Data System (ADS)
Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke
2018-04-01
We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.
Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.
2013-05-01
We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes
ERIC Educational Resources Information Center
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth
2007-01-01
The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.
NASA Astrophysics Data System (ADS)
Flory, Curt A.; Musgrave, Charles B.; Zhang, Zhiyong
2008-05-01
A number of physical processes involving quantum dots depend critically upon the “evanescent” electron eigenstate wave function that extends outside of the material surface into the surrounding region. These processes include electron tunneling through quantum dots, as well as interactions between multiple quantum dot structures. In order to unambiguously determine these evanescent fields, appropriate boundary conditions have been developed to connect the electronic solutions interior to the semiconductor quantum dot to exterior vacuum solutions. In standard envelope function theory, the interior wave function consists of products of band edge and envelope functions, and both must be considered when matching to the external solution. While the envelope functions satisfy tractable equations, the band edge functions are generally not known. In this work, symmetry arguments in the spherically symmetric approximation are used in conjunction with the known qualitative behavior of bonding and antibonding orbitals to catalog the behavior of the band edge functions at the unit cell boundary. This physical approximation allows consolidation of the influence of the band edge functions to two simple surface parameters that are incorporated into the boundary conditions and are straightforwardly computed by using numerical first-principles quantum techniques. These new boundary conditions are employed to analyze an isolated spherically symmetric semiconductor quantum dot in vacuum within the analytical model of Sercel and Vahala [Phys. Rev. Lett. 65, 239 (1990); Phys. Rev. B 42, 3690 (1990)]. Results are obtained for quantum dots made of GaAs and InP, which are compared with ab initio calculations that have appeared in the literature.
Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G
2016-01-27
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardin, Gaël; Li, Hebin; Autry, Travis M.
2015-03-21
We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures,more » such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.« less
Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions
NASA Astrophysics Data System (ADS)
Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.
Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).
Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots
2014-06-23
Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton
Fluorescent Quantum Dots for Biological Labeling
NASA Technical Reports Server (NTRS)
McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit
2003-01-01
Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.
The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement
NASA Astrophysics Data System (ADS)
Osborn, Christopher Butler
Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.
Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.
There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system
NASA Astrophysics Data System (ADS)
Chikalova-Luzina, O. P.; Samosvat, D. M.; Vyatkin, V. M.; Zegrya, G. G.
2017-11-01
A microscopic theory of nonradiative resonance energy transfer between spherical A3B5 semiconductor quantum dots by the exchange mechanism is suggested. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same A3B5 compound and are embedded in the matrix of another material that produces potential barriers for electrons and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found in the frame of the Kane model that provides the most adequate description of the real spectra of A3B5 semiconductors. The analytical treatment is carried out with using the density matrix method, which enabled us to perform an energy transfer analysis both in the weak-interaction approximation and in the strong-interaction approximation. The numerical calculations showed the saturation of the energy transfer rate at the distances between the donor and the acceptor approaching the contact one. The contributions of the exchange and direct Coulomb intractions can be of the same order at the small distances and can have the same value in the saturation range.
Model of an Injection Semiconductor Quantum-Dot Laser
NASA Astrophysics Data System (ADS)
Koryukin, I. V.
2018-05-01
We propose an asymmetric electron-hole model of an injection semiconductor quantum-dot laser, which correctly allows for relaxation at transitions between the electron and hole levels. Steady-state solutions of the proposed model, conditions for the simultaneous operation at transitions between the ground and first excited state levels, and relaxation oscillations in the two-wave lasing regime are studied. It is shown that the model can be simplified when the relaxation between hole levels is much faster than the relaxation between electron levels.
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots
NASA Astrophysics Data System (ADS)
Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri
2015-11-01
Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a
Quantum dot bioconjugates for ultrasensitive nonisotopic detection.
Chan, W C; Nie, S
1998-09-25
Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.
Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots
2002-01-01
an ensemble of self -assembled InAs/GaAs or InAs/InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs...photoconductive properties of QDIPs based on self organized InAs quantum dots grown on In.52Al.48As/InP(100), using the MBE technique. Dr. Gendry grew the...composed of 10 layers of self assembled InAs dots, separated by 500 Å thick InAlAs (lattice matched to the semi-insulating InP substrate) barrier
Small signal analysis of four-wave mixing in InAs/GaAs quantum-dot semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Ma, Shaozhen; Chen, Zhe; Dutta, Niloy K.
2009-02-01
A model to study four-wave mixing (FWM) wavelength conversion in InAs-GaAs quantum-dot semiconductor optical amplifier is proposed. Rate equations involving two QD states are solved to simulate the carrier density modulation in the system, results show that the existence of QD excited state contributes to the ultra fast recover time for single pulse response by serving as a carrier reservoir for the QD ground state, its speed limitations are also studied. Nondegenerate four-wave mixing process with small intensity modulation probe signal injected is simulated using this model, a set of coupled wave equations describing the evolution of all frequency components in the active region of QD-SOA are derived and solved numerically. Results show that better FWM conversion efficiency can be obtained compared with the regular bulk SOA, and the four-wave mixing bandwidth can exceed 1.5 THz when the detuning between pump and probe lights is 0.5 nm.
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2018-05-01
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology â quantum dot displays â employed, for example, in the newest generation of e-readers and video monitors.
NASA Astrophysics Data System (ADS)
Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Dutta, Niloy K.
2018-01-01
We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
Geißler, Daniel; Hildebrandt, Niko
2016-07-01
The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.
Quantum walks of interacting fermions on a cycle graph
Melnikov, Alexey A.; Fedichkin, Leonid E.
2016-01-01
Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057
Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping.
Sormunen, Jaakko; Riikonen, Juha; Mattila, Marco; Tiilikainen, Jouni; Sopanen, Markku; Lipsanen, Harri
2005-08-01
Transformation of self-assembled InAs quantum dots (QDs) on InP(100) into quantum rings (QRs) is studied. In contrast to the typical approach to III--V semiconductor QR growth, the QDs are not capped to form rings. Atomic force micrographs reveal a drastic change from InAs QDs into rings after a growth interruption in tertiarybutylphosphine ambient. Strain energy relief in the InAs QD is discussed and a mechanism for dot-to-ring transformation by As/P exchange reactions is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishnoi, Dimple
In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate bandmore » setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.« less
Helical quantum states in HgTe quantum dots with inverted band structures.
Chang, Kai; Lou, Wen-Kai
2011-05-20
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.
Single-step colloidal quantum dot films for infrared solar harvesting
NASA Astrophysics Data System (ADS)
Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.
2016-10-01
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less
Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection
NASA Astrophysics Data System (ADS)
Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael
2018-03-01
Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2017-06-22
A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.
