Watt, Melissa H; Sikkema, Kathleen J; Abler, Laurie; Velloza, Jennifer; Eaton, Lisa A; Kalichman, Seth C; Skinner, Donald; Pieterse, Desiree
2015-05-01
South Africa has among the highest rates of forced sex worldwide, and alcohol use has consistently been associated with risk of forced sex in South Africa. However, methodological challenges affect the accuracy of forced sex measurements. This study explored the assessment of forced sex among South African women attending alcohol-serving venues and identified factors associated with reporting recent forced sex. Women (n = 785) were recruited from 12 alcohol-serving venues in a peri-urban township in Cape Town. Brief self-administered surveys included questions about lifetime and recent experiences of forced sex. Surveys included a single question about forced sex and detailed questions about sex by physical force, threats, verbal persuasion, trickery, and spiked drinks. We first compared the single question about forced sex to a composite variable of forced sex as unwanted sex by physical force, threats, or spiked drinks. We then examined potential predictors of recent forced sex (demographics, drinking behavior, relationship to the venue, abuse experiences). The single question about forced sex had low sensitivity (0.38); more than half of the respondents who reported on the detailed questions that they had experienced forced sex by physical force, threats, or spiked drinks reported on the single question item that they had not experienced forced sex. Using our composite variable, 18.6% of women reported lifetime and 10.8% reported recent experiences of forced sex. In our adjusted logistic regression model, recent forced sex using the composite variable was significantly associated with hazardous drinking (OR = 1.92), living farther from the venue (OR = 1.81), recent intimate partner violence (OR = 2.53), and a history of childhood sexual abuse (OR = 4.35). The findings support the need for additional work to refine the assessment of forced sex. Efforts to prevent forced sex should target alcohol-serving venues, where norms and behaviors may present particular risks for women who frequent these settings. © The Author(s) 2014.
Potential for Military Recruiting from Two-Year Colleges and Postsecondary Vocational Schools
1983-01-01
servicemen. With respect to meeting enlistment standards--age, ability, single without dependents, good morals, and physical health--recruiting fromI...average in aptitude, and over 90 percent of those between the ages of 18 and 21 are single and report being in good physical health. Thhv two-year...without dependents, and physically and morally acceptable. An affirmative answer leads to a series of questions: Is the markez penetrable? Are recruits
Levels of processing and picture memory: the physical superiority effect.
Intraub, H; Nicklos, S
1985-04-01
Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.
Comparison of Alcohol Use Disorder Screens During College Athlete Pre-Participation Evaluations.
Majka, Erek; Graves, Travis; Diaz, Vanessa A; Player, Marty S; Dickerson, Lori M; Gavin, Jennifer K; Wessell, Andrea
2016-05-01
The US Preventive Services Task Force (USPSTF) recommends screening adults for alcohol misuse, a challenge among young adults who may not have regular primary care. The pre-participation evaluation (PPE) provides an opportunity for screening, but traditional screening tools require extra time in an already busy visit. The objective of this study was to compare the 10-item Alcohol Use Disorders Identification Test (AUDIT) with a single-question alcohol misuse screen in a population of college-aged athletes. This cross-sectional study was performed during an athletic PPE clinic at a college in the Southeastern United States among athletes ages 18 years and older. Written AUDIT and single-question screen "How many times in the past year have you had X or more drinks in a day?" (five for men, four for women) asked orally were administered to each participant. Sensitivity, specificity, and positive and negative predictive values for the single-question screen were compared to AUDIT. A total of 225 athletes were screened; 60% were female; 29% screened positive by AUDIT; 59% positive by single-question instrument. Males were more likely to screen positive by both methods. Compared to the AUDIT, the brief single-question screen had 92% sensitivity for alcohol misuse and 55% specificity. The negative predictive value of the single-question screen was 95% compared to AUDIT. A single-question screen for alcohol misuse in college-aged athletes had a high sensitivity and negative predictive value compared to the more extensive AUDIT screen. Ease of administration of this screening tool is ideal for use within the pre-participation physical among college-aged athletes who may not seek regular medical care.
Haegele, Justin A; Hodge, Samuel Russell
2015-10-01
There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health
Michael C. Amacher; Katherine P. O' Neil; Charles H. Perry
2007-01-01
The Forest Inventory and Analysis (FIA) program measures a number of chemical and physical properties of soils to address specific questions about forest soil quality or health. We developed a new index of forest soil health, the soil quality index (SQI), that integrates 19 measured physical and chemical properties of forest soils into a single number that serves as...
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Multiple angles on the sterile neutrino - a combined view of cosmological and oscillation limits
NASA Astrophysics Data System (ADS)
Guzowski, Pawel
2017-09-01
The possible existence of sterile neutrinos is an important unresolved question for both particle physics and cosmology. Data sensitive to a sterile neutrino is coming from both particle physics experiments and from astrophysical measurements of the Cosmic Microwave Background. In this study, we address the question whether these two contrasting data sets provide complementary information about sterile neutrinos. We focus on the muon disappearance oscillation channel, taking data from the MINOS, ICECUBE and Planck experiments, converting the limits into particle physics and cosmological parameter spaces, to illustrate the different regions of parameter space where the data sets have the best sensitivity. For the first time, we combine the data sets into a single analysis to illustrate how the limits on the parameters of the sterile-neutrino model are strengthened. We investigate how data from a future accelerator neutrino experiment (SBN) will be able to further constrain this picture.
U.S. Naval Unit Behavioral Health Needs Assessment Survey, Overview of Survey Items and Measures
2014-05-20
Cohesion • Social Support • Assignment-Related Stressors • Physical Stressors • Traumatic Brain Injury • Physical Activity • Pain and Pain ...et al., 2011). Pain and Pain Medication Use To evaluate pain , a single question from the Brief Pain Inventory is included on NUBHNAS...Please rate your pain by indicating the one number that best describes your pain on average.” Responses: 0 = 0 (No pain ), 1 = 1, . . ., 10 = 10 ( Pain
The Association Between Self-Rated Fitness and Cardiorespiratory Fitness in Adults.
Jensen, Karina Gregersen; Rosthøj, Susanne; Linneberg, Allan; Aadahl, Mette
2018-06-01
To assess criterion validity of a single item question on self-rated physical fitness against objectively measured cardiorespiratory fitness. From the Health2008 study 749 men and women between 30 and 60 years of age rated their fitness as excellent, very good, good, fair or poor. Cardiorespiratory fitness was estimated with the watt-max test. Agreement between self-rated and objectively measured physical fitness was assessed by Cohen's weighted kappa coefficient. Correlation was determined by Goodman & Kruskal's gamma correlation coefficient. All analyses were stratified according to gender. Data from 323 men and 426 women were analysed. There was a slight agreement between self-rated and objectively measured fitness in men (weighted kappa: 0.18, [95%CI: 0.13;0.23]) and a fair agreement in women (weighted kappa: 0.27, [95%CI: 0.22;0.32]). In both genders, self-rated fitness was positively correlated with objectively measured fitness (moderate correlation; gamma correlation coefficient for men: 0.63 [95%CI: 0.54;0.72] and women: 0.67 [95%CI: 0.59;0.75]). There was a slight to fair agreement and moderate, positive correlations between self-rated physical fitness and watt-max estimated cardiorespiratory fitness. Hence, a single-item question on physical fitness may be a cost-effective method of assessing fitness in large population studies, but is not valid for individual assessments. © Georg Thieme Verlag KG Stuttgart · New York.
Single-molecule techniques in biophysics: a review of the progress in methods and applications.
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Single-molecule techniques in biophysics: a review of the progress in methods and applications
NASA Astrophysics Data System (ADS)
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Promoting Physical Science to Education Majors: Making Connections between Science and Teaching
ERIC Educational Resources Information Center
Korb, Michele A.; Sirola, Christopher; Climack, Rebecca
2005-01-01
Elementary teachers have been identified as the single most important influence on student's future attitudes and motivations toward science. Research indicates that K-8 science teachers emphasize memorization more than the exploration of questions or critical thought as a result of their college science experiences. The reasons students gradually…
Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making
NASA Astrophysics Data System (ADS)
Modir, Bahar
In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
Talking Physics: Two Case Studies on Short Answers and Self-explanation in Learning Physics
NASA Astrophysics Data System (ADS)
Badeau, Ryan C.
This thesis explores two case studies into the use of short answers and self-explanation to improve student learning in physics. The first set of experiments focuses on the role of short answer questions in the context of computer-based instruction. Through a series of six experiments, we compare and evaluate the performance of computer-assessed short answer questions versus multiple choice for training conceptual topics in physics, controlling for feedback between the two formats. In addition to finding overall similar improvements on subsequent student performance and retention, we identify unique differences in how students interact with the treatments in terms of time spent on feedback and performance on follow-up short answer assessment. In addition, we identify interactions between the level of interactivity of the training, question format, and student attitudinal ratings of each respective training. The second case study focuses on the use of worked examples in the context of multi-concept physics problems - which we call "synthesis problems." For this part of the thesis, four experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. As such, the work presented here represents a novel focus on extending these two techniques to this class of more complicated physics problem. Across the four experiments, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time-on-task.
NASA Astrophysics Data System (ADS)
Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting
2016-10-01
Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.
Hauser, Marc; Spaulding, Bailey
2006-01-01
Human infants and adults generate causal inferences about the physical world from observations of single, novel events, thereby violating Hume's thesis that spatiotemporal cooccurrence from prior experience drives causal perception in our species. Is this capacity unique or shared with other animals? We address this question by presenting the results of three experiments on free-ranging rhesus monkeys (Macaca mulatta), focusing specifically on their capacity to generate expectations about the nature of completely unfamiliar physical transformations. By using an expectancy violation looking-time method, each experiment presented subjects with either physically possible or impossible transformations of objects (e.g., a knife, as opposed to a glass of water, appears to cut an apple in half). In both experiments, subjects looked longer when the transformation was impossible than when it was possible. Follow up experiments ruled out that these patterns could be explained by association. These results show that in the absence of training or direct prior experience, rhesus monkeys generate causal inferences from single, novel events, using their knowledge of the physical world to guide such expectations. PMID:16641097
Elley, C Raina; Kerse, Ngaire M; Arroll, Bruce
2003-10-01
The question of whether the public health issue of physical inactivity should be addressed in primary health care is a controversial matter. Baseline cross-sectional analysis of a physician-based physical activity intervention trial involving sedentary adults was undertaken within 42 rural and urban family practices in New Zealand to examine self-reported levels of physical activity and cardiovascular risk factors. A self-administered single question about physical activity was used to screen 40- to 79-year-old patients from waiting rooms for physical inactivity. The positive predictive value of the screening question was 81%. Participation rates for the study were high, including 74% of family physicians (n = 117) in the region. Eighty-eight percent of consecutive patients in the age group agreed to be screened and 46% were identified as sedentary. Of those eligible, 66% (n = 878) agreed to participate in a study involving a lifestyle intervention from their family physician. Blood pressure and BMI were significantly greater than that in the general population. There were high rates of hypertension (52%), diabetes (10.5%), obesity (43%), previous cardiovascular disease (19%), and risk factors for cardiovascular disease (93%). Decreasing total energy expenditure was associated with increasing cardiovascular risk (P = 0.001). Sedentary adults in primary care represent a high cardiovascular risk population. Screening for inactivity in primary care is effective and efficient. Two-thirds of sedentary adults agreed to receive a lifestyle intervention from their family physician.
Designing a biomechanics investigation: choosing the right model.
Olson, Steven A; Marsh, J Lawrence; Anderson, Donald D; Latta Pe, Loren L
2012-12-01
Physical testing is commonly performed to answer important biomechanical questions in the treatment of patients with fractures and other orthopaedic conditions. However, a variety of mistakes that are made in performing such investigations can severely limit their impact. The goal of this article is to discuss important aspects of study design to consider when planning for biomechanical investigations so that the studies can provide maximal benefit to the field. The best mechanical investigations begin with a good research question, one that comes out of patient care experience, is clearly defined, and can be stated concisely. The first practical issue to be considered is often choosing the type of physical specimens to be tested to address the research question. A related issue involves determining how many specimens will be needed to answer the posed mechanical question. Cadavers are generally still the closest to the actual clinical situation, but they are limited by interspecimen variability, which often requires a matched pair design that can address only one question. Simulated bone specimens limit variability and can replicate normal and osteoporotic bone. In planning the physical testing, the critical mechanical variables involved in answering the research question must be identified and due consideration given to deciding how best to measure them. Another important issue that arises relates to whether or not single static loadings will suffice in the testing (eg, to study construct stiffness) or whether cyclic dynamic testing is necessary (eg, to study late failure likely attributable to fatigue). To summarize, experimental design should be carefully planned before initiating mechanical testing. Sample size calculations should be performed to ensure adequate power and that clinically relevant differences can be detected. This pregame analysis can save significant time and cost and greatly increase the likelihood that the results will advance knowledge.