NASA Astrophysics Data System (ADS)
Ishioka, Sachio; Fujikawa, Kazuo
2006-06-01
Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger-Horne-Zeilinger states in Josephson systems / T. Fujii, M. Nishida, N. Hatakenaka -- Quantum-dot systems. Tunable tunnel and exchange couplings in double quantum dots / S. Tarucha, T. Hatano, M. Stopa. Coherent transport through quantum dots / S. Katsumoto ... [et al.]. Electrically pumped single-photon sources towards 1.3 [symbol]m / X. Xu ... [et al.]. Aharonov-Bohm-type effects in antidot arrays and their decoherence / M. Kato ... [et al.]. Nonequilibrium Kondo dot connected to ferromagnetic leads / Y. Utsumi ... [et al.]. Full counting-statistics in a single-electron transistor in the presence of strong quantum fluctuations / Y. Utsumi -- Anomalous Hall effect and Spin-Hall effect. Geometry and the anomalous Hall effect in ferromagnets / N. P. Ong, W.-L. Lee. Control of spin chirality, Berry phase, and anomalous Hall effect / Y. Tokura, Y. Taguchi. Quantum geometry and Hall effect in ferromagnets and semiconductors / N. Nagaosa. Spin-Hall effect in a semiconductor two-dimensional hole gas with strong spin-orbit coupling / J. Wunderlich ... [et al.]. Intrinsic spin Hall effect in semiconductors / S. Murakami -- Spin related phenomena. Theory of spin transfer phenomena in magnetic metals and semiconductors / A. S. Núñez, A. H. MacDonald. Spin filters of semiconductor nanostructures / T. Dietl, G. Grabecki, J. Wróbel. Experimental study on current-driven domain wall motion / T. Ono ... [et al.]. Magnetization reversal of ferromagnetic nano-dot by non local spin injection / Y. Otani, T. Kimura. Theory of current-driven domain wall dynamics / G. Tatara ... [et al.]. Magnetic impurity states and ferromagnetic interaction in diluted magnetic semiconductors / M. Ichimura ... [et al.]. Geometrical effect on spin current in magnetic nano-structures / M. Ichimura, S. Takahashi, S. Maekawa. Ferromagnetism in anatase TiO[symbol] codoped with Co and Nb / T. Hitosugi ... [et al.] -- Superconductivity in nano-systems. Nonlinear quantum effects in nanosuperconductors / C. Carballeira ... [et al.]. Coalescence and rearrangement of vortices in mesoscopic superconductors / A. Kanda ... [et al.]. Superconductivity in topologically nontrivial spaces / M. Hayashi ... [et al.]. DC-SQUID ratchet using atomic point contact / Y. Ootuka, H. Miyazaki, A. Kanda. Superconducting wire network under spatially modulated magnetic field / H. Sano ... [et al.]. Simple and stable control of mechanical break junction for the study of superconducting atomic point contact / H. Miyazaki ... [et al.]. Critical currents in quasiperiodic pinning arrays: one-dimensional chains and Penrose lattices / V. R. Misko, S. Savel'ev, F. Nori. Macroscopic quantum tunneling in high-Tc superconductor Josephson junctions / S. Kawabata -- Novel properties of carbon nanotubes. Carbon nanotubes and unique transport properties: importance of symmetry and channel number / T. Ando. Optical processes in single-walled carbon nanotubes threaded by a magnetic flux / J. Kono ... [et al.]. Non-equilibrium transport through a single-walled carbon nanotube with highly transparent coupling to reservoirs / P. Recher, N. Y. Kim, Y. Yamamoto -- Novel properties of nano-systems. Transport properties in low dimensional artificial lattice of gold nano-particles / S. Saito ... [et al.]. First principles study of dihydride-chain structures on H-terminated Si(100) surface / Y. Suwa ... [et al.]. Electrical property of Ag nanowires fabricated on hydrogen-terminated Si(100) surface / M. Fujimori, S. Heike, T. Hashizume. Effect of environment on ionization of excited atoms embedded in a solid-state cavity / M. Ando ... [et al.]. Development of universal virtual spectroscope for optoelectronics research: first principles software replacing dielectric constant measurements / T. Hamada ... [et al.]. Quantum Nernst effect / H Nakamura, N. Hatano, R. Shirasaki -- Precise measurements. Quantum phenomena visualized using electron waves / A. Tonomura. An optical lattice clock: ultrastable atomic clock with engineered perturbation / H. Katori ... [et al.]. Development of Mach-Zehnder interferometer and "coherent beam steering" technique for cold neutron / K. Taketani ... [et al.]. Surface potential measurement by atomic force microscopy using a quartz resonator / S. Heike, T. Hashizume -- Fundamental Problems in quantum physics. Berry's phases and topological properties in the Born-Oppenheimer approximation / K. Fujikawa. Self-trapping of Bose-Einstein condensates by oscillating interactions / H. Saito, M. Ueda. Spinor solitons in Bose-Einstein condensates - atomic spin transport / J. Ieda. Spin decoherence in a gravitational field / H. Terashima, M. Ueda. Berry's phase of atoms with different sign of the g-factor in a conical rotating magnetic field observed by a time-domain atom interferometer / A. Morinaga ... [et al.] -- List of participants.
NASA Astrophysics Data System (ADS)
Nozaka, Takahiro; Mukai, Kohki
2016-04-01
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.
Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.
2016-03-01
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
NASA Astrophysics Data System (ADS)
Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.
2016-09-01
A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.
Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system
NASA Astrophysics Data System (ADS)
Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.
2016-11-01
In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.
NASA Astrophysics Data System (ADS)
Kotb, Amer
2015-06-01
The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor ( Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ˜1 Tb/s.
Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.
Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V
2016-09-14
The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.
NASA Astrophysics Data System (ADS)
Malik, Pragati; Kakkar, Rita
2018-04-01
A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II-VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n ( n = 3, 6, 9 which are in the size range of 0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.
Time-Resolved Electronic Relaxation Processes in Self-Organized Quantum Dots
2005-05-16
in a quantum dot infrared photodetector ,” paper CthM11, presented at CLEO, Baltimore, 2003. K. Kim, T. Norris, J. Singh, P. Bhattacharya...nanostructures have been equally spectacular. Following the development of quantum-well infrared photodetectors in the late 1980’s and early 90’s...4]. The quantum cascade laser is of course the best known of the new devices, as it constitutes an entirely new concept in semiconductor laser
Luminescent Quantum Dots as Ultrasensitive Biological Labels
NASA Astrophysics Data System (ADS)
Nie, Shuming
2000-03-01
Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.
NASA Astrophysics Data System (ADS)
Schuler, A.; Kostro, A.; Huriet, B.; Galande, C.; Scartezzini, J.-L.
2008-08-01
One promising application of semiconductor nanostructures in the field of photovoltaics might be quantum dot solar concentrators. Quantum dot containing nanocomposite thin films are synthesized at EPFL-LESO by a low cost sol-gel process. In order to study the potential of the novel planar photoluminescent concentrators, reliable computer simulations are needed. A computer code for ray tracing simulations of quantum dot solar concentrators has been developed at EPFL-LESO on the basis of Monte Carlo methods that are applied to polarization-dependent reflection/transmission at interfaces, photon absorption by the semiconductor nanocrystals and photoluminescent reemission. The software allows importing measured or theoretical absorption/reemission spectra describing the photoluminescent properties of the quantum dots. Hereby the properties of photoluminescent reemission are described by a set of emission spectra depending on the energy of the incoming photon, allowing to simulate the photoluminescent emission using the inverse function method. By our simulations, the importance of two main factors is revealed, an emission spectrum matched to the spectral efficiency curve of the photovoltaic cell, and a large Stokes shift, which is advantageous for the lateral energy transport. No significant energy losses are implied when the quantum dots are contained within a nanocomposite coating instead of being dispersed in the entire volume of the pane. Together with the knowledge on the optoelectronical properties of suitable photovoltaic cells, the simulations allow to predict the total efficiency of the envisaged concentrating PV systems, and to optimize photoluminescent emission frequencies, optical densities, and pane dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basset, J.; Stockklauser, A.; Jarausch, D.-D.
2014-08-11
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope ofmore » the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias
The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.
The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot
NASA Astrophysics Data System (ADS)
Boda, Aalu; Chatterjee, Ashok
2018-04-01
The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
interdisciplinary fields of photoelectrochemistry, semiconductor-molecule interfaces, quantum size effects, electron photoelectrochemistry (hot carrier effects, size quantization effects, superlattice electrodes, quantum dot solar cells
Self-assembling complexes of quantum dots and scFv antibodies for cancer cell targeting and imaging.
Zdobnova, Tatiana A; Stremovskiy, Oleg A; Lebedenko, Ekaterina N; Deyev, Sergey M
2012-01-01
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex.
Self-Assembling Complexes of Quantum Dots and scFv Antibodies for Cancer Cell Targeting and Imaging
Zdobnova, Tatiana A.; Stremovskiy, Oleg A.; Lebedenko, Ekaterina N.; Deyev, Sergey M.
2012-01-01
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex. PMID:23133578
Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron
NASA Technical Reports Server (NTRS)
Qiu, Yueming
2006-01-01
The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process indicate that they emit at wavelengths from 1.7 to 2.3 microns.
Ackerman, Paul J; Mundoor, Haridas; Smalyukh, Ivan I; van de Lagemaat, Jao
2015-12-22
We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect. We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, Paul J.; Mundoor, Haridas; Smalyukh, Ivan I.
2015-12-22
We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect.more » We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.« less
Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots.
Francaviglia, Luca; Giunto, Andrea; Kim, Wonjong; Romero-Gomez, Pablo; Vukajlovic-Plestina, Jelena; Friedl, Martin; Potts, Heidi; Güniat, Lucas; Tütüncüoglu, Gözde; Fontcuberta I Morral, Anna
2018-04-11
Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.
Montalti, M; Cantelli, A; Battistelli, G
2015-07-21
Fluorescence bioimaging is a powerful, versatile, method for investigating, both in vivo and in vitro, the complex structures and functions of living organisms in real time and space, also using super-resolution techniques. Being poorly invasive, fluorescence bioimaging is suitable for long-term observation of biological processes. Long-term detection is partially prevented by photobleaching of organic fluorescent probes. Semiconductor quantum dots, in contrast, are ultrastable, fluorescent contrast agents detectable even at the single nanoparticle level. Emission color of quantum dots is size dependent and nanoprobes emitting in the near infrared (NIR) region are ideal for low back-ground in vivo imaging. Biocompatibility of nanoparticles, containing toxic elements, is debated. Recent safety concerns enforced the search for alternative ultrastable luminescent nanoprobes. Most recent results demonstrated that optimized silicon quantum dots (Si QDs) and fluorescent nanodiamonds (FNDs) show almost no photobleaching in a physiological environment. Moreover in vitro and in vivo toxicity studies demonstrated their unique biocompatibility. Si QDs and FNDs are hence ideal diagnostic tools and promising non-toxic vectors for the delivery of therapeutic cargos. Most relevant examples of applications of Si QDs and FNDs to long-term bioimaging are discussed in this review comparing the toxicity and the stability of different nanoprobes.
NASA Astrophysics Data System (ADS)
Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.
2018-01-01
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser
NASA Astrophysics Data System (ADS)
Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady
2018-02-01
A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.
NASA Astrophysics Data System (ADS)
Choi, Myoung-Taek
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
Optical Pulse Interactions in Nonlinear Excited State Materials
2008-07-14
described below. 2.5 Overview of Semiconductor Quantum Dot A quantum dot (QD) is a quasi -zero-dimensional object where the carrier movement is...a particle of mass M (e.g., an electron) having a potential energy can be described by a wavefunction that satisfies the following Schrödinger...dot (QD) is a quasi -zero-dimensional object where the carrier movement is restricted in three dimensions. The bulk crystalline structure of the
Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel
2013-03-11
It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.
Modification of quantum dots with nucleic acids
NASA Astrophysics Data System (ADS)
Kocherginskaya, P. B.; Romanova, A. V.; Prokhorenko, I. A.; Itkis, Daniil M.; Korshun, V. A.; Goodilin, Eugene A.; Tretyakov, Yuri D.
2011-12-01
The key principles and modern approaches to targeted modification of semiconductor colloidal nanoparticles, quantum dots, which exhibit unique photophysical properties and are a promising class of luminescent markers, are discussed. Attention is given to the preparation of their bioconjugates with nucleic acids, promising tools for biological microchips and resonance energy transfer sensors. The bibliography includes 80 references.
Emerging technologies for high performance infrared detectors
NASA Astrophysics Data System (ADS)
Tan, Chee Leong; Mohseni, Hooman
2018-01-01
Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.
Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosarev, A. N.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Preobrazhenskii, V. V.
2016-11-15
The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancementmore » of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.« less
Nanostructured Materials for Solar Cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.
2003-01-01
The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.
A quantum light-emitting diode for the standard telecom window around 1,550 nm.
Müller, T; Skiba-Szymanska, J; Krysa, A B; Huwer, J; Felle, M; Anderson, M; Stevenson, R M; Heffernan, J; Ritchie, D A; Shields, A J
2018-02-28
Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2014-02-01
The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.
High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.
Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K
2010-03-29
A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.
2011-01-01
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.
Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V
2011-01-04
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya
2016-04-01
A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.
Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min
2016-06-08
The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters ( including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring themore » underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. Lastly, this study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen vacancy centres that use these freestanding hybrid nanostructures as building blocks.« less
NASA Astrophysics Data System (ADS)
Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min
2016-06-01
The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.
Exciton multiplication from first principles.
Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V
2013-06-18
Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron-phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk
2016-07-04
Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.
Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa
2007-03-16
We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.
Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors
NASA Astrophysics Data System (ADS)
Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree
2014-04-01
A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.
Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR
NASA Astrophysics Data System (ADS)
Singh, Navjot; Sharma, J.; Tripathi, S. K.
2016-05-01
Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.
Studies of mist deposition for the formation of quantum dot CdSe films
NASA Astrophysics Data System (ADS)
Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.
2009-10-01
Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach
Zhang, Aidi; Dong, Chaoqing; Li, Liang; Yin, Jinjin; Liu, Heng; Huang, Xiangyi; Ren, Jicun
2015-01-01
Semiconductor quantum dots (QDs) are very important optical nanomaterials with a wide range of potential applications. However, blinking behavior of single QD is an intrinsic drawback for some biological and photoelectric applications based on single-particle emission. Herein we present a rational strategy for fabrication of non-blinking (Zn)CuInS/ZnS QDs in organic phase through in situ interfacial alloying approach. This new strategy includes three steps: synthesis of CuInS QDs, eliminating the interior traps of QDs by forming graded (Zn)CuInS alloyed QDs, modifying the surface traps of QDs by introducing ZnS shells onto (Zn)CuInS QDs using alkylthiols as sulfur source and surface ligands. The suppressed blinking mechanism was mainly attributed to modifying QDs traps from interior to exterior via a step-by-step modification. Non-blinking QDs show high quantum yield, symmetric emission spectra and excellent crystallinity, and will enable applications from biology to optoelectronics that were previously hindered by blinking behavior of traditional QDs. PMID:26458511
Single photon emission from charged excitons in CdTe/ZnTe quantum dots
NASA Astrophysics Data System (ADS)
Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.
2017-11-01
We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.
Semiconductor quantum dot scintillation under gamma-ray irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letant, S E; Wang, T
2006-08-23
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well asmore » security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon counting (better coupling with photomultipliers optimized for the visible region), and high photon output (smaller individual photon energy results in more photons produced) at room temperature, which is essential for effective Poisson counting (the energy resolution {Delta}E/E is inversely proportional to the square root of the number of photons collected).« less
NASA Astrophysics Data System (ADS)
Taylor, Robert A.
2010-09-01
These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford
Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang
2016-12-07
Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.
Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji
2014-12-12
Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.
Semiconductor Quantum Dots for Biomedicial Applications
Shao, Lijia; Gao, Yanfang; Yan, Feng
2011-01-01
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690
Phase-Tuned Entangled State Generation between Distant Spin Qubits.
Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M
2017-07-07
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
NASA Astrophysics Data System (ADS)
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasmine, P. Christina Lily; Peter, A. John, E-mail: a.john.peter@gmail.com
The dependence of electric field on the electronic and optical properties is investigated in a Cd{sub 0.8}Zn{sub 0.2}Se/ZnSe quantum dot. The hydrogenic binding energy, in the presence of electric field, is calculated with the spatial confinement effect. The electric field dependent optical gain with the photon energy is found using compact density matrix method. The results show that the electric field has a great influence on the optical properties of II-VI semiconductor quantum dot.
Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review.