Deepthi, R; Kasthuri, Arvind
2012-01-01
Hearing loss is a potentially disabling problem among elderly leading to physical and social dysfunction. Though audiometric assessment of hearing loss is considered as gold standard, it is not feasible in community settings. Several questionnaires measuring hearing handicap have been developed. Knowledge regarding applicability of these questionnaires among rural elderly is limited, hence a study was planned to validate single question and Shortened Hearing Handicap Inventory for Elderly (HHIE-S) in detecting hearing loss against pure tone-audiometry among rural Indian elderly. A single question 'do you feel you have a hearing loss?' and the HHIE-S was administered to 175 elderly in two rural areas. Hearing ability was assessed using pure tone audiometry. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of both screening tools were compared with pure tone averages (PTAs) greater than 25, 40 and 55 dB hearing level (mild, moderate and severe hearing loss, respectively). The single question yielded low sensitivity (30.9%) and high specificity (93.9%) for mild hearing loss. Similarly HHIE-S yielded a sensitivity of 26.2% and specificity of 95.9%. Sensitivity with single question increased to 76.2% and specificity decreased to 83.1% with severe hearing loss. Sensitivity with HHIE-S also increased to 76.2% and specificity decreased to 87.7% with severe hearing loss. These hearing screening questionnaires will be useful in identifying more disabling hearing losses among rural elderly which helps in rehabilitation services planning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Self-efficacy in introductory physics in students at single-sex and coeducational colleges
NASA Astrophysics Data System (ADS)
Blue, Jennifer; Mills, Mary Elizabeth; Yezierski, Ellen
2013-01-01
We surveyed 88 students at four colleges: one men's college, two women's colleges, and one coeducational college. The questions, modified from Reid (2007), asked about in-class participation, how fulfilled they were by their achievement in their calc-based physics class, their attitude toward their class, and their self-efficacy (Bandura 1994) in the class. While a t-test showed no difference between men and women, an ANOVA showed a significant interaction between sex and type of school. Detailed results will be presented and discussed.
Heald, Alison E; Fudman, Edward J; Anklesaria, Pervin; Mease, Philip J
2010-05-01
To assess the validity, responsiveness, and reliability of single-joint outcome measures for determining target joint (TJ) response in patients with inflammatory arthritis. Patient-reported outcomes (PRO), consisting of responses to single questions about TJ global status on a 100-mm visual analog scale (VAS; TJ global score), function on a 100-mm VAS (TJ function score), and pain on a 5-point Likert scale (TJ pain score) were piloted in 66 inflammatory arthritis subjects in a phase 1/2 clinical study of an intraarticular gene transfer agent and compared to physical examination measures (TJ swelling, TJ tenderness) and validated function questionnaires (Disabilities of the Arm, Shoulder and Hand scale, Rheumatoid Arthritis Outcome Score, and the Health Assessment Questionnaire). Construct validity was assessed by evaluating the correlation between the single-joint outcome measures and validated function questionnaires using Spearman's rank correlation. Responsiveness or sensitivity to change was assessed through calculating effect size and standardized response means (SRM). Reliability of physical examination measures was assessed by determining interobserver agreement. The single-joint PRO were highly correlated with each other and correlated well with validated functional measures. The TJ global score exhibited modest effect size and modest SRM that correlated well with the patient's assessment of response on a 100-mm VAS. Physical examination measures exhibited high interrater reliability, but correlated less well with validated functional measures and the patient's assessment of response. Single-joint PRO, particularly the TJ global score, are simple to administer and demonstrate construct validity and responsiveness in patients with inflammatory arthritis. (ClinicalTrials.gov identifier NCT00126724).
NASA Astrophysics Data System (ADS)
Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.
2014-12-01
Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.
NASA Astrophysics Data System (ADS)
Wang, Hai; Kumar, Asutosh; Cho, Minhyung; Wu, Junde
2018-04-01
Physical quantities are assumed to take real values, which stems from the fact that an usual measuring instrument that measures a physical observable always yields a real number. Here we consider the question of what would happen if physical observables are allowed to assume complex values. In this paper, we show that by allowing observables in the Bell inequality to take complex values, a classical physical theory can actually get the same upper bound of the Bell expression as quantum theory. Also, by extending the real field to the quaternionic field, we can puzzle out the GHZ problem using local hidden variable model. Furthermore, we try to build a new type of hidden-variable theory of a single qubit based on the result.
Domanico, R; Davis, D K; Coleman, F; Davis, B O
2011-01-01
Objective: To test the efficacy of single family room (SFR) neonatal intensive care unit (NICU) designs, questions regarding patient medical progress and relative patient safety were explored. Addressing these questions would be of value to hospital staff, administrators and designers alike. Study Design: This prospective study documented, by means of Institution Review Board-approved protocols, the progress of patients in two contrasting NICU designs. Noise levels, illumination and air quality measurements were included to define the two NICU physical environments. Result: Infants in the SFR unit had fewer apneic events, reduced nosocomial sepsis and mortality, as well as earlier transitions to enteral nutrition. More mothers sustained stage III lactation, and more infants were discharged breastfeeding in the SFR. Conclusion: This study showed the SFR to be more conducive to family-centered care, and to enhance infant medical progress and breastfeeding success over that of an open ward. PMID:21072040
A Two-Step Integrated Theory of Everything (TOE)
NASA Astrophysics Data System (ADS)
Colella, Antonio
2017-01-01
Two opposing TOE visions are my Two-Step (physics/math) and Hawking's single math step. My Two-Step should replace the single step because of the latter's near zero results after a century of attempts. My physics step had 3 goals. First ``Everything'' was defined as 20 interrelated amplified theories (e.g. string, Higgs forces, spontaneous symmetry breaking, particle decays, dark matter, dark energy, stellar black holes) and their intimate physical interrelationships. Amplifications of Higgs forces theory (e.g. matter particles and their associated Higgs forces were one and inseparable, spontaneous symmetry breaking was bidirectional and caused by high temperatures not Higgs forces, and sum of 8 Higgs forces of 8 permanent matter particles was dark energy) were key to my Two-Step TOE. The second goal answered all outstanding physics questions: what were Higgs forces, dark energy, dark matter, stellar black holes, our universe's creation, etc.? The third goal provided correct inputs for the two part second math step, an E8 Lie algebra for particles and an N-body cosmology simulation (work in progress). Scientific advancement occurs only if the two opposing TOEs are openly discussed/debated.
Fundamentals of Physics, Part 3 (Chapters 22-33)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2004-03-01
Chapter 21. Electric Charge. Why do video monitors in surgical rooms increase the risk of bacterial contamination? 21-1 What Is Physics? 21-2 Electric Charge. 21-3 Conductors and Insulators. 21-4 Coulomb's Law. 21-5 Charge Is Quantized. 21-6 Charge Is Conserved. Review & Summary. Questions. Problems. Chapter 22. Electric Fields. What causes sprites, those brief .ashes of light high above lightning storms? 22-1 What Is Physics? 22-2 The Electric Field. 22-3 Electric Field Lines. 22-4 The Electric Field Due to a Point Charge. 22-5 The Electric Field Due to an Electric Dipole. 22-6 The Electric Field Due to a Line of Charge. 22-7 The Electric Field Due to a Charged Disk. 22-8 A Point Charge in an Electric Field. 22-9 A Dipole in an Electric Field. Review & Summary. Questions. Problems. Chapter 23. Gauss' Law. How can lightning harm you even if it do es not strike you? 23-1 What Is Physics? 23-2 Flux. 23-3 Flux of an Electric Field. 23-4 Gauss' Law. 23-5 Gauss' Law and Coulomb's Law. 23-6 A Charged Isolated Conductor. 23-7 Applying Gauss' Law: Cylindrical Symmetry. 23-8 Applying Gauss' Law: Planar Symmetry. 23-9 Applying Gauss' Law: Spherical Symmetry. Review & Summary. Questions. Problems. Chapter 24. Electric Potential. What danger does a sweater pose to a computer? 24-1 What Is Physics? 24-2 Electric Potential Energy. 24-3 Electric Potential. 24-4 Equipotential Surfaces. 24-5 Calculating the Potential from the Field. 24-6 Potential Due to a Point Charge. 24-7 Potential Due to a Group of Point Charges. 24-8 Potential Due to an Electric Dipole. 24-9 Potential Due to a Continuous Charge Distribution. 24-10 Calculating the Field from the Potential. 24-11 Electric Potential Energy of a System of Point Charges. 24-12 Potential of a Charged Isolated Conductor. Review & Summary. Questions. Problems. Chapter 25. Capacitance. How did a fire start in a stretcher being withdrawn from an oxygen chamber? 25-1 What Is Physics? 25-2 Capacitance. 25-3 Calculating the Capacitance. 25-4 Capacitors in Parallel and in Series. 25-5 Energy Stored in an Electric Field. 25-6 Capacitor with a Dielectric. 25-7 Dielectrics: An Atomic View. 25-8 Dielectrics and Gauss' Law. Review & Summary. Questions. Problems. Chapter 26. Current and Resistance. What precaution should you take if caught outdoors during a lightning storm? 26-1 What Is Physics? 26-2 Electric Current. 26-3 Current Density. 26-4 Resistance and Resistivity. 26-5 Ohm's Law. 26-6 A Microscopic View of Ohm's Law. 26-7 Power in Electric Circuits. 26-8 Semiconductors. 26-9 Superconductors. Review & Summary. Questions. Problems. Chapter 27. Circuits. How can a pit crew avoid a fire while fueling a charged race car? 27-1 What Is Physics? 27-2 "Pumping" Charges. 27-3 Work, Energy, and Emf. 27-4 Calculating the Current in a Single-Loop Circuit. 27-5 Other Single-Loop Circuits. 27-6 Potential Difference Between Two Points. 27-7 Multiloop Circuits. 27-8 The Ammeter and the Voltmeter. 27-9 RC Circuits. Review & Summary. Questions. Problems. Chapter 28. Magnetic Fields. How can a beam of fast neutrons, which are electrically neutral, be produced in a hospital to treat cancer patients? 28-1 What Is Physics? 28-2 What Produces a Magnetic Field? 28-3 The Definition of 736 :B. 28-4 Crossed Fields: Discovery of the Electron . 28-5 Crossed Fields: The Hall Effect. 28-6 A Circulating Charged Particle. 28-7 Cyclotrons and Synchrotrons. 28-8 Magnetic Force on a Current-Carrying Wire. 28-9 Torque on a Current Loop. 28-10 The Magnetic Dipole Moment. Review & Summary. Questions. Problems. Chapter 29. Magnetic Fields Due to Currents. How can the human brain produce a detectable magnetic field without any magnetic material? 29-1 What Is Physics? 29-2 Calculating the Magnetic Field Due to a Current. 29-3 Force Between Two Parallel Currents. 29-4 Ampere's Law. 29-5 Solenoids and Toroids. 29-6 A Current-Carrying Coil as a Magnetic Dipole. Review & Summary. Questions. Problems. Chapter 30. Induction and Inductance. How can the magnetic .eld used in an MRI scan cause a patient to be burned? 30-1 What Is Physics? 30-2 Two Experiments. 30-3 Faraday's Law of Induction. 30-4 Lenz's Law. 30-5 Induction and Energy Transfers. 30-6 Induced Electric Fields. 30-7 Inductors and Inductance. 30-8 Self-Induction. 30-9 RL Circuits. 30-10 Energy Stored in a Magnetic Field. 30-11 Energy Density of a Magnetic Field. 30-12 Mutual Induction. Review & Summary. Questions. Problems. Chapter 31. Electromagnetic Oscillations and Alternating Current. How did a solar eruption knock out the power-grid system of Quebec? 31-1 What Is Physics? 31-2 LC Oscillations, Qualitatively. 31-3 The Electrical-Mechanical Analogy. 31-4 LC Oscillations, Quantitatively. 31-5 Damped Oscillations in an RLC Circuit. 31-6 Alternating Current. 31-7 Forced Oscillations. 31-8 Three Simple Circuits. 31-9 The Series RLC Circuit. 31-10 Power in Alternating-Current Circuits. 31-11 Transformers. Review & Summary. Questions. Problems. Chapter 32. Maxwell's Equations; Magnetism of Matter. How can a mural painting record the direction of Earth's magnetic field? 32-1 What Is Physics? 32-2 Gauss' Law for Magnetic Fields. 32-3 Induced Magnetic Fields. 32-4 Displacement Current. 32-5 Maxwell's Equations. 32-6 Magnets. 32-7 Magnetism and Electrons. 32-8 Magnetic Materials. 32-9 Diamagnetism. 32-10 Paramagnetism. 32-11 Ferromagnetism. Review & Summary. Questions. Problems. Appendices. A. The International System of Units (SI). B. Some Fundamental Constants of Physics. C. Some Astronomical Data. D. Conversion Factors. E. Mathematical Formulas. F. Properties of the Elements. G. Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Importance of questionnaire context for a physical activity question.