Namdari, Pooria; Negahdari, Babak; Eatemadi, Ali
2017-03-01
Carbon-based quantum dots (CQDs) are a newly developed class of carbon nano-materials that have attracted much interest and attention as promising competitors to already available semiconductor quantum dots owing to their un-comparable and unique properties. In addition, controllability of CQDs unique physiochemical properties is as a result of their surface passivation and functionalization. This is an update article (between 2013 and 2016) on the recent progress, characteristics and synthesis methods of CQDs and different advantages in varieties of applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Quantum Confined Semiconductors for High Efficiency Photovoltaics
NASA Astrophysics Data System (ADS)
Beard, Matthew
2014-03-01
Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.
Solar cells using quantum funnels.
Kramer, Illan J; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H
2011-09-14
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.
2017-03-01
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L
2017-03-03
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
Quantum Confined Semiconductors
2015-02-01
diodes [8-10], metamaterials [11-13], and solar cells [14,15]. As a consequence, the optical and electrical stability of colloidal quantum dots...PbS quantum dot solar cells with high fill factor,” ACS Nano, 4 (7), 3743–3752 (2010). [15] Gur, I., Fromer, N. A., Geier, M. L. and Alivisatos, A...P., “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Sci. 310, 462–465 (2005). [16] Dai, Q., Wang, Y. N., Zhang, Y
A reconfigurable gate architecture for Si/SiGe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajac, D. M.; Hazard, T. M.; Mi, X.
2015-06-01
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.
Field-emission from quantum-dot-in-perovskite solids
García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward
2017-01-01
Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981
Design strategy for terahertz quantum dot cascade lasers.
Burnett, Benjamin A; Williams, Benjamin S
2016-10-31
The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian
With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenchedmore » in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.« less
Spectroscopy of Single AlInAs Quantum Dots
NASA Astrophysics Data System (ADS)
Derebezov, I. A.; Gaisler, A. V.; Gaisler, V. A.; Dmitriev, D. V.; Toropov, A. I.; Kozhukhov, A. S.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.
2018-03-01
A system of quantum dots based on Al x In1- x As/Al y Ga1- y As solid solutions is investigated. The use of Al x In1- x As wide-gap solid solutions as the basis of quantum dots substantially extends the spectral emission range to the short-wavelength region, including the wavelength region near 770 nm, which is of interest for the development of aerospace systems of quantum cryptography. The optical characteristics of Al x In1- x As single quantum dots grown by the Stranski-Krastanov mechanism were studied by cryogenic microphotoluminescence. The statistics of the emission of single quantum dot excitons was studied using a Hanbury Brown-Twiss interferometer. The pair photon correlation function indicates the sub-Poissonian nature of the emission statistics, which directly confirms the possibility of developing single-photon emitters based on Al x In1- x As quantum dots. The fine structure of quantum dot exciton states was investigated at wavelengths near 770 nm. The splitting of the exciton states is found to be similar to the natural width of exciton lines, which is of great interest for the development of entangled photon pair emitters based on Al x In1- x As quantum dots.
NASA Astrophysics Data System (ADS)
Ishioka, Sachio; Fujikawa, Kazuo
2009-06-01
Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related phenomena. Dynamical magnetoelectric effects in multiferroics / Y. Tokura. Exchange-stabilization of spin accumulation in the two-dimensional electron gas with Rashba-type of spin-orbit interaction / H. M. Saarikoski, G. E. W. Bauer. Electronic Aharonov-Casher effect in InGaAs ring arrays / J. Nitta, M. Kohda, T. Bergsten. Microscopic theory of current-spin interaction in ferromagnets / H. Kohno ... [et al.]. Spin-polarized carrier injection effect in ferromagnetic semiconductor / diffusive semiconductor / superconductor junctions / H. Takayanagi ... [et al.]. Low voltage control of ferromagnetism in a semiconductor P-N junction / J. Wunderlich ... [et al.].Measurement of nanosecond-scale spin-transfer torque magnetization switching / K. Ito ... [et al.]. Current-induced domain wall creep in magnetic wires / J. Ieda, S. Maekawa, S. E. Barnes. Pure spin current injection into superconducting niobium wire / K. Ohnishi, T. Kimura, Y. Otani. Switching of a single atomic spin induced by spin injection: a model calculation / S. Kokado, K. Harigaya, A. Sakuma. Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers / M. Ichimura ... [et al.]. Gapless chirality excitations in one-dimensional spin-1/2 frustrated magnets / S. Furukawa ... [et al.] -- Dirac fermions in condensed matter. Electronic states of graphene and its multi-layers / T. Ando, M. Koshino. Inter-layer magnetoresistance in multilayer massless dirac fermions system [symbol]-(BEDT-TTF)[symbol]I[symbol] / N. Tajima ... [et al.]. Theory on electronic properties of gapless states in molecular solids [symbol]-(BEDT-TTF)[symbol]I[symbol] / A. Kobayashi, Y. Suzumura, H. Fukuyama. Hall effect and diamagnetism of bismuth / Y. Fuseya, M. Ogata, H. Fukuyama. Quantum Nernst effect in a bismuth single crystal / M. Matsuo ... [et al.] -- Quantum dot systems. Kondo effect and superconductivity in single InAs quantum dots contacted with superconducting leads / S. Tarucha ... [et al.]. Electron transport through a laterally coupled triple quantum dot forming Aharonov-Bohm interferometer / T. Kubo ... [et al.]. Aharonov-Bohm oscillations in parallel coupled vertical double quantum dot / T. Hatano ... [et al.]. Laterally coupled triple self-assembled quantum dots / S. Amaha ... [et al.]. Spectroscopy of charge states of a superconducting single-electron transistor in an engineered electromagnetic environment / E. Abe ... [et al.]. Numerical study of the coulomb blockade in an open quantum dot / Y. Hamamoto, T. Kato. Symmetry in the full counting statistics, the fluctuation theorem and an extension of the Onsager theorem in nonlinear transport regime / Y. Utsumi, K. Saito. Single-artificial-atom lasing and its suppression by strong pumping / J. R. Johansson ... [et al.] -- Entanglement and quantum information processing, qubit manipulations. Photonic entanglement in quantum communication and quantum computation / A. Zeilinger. Quantum non-demolition measurement of a superconducting flux qubit / J. E. Mooij. Atomic physics and quantum information processing with superconducting circuits / F. Nori. Theory of macroscopic quantum dynamics in high-T[symbol] Josephson junctions / S. Kawabata. Silicon isolated double quantum-dot qubit architectures / D. A. Williams ... [et al.]. Controlled polarisation of silicon isolated double quantum dots with remote charge sensing for qubit use / M. G. Tanner ... [et al.].Modelling of charge qubits based on Si/SiO[symbol] double quantum dots / P. Howard, A. D. Andreev, D. A. Williams. InAs based quantum dots for quantum information processing: from fundamental physics to 'plug and play' devices / X. Xu ... [et al.]. Quantum aspects in superconducting qubit readout with Josephson bifurcation amplifier / H. Nakano ... [et al.]. Double-loop Josephson-junction flux qubit with controllable energy gap / Y. Shimazu, Y. Saito, Z. Wada. Noise characteristics of the Fano effect and Fano-Kondo effect in triple quantum dots, aiming at charge qubit detection / T. Tanamoto, Y. Nishi, S. Fujita. Geometric universal single qubit operation of cold two-level atoms / H. Imai, A. Morinaga. Entanglement dynamics in quantum Brownian motion / K. Shiokawa. Coupling superconducting flux qubits using AC magnetic flxues / Y. Liu, F. Nori. Entanglement purification using natural spin chain dynamics and single spin measurements / K. Maruyama, F. Nori. Experimental analysis of spatial qutrit entanglement of down-converted photon pairs / G. Taguchi ... [et al.]. On the phase sensitivity of two path interferometry using path-symmetric N-photon states / H. F. Hofmann. Control of multi-photon coherence using the mixing ratio of down-converted photons and weak coherent light / T. Ono, H. F. Hofmann -- Mechanical properties of confined geometry. Rattling as a novel anharmonic vibration in a solid / Z. Hiroi, J. Yamaura. Micro/nanomechanical systems for information processing / H. Yamaguchi, I. Mahboob -- Precise measurements. Electron phase microscopy for observing superconductivity and magnetism / A. Tonomura. Ratio of the Al[symbol] and Hg[symbol] optical clock frequencies to 17 decimal places / W. M. Itano ... [et al.]. STM and STS observation on titanium-carbide metallofullerenes: [symbol] / N. Fukui ... [et al.]. Single shot measurement of a silicon single electron transistor / T. Ferrus ... [et al.]. Derivation of sensitivity of a Geiger mode APDs detector from a given efficiency to estimate total photon counts / K. Hammura, D. A. Williams -- Novel properties in nano-systems. First principles study of electroluminescence in ultra-thin silicon film / Y. Suwa, S. Saito. First principles nonlinear optical spectroscopy / T. Hamada, T. Ohno. Field-induced disorder and carrier localization in molecular organic transistors / M. Ando ... [et al.]. Switching dynamics in strongly coupled Josephson junctions / H. Kashiwaya ... [et al.]. Towards quantum simulation with planar coulomb crystals / I. M. Buluta, S. Hasegawa -- Fundamental problems in quantum physics. The negative binomial distribution in quantum physics / J. Söderholm, S. Inoue. On the elementary decay process / D. Kouznetsov -- List of participants.
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G
2015-12-01
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.
Activation of molecular catalysts using semiconductor quantum dots
Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM
2011-10-04
Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.
Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; ...
2015-02-09
Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less
2012-01-01
Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Boundary Condition for Modeling Semiconductor Nanostructures
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard
2006-01-01
A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.
Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab
2013-01-01
In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.
Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules
NASA Astrophysics Data System (ADS)
Świderski, M.; Zieliński, M.
2017-03-01
Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
Ultrahigh resolution multicolor colocalization of single fluorescent probes
Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.
2005-01-18
A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.
Gate-Defined Quantum Confinement in InSe-based van der Waals Heterostructures.
Hamer, Matthew J; Tóvári, Endre; Zhu, Mengjian; Thompson, Michael Dermot; Mayorov, Alexander S; Prance, Jonathan; Lee, Yongjin; Haley, Richard; Kudrynskyi, Zakhar R; Patanè, Amalia; Terry, Daniel; Kovalyuk, Zakhar D; Ensslin, Klaus; Kretinin, Andrey V; Geim, Andre K; Gorbachev, Roman Vladislavovich
2018-05-15
Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.
Quantum dots and nanocomposites.
Mansur, Herman Sander
2010-01-01
Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; ...
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
Dong, Yitong; Qiao, Tian; Kim, Doyun; Parobek, David; Rossi, Daniel; Son, Dong Hee
2018-05-09
Cesium lead halide (CsPbX 3 ) nanocrystals have emerged as a new family of materials that can outperform the existing semiconductor nanocrystals due to their superb optical and charge-transport properties. However, the lack of a robust method for producing quantum dots with controlled size and high ensemble uniformity has been one of the major obstacles in exploring the useful properties of excitons in zero-dimensional nanostructures of CsPbX 3 . Here, we report a new synthesis approach that enables the precise control of the size based on the equilibrium rather than kinetics, producing CsPbX 3 quantum dots nearly free of heterogeneous broadening in their exciton luminescence. The high level of size control and ensemble uniformity achieved here will open the door to harnessing the benefits of excitons in CsPbX 3 quantum dots for photonic and energy-harvesting applications.
Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergent, S.; Kako, S.; Bürger, M.
2014-10-06
We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
Decoupling the effects of confinement and passivation on semiconductor quantum dots.
Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew
2016-07-20
Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.
Quantum Dots for Live Cell and In Vivo Imaging
Walling, Maureen A; Novak, Jennifer A; Shepard, Jason R. E
2009-01-01
In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications. PMID:19333416
McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379
Kim, Jimyung; Delfyett, Peter J
2009-12-07
The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi
2014-10-15
Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.
Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots
NASA Astrophysics Data System (ADS)
Holtkemper, M.; Reiter, D. E.; Kuhn, T.
2018-02-01
Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiao; Wang, Hao; Yi, Qinghua
2015-11-16
Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefitsmore » the future development of optoelectronic nanodevices with new functionalities.« less
Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots
NASA Astrophysics Data System (ADS)
Hasanirokh, K.; Asgari, A.
2018-07-01
In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
Dynamics of Photoexcited State of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Trivedi, Dhara J.
In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.
Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.
Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M
2009-01-01
Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.
NASA Astrophysics Data System (ADS)
Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim
In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.
Thiering, Gergő; Londero, Elisa; Gali, Adam
2014-10-21
Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Londero, Elisa; Gali, Adam
2014-09-01
Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.
Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S
2017-08-22
Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.
Diffusion doping in quantum dots: bond strength and diffusivity.
Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani
2017-02-23
Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M 2+ (Fe 2+ , Ni 2+ , Co 2+ , Mn 2+ ). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.
2003-06-10
Cadmium selenium Quantum Dots (QDs) are metal nanoparticles that fluoresce in a variety of colors determined by their size. QDs are solid state structures made of semiconductors or metals that confine a countable, small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well conducted region. Coupling QDs with antibodies can be used to make spectrally multiplexed immunoassays that test for a number of microbial contaminants using a single test.
Franson Interference Generated by a Two-Level System
NASA Astrophysics Data System (ADS)
Peiris, M.; Konthasinghe, K.; Muller, A.
2017-01-01
We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).
NASA Astrophysics Data System (ADS)
Ivanov, Alexei L.
2004-09-01
The EU Research Training Network `Photon-Mediated Phenomena in Semiconductor Nanostructures' (HPRN-CT-2002-00298) comprises seven teams from across Europe: Cambridge, Cardiff, Dortmund, Heraklion, Grenoble, Lund and Paderborn (for details see the Network website http://www.astro.cardiff.ac.uk/research/PMPnetwork/index.html). The first workshop of the Network was held at Gregynog Hall, a conference centre in the beautiful countryside of mid-Wales. There were 44 participants who attended the meeting (7 from France, 2 from Japan, 3 from Germany, 1 from Greece, 2 from Russia, 3 from Sweden, 23 from UK and 3 from USA). Of these, 57% were students and young postdoctoral research associates. The talks presented at the meeting were mainly devoted to linear and nonlinear optics of semiconductor nanostructures. Thus the review and research papers included in this special issue of Journal of Physics: Condensed Matter deal with the exciton-mediated optical phenomena in semiconductor quantum wires, quantum wells, planar and spherical microcavities and self-assembled quantum dots. The specific topics covered by the proceedings are exciton-mediated optics, including lasing, of semiconductor quantum wires Bose-Einstein condensation of excitons and microcavity polaritons diffusion, thermalization and photoluminescence of free carriers and excitons in GaAs coupled quantum wells polaritons in semiconductor microcavities exciton-mediated optics of semiconductor photonic dots optical nonlinearities of biexciton waves optics of self-assembled quantum dots photosensitive metal oxides films On the first day of the workshop, a special session on presentation skills, lead by Mike Edmunds, was organized for the young researchers. The meeting concluded with a round-table discussion at which key questions on research, organization and management of the Network were identified and discussed. The second workshop of the Network, organized and chaired by George Kiriakidis, took place at Hersonissos (Crete, Greece) in October 2003. The forthcoming third workshop, organized by Detlef Schikora and Ulrike Woggon, will be held in Paderborn (conference part) and Dortmund (training part) from 4 October 4 through 7 October 2004 (for details visit the Network website). Finally, I would like to thank my colleagues, Celestino Creatore, Nikolay Nikolaev, Lois Smallwood and Andrew Smith, for their help with preparation of the Proceedings.
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-11-05
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-01-01
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs. PMID:26538164
Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy
2006-01-01
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
NASA Astrophysics Data System (ADS)
Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo
2018-05-01
A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.