Jørgensen, M E; Sørensen, M R; Ekholm, O; Rasmussen, N K
2013-10-01
Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person Register. A new question about physical activity was included with minor differences in formulations in samples 1-3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four samples from 57 to 100 min/day. Question order was associated with the reported number of minutes spent on moderate-intensity physical activity and with prevalence of meeting the recommendation, whereas physical inactivity was associated with the differences in formulation of the question. Questionnaire context influences the way people respond to questions about physical activity significantly and should be tested systematically in validation studies of physical activity questionnaires. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dabney, Katherine P.; Tai, Robert H.
2014-06-01
The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.
Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)
NASA Astrophysics Data System (ADS)
Pounds, Andrew
2001-05-01
This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.
1960-06-06
scientists of various countries. The Investigators addressed themselves at once to the question as to what physical process causes combustion to...same values for the r poducts of com- bustion, D is the velocity of the detonation front AB, and w is the velocity of the products of com- ,bustton... mixed with oxi- dizer and mixture is preheated; 3 -- reaction zone; 4 -- products of combustion. Let us return to the single-headed spin and consider
Fundamental movement skills and habitual physical activity in young children.
Fisher, Abigail; Reilly, John J; Kelly, Louise A; Montgomery, Colette; Williamson, Avril; Paton, James Y; Grant, Stan
2005-04-01
To test for relationships between objectively measured habitual physical activity and fundamental movement skills in a relatively large and representative sample of preschool children. Physical activity was measured over 6 d using the Computer Science and Applications (CSA) accelerometer in 394 boys and girls (mean age 4.2, SD 0.5 yr). Children were scored on 15 fundamental movement skills, based on the Movement Assessment Battery, by a single observer. Total physical activity (r=0.10, P<0.05) and percent time spent in moderate to vigorous physical activity (MVPA) (r=0.18, P<0.001) were significantly correlated with total movement skills score. Time spent in light-intensity physical activity was not significantly correlated with motor skills score (r=0.02, P>0.05). In this sample and setting, fundamental movement skills were significantly associated with habitual physical activity, but the association between the two variables was weak. The present study questions whether the widely assumed relationships between motor skills and habitual physical activity actually exist in young children.
Global Plasmaspheric Imaging: A New "Light" Focusing on Familiar Questions
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Six, N. Frank (Technical Monitor)
2002-01-01
Until recently plasmaspheric physics, for that matter, magnetospheric physics as a whole, has relied primarily on single point in-situ measurement, theory, modeling, and a considerable amount of extrapolation in order to envision the global structure of the plasmasphere. This condition changed with the launch of the IMAGE satellite in March 2000. Using the Extreme Ultraviolet (EUV) imager on WAGE, we can now view the global structure of the plasmasphere bathed in the glow of resonantly scattered 30.4 nm radiation allowing the space physics community to view the dynamics of this global structure as never before. This talk will: (1) define the plasmasphere from the perspective of plasmaspheric physics prior to March 2000; (2) present a review of EUV imaging optics and the IMAGE mission; and focus on efforts to understand an old and familiar feature of plasmaspheric physics, embedded plasmaspheric density troughs, in this new global light with the assistance of forward modeling.
Single Cell Proteomics in Biomedicine: High-dimensional Data Acquisition, Visualization and Analysis
Su, Yapeng; Shi, Qihui; Wei, Wei
2017-01-01
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. PMID:28128880
Polymer physics experiments with single DNA molecules
NASA Astrophysics Data System (ADS)
Smith, Douglas E.
1999-11-01
Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.
Fermilab | Science at Fermilab | Experiments & Projects | Cosmic Frontier
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
Questions about Physics: The Case of a Turkish "Ask a Scientist" Website
ERIC Educational Resources Information Center
Yerdelen-Damar, Sevda; Eryilmaz, Ali
2010-01-01
The physics questions submitted to an "ask a scientist" website were classified with respect to field of interest in physics, type of requested information in the question (factual, explanatory, etc.), and motivation for asking the question (applicative or non-applicative). In addition, differences in the number of females' and males'…
Revealing physical education students’ misconception in sport biomechanics
NASA Astrophysics Data System (ADS)
Kartiko, D. C.
2018-04-01
The aim of this research is reveal Physical Education students’ misconception in several concepts of Sport Biomechanics. The Data of misconception collected by standard question of Diagnostic Test that given to 30 students of Physical Education, Faculty of Sport, State University of Surabaya in academic year 2017/2018. Diagnostic Test completed with CRI (Certainty of Response Index) in order to collect data of students’ certain in answered test. The data result of diagnostic test analysed through compilation graph of CRI right, CRI wrong and right fraction in every single question. Furthermore, students’ answer result of diagnostic test categorized in to 4 quadrants, these: correct concepts, lucky guess, misconceptions, and lack of knowledge. Its categorizing data to know percentage of misconceptions that arise in every concept tested. These sport biomechanics concepts tested are limited on frictional force, deference of distance and displacement, deference of velocity and acceleration, and free fall motion. The result obtained arise misconception in frictional force 52,78%; deference of distance and displacement 36,67%; deference of velocity and acceleration 56,67%; and free fall motion 53,33%. Result of t-test in diagnostic test misconception percentage showed that percentage of misconception arises in every student above 50%.
Enriching gender in physics education research: A binary past and a complex future
NASA Astrophysics Data System (ADS)
Traxler, Adrienne L.; Cid, Ximena C.; Blue, Jennifer; Barthelemy, Ramón
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (i) it does not question whether the achievements of men are the most appropriate standard, (ii) individual experiences and student identities are undervalued, and (iii) the binary model of gender is not questioned. Driven by these critiques, we propose a conception of gender that is more up to date with other fields and discuss gender as performance as an extended example. We also discuss work on the intersection of identities [e.g., gender with race and ethnicity, socioeconomic status, lesbian, gay, bisexual, and transgender (LGBT) status], much of which has been conducted outside of physics. Within PER, some studies examine the intersection of gender and race, and identify the lack of a single identity as a key challenge of "belonging" in physics. Acknowledging this complexity enables us to further critique what we term a binary gender deficit model. This framework, which is implicit in much of the gender-based PER, casts gender as a fixed binary trait and suggests that women are deficient in characteristics necessary to succeed. Alternative models of gender allow a greater range and fluidity of gender identities, and highlight deficiencies in data that exclude women's experiences. We suggest new investigations that diverge from this expanded gender framework in PER.
Context for Understanding why Particular Nanoscale Crystals Turn-On Faster and Other Lenr Effects
NASA Astrophysics Data System (ADS)
Chubb, Scott R.
Two persistent questions have been: (1) Why is it often necessary to wait for a finite period of time before the Excess Heat effect is observed after palladium (Pd) has been sufficiently loaded with deuterium (D), that the near full-loading condition (PdDx, 0.85 ~ < x → 1) that is required for Excess Heat, has been achieved? (2) Is it possible to identify physical properties of the materials and/or crystals that are used that might be playing a role in the interval of time associated with this phenomenon? Recently, I generalized conventional energy band theory to address both questions. The new theory can explain these experimental results but will be ignored by most scientists. I suggest that this is expected: The context of energy band and Ion Band State (IBS) theory is very different from the context of hot fusion theory. Even within the Low-Energy Nuclear Reactions (LENR) field, hidden, simplifying assumptions exist, which implicitly reflect biases associated with the context of hot fusion. A typical example is the idea that a single, particular form of reaction or environment can explain all LENR phenomena. As opposed to such a picture, involving a single "nuclear active environment" ("NAE"), the context of IBS theory and many-body physics suggests a more realistic and useful description of LENR involves a multiplicity of "nuclear active environments" (NAEs).
Statistical representation of a spray as a point process
NASA Astrophysics Data System (ADS)
Subramaniam, S.
2000-10-01
The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.
Baldyga, William; Hilgendorf, Amy; Walker, Jennifer Gilchrist; Hewson, Danielle; Rhew, Lori; Uskali, Amber
2015-01-01
Community Transformation Grant awardees in North Carolina, Illinois, and Wisconsin promoted joint use agreements (formal agreements between 2 parties for the shared use of land or facilities) as a strategy to increase access to physical activity in their states. However, awardees experienced significant barriers to establishing joint use agreements, including 1) confusion about terminology and an aversion to complex legal contracts, 2) lack of applicability to single organizations with open use policies, and 3) questionable value in nonurban areas where open lands for physical activity are often available and where the need is instead for physical activity programs and infrastructure. Furthermore, promotion of formal agreements may unintentionally reduce access by raising concerns regarding legal risks and costs associated with existing shared use of land. Thus, joint use agreements have practical limitations that should be considered when selecting among strategies to promote physical activity participation. PMID:25880770
Stein, Anna; Baldyga, William; Hilgendorf, Amy; Walker, Jennifer Gilchrist; Hewson, Danielle; Rhew, Lori; Uskali, Amber
2015-04-16
Community Transformation Grant awardees in North Carolina, Illinois, and Wisconsin promoted joint use agreements (formal agreements between 2 parties for the shared use of land or facilities) as a strategy to increase access to physical activity in their states. However, awardees experienced significant barriers to establishing joint use agreements, including 1) confusion about terminology and an aversion to complex legal contracts, 2) lack of applicability to single organizations with open use policies, and 3) questionable value in nonurban areas where open lands for physical activity are often available and where the need is instead for physical activity programs and infrastructure. Furthermore, promotion of formal agreements may unintentionally reduce access by raising concerns regarding legal risks and costs associated with existing shared use of land. Thus, joint use agreements have practical limitations that should be considered when selecting among strategies to promote physical activity participation.
NASA Astrophysics Data System (ADS)
Shapiro, Amy; O'Rielly, Grant; Sims-Knight, Judith
2014-03-01
Clickers are commonly used in large-enrollment introductory courses in order to encourage attendance, increase student engagement and improve learning. We report the results from a highly controlled study of factual and conceptual clicker questions in calculus-based introductory physics courses, on students' performance on the factual and conceptual exam questions they targeted. We found that clicker questions did not enhance student performance on either type of exam question. The use of factual clicker questions actually decreased student performance on conceptual exam questions, however. Directing students' attention to surface features of the course content may distract them from the important underlying concepts. The conceptual clicker questions were likely ineffective because the practice students got on homework questions had a stronger effect than the single question posed in class. Interestingly, the same studies in general education biology and psychology courses show a strong, positive effect of clickers on student learning. This study suggest that the usefulness of clickers should be weighed in the context of other course activities and goals. Secondary analyses will explore the effect of students' GPA, motivation and study strategies on the results. This work was supported by the Institute of Education Sciences, US Dept. of Education, through Grant R305A100625 to UMass Dartmouth. The opinions expressed are those of the authors and do not represent views of the Institute or the US Dept. of Education.
Torque measurement at the single-molecule level.
Forth, Scott; Sheinin, Maxim Y; Inman, James; Wang, Michelle D
2013-01-01
Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single-molecule field have led to the development of techniques that add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study that would be well suited for analysis with torsional measurement techniques.
Helping physics teacher-candidates develop questioning skills through innovative technology use
NASA Astrophysics Data System (ADS)
Milner-Bolotin, Marina
2015-12-01
Peer Instruction has been used successfully in undergraduate classrooms for decades. Its success depends largely on the quality of multiple-choice questions. Yet it is still rare in secondary schools because of teachers' lack of experience in designing, evaluating, and implementing conceptual questions. Research-based multiple-choice conceptual questions are also underutilized in physics teacher education. This study explores the implementation of Peer Instruction enhanced by PeerWise collaborative online system, in a physics methods course in a physics teacher education program.
Ahlstrom, Linda; Grimby-Ekman, Anna; Hagberg, Mats; Dellve, Lotta
2010-09-01
This study investigated the association between the work ability index (WAI) and the single-item question on work ability among women working in human service organizations (HSO) currently on long-term sick leave. It also examined the association between the WAI and the single-item question in relation to sick leave, symptoms, and health. Predictive values of the WAI, the changed WAI, the single-item question and the changed single-item question were investigated for degree of sick leave, symptoms, and health. This cohort study comprised 324 HSO female workers on long-term (>60 days) sick leave, with follow-ups at 6 and 12 months. Participants responded to questionnaires. Data on work ability, sick leave, health, and symptoms were analyzed with regard to associations and predictability. Spearman correlation and mixed-model analysis were performed for repeated measurements over time. The study showed a very strong association between the WAI and the single-item question among all participants. Both the WAI and the single-item question showed similar patterns of associations with sick leave, health, and symptoms. The predictive value for the degree of sick leave and health-related quality of life (HRQoL) was strong for both the WAI and the single-item question, and slightly less strong for vitality, neck pain, both self-rated general and mental health, and behavioral and current stress. This study suggests that the single-item question on work ability could be used as a simple indicator for assessing the status and progress of work ability among women on long-term sick leave.
Personifying self in physics problem situations involving forces as a student help strategy
NASA Astrophysics Data System (ADS)
Tabor-Morris, A. E.
2013-03-01
How can physics teachers best guide students regarding physics problem situations involving forces? A suggestion is made here to personify oneself as the object in question, that is, to pretend to be the object undergoing forces and then qualify and quantify those forces according to their vectors for the system at hand. This personification is not meant to empower the object to act, just to sense the forces it is experiencing. This strategy may be especially useful to beginning physics learners attacking problems that involve both multiple forces AND multiple objects, since each object acted upon needs to be considered separately, using the idea that one cannot be two places at once. An example of this type of problem expounded on here is Atwood's machine: two weights hung over a pulley with a single rope. Another example given is electromagnetic forces on one charge caused by other charges in the vicinity. Discussion is made on implementation of classroom strategies. Department of Physics
Su, Yapeng; Shi, Qihui; Wei, Wei
2017-02-01
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
van Anders, Sari M; Watson, Neil V
2007-02-01
Research points to an association between testosterone (T) and partnering in some women and men, and this association has been interpreted as an effect of either relationship status (i.e. differences in relationship status lead to differences in T) or relationship orientation (i.e. T is associated with the likelihood of entering relationships). To address whether physical partner presence was associated with decreased T, we examined T levels in people (72 women; 49 men) who were single, in long-distance relationships, or in same-city relationships. No participants were using exogenous hormones, including hormonal contraceptives. Participants provided a saliva sample and responded to questions about their relationship status. Single men had higher T than long-distance and same-city partnered men, which supports the relationship orientation interpretation. In contrast, same-city partnered women had lower T than single women and women in long-distance relationships, which supports the relationship status interpretation. We conclude that physical partner presence is not necessary to see an association between partnering and hormones in men (since same-city and long-distance partnered men had similar T levels), but may be necessary in women (since same-city partnered women had lower T than long-distance partnered women).
Comparison of University Students' Understanding of Graphs in Different Contexts
ERIC Educational Resources Information Center
Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka
2013-01-01
This study investigates university students' understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was…
Hanley, Christine; Duncan, Mitch J; Mummery, W Kerry
2013-03-01
Population surveys are frequently used to assess prevalence, correlates and health benefits of physical activity. However, nonsampling errors, such as question order effects, in surveys may lead to imprecision in self reported physical activity. This study examined the impact of modified question order in a commonly used physical activity questionnaire on the prevalence of sufficient physical activity. Data were obtained from a telephone survey of adults living in Queensland, Australia. A total of 1243 adults participated in the computer-assisted telephone interview (CATI) survey conducted in July 2008 which included the Active Australia Questionnaire (AAQ) presented in traditional or modified order. Binary logistic regression analyses was used to examine relationships between question order and physical activity outcomes. Significant relationships were found between question order and sufficient activity, recreational walking, moderate activity, vigorous activity, and total activity. Respondents who received the AAQ in modified order were more likely to be categorized as sufficiently active (OR = 1.28, 95% CI 1.01-1.60). This study highlights the importance of question order on estimates of self reported physical activity. This study has shown that changes in question order can lead to an increase in the proportion of participants classified as sufficiently active.
The Intersection of Physics and Biology
Liphardt, Jan
2017-12-22
In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.
Maggiora, Gerald M
2011-08-01
Reductionism is alive and well in drug-discovery research. In that tradition, we continually improve experimental and computational methods for studying smaller and smaller aspects of biological systems. Although significant improvements continue to be made, are our efforts too narrowly focused? Suppose all error could be removed from these methods, would we then understand biological systems sufficiently well to design effective drugs? Currently, almost all drug research focuses on single targets. Should the process be expanded to include multiple targets? Recent efforts in this direction have lead to the emerging field of polypharmacology. This appears to be a move in the right direction, but how much polypharmacology is enough? As the complexity of the processes underlying polypharmacology increase will we be able to understand them and their inter-relationships? Is "new" mathematics unfamiliar in much of physics and chemistry research needed to accomplish this task? A number of these questions will be addressed in this paper, which focuses on issues and questions not answers to the drug-discovery conundrum.
Gender-based performance differences in an introductory physics course
NASA Astrophysics Data System (ADS)
McKinnon, Mark Lee
Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.
2014-01-01
Background The aim of the present study was to investigate, which aspects of tinnitus are most relevant for impairment of quality of life. For this purpose we analysed how responses to the Tinnitus Handicap Inventory (THI) and to the question “How much of a problem is your tinnitus at present” correlate with the different aspects of quality of life and depression. Methods 1274 patients of the Tinnitus Research Initiative database were eligible for analysis. The Tinnitus Research Initiative database is composed of eight study centres from five countries. We assessed to which extent the Tinnitus Handicap Inventory (THI) and its subscales and single items as well as the tinnitus severity correlate with Beck Depression Inventory (BDI) score and different domains of the short version of the WHO-Quality of Life questionnaire (WHO-QoL Bref) by means of simple and multiple linear regression models. Results The THI explained considerable portions of the variance of the WHO-QoL Physical Health (R2 = 0.39) and Psychological Health (R2 = 0.40) and the BDI (R2 = 0.46). Furthermore, multiple linear regression models which included each THI item separately explained an additional 5% of the variance compared to the THI total score. The items feeling confused from tinnitus, the trouble of falling asleep at night, the interference with job or household responsibilities, getting upset from tinnitus, and the feeling of being depressed were those with the highest influence on quality of life and depression. The single question with regard to tinnitus severity explained 18%, 16%, and 20% of the variance of Physical Health, Psychological Health, and BDI respectively. Conclusions In the context of a cross-sectional correlation analysis, our findings confirmed the strong and consistent relationships between self-reported tinnitus burden and both quality of life, and depression. The single question “How much of a problem is your tinnitus” reflects tinnitus-related impairment in quality of life and can thus be recommended for use in clinical routine. PMID:24422941
Zeman, Florian; Koller, Michael; Langguth, Berthold; Landgrebe, Michael
2014-01-14
The aim of the present study was to investigate, which aspects of tinnitus are most relevant for impairment of quality of life. For this purpose we analysed how responses to the Tinnitus Handicap Inventory (THI) and to the question "How much of a problem is your tinnitus at present" correlate with the different aspects of quality of life and depression. 1274 patients of the Tinnitus Research Initiative database were eligible for analysis. The Tinnitus Research Initiative database is composed of eight study centres from five countries. We assessed to which extent the Tinnitus Handicap Inventory (THI) and its subscales and single items as well as the tinnitus severity correlate with Beck Depression Inventory (BDI) score and different domains of the short version of the WHO-Quality of Life questionnaire (WHO-QoL Bref) by means of simple and multiple linear regression models. The THI explained considerable portions of the variance of the WHO-QoL Physical Health (R2 = 0.39) and Psychological Health (R2 = 0.40) and the BDI (R2 = 0.46). Furthermore, multiple linear regression models which included each THI item separately explained an additional 5% of the variance compared to the THI total score. The items feeling confused from tinnitus, the trouble of falling asleep at night, the interference with job or household responsibilities, getting upset from tinnitus, and the feeling of being depressed were those with the highest influence on quality of life and depression. The single question with regard to tinnitus severity explained 18%, 16%, and 20% of the variance of Physical Health, Psychological Health, and BDI respectively. In the context of a cross-sectional correlation analysis, our findings confirmed the strong and consistent relationships between self-reported tinnitus burden and both quality of life, and depression. The single question "How much of a problem is your tinnitus" reflects tinnitus-related impairment in quality of life and can thus be recommended for use in clinical routine.
Validating the food behavior questions from the elementary school SPAN questionnaire.
Thiagarajah, Krisha; Fly, Alyce D; Hoelscher, Deanna M; Bai, Yeon; Lo, Kaman; Leone, Angela; Shertzer, Julie A
2008-01-01
The School Physical Activity and Nutrition (SPAN) questionnaire was developed as a surveillance instrument to measure physical activity, nutrition attitudes, and dietary and physical activity behaviors in children and adolescents. The SPAN questionnaire has 2 versions. This study was conducted to evaluate the validity of food consumption items from the elementary school version of the SPAN questionnaire. Validity was assessed by comparing food items selected on the questionnaire with food items reported from a single 24-hour recall covering the same reference period. 5 elementary schools in Indiana. Fourth-grade student volunteers (N = 121) from 5 elementary schools. Agreement between responses to SPAN questionnaire items and reference values obtained through 24-hour dietary recall. The agreement between the questionnaire and the 24-hour recall was measured using Spearman correlation, percentage agreement, and kappa statistic. Correlation between SPAN item responses and recall data ranged from .25 (bread and related products) to .67 (gravy). The percentage agreement ranged from 26% (bread and related products) to 90% (gravy). The kappa statistic varied from .06 (chocolate candy) to .60 (beans). Results from this study indicate that the SPAN questionnaire can be administered in the classroom quickly and easily to measure many previous day dietary behaviors of fourth graders. However, questions addressing consumption of "vegetables," "candy," and "snacks" need further investigation.
Lee, Ya-Yun; Wu, Ching-Yi; Teng, Ching-Hung; Hsu, Wen-Chuin; Chang, Ku-Chou; Chen, Poyu
2016-10-28
Nonpharmacologic interventions, such as cognitive training or physical exercise, are effective in improving cognitive functions for older adults with mild cognitive impairment (MCI). Some researchers have proposed that combining physical exercise with cognitive training may augment the benefits of cognition. However, strong evidence is lacking regarding whether a combined therapy is superior to a single type of training for older adults with MCI. Moreover, which combination approach - combining physical exercise with cognitive training sequentially or simultaneously - is more advantageous for cognitive improvement is not yet clear. This proposed study is designed to clarify these questions. This study is a single-blinded, multicenter, randomized controlled trial. Eighty individuals with MCI will be recruited and randomly assigned to cognitive training (COG), physical exercise training (PE), sequential training (SEQ), and dual-task training (DUAL) groups. The intervention programs will be 90 min/day, 2-3 days/week, for a total of 36 training sessions. The participants in the SEQ group will first perform 45 min of physical exercise followed by 45 min of cognitive training, whereas those in the DUAL group will perform physical exercise and cognitive training simultaneously. Participants will be assessed at baseline, after the intervention, and at 6-month follow-up. The primary cognitive outcome tests will include the Montreal Cognitive Assessment and the color-naming Stroop test. Other outcomes will include assessments that evaluate the cognitive, physical, and daily functions of older adults with MCI. The results of this proposed study will provide important information regarding the feasibility and intervention effects of combining physical exercise and cognitive training for older individuals with MCI. ClinicalTrials.gov Identifier: NCT02512627 , registered on 20 July 2015.
Cartesian Dualism and Physical Education: Epistemological Incompatibility.
ERIC Educational Resources Information Center
Ross, Saul
Two questions arise in examining the implications of physical education: Is physical education an education of the physical? and Is physical education an education through the physical? In these two questions there are two distinct points of view, two different ways of understanding the meaning, scope, and aim of education, two conceptions of man,…
Smith, H J
1966-11-01
A short historical outline of the discovery and a description of observed properties of quasars introduces questions as to their nature. Some of the principal arguments concerning their reality, distance, intrinsic properties and age lead to the conclusion that, while there is room for other points of view; a strong case can be made for the interpretation, on which quasars are the most distant observable objects in the known universe. To produce such luminosities over times of thousands to millions of years requires the presence of millions of solar masses. For each quasar this enormous mass may be concentrated into a single object, in which case novel physics comes into play. Whatever the final interpretation, quasars seem certain to illuminate such questions as the origin and evolution of galaxies, perhaps also the structure and origin of the universe.
Wilson, Richard D.; Gunzler, Douglas D.; Bennett, Maria E.; Chae, John
2014-01-01
Objective This study seeks to establish the efficacy of single-lead, 3-week peripheral nerve stimulation (PNS) therapy for pain reduction in stroke survivors with chronic hemiplegic shoulder pain. Design Single-site, pilot, randomized controlled trial for adults with chronic shoulder pain after stroke. Participants were randomized to receive a 3-week treatment of single-lead PNS or usual care (UC). The primary outcome was the worst pain in the last week (Brief Pain Inventory, Short Form question 3) measured at baseline, and weeks 1,4, 12, and 16. Secondary outcomes included pain interference (Brief Pain Inventory, Short Form question 9), pain measured by the ShoulderQ Visual Graphic Rating Scales; and health-related quality of life (SF-36v2). Results Twenty-five participants were recruited, 13 to PNS and 12 to UC. There was a significantly greater reduction in pain for the PNS group compared to controls, with significant differences at 6 and 12 weeks after treatment. Both PNS and UC were associated with significant improvements in pain interference and physical health related quality of life. Conclusions Short-term PNS is a safe and efficacious treatment for shoulder pain. Pain reduction is greater than compared to UC and is maintained for at least 12 weeks after treatment. PMID:24355994
NASA Astrophysics Data System (ADS)
Forster, Patricia A.
2005-12-01
The issue of unfairness arises in high-stakes public examinations when students choose questions from alternatives that are offered and marks on the alternatives turn out to be discrepant. This paper addresses and defines unfairness and discrepancy in the context of alternative questions in Physics Tertiary Entrance Examinations (TEE) in Western Australia. As well, I present an analysis of question characteristics that explain observed marks-differences. The characteristics mainly relate to the construction of the text of questions, the detail on diagrams, and requirements for calculation. The list of characteristics could inform the setting of compulsory as well as alternative examination questions. The paper includes a brief exploration of results by gender on the alternative Physics TEE questions.
Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow
The nature of crater rays - The Copernicus example
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Adams, J. B.; Smith, M. O.; Mouginis-Mark, P. J.; Zisk, S. H.
1985-01-01
It is pointed out that crater rays are filamentous, generally high-albedo features which emanate nearly radially from young impact structures. An investigation has been conducted of the physical and chemical properties of a single lunar ray system for Copernicus crater with the objective to achieve a better understanding of the nature of crater rays, taking into account questions regarding the local or foreign origin of ray material. A combination of data is considered, giving attention to spectral reflectance (for composition), radar (for physical properties), and images (for photogeologic context). The crater Copernicus was selected because of its well-developed ray system, the crater's relative youth, and the compositional contrast between the target material of Copernicus crater and the material on which many rays were emplaced.
Role of Gymnastics in the Army School of Physical Training
Griffiths, DE; Hargrove, R; Clasper, J
2006-01-01
INTRODUCTION As a result of a single spinal injury seen at Frimley Park Hospital, we reviewed the injuries recorded at the Army School of Physical Training since December 1996. PATIENTS AND METHODS This was a retrospective review of all acute accidents and injuries recorded in the Accident Book since its inception. RESULTS Over 75% of the injuries that were serious enough to result in soldiers having their training terminated were as a direct result of gymnastic events such as vaulting, trampolining and somersaults. These events were also responsible for most of the small number of career-threatening injuries. CONCLUSIONS This raises questions about the inclusion of gymnastic events in course training programmes, especially when considering its relevance to army training in general. PMID:17002850
NASA Astrophysics Data System (ADS)
Mariaschin-Melenson, Cynthia Faith
2001-07-01
This study explores the relationship, among middle school students, between the understanding of a physical science topic, sound, and expressed attitudes toward topics with a strong sound component. Further, it assesses these differences in achievement and attitude by grade level and by gender. An attitude inventory, comprised of 30 Likert-type questions, and a concepts-of-sound achievement instrument, comprised of 30 multiple-choice questions, were administered to approximately 1300 students in grades five, six, seven, and eight, the middle-school grades, in a variety of locations within a single school district in the Intermountain West. Results indicate that during the middle school years there is no significant difference between males and females in physical science achievement on the topic of sound energy. Results additionally indicate that, contrary to researched literature, throughout the middle school years females, as a group, do not have poorer attitudes than males toward the physical sciences; indeed, in grades five and eight female attitude responses were significantly more positive than male attitude responses. Overall, attitude correlates with knowledge. When positive attitude toward learning about sound diminishes, incremental knowledge about sound diminishes. Results of this study may be utilized in determining whether instructional and further research efforts should be directed toward methods for improving achievement in and attitudes toward the physical sciences. It is anticipated that improved methods for instilling positive attitudes and imparting greater knowledge would result in more students, especially females, pursuing advanced physical science studies and related occupations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... question as to whether disclosure will be prejudicial to the mental or physical health of claimant. 1.522... question as to whether disclosure will be prejudicial to the mental or physical health of claimant... prejudicial to the mental or physical health of the claimant, beneficiary, or other person in whose behalf...
Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier
Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
Fermilab | Science at Fermilab | Experiments & Projects
Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
New York Times Current News Physics Applications
NASA Astrophysics Data System (ADS)
Cise, John
2010-03-01
Since 2007 I have been using NYTimes current News articles rich in graphics and physics variables for developing edited one page web (http://CisePhysics.homestead.com/files/NYT.htm) physics questions based on current events in the news. The NYTimes home page listed above contains currently ten pages with about 40 one page current edited News related physics articles per page containing: rich graphics, graphic editions by the author, edited articles, introduction to a question, questions, and answers. I use these web pages to introduce new physics concepts to students with current applications of concepts in the news. I also use these one page physics applications as pop quizzes and extra credit for students. As news happens(e.g. the 2010 Vancouver Olympics) I find the physics applications in the NYTimes articles and generate applications and questions. These new one page applications with questions are added to the home page: http://CisePhysics.homestead.com/files/NYT.htm The newest pages start with page 10 and work back in time to 9, 8, etc. The ten web pages with about 40 news articles per page are arranged in the traditional manner: vectors, kinematics, projectiles, Newton, Work & Energy, properties of matter, fluids, temperature, heat, waves, and sound. This site is listed as a resource in AAPT's Compadre site.
Structure–property relationships in atomic-scale junctions: Histograms and beyond
Mark S. Hybertsen; Venkataraman, Latha
2016-03-03
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
Structure–property relationships in atomic-scale junctions: Histograms and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark S. Hybertsen; Venkataraman, Latha
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
Strong suppression of shot noise in a feedback-controlled single-electron transistor
NASA Astrophysics Data System (ADS)
Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.
2017-03-01
Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.
Torque Measurement at the Single Molecule Level
Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.
2017-01-01
Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162
Fermilab | Science at Fermilab | Experiments & Projects | Intensity
Search Search Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics and Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle
A few questions related to information and symmetries in physics
NASA Astrophysics Data System (ADS)
Darvas, G.
2017-01-01
Information exchange between inanimate objects (like individual physical particles, or systems) involves special approaches, due to the peculiarity that conscious information emitters/recipients are excluded from the process. This paper aims at answering a part of some questions arising by such approaches. One can ask the question, whether is it possible to speak about physical information when there is no live recipient to accept, evaluate, and use it? Can one speak about "physical information" (e.g., signal exchange) between inanimate physical objects at all? (cf., Feynman diagrams.) If yes, what is the nature of that information? Is (physical) information a passive phenomenon, or its existence presumes activity? What does a signal represent if it is not observed and used at the other end, and where is that other end when one can say that the signal in question was lost without observation or use? I try to illustrate my personal answers with a few examples quoted from the history of 20th c. physics. My answers to the questions are not intended to be revelations and to provide final solutions, rather they serve as arguments and indicate that nothing is closed, the discussion is open.
Physics is …; The Physicist explores attributes of physics
NASA Astrophysics Data System (ADS)
Baker, F. Todd
2016-12-01
He's back! 'The physicist'returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within 'Physics Is' are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, 'Physics Is' ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.
Investigating Graphical Representations of Slope and Derivative without a Physics Context
ERIC Educational Resources Information Center
Christensen, Warren M.; Thompson, John R.
2012-01-01
By analysis of student use of mathematics in responses to conceptual physics questions, as well as analogous math questions stripped of physical meaning, we have previously found evidence that students often enter upper-level physics courses lacking the assumed prerequisite mathematics knowledge and/or the ability to apply it productively in a…
ERIC Educational Resources Information Center
Price, Colin B.
2008-01-01
Commercial computer games contain "physics engine" components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a…
The Four Lives of a Nuclear Accelerator
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2017-06-01
Electrostatic accelerators have emerged as a major tool in research and industry in the second half of the twentieth century. In particular in low energy nuclear physics they have been essential for addressing a number of critical research questions from nuclear structure to nuclear astrophysics. This article describes this development on the example of a single machine which has been used for nearly sixty years at the forefront of scientific research in nuclear physics. The article summarizes the concept of electrostatic accelerators and outlines how this accelerator developed from a bare support function to an independent research tool that has been utilized in different research environments and institutions and now looks forward to a new life as part of the experiment CASPAR at the 4,850" level of the Sanford Underground Research Facility.
Evolution of large-sclae plasma structures in comets: Kinematics and physics
NASA Technical Reports Server (NTRS)
Brandt, John C.
1988-01-01
Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.
Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits
Hong, Jeongmin; Lambson, Brian; Dhuey, Scott; Bokor, Jeffrey
2016-01-01
Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least kBT ln(2) of heat be dissipated from the memory into the environment, where kB is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between “information thermodynamics” and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology. PMID:26998519
Al Ansari, A; Talib, R A; Shamsodini, A; Hayati, A; Canguven, O; Al Naimi, A
2013-01-01
Penile fracture is a well-recognized and relatively uncommon clinical entity. It was previously reported that the incidence of penile fracture varies according to various geographic regions. In order to determine whether marital status or culture other than geographic region is involved in the etiology of penile fracture in our country, the charts of 122 men diagnosed with penile fracture were retrospectively reviewed. Detailed history including cause, symptoms, country of origin and a single-question self-report of erectile dysfunction was used for all cases. Diagnosis of our cases was mainly based on history and physical examination and ultrasonography. Immediate or delayed surgical repair of penile fracture included a degloving circumferential, and an additional direct incision, if the site of the tear could not be reached via degloving, was performed. The patients were evaluated after 1 week and 1, 3, and 6 months follow-up by penile examination, recording complications, and with a single-question self-report questionnaire after 3 and 6 months. The most common cause of penile fracture was manual bending of the erected penis in 66 out of 122 (54.1%) of our study patients. In our study, we believe that the prime causes of bending the penis are single status and culture, which are influencing factors irrespective of the geographic distribution.
Open problems in mathematical physics
NASA Astrophysics Data System (ADS)
Coley, Alan A.
2017-09-01
We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr. 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that.
Photoemission and photoionization time delays and rates
Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.
2017-01-01
Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414
Curriculum that incorporates good physics and good math -- AT THE SAME TIME!
NASA Astrophysics Data System (ADS)
Weisel, Derek
2007-03-01
Anyone with experience in physics education knows there is considerable consternation about how much trouble students can have during their first experience with physics. It is a common opinion that many students struggle in physics because of a weak math background. Recent research has shown that this is not always the case. Many students who have shown a tested proficiency in mathematics still struggle in physics. It is an important question to ask how a student who excels in mathematics can still struggle in physics. If this question can be answered it may open up new methods of instruction to aid all students. After discussion of this question, examples of curriculum that simultaneously meet common standards of physics and common standards of math will be shown.
Reliability and validity of the instrument used in BRFSS to assess physical activity.
Yore, Michelle M; Ham, Sandra A; Ainsworth, Barbara E; Kruger, Judy; Reis, Jared P; Kohl, Harold W; Macera, Caroline A
2007-08-01
State-level statistics of adherence to the physical activity objectives in Healthy People 2010 are derived from the Behavioral Risk Factor Surveillance System (BRFSS) data. BRFSS physical activity questions were updated in 2001 to include domains of leisure time, household, and transportation-related activity of moderate- and vigorous intensity, and walking questions. This article reports the reliability and validity of these questions. The BRFSS Physical Activity Study (BPAS) was conducted from September 2000 to May 2001 in Columbia, SC. Sixty participants were followed for 22 d; they answered the physical activity questions three times via telephone, wore a pedometer and accelerometer, and completed a daily physical activity log for 1 wk. Measures for moderate, vigorous, recommended (i.e., met the criteria for moderate or vigorous), and strengthening activities were created according to Healthy People 2010 operational definitions. Reliability and validity were assessed using Cohen's kappa (kappa) and Pearson correlation coefficients. Seventy-three percent of participants met the recommended activity criteria compared with 45% in the total U.S. population. Test-retest reliability (kappa) was 0.35-0.53 for moderate activity, 0.80-0.86 for vigorous activity, 0.67-0.84 for recommended activity, and 0.85-0.92 for strengthening. Validity (kappa) of the survey (using the accelerometer as the standard) was 0.17-0.22 for recommended activity. Validity (kappa) of the survey (using the physical activity log as the standard) was 0.40-0.52 for recommended activity. The validity and reliability of the BRFSS physical activity questions suggests that this instrument can classify groups of adults into the levels of recommended and vigorous activity as defined by Healthy People 2010. Repeated administration of these questions over time will help to identify trends in physical activity.
Stolzenberg, Stacia N; Lyon, Thomas D
2017-09-01
The present study examined how children alleging sexual abuse are asked about clothing placement during abusive episodes, both in criminal trials and forensic interviews. The placement of clothing is of great importance, because it facilitates distinguishing abusive touch from non-abusive touch, as well as the severity of abuse when the touching is in fact sexual. If clothing has not been removed, then sexual abuse appears less likely and certain types of sexual contact are physically impossible (or at least highly improbable). We examined how trial attorneys ( n = 142) and forensic interviewers in investigative interviews ( n = 155) questioned 5- 12-year-olds about the location of clothing during alleged sexual abuse. To do so, we identified all question-answer pairs that included references to clothing placement, and coded for the clothing item mentioned, whether the interviewer elicited information about clothing placement or the child spontaneously provided such information, question-type, and response-type. Discussions about clothing placement were commonplace in both settings, particularly in court. Fewer than one in five question-answer pairs about clothing placement were spontaneous mentions by children; the questioner elicited most discussions. When interviewers asked wh- questions rather than yes/no and forced-choice questions, children provided more elaboration, more detailed clothing information, and were over six times more likely to describe clothing placement in a fashion that could not be captured by a single preposition (e.g., neither on nor off). The findings suggest that descriptions of clothing placement are subject to serious misinterpretation when closed-ended questions are asked.
Novel Use of Ultrasound to Teach Reproductive System Physical Examination Skills and Pelvic Anatomy.
Parikh, Tejal; Czuzak, Maria; Bui, Naomi; Wildner, Corinna; Koch, Bryna; Leko, Elizabeth; Rappaport, William; Adhikari, Srikar; Gordon, Paul; Gura, Mike; Ellis, Susan
2018-03-01
To determine whether integration of ultrasound (US) into a reproductive system examination clinical skills lab can increase confidence in palpating key reproductive structures during testicular and bimanual pelvic examinations, reduce anxiety about conducting testicular and bimanual pelvic examinations, and improve performance on multiple-choice questions based on structure identification using US images. Second-year medical students enrolled in the Life Cycle preclinical course participated in this cross-sectional study. A single learning activity was developed to pair the teaching of the reproductive system physical examination with the use of US in the clinical skills lab. The evaluation of the teaching session consisted of a pre-post analysis of student self-reported knowledge, confidence, and anxiety. The response rate for the pre survey was 82% (n = 96), and the rate for the post survey was 79% (n = 93). Students' confidence in their ability to identify reproductive system structures on US images increased from pre to post survey. Their confidence in their ability to palpate the epididymis, uterus, and ovary during a physical examination improved, and their anxiety about conducting testicular and bimanual pelvic examinations decreased. Student satisfaction with the session was high. Students' performance on multiple-choice questions based on structure identification using US images was at 96% or higher. Our study findings support the integration of US into a reproductive system examination clinical skills lab. Medical students acquire competency and confidence in reproductive system physical examination skills with US integration. © 2017 by the American Institute of Ultrasound in Medicine.
Khosropour, Christine M; Dombrowski, Julia C; Katz, David A; Golden, Matthew R
2017-11-01
Seroadaptive behaviors among men who have sex with men (MSM) are common, but ascertaining behavioral information is challenging in clinical settings. To address this, we developed a single seroadaptive behavior question. Men who have sex with men 18 years or older attending a sexually transmitted disease clinic in Seattle, WA, from 2013 to 2015, were eligible for this cross-sectional study. Respondents completed a comprehensive seroadaptive behavior questionnaire which included a single question that asked HIV-negative MSM to indicate which of 12 strategies they used in the past year to reduce their HIV risk. HIV testing was performed per routine clinical care. We used the κ statistic to examine agreement between the comprehensive questionnaire and the single question. We enrolled HIV-negative MSM at 3341 (55%) of 6105 eligible visits. The agreement between the full questionnaire and single question for 5 behaviors was fair to moderate (κ values of 0.34-0.59). From the single question, the most commonly reported behaviors were as follows: avoiding sex with HIV-positive (66%) or unknown-status (52%) men and using condoms with unknown-status partners (53%); 8% of men reported no seroadaptive behavior. Men tested newly HIV positive at 38 (1.4%) of 2741 visits. HIV test positivity for the most commonly reported behaviors ranged from 0.8% to 1.3%. Men reporting no seroadaptive strategy had a significantly higher HIV test positivity (3.5%) compared with men who reported at least 1 strategy (1.3%; P = 0.02). The single question performed relatively well against a comprehensive seroadaptive behaviors assessment and may be useful in clinical settings to identify men at greatest risk for HIV.
Primary care validation of a single screening question for drinkers.
Seale, J Paul; Boltri, John M; Shellenberger, Sylvia; Velasquez, Mary M; Cornelius, Monica; Guyinn, Monique; Okosun, Ike; Sumner, Heather
2006-09-01
The aim of this study was to conduct a primary care validation study of a single screening question for alcohol misuse ("When was the last time you had more than X drinks in 1 day?," where X was four for women and X was five for men), which was previously validated in a study conducted in emergency departments. This cross-sectional study was accomplished by interviewing 625 male and female adult drinkers who presented to five southeastern primary care practices. Patients answered the single question (coded as within 3 months, within 12 months, ever, or never), Alcohol Use Disorders Identification Test (AUDIT), and AUDIT consumption questions (AUDIT-C). Alcohol misuse was defined as either at-risk drinking, identified by a 29-day Timeline Followback interview or a current (past-year) alcohol-use disorder by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria, or both. Among 625 drinkers interviewed, 25.6% were at-risk drinkers, 21.7% had a current alcohol- use disorder, and 35.2% had either or both conditions. Considering "within the last 3 months" as positive, the sensitivity of the single question was 80% and the specificity was 74%. Chi-square analyses revealed similar sensitivity across ethnic and gender groups; however, specificity was higher in women and whites (p = .0187 and .0421, respectively). Considering "within the last 12 months" as positive increased the question's sensitivity, especially for those with alcohol-use disorders. The area under the receiver operating characteristic curve of the single alcohol screening question (0.79) was slightly lower than for the AUDIT and AUDIT-C, but sensitivity and specificity were similar. A single question about the last episode of heavy drinking is a sensitive, time-efficient screening instrument that shows promise for increasing alcohol screening in primary care practices.
Validity of selected physical activity questions in white Seventh-day Adventists and non-Adventists.
Singh, P N; Tonstad, S; Abbey, D E; Fraser, G E
1996-08-01
The validity and reliability of selected physical activity questions were assessed in both Seventh-day Adventist (N = 131) and non-Adventist (N = 101) study groups. Vigorous activity questions similar to those used by others and new questions that measured moderate and light activities were included. Validation was external, comparing questionnaire data with treadmill exercise time, resting heart rate, and body mass index (kg.m-2), and internal, comparing data with other similar questions. Both Adventist and non-Adventist males showed significant age-adjusted correlations between treadmill time and a "Run-Walk-Jog Index" (R = 0.28, R = 0.48, respectively). These correlations increased substantially when restricting analysis to exercise speeds exceeding 3 mph (R = 0.39, R = 0.71, respectively). Frequency of sweating and a vigorous physical activity index also correlated significantly with treadmill time in males. Correlations were generally weaker in females. Moderate- and light-intensity questions were not correlated with physical fitness. Internal correlations R = 0.50-0.78) between the above three vigorous activity questions were significant in all groups, and correlations (R = 0.14-0.60) for light and moderate activity questions were also documented. Test-retest reliability coefficients were high for vigorous activity questions (R = 0.48-0.85) and for one set of moderate activity questions (R = 0.43-0.75). No important differences in validity and reliability were found between Adventist and non-Adventists, but the validity of vigorous activity measures was generally weaker in females.
Questioning the No-Touch Discourse in Physical Education from a Children's Rights Perspective
ERIC Educational Resources Information Center
Öhman, Marie; Quennerstedt, Ann
2017-01-01
In this paper we question the rationality of "no-touch policies" and offer an alternative approach to the matter of physical contact between teachers and students in the context of physical education (PE) in schools. Earlier research has drawn attention to how a discourse of child protection is starting to affect how physical contact is…
Careers in Patent Law for Physics Majors
ERIC Educational Resources Information Center
Oliver, Douglas L.
2010-01-01
An important question that many undergraduate physics students ask is, "What can one do with a physics degree?" Of course there are many answers to this question. Often a general reference to becoming a lawyer is given as a possible answer. This paper is intended to explain the field of patent law and how a physics degree can lead to an…
Julião, Miguel; Nunes, Baltazar; Sobral, Maria Ana; Dias, Daniela; Inocêncio, Inês; Barbosa, António
2016-04-01
Depression is a serious psychological problem in the palliative care setting. Brief screening tools for depression are lacking and need to be brief and acceptable. This study aimed to identify the properties of the single Portuguese question "Está deprimido?" ("Are you depressed?") to screen for depression. Retrospective study from 100 patient's medical records identifying the answers on the single Portuguese question for depression "Está deprimido?" ("Are you depressed?") and the HADS depression sub-scale, using a score ≥11 on the latter as the gold standard for clinically significant depressive symptoms. Sensitivity, specificity, positive predictive and negative values were calculated. Response rate for the single Portuguese question for depression was 100%. Prevalence of depression symptoms (HADS-d ≥ 11) was 43%. To the question "Está deprimido?" 60 patients responded "yes." Sixteen patients who replied "no" to the single question had clinically significant depressive symptoms based on the HADS depression sub-scale. The single tool had 65.2% sensitivity, 49.2% specificity and 50.0% and 64.4% of positive predictive and negative values, respectively. In this first preliminary retrospective Portuguese study, the single question for depression has shown poor screening properties. Future research in larger and mixed patientś samples of Portuguese terminally ill is necessary to find more accurate and robust properties of this brief tool.
Sport and Exercise Pedagogy and Questions about Learning
ERIC Educational Resources Information Center
Quennerstedt, Mikael; Öhman, Marie; Armour, Kathleen
2014-01-01
One important challenge ahead for sport and exercise pedagogy (SEP) researchers is to consider afresh questions about learning. Learning in the fields of sport, physical activity and physical education (PE) is a particularly complex business. Most existing theories of learning are defined cognitively, yet learning in sport and physical activity…
Corked bats, juiced balls, and humidors: The physics of cheating in baseball
NASA Astrophysics Data System (ADS)
Nathan, Alan M.; Smith, Lloyd V.; Faber, Warren L.; Russell, Daniel A.
2011-06-01
Three questions of relevance to Major League Baseball are investigated from a physics perspective. Can a baseball be hit farther with a corked bat? Is there evidence that the baseball is more lively today than in earlier years? Can storing baseballs in a temperature- or humidity-controlled environment significantly affect home run production? These questions are subjected to a physics analysis, including an experiment and an interpretation of the data. The answers to the three questions are no, no, and yes, respectively.
Support for New Physics Teachers
NASA Astrophysics Data System (ADS)
Adrian, Brian W.; Zollman, D.; Stevens, S.
2006-12-01
Teachers of physics can often lack the type of support they desperately need. The Physics Teaching Web Advisory (Pathway) is a dynamic digital library for physics teaching that is designed to offer such support. Carnegie Mellon University’s synthetic interview technology provides the foundation for a system that allows physics teachers to ask questions of a virtual mentor and get video responses. A log of the questions asked of our system provides a rich database of information about just what types of support teachers are requesting. This talk will present a summary of the common types of questions teachers ask. Such information is valuable as we design support systems for physics teachers, both new and experienced. In addition, recent progress and developments will be discussed. Supported by NSF grant numbers DUE-0226157, DUE-0226219, ESI-0455772 & ESI-0455813
Extragalactic astronomy: The universe beyond our galaxy
NASA Technical Reports Server (NTRS)
Jacobs, K. C.
1976-01-01
This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).
Emergence of charge density waves and a pseudogap in single-layer TiTe 2
Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
2004-02-01
the aggregation of matter (both dark and baryonic ) via application of this “3-D mass tomography” can place strong constraints on the nature of the...is Dark Matter ? 20 Question 2. What is the Nature of Dark Energy? 23 Question 3. How Did the Universe Begin? 25 Question 4. Did Einstein Have the... Matter at Exceedingly High Density and Temperature? 41 Question 9. Are There Additional Space-Time Dimensions? 43 Question 10. How Were the
Computational physics in RISC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoades, C.E. Jr.
The new high performance Reduced Instruction Set Computers (RISC) promise near Cray-level performance at near personal-computer prices. This paper explores the performance, conversion and compatibility issues associated with developing, testing and using our traditional, large-scale simulation models in the RISC environments exemplified by the IBM RS6000 and MISP R3000 machines. The questions of operating systems (CTSS versus UNIX), compilers (Fortran, C, pointers) and data are addressed in detail. Overall, it is concluded that the RISC environments are practical for a very wide range of computational physic activities. Indeed, all but the very largest two- and three-dimensional codes will work quitemore » well, particularly in a single user environment. Easily projected hardware-performance increases will revolutionize the field of computational physics. The way we do research will change profoundly in the next few years. There is, however, nothing more difficult to plan, nor more dangerous to manage than the creation of this new world.« less
Computational physics in RISC environments. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoades, C.E. Jr.
The new high performance Reduced Instruction Set Computers (RISC) promise near Cray-level performance at near personal-computer prices. This paper explores the performance, conversion and compatibility issues associated with developing, testing and using our traditional, large-scale simulation models in the RISC environments exemplified by the IBM RS6000 and MISP R3000 machines. The questions of operating systems (CTSS versus UNIX), compilers (Fortran, C, pointers) and data are addressed in detail. Overall, it is concluded that the RISC environments are practical for a very wide range of computational physic activities. Indeed, all but the very largest two- and three-dimensional codes will work quitemore » well, particularly in a single user environment. Easily projected hardware-performance increases will revolutionize the field of computational physics. The way we do research will change profoundly in the next few years. There is, however, nothing more difficult to plan, nor more dangerous to manage than the creation of this new world.« less
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liphardt, Jan
In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods showmore » how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.« less
ERIC Educational Resources Information Center
Plowman, Sharon Ann
2014-01-01
The purpose of this article is to bring attention to the 10 most pressing questions relevant to musculoskeletal physical fitness testing in children and adolescents. The goal is to stimulate research to answer these questions. The most pressing needs include establishing definitive links between valid, reliable, and feasible field test measures of…
Effects of Re-Using a Conceptual Examination Question in Physics
ERIC Educational Resources Information Center
Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew
2005-01-01
We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. The original intention was to use a phenomenographic approach to look for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.; Pai, Woei Wu; Chan, Y. -H.
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
Yang Monopoles and Emergent Three-Dimensional Topological Defects in Interacting Bosons
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Zhou, Qi
2018-06-01
The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand the interaction effects on Yang monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariants that are not easy to access in solids.
Reconciling intuitive physics and Newtonian mechanics for colliding objects.
Sanborn, Adam N; Mansinghka, Vikash K; Griffiths, Thomas L
2013-04-01
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to integrate them into a unified model that can explain human judgments across a wide range of physical reasoning tasks. We propose an alternative framework, in which people's judgments are based on optimal statistical inference over a Newtonian physical model that incorporates sensory noise and intrinsic uncertainty about the physical properties of the objects being viewed. This noisy Newton framework can be applied to a multitude of judgments, with people's answers determined by the uncertainty they have for physical variables and the constraints of Newtonian mechanics. We investigate a range of effects in mass judgments that have been taken as strong evidence for heuristic use and show that they are well explained by the interplay between Newtonian constraints and sensory uncertainty. We also consider an extended model that handles causality judgments, and obtain good quantitative agreement with human judgments across tasks that involve different judgment types with a single consistent set of parameters.
Losing Touch--Teachers' Self-Regulation in Physical Education
ERIC Educational Resources Information Center
Öhman, Marie
2017-01-01
The question of physical interaction is especially relevant in school physical education, where a lot of the teaching and activities are based on body movements. However, the issue of "touching" has been questioned in recent years. This paper takes its starting point in the discourse of child protection and the growing anxiety around…
Knowledge and Attitudes towards Children with Special Needs by Physical Education Students
ERIC Educational Resources Information Center
Mousouli, Maria; Kokaridas, Dimitrios; Angelopoulou-Sakadami, Nicoletta; Aristotelous, Maria
2009-01-01
The purpose of this study was to examine the knowledge and attitudes of physical education undergraduate students towards children with special needs. A questionnaire of seven questions was submitted to 140 physical education students. Questions concerned the knowledge about the different kinds of disability, the acceptance of children with…
ERIC Educational Resources Information Center
Halim, Joseph
2015-01-01
This single explorative case study investigated the causes of churn in the telecommunication industry in Kenya, narrowed down to include only the capital city of Nairobi. The question of this dissertation was split into three sub-questions. The first sub-question investigated the behavioral patterns of customers causing churn. The second…
Single-Item Measurement of Suicidal Behaviors: Validity and Consequences of Misclassification
Millner, Alexander J.; Lee, Michael D.; Nock, Matthew K.
2015-01-01
Suicide is a leading cause of death worldwide. Although research has made strides in better defining suicidal behaviors, there has been less focus on accurate measurement. Currently, the widespread use of self-report, single-item questions to assess suicide ideation, plans and attempts may contribute to measurement problems and misclassification. We examined the validity of single-item measurement and the potential for statistical errors. Over 1,500 participants completed an online survey containing single-item questions regarding a history of suicidal behaviors, followed by questions with more precise language, multiple response options and narrative responses to examine the validity of single-item questions. We also conducted simulations to test whether common statistical tests are robust against the degree of misclassification produced by the use of single-items. We found that 11.3% of participants that endorsed a single-item suicide attempt measure engaged in behavior that would not meet the standard definition of a suicide attempt. Similarly, 8.8% of those who endorsed a single-item measure of suicide ideation endorsed thoughts that would not meet standard definitions of suicide ideation. Statistical simulations revealed that this level of misclassification substantially decreases statistical power and increases the likelihood of false conclusions from statistical tests. Providing a wider range of response options for each item reduced the misclassification rate by approximately half. Overall, the use of single-item, self-report questions to assess the presence of suicidal behaviors leads to misclassification, increasing the likelihood of statistical decision errors. Improving the measurement of suicidal behaviors is critical to increase understanding and prevention of suicide. PMID:26496707
West, Colin P; Dyrbye, Liselotte N; Sloan, Jeff A; Shanafelt, Tait D
2009-12-01
Burnout has negative effects on work performance and patient care. The current standard for burnout assessment is the Maslach Burnout Inventory (MBI), a well-validated instrument consisting of 22 items answered on a 7-point Likert scale. However, the length of the MBI can limit its utility in physician surveys. To evaluate the performance of two questions relative to the full MBI for measuring burnout. Cross-sectional data from 2,248 medical students, 333 internal medicine residents, 465 internal medicine faculty, and 7,905 practicing surgeons. The single questions with the highest factor loading on the emotional exhaustion (EE) ("I feel burned out from my work") and depersonalization (DP) ("I have become more callous toward people since I took this job") domains of burnout were evaluated in four large samples of medical students, internal medicine residents, internal medicine faculty, and practicing surgeons. Spearman correlations between the single EE question and the full EE domain score minus that question ranged from 0.76-0.83. Spearman correlations between the single DP question and the full DP domain score minus that question ranged from 0.61-0.72. Responses to the single item measures of emotional exhaustion and depersonalization stratified risk of high burnout in the relevant domain on the full MBI, with consistent patterns across the four sampled groups. Single item measures of emotional exhaustion and depersonalization provide meaningful information on burnout in medical professionals.
Inga Fischer-Hjalmars (1918-2008): Swedish Pharmacist, Humanist, and Pioneer Quantum Chemist
ERIC Educational Resources Information Center
Johansson, Adam Johannes
2012-01-01
A wide variety of questions can be asked about the molecules that compose the physical reality around us and constitute biological life. Some of these questions are answered by the science called biology, others find their answer in chemistry, whereas the answers to the most fundamental questions are only to be found in the theories of physics.…
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton.
This document outlines the use of machine-scorable open-ended questions for the evaluation of Physics 30 in Alberta. Contents include: (1) an introduction to the questions; (2) sample instruction sheet; (3) fifteen sample items; (4) item information including the key, difficulty, and source of each item; (5) solutions to items having multiple…
Careers in Patent Law for Physics Majors
NASA Astrophysics Data System (ADS)
Oliver, Douglas L.
2010-11-01
An important question that many undergraduate physics students ask is, "What can one do with a physics degree?" Of course there are many answers to this question. Often a general reference to becoming a lawyer is given as a possible answer. This paper is intended to explain the field of patent law and how a physics degree can lead to an interesting and potentially lucrative career as a patent examiner, a patent agent, or a patent attorney. This information may be of interest to physics students as well as those who recruit or counsel physics students.
Surveying college introductory physics students’ attitudes and approaches to problem solving
NASA Astrophysics Data System (ADS)
Mason, Andrew J.; Singh, Chandralekha
2016-09-01
Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.
[Physical inactivity and associated factors in adults, São Paulo, Brazil].
Zanchetta, Luane Margarete; Barros, Marilisa Berti de Azevedo; César, Chester Luiz Galvão; Carandina, Luana; Goldbaum, Moisés; Alves, Maria Cecília Goi Porto
2010-09-01
To analyze the prevalence of overall and leisure time physical inactivity and associated factors and types of exercises or sports modalities according to schooling in 2,050 adults from 18 to 59 years of age - state of São Paulo, Brazil. Population-based cross-sectional study with a stratified sample of clusters performed in multiple stages. Physical inactivity was determined using the short version of the International Physical Activity Questionnaire - IPAQ and by a question on the regular practice of leisure time physical activity. Data analysis took the sample design into account. Prevalence of physical inactivity during leisure was higher among women. Poisson multiple regression model in man indicated that overall sedentarism was lower among single and separated men, students and without car in the household. Leisure physical inactivity was greater among men over forty years, among those with less schooling and full-time students. Overall physical inactivity was more prevalent among woman with more schooling, with less qualified occupations and widows. Leisure physical inactivity decreased with age and schooling. Among modalities practiced for leisure, walking was more prevalent among women and football was more prevalent among men. Most modalities were directly associated with schooling; approximately 25% of the individuals with more than 12 years of schooling practiced walking. These results suggest that interventions and public policies to promote physical activity should consider differences in gender and socioeconomic status as well as the preferences for different modalities and the context in which the physical activity is practiced.
Do US Medical Licensing Applications Treat Mental and Physical Illness Equivalently?
Gold, Katherine J; Shih, Elizabeth R; Goldman, Edward B; Schwenk, Thomas L
2017-06-01
State medical licensing boards are responsible for evaluating physician impairment. Given the stigma generated by mental health issues among physicians and in the medical training culture, we were interested in whether states asked about mental and physical health conditions differently and whether questions focused on current impairment. Two authors reviewed physician medical licensing applications for US physicians seeking first-time licensing in 2013 in the 50 states and the District of Columbia. Questions about physical and mental health, as well as substance abuse, were identified and coded as to whether or not they asked about diagnosis and/or treatment or limited the questions to conditions causing physician impairment. Forty-three (84%) states asked questions about mental health conditions, 43 (84%) about physical health conditions, and 47 (92%) about substance use. States were more likely to ask for history of treatment and prior hospitalization for mental health and substance use, compared with physical health disorders. Among states asking about mental health, just 23 (53%) limited all questions to disorders causing functional impairment and just 6 (14%) limited to current problems. While most state medical licensing boards ask about mental health conditions or treatment, only half limited queries to disorders causing impairment. Differences in how state licensing boards assess mental health raise important ethical and legal questions about assessing physician ability to practice and may discourage treatment for physicians who might otherwise benefit from appropriate care.
ERIC Educational Resources Information Center
Robinson, Daniel B.; Gleddie, Doug
2011-01-01
Enabling preservice physical education teachers to critically consider questionable and taken-for-granted practices is an important component of a physical education teacher education (PETE) program. In an effort to offer a teaching and learning context in which to introduce such critical consciousness, the authors have included a staged physical…
Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)
NASA Astrophysics Data System (ADS)
Suh, Yung Doug; Kim, Hyun Woo
2017-08-01
Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.
Solar Physics - Plasma Physics Workshop
NASA Technical Reports Server (NTRS)
Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.
1974-01-01
A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.
An evaluation of single question delirium screening tools in older emergency department patients.
Han, Jin H; Wilson, Amanda; Schnelle, John F; Dittus, Robert S; Wesley Ely, E
2018-07-01
To determine the diagnostic performances of several single question delirium screens. To the patient we asked: "Have you had any difficulty thinking clearly lately?" To the patient's surrogate, we asked: "Is the patient at his or her baseline mental status?" and "Have you noticed the patient's mental status fluctuate throughout the course of the day?" This was a prospective observational study that enrolled English speaking patients 65 years or older. A research assistant (RA) and emergency physician (EP) independently asked the patient and surrogate the single question delirium screens. The reference standard for delirium was a consultation-liaison psychiatrist's assessment using Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) criteria. All assessments were performed within 3 h and were all blinded to each other. Of the 406 patients enrolled, 50 (12%) were delirious. A patient who was unable to answer the question "Have you had any difficulty thinking clearly lately?" was 99.7% (95% CI: 98.0%-99.9%) specific, but only 24.0% (95% CI: 14.3%-37.4%) sensitive for delirium when asked by the RA. The baseline mental status surrogate question was 77.1% (95% CI: 61.0%-87.9%) sensitive and 87.5% (95% CI: 82.8%-91.1%) specific for delirium when asked by the RA. The fluctuating course surrogate question was 77.1% (95% CI: 61.0%-87.9%) sensitive and 80.2% (95% CI: 74.8%-84.7%) specific. When asked by the EP, the single question delirium screens' diagnostic performances were similar. The patient and surrogate single question delirium assessments may be useful for delirium screening in the ED. Copyright © 2018. Published by Elsevier Inc.
Perspective: Mechanochemistry of biological and synthetic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Dmitrii E., E-mail: makarov@cm.utexas.edu
Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then tomore » describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.« less
Coupling Conceptual and Quantitative Problems to Develop Expertise in Introductory Physics Students
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2008-10-01
We discuss the effect of administering conceptual and quantitative isomorphic problem pairs (CQIPP) back to back vs. asking students to solve only one of the problems in the CQIPP in introductory physics courses. Students who answered both questions in a CQIPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of a CQIPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it and then reason about the solution conceptually. Even in individual interviews, when students who were only given conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling.
NASA Astrophysics Data System (ADS)
Cazorla, Constantin; Nazé, Yaël; Morel, Thierry; Georgy, Cyril; Godart, Mélanie; Langer, Norbert
2017-08-01
Aims: Past observations of fast-rotating massive stars exhibiting normal nitrogen abundances at their surface have raised questions about the rotational mixing paradigm. We revisit this question thanks to a spectroscopic analysis of a sample of bright fast-rotating OB stars, with the goal of quantifying the efficiency of rotational mixing at high rotation rates. Methods: Our sample consists of 40 fast rotators on the main sequence, with spectral types comprised between B0.5 and O4. We compare the abundances of some key element indicators of mixing (He, CNO) with the predictions of evolutionary models for single objects and for stars in interacting binary systems. Results: The properties of half of the sample stars can be reproduced by single evolutionary models, even in the case of probable or confirmed binaries that can therefore be true single stars in a pre-interaction configuration. The main problem for the rest of the sample is a mismatch for the [N/O] abundance ratio (we confirm the existence of fast rotators with a lack of nitrogen enrichment) and/or a high helium abundance that cannot be accounted for by models. Modifying the diffusion coefficient implemented in single-star models does not solve the problem as it cannot simultaneously reproduce the helium abundances and [N/O] abundance ratios of our targets. Since part of them actually are binaries, we also compared their chemical properties with predictions for post-mass transfer systems. We found that these models can explain the abundances measured for a majority of our targets, including some of the most helium-enriched, but fail to reproduce them in other cases. Our study thus reveals that some physical ingredients are still missing in current models.
LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ABE,T.; DAWSON,S.; HEINEMEYER,S.
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less
Linear Collider Physics Resource Book for Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, Michael E
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less
Vagi, Kevin J; O'Malley Olsen, Emily; Basile, Kathleen C; Vivolo-Kantor, Alana M
2015-05-01
National estimates of teen dating violence (TDV) reveal high rates of victimization among high school populations. The Centers for Disease Control and Prevention's national Youth Risk Behavior Survey has provided often-cited estimates of physical TDV since 1999. In 2013, revisions were made to the physical TDV question to capture more serious forms of physical TDV and to screen out students who did not date. An additional question was added to assess sexual TDV. To describe the content of new physical and sexual TDV victimization questions first administered in the 2013 national Youth Risk Behavior Survey, to share data on the prevalence and frequency of TDV (including the first-ever published overall "both physical and sexual TDV" and "any TDV" national estimates using these new questions), and to assess associations of TDV experience with health-risk behaviors. Secondary data analysis of a cross-sectional survey of 9900 students who dated, from a nationally representative sample of US high school students, using the 2013 national Youth Risk Behavior Survey. Two survey questions separately assessed physical and sexual TDV; this analysis combined them to create a 4-level TDV measure and a 2-level TDV measure. The 4-level TDV measure includes "physical TDV only," "sexual TDV only," "both physical and sexual TDV," and "none." The 2-level TDV measure includes "any TDV" (either or both physical and sexual TDV) and "none." Sex-stratified bivariate and multivariable analyses assessed associations between TDV and health-risk behaviors. In 2013, among students who dated, 20.9% of female students (95% CI, 19.0%-23.0%) and 10.4% of male students (95% CI, 9.0%-11.7%) experienced some form of TDV during the 12 months before the survey. Female students had a higher prevalence than male students of physical TDV only, sexual TDV only, both physical and sexual TDV, and any TDV. All health-risk behaviors were most prevalent among students who experienced both forms of TDV and were least prevalent among students who experienced none (all P < .001). The 2013 TDV questions allowed for new prevalence estimates of TDV to be established that represent a more complete measure of TDV and are useful in determining associations with health-risk behaviors among youth exposed to these different forms of TDV.
Liao, Yue; Solomon, Olga; Dunton, Genevieve F
2017-09-01
This study used ecological momentary assessment (EMA), a real-time self-report strategy, to examine (1) whether dog owners were more likely to be physically active when they were with their dogs and (2) whether being with a dog amplifies positive and dampens negative affective response during physical activity. Electronic EMA surveys for 12 days. Free-living. Seventy-one adult dog owners. The EMA survey included 1 question about current activity, 3 questions about positive affect (Cronbach α = .837), 4 questions about negative affect (Cronbach α = .865), and 1 question about the presence of dog. Multilevel modeling. The company of a dog did not increase the likelihood of being active versus sedentary at any given EMA prompt. However, greater positive affect during physical activity was reported in the company of a dog. Negative affect did not differ between active and sedentary activity, regardless of being with a dog or not. This study demonstrates the utility of electronic EMA as a promising methodology to study dog-accompanied physical activity. Future studies may use EMA to collect further contextual information about dog-accompanied activity to inform the development of innovative physical activity interventions.
Physical Activity Experiences and Beliefs Among Single Mothers: A Qualitative Study.
Dlugonski, Deirdre; Motl, Robert W
2016-09-01
Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used social-cognitive theory as a framework to explore physical activity beliefs and experiences among single mothers. Single mothers (N = 14) completed a semistructured interview and the International Physical Activity Questionnaire. Participants were categorized into 3 activity levels, and data were analyzed according to these categories. All participants reported barriers to physical activity. Physically active single mothers seemed to be more confident in their ability to overcome these barriers and more likely to plan physical activity in their daily routine, and they more frequently reported having social support compared with low-active single mothers. Across all activity levels, participants focused on the physical outcomes of physical activity participation such as weight loss. These results provide information that is useful for designing and delivering behavioral interventions for increasing physical activity among single mothers.
Evaluation of impairment of the upper extremity.
Blair, S J; McCormick, E; Bear-Lehman, J; Fess, E E; Rader, E
1987-08-01
Evaluation of impairment of the upper extremity is the product of a team effort by the physician, occupational therapist, physical therapist, and rehabilitation counselor. A careful recording of the anatomic impairment should be made because this is critical in determining the subsequent functional activities of the extremity. The measurement criteria for clinical and functional evaluation includes condition assessment instruments. Some assess the neurovascular system, others assess movements including the monitoring of articular motion and musculotendinous function. Sensibility assessment instruments measure sympathetic response and detect single joint stimulus, discrimination, quantification, and recognition abilities. A detailed description of each assessment is recorded and physical capacity evaluation is only one component of the entire vocational evaluation. This evaluation answers questions regarding the injured worker's ability to return to his previous job. The work simulator is a useful instrument that allows rehabilitation and testing of the injured upper extremity. Job site evaluation includes assessment criteria for work performance, work behavior, and work environment.
Ordering states with various coherence measures
NASA Astrophysics Data System (ADS)
Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi
2018-04-01
Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.
Physical Principles of Skeletal Minerals Revealed with Spectromicroscopy
Gilbert, Pupa [U of Wisconsin-Madison, Wisconsin, United States
2017-12-09
Skeletal elements of marine and terrestrial organisms have the most fascinating nano-to-macro-structures, attracting the attention of physicists, biologists, chemists, and materials scientists. Using X-PEEM spectromicroscopy we revealed some of the fundamental mechanisms leading to the formation of these biominerals. Specifically, we addressed the following questions and provided the answers: 1Q) How do teeth, bones, and echinoderm and mollusk shells acquire their unusual, curved and complex morphology, if they are composed of single crystals? 1A) Via amorphous precursor phases; 2Q) How does crystallinity propagate through the amorophous precursor phases in sea urchin spicules and teeth? 2A) By secondary nucleation, following random walk patterns; 3Q) How does iridescent mother-of-pearl become ordered? 3A) Gradually, through a kinetic mechanisms in which fastest growing single-crystals win the competition for space, thus end up being approximately co-oriented.
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos
Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.
Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte
NASA Astrophysics Data System (ADS)
Wunderlich, Christof
2015-05-01
Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.
Dietz, Pavel; Quermann, Anne; van Poppel, Mireille Nicoline Maria; Striegel, Heiko; Schröter, Hannes; Ulrich, Rolf; Simon, Perikles
2018-01-01
In order to increase the value of randomized response techniques (RRTs) as tools for studying sensitive issues, the present study investigated whether the prevalence estimate for a sensitive item [Formula: see text] assessed with the unrelated questionnaire method (UQM) is influenced by changing the probability of receiving the sensitive question p. A short paper-and-pencil questionnaire was distributed to 1.243 university students assessing the 12-month prevalence of physical and cognitive doping using two versions of the UQM with different probabilities for receiving the sensitive question (p ≈ 1/3 and p ≈ 2/3). Likelihood ratio tests were used to assess whether the prevalence estimates for physical and cognitive doping differed significantly between p ≈ 1/3 and p ≈ 2/3. The order of questions (physical doping and cognitive doping) as well as the probability of receiving the sensitive question (p ≈ 1/3 or p ≈ 2/3) were counterbalanced across participants. Statistical power analyses were performed