NASA Astrophysics Data System (ADS)
Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.
2018-05-01
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
Single-mode light source fabrication based on colloidal quantum dots
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.
2009-02-01
There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.
Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D
2017-08-30
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
NASA Astrophysics Data System (ADS)
Sharma, Nandlal; Reuter, Dirk
2017-11-01
Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.
Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor
NASA Astrophysics Data System (ADS)
Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan
2018-07-01
We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).
Tuning Single Quantum Dot Emission with a Micromirror.
Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul
2018-02-14
The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.
Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac
2017-04-28
Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.
An addressable quantum dot qubit with fault-tolerant control-fidelity.
Veldhorst, M; Hwang, J C C; Yang, C H; Leenstra, A W; de Ronde, B; Dehollain, J P; Muhonen, J T; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S
2014-12-01
Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy centres in diamond and phosphorus atoms in silicon. For example, long coherence times were made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here, we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford-based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has dephasing time T2* = 120 μs and coherence time T2 = 28 ms, both orders of magnitude larger than in other types of semiconductor qubit. By gate-voltage-tuning the electron g*-factor we can Stark shift the electron spin resonance frequency by more than 3,000 times the 2.4 kHz electron spin resonance linewidth, providing a direct route to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies.
Majorana Fermion and bound states in the continuum on a cross-shaped quantum dot hybrid structure
NASA Astrophysics Data System (ADS)
Zambrano, David; Ramos, Juan Pablo; Orellana, Pedro
We show how transmission, differential conductance and density of states (DOS) behave when two superconductor/semiconductors topological nanowires are placed next to the ends of a quantum-dot (QD) chain, where the central QD is attached to normal conductors leads. Results in a single QD coupled to two Kitaev chains within the topological phase and a T-shaped QD hybrid structure suggest these kind of system are strong candidates for qubits. We show how bound states in the continuum (BICs) arise as zero energy modes on conductance and DOS for different sets of system parameters showing evidence of Majorana fermions, and we also study how they behave for different numbers (even/odd) of QD in the cross-shaped structure. The authors acknowledge financial support from CONICYT, under Grant PAI-79140064, scholarship 21141034 and from FONDECYT, under Grant 1140571.
NASA Astrophysics Data System (ADS)
Komoto, Atsushi; Maenosono, Shinya
2006-09-01
The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.
Komoto, Atsushi; Maenosono, Shinya
2006-09-21
The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.
Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L
2018-05-09
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit
2018-04-01
Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.
Addressable single-spin control in multiple quantum dots coupled in series
NASA Astrophysics Data System (ADS)
Nakajima, Takashi
2015-03-01
Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.
Optical signatures of coupled quantum dots.
Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D
2006-02-03
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
Optical Signatures of Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.
2006-02-01
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozik, Arthur J; Beard, Matthew C
The challenge of photoconversion research is to produce photovoltaic electricity at costs much less than those based on fossil fuels. Novel photoactive semiconductors and molecules of various types and structures are discussed for this purpose.
Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; Roslyak, Oleksiy; Arefin, Ayesha; Hanson, Christina J.; Casson, Joanna L.; Desireddy, Anil; Ghosh, Yagnaseni; Piryatinski, Andrei; Iyer, Rashi; Htoon, Han; Malko, Anton V.
2015-01-01
Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shell retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Importantly, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating. PMID:29163879
2011-12-01
communication links using VCSEL arrays [1, 2], medical imaging using super luminescent diodes [3], and tunable lasers capable of remotely sensing...increase the efficiency of solar cells [6, 7, 8], vastly improve photo detector sensitivity [9], and provide optical memory storage densities predicted...semiconductor lasers” Applied Physics B: Lasers and Optics, Volume 90, Number 2, 2008, Pages 339-343. 6. Nozik, A.J. “Quantum dot solar cells
Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis
NASA Astrophysics Data System (ADS)
Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.
2017-06-01
Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.
Silicon based quantum dot hybrid qubits
NASA Astrophysics Data System (ADS)
Kim, Dohun
2015-03-01
The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.
Direct optical state preparation of the dark exciton in a quantum dot
NASA Astrophysics Data System (ADS)
Lüker, S.; Kuhn, T.; Reiter, D. E.
2015-11-01
Because of their weak coupling to the electromagnetic field, dark excitons in semiconductor quantum dots possess extremely long lifetimes, which makes them attractive candidates for quantum information processing. On the other hand, the preparation and manipulation of dark states is challenging, because commonly used optical excitation mechanisms are not applicable. We propose an efficient mechanism for the deterministic preparation of the dark exciton exploiting the application of a tilted magnetic field and the optical excitation with a chirped, i.e., frequency modulated, laser pulse.
InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency
NASA Astrophysics Data System (ADS)
Greco, Tonino; Ippen, Christian; Wedel, Armin
2012-04-01
Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.
On-chip interference of single photons from an embedded quantum dot and an external laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.
2016-06-20
In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less
Effective theory of monolayer TMDC double quantum dots
NASA Astrophysics Data System (ADS)
David, Alessandro; Burkard, Guido; Kormányos, Andor
2018-07-01
Monolayer transition metal dichalcogenides (TMDCs) are promising candidates for quantum technologies, such as spin qubits in quantum dots, because they are truly two-dimensional semiconductors with a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot (DQD) system created in the conduction band of these materials, with two electrons in the (1,1) charge configuration. Motivated by recent experimental progress, we consider several scenarios, including different spin–orbit splittings in the two dots and including the case when the valley degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, indicating that such Kramers pairs may serve as qubit implementations.
Optical bistability and optical response of an infrared quantum dot hybridized to VO2 nanoparticle
NASA Astrophysics Data System (ADS)
Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza
2017-08-01
In this work, we theoretically investigate optical bistability and optical response of a hybrid system consisting of semiconductor quantum dot (SQD) coupled with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) regime. The VO2 material exists in semiconductor and metallic phases below and above the critical temperature, respectively where the particle optical properties dramatically change during this phase transition. In our calculations a filling fraction factor controls the VO2NP phase transition when the hybrid system interacts with a laser field. We demonstrate that the switch-up threshold for optical bistability is strongly controlled by filling fraction without changing the structure of the hybrid system. Also, it is shown that, the threshold of optical bistability increases when the VO2NP phases changes from semiconductor to metallic phase. The presented results have the potential to be applied in designing optical switching and optical storage.
NASA Astrophysics Data System (ADS)
Syed, Asad; Ahmad, Absar
2013-04-01
The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu; Nano and Micro Device Center, University of Alabama in Huntsville, Huntsville, Alabama 35899; Patty, K. D.
2014-02-24
We show that when a semiconductor quantum dot is in the vicinity of a metallic nanoparticle and driven by a mid-infrared laser field, its coherent dynamics caused by interaction with a visible laser field can become free of quantum decoherence. We demonstrate that this process, which can offer undamped Rabi and field oscillations, is the result of coherent normalization of the “effective” polarization dephasing time of the quantum dot (T{sub 2}{sup *}). This process indicates formation of infrared-induced coherently forced oscillations, which allows us to control the value of T{sub 2}{sup *} using the infrared laser. The results offer decay-freemore » ultrafast modulation of the effective field experienced by the quantum dot when neither the visible laser field nor the infrared laser changes with time.« less
Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters
NASA Astrophysics Data System (ADS)
Buterakos, Donovan; Barnes, Edwin; Economou, Sophia E.
2017-10-01
Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss.
Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.
Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano
2018-06-18
A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rengstl, U.; Schwartz, M.; Herzog, T.
2015-07-13
We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, wheremore » the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.« less
Cadmium Selenium Testing for Microbial Contaminants
NASA Technical Reports Server (NTRS)
2003-01-01
Cadmium selenium Quantum Dots (QDs) are metal nanoparticles that fluoresce in a variety of colors determined by their size. QDs are solid state structures made of semiconductors or metals that confine a countable, small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well conducted region. Coupling QDs with antibodies can be used to make spectrally multiplexed immunoassays that test for a number of microbial contaminants using a single test.
Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...
2016-08-01
Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si 0.8Ge 0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratiomore » used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less
NASA Astrophysics Data System (ADS)
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
Soenen, Stefaan J; Montenegro, José-Maria; Abdelmonem, Abuelmagd M; Manshian, Bella B; Doak, Shareen H; Parak, Wolfgang J; De Smedt, Stefaan C; Braeckmans, Kevin
2014-02-01
Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain a hot research topic and several questions such as possible intracellular degradation of quantum dots and the effect thereof on both cell viability and particle functionality remain unresolved. In the present work, amphiphilic polymer [corrected] coated CdSe/ZnS quantum dots were synthesized and characterized, after which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data revealed that comparing different particles in terms of their applied dose is challenging, likely due to difficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of their biological functionality enables an easy and straightforward comparison. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Atefeh; Miri, MirFaez
2018-01-01
We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.
Coherent electron{endash}hole correlations in quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, L.; Steiner, M.M.; Wilkins, J.W.
1997-03-01
Using numerical time propagation of the electron{endash}hole wave function, we demonstrate how various coherent correlation effects can be observed by laser excitation of a nanoscale semiconductor quantum dot. The lowest-lying states of an electron{endash}hole pair, when appropriately excited by a laser pulse, give rise to charge oscillations that are manifested by beatings in the optical or intraband polarizations. A GaAs 5{times}25{times}25 nm{sup 3} dot in the effective-mass approximation, including the screened Coulomb interaction between the electron and a heavy or light hole, is simulated. {copyright} {ital 1997 American Institute of Physics.}
Laser location and manipulation of a single quantum tunneling channel in an InAs quantum dot.
Makarovsky, O; Vdovin, E E; Patané, A; Eaves, L; Makhonin, M N; Tartakovskii, A I; Hopkinson, M
2012-03-16
We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.
Electric Field Controlled Spin Interference in a System with Rashba Spin-Orbit Coupling
2016-08-29
conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “ leakage ” of electrons...interesting applications. A detectable SO effect requires a strong electric field (as well as a semiconductor host for the electrons that satisfies a...quantum dots (which may be considered identical) are confined by an electrostatically created potential that can be tuned to allow “ leakage ” of
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits
2009-04-29
bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working
Semiconductor Nanocrystals as Light Harvesters in Solar Cells
Etgar, Lioz
2013-01-01
Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318
NASA Astrophysics Data System (ADS)
Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo
2018-03-01
The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.
Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots
NASA Astrophysics Data System (ADS)
Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo
We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.
Counted Sb donors in Si quantum dots
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael
2015-03-01
Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.
2014-09-01
We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)
2006-01-01
A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
2012-01-01
Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724
Quantum dot behavior in transition metal dichalcogenides nanostructures
NASA Astrophysics Data System (ADS)
Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2017-08-01
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.
On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.
Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus
2017-07-12
Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.
Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena
2018-01-01
The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.
Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.
Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja
2016-11-25
Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D 1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Pach, Gregory F.
Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which details the synthesis of PbS/CdS heterostructures in which the PbS and CdS domains exist on opposite sides of the nanocrystal and are termed "Janus particles". Transient absorption spectroscopy shows MEG quantum yields above unity very the thermodynamic limit of 2Eg for PbS/CdS Janus particles. We further explain a mechanism for enhanced MEG using photoluminescence studies.
Single colloidal quantum dots as sources of single photons for quantum cryptography
NASA Astrophysics Data System (ADS)
Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo
2011-02-01
Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.
NASA Astrophysics Data System (ADS)
Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.
2017-06-01
A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the experimentally observed size dependent amplitude scaling, linewidth broadening, and resonance shift phenomena compared to the respective LRA counterparts. Then, we provide a comparison between our suggested GNOR based cavity-QED model and the conventional LRA model, where it becomes evident that our analytical model provides a close match to the experimentally suggested behavior. Furthermore, we show that the Rayleigh scattering spectra of the MNP-QD hybrid molecule possess an asymmetric Fano interference pattern that is tunable to suit various applications.
NASA Astrophysics Data System (ADS)
Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.
2018-03-01
We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.
NASA Astrophysics Data System (ADS)
Al-Amoody, Fuad; Suarez, Ernesto; Rodriguez, Angel; Heller, E.; Huang, Wenli; Jain, F.
2011-08-01
This paper presents a floating quantum dot (QD) gate nonvolatile memory device using high-energy-gap Zn y Cd1- y Se-cladded Zn x Cd1- x Se quantum dots ( y > x) with tunneling layers comprising nearly lattice-matched semiconductors (e.g., ZnS/ZnMgS) on Si channels. Also presented is the fabrication of an electroluminescent (EL) device with embedded cladded ZnCdSe quantum dots. These ZnCdSe quantum dots were embedded between indium tin oxide (ITO) on glass and a top Schottky metal electrode deposited on a thin CsF barrier. These QDs, which were nucleated in a photo-assisted microwave plasma (PMP) metalorganic chemical vapor deposition (MOCVD) reactor, were grown between the source and drain regions on a p-type silicon substrate of the nonvolatile memory device. The composition of QD cladding, which relates to the value of y in Zn y Cd1- y Se, was engineered by the intensity of ultraviolet light, which controlled the incorporation of zinc in ZnCdSe. The QD quality is comparable to those deposited by other methods. Characteristics and modeling of the II-VI quantum dots as well as two diverse types of devices are presented in this paper.
Optically probing the fine structure of a single Mn atom in an InAs quantum dot.
Kudelski, A; Lemaître, A; Miard, A; Voisin, P; Graham, T C M; Warburton, R J; Krebs, O
2007-12-14
We report on the optical spectroscopy of a single InAs/GaAs quantum dot doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A0 whose effective spin J=1 is significantly perturbed by the quantum dot potential and its associated strain field. The spin interaction with photocarriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of mueV, but vanishingly small for electrons.
Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui
2005-01-01
In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
NASA Astrophysics Data System (ADS)
Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.
2017-09-01
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing
NASA Astrophysics Data System (ADS)
Jeong, Heejun
2014-12-01
We report on the measurements of the current noise properties of electron tunneling through a split-gate GaAs quantum dot with large energy level spacing and a small number of electrons. Shot noise is full Poissonian or suppressed in the Coulomb-blockaded regime, while it is enhanced to show as super-Poissonian when an excited energy level is involved by finite source-drain bias. The results can be explained by multiple Poissonian processes through multilevel sequential tunneling.
A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.
2018-04-01
The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.
Measurement back-action: Listening with quantum dots
NASA Astrophysics Data System (ADS)
Ladd, Thaddeus D.
2012-07-01
Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.
Photovoltage field-effect transistors
NASA Astrophysics Data System (ADS)
Adinolfi, Valerio; Sargent, Edward H.
2017-02-01
The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay
Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt
2003-01-01
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378
The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires
NASA Astrophysics Data System (ADS)
Hoffmann, Eric A.
State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric performance, many mesoscopic thermoelectric effects were observed and studied, including Coulomb-blockade thermovoltage oscillations, thermoelectric power generation, and strong nonlinear behavior. In the end, a quantum-dot-based thermoelectric heat engine was achieved and demonstrated an electronic efficiency of up to 95% Carnot efficiency.
Artful and multifaceted applications of carbon dot in biomedicine.
Jaleel, Jumana Abdul; Pramod, K
2018-01-10
Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.
Cadusch, Jasper J; Panchenko, Evgeniy; Kirkwood, Nicholas; James, Timothy D; Gibson, Brant C; Webb, Kevin J; Mulvaney, Paul; Roberts, Ann
2015-09-07
Here we present an application of a high throughput nanofabrication technique to the creation of a plasmonic metasurface and demonstrate its application to the enhancement and control of radiation by quantum dots (QDs). The metasurface consists of an array of cold-forged rectangular nanocavities in a thin silver film. High quantum efficiency graded alloy CdSe/CdS/ZnS quantum dots were spread over the metasurface and the effects of the plasmon-exciton interactions characterised. We found a four-fold increase in the QDs radiative decay rate and emission brightness, compared to QDs on glass, along with a degree of linear polarisation of 0.73 in the emitted field. Such a surface could be easily integrated with current QD display or organic solar cell designs.
Cerdán-Pasarán, Andrea; López-Luke, Tzarara; Esparza, Diego; Zarazúa, Isaac; De la Rosa, Elder; Fuentes-Ramírez, Rosalba; Alatorre-Ordaz, Alejandro; Sánchez-Solís, Ana; Torres-Castro, Alejandro; Zhang, Jin Z
2015-07-28
A multilayered semiconductor sensitizer structure composed of three differently sized CdSe quantum rods (QRs), labeled as Q530, Q575, Q590, were prepared and deposited on the surface of mesoporous TiO2 nanoparticles by electrophoretic deposition (EPD) for photovoltaic applications. By varying the arrangement of layers as well as the time of EPD, the photoconversion efficiency was improved from 2.0% with the single layer of CdSe QRs (TiO2/Q590/ZnS) to 2.9% for multilayers (TiO2/Q590Q575/ZnS). The optimal EPD time was shorter for the multilayered structures. The effect of CdS quantum dots (QDs) deposited by successive ionic layer adsorption and reaction (SILAR) was also investigated. The addition of CdS QDs resulted in the enhancement of efficiency to 4.1% for the configuration (TiO2/CdS/Q590Q575/ZnS), due to increased photocurrent and photovoltage. Based on detailed structural, optical, and photoelectrical studies, the increased photocurrent is attributed to broadened light absorption while the increased voltage is due to a shift in the relevant energy levels.
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle
NASA Astrophysics Data System (ADS)
Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.
2013-05-01
The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.
Plasmonic engineering of spontaneous emission from silicon nanocrystals.
Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme
2013-01-01
Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seravalli, L.; Trevisi, G.; Frigeri, P.
We report on the growth by molecular beam epitaxy and the study by atomic force microscopy and photoluminescence of low density metamorphic InAs/InGaAs quantum dots. subcritical InAs coverages allow to obtain 10{sup 8} cm{sup -2} dot density and metamorphic In{sub x}Ga{sub 1-x}As (x=0.15,0.30) confining layers result in emission wavelengths at 1.3 {mu}m. We discuss optimal growth parameters and demonstrate single quantum dot emission up to 1350 nm at low temperatures, by distinguishing the main exciton complexes in these nanostructures. Reported results indicate that metamorphic quantum dots could be valuable candidates as single photon sources for long wavelength telecom windows.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Klein, M.; Levine, R. D.
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less
He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong
2018-05-22
Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).
Blinking effect and the use of quantum dots in single molecule spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland
2013-01-04
Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in singlemore » molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter
2015-06-22
Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function atmore » zero time delay.« less
NASA Astrophysics Data System (ADS)
Attia, Moez; Gueddana, Amor; Chatta, Rihab; Morand, Alain
2013-09-01
The work presented in this paper develops a new formalism to design microdisks and microgears structures. The main objective is to study the optics and geometrics parameters influence on the microdisks and microgears structures resonance behavior. This study is conducted to choice a resonance structure with height quality factor Q to be associated with Quantum dot to form a single photon source. This new method aims to design resonant structures that are simpler and requires less computing performances than FDTD and Floquet Block methods. This formalism is based on simplifying Fourier transformed and using toeplitz matrix writing. This new writing allows designing all kind of resonance structures with any defect and any modification. In other study we have design a quantum dot emitting a photon at 1550 nm of the fundamental mode, but the quantum dot emits other photons at other wavelengths. The focus of the resonant structure and the quantum dot association is the resonance of the photon at 1550 nm and the elimination of all other photons with others energies. The quantum dot studied in [1] is an InAs/GaAs quantum dot, we design an GaAS microdisk and microgear and we compare the quality factor Q of this two structures and we conclude that the microgear is more appropriated to be associate to the quantum dot and increase the probability P1 to obtain a single photon source at 1550 nm and promotes the obtaining of single photon. The performance improving of the resonant structure is able to increase the success of quantum applications such as quantum gates based on single photon source.
InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface
NASA Astrophysics Data System (ADS)
Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.
2013-08-01
We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Complete quantum control of exciton qubits bound to isoelectronic centres.
Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S
2014-05-30
In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
Goto, Thiago E; Lopes, Carla C; Nader, Helena B; Silva, Anielle C A; Dantas, Noelio O; Siqueira, José R; Caseli, Luciano
2016-07-01
Cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts. The films were transferred to solid supports to obtain microscopic images, providing information on their morphology. Similarity between films with different compositions representing cell membranes, with or without the quantum dots, was evaluated by atomic force microscopy (AFM) and confocal microscopy. This study demonstrates that the affinity of quantum dots for models representing cancer cells permits the use of these systems as devices for cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles.
Bekenstein, Yehonadav; Vinokurov, Kathy; Banin, Uri; Millo, Oded
2012-12-21
Hybrid inorganic nanoparticles, comprising a semiconducting Cu(2)S quantum-dot (QD) core encapsulated by a metallic Ru cage-like shell, and each of their individual components, are studied via scanning tunneling spectroscopy. Bare Cu(2)S QDs show nearly identical semiconducting-like I-V characteristics while the empty Ru cages exhibit single electron tunneling effects-the Coulomb blockade and staircase. Surprisingly, in some cases negative differential conductance features, with periodicity that correlates to the Coulomb staircase, were observed. The tunneling spectra measured on the hybrid QDs varies greatly along a single particle, manifesting synergetic electrical properties that originate from this unique semiconducting-metallic interface.
A high-temperature single-photon source from nanowire quantum dots.
Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak
2008-12-01
We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.
Biomolecule/nanomaterial hybrid systems for nanobiotechnology.
Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar
2012-01-01
The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.
Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2007-12-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.
Nuclear spin nanomagnet in an optically excited quantum dot.
Korenev, V L
2007-12-21
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.
Can the oscillator strength of the quantum dot bandgap transition exceed unity?
NASA Astrophysics Data System (ADS)
Hens, Z.
2008-10-01
We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.
Spin properties of charged Mn-doped quantum dota)
NASA Astrophysics Data System (ADS)
Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.
2007-04-01
The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.
Evaluating the potential of using quantum dots for monitoring electrical signals in neurons
NASA Astrophysics Data System (ADS)
Efros, Alexander L.; Delehanty, James B.; Huston, Alan L.; Medintz, Igor L.; Barbic, Mladen; Harris, Timothy D.
2018-04-01
Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.
One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates
NASA Astrophysics Data System (ADS)
Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.
2013-12-01
Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.
STM images of carbon-nanotube quantum dots: Seeing a Wigner molecule of correlated electrons
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2011-03-01
The paradigm of few-electron complexes in quantum dots (QDs) relies on the idea that the lowest quantized levels are filled according to Pauli's exclusion principle. If Coulomb repulsion is sufficiently strong to overcome the kinetic energy cost of localization, a different scenario is predicted: a ``Wigner'' molecule (WM) forms, made of electrons frozen in space according to a geometrical pattern. Despite considerable experimental effort, evidence of the WM in semiconductor QDs has been elusive so far. Here we demonstrate theoretically that WMs occur in gate-defined QDs embedded in typical semiconducting carbon nanotubes (CNTs). The unambiguous signatures of the WM state must be searched in the scanning tunneling microscopy (STM) images of the electrons. Through exact diagonalisation (ED) calculations, we unveil the inherent features of the electron molecular states. We show that, like nuclei in a usual molecule, electrons have localized wave functions and hence negligible exchange interactions. ED results for single and double QDs provide a simple interpretation for transport experiments in ultraclean CNTs.
Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics
NASA Astrophysics Data System (ADS)
Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei
2011-03-01
Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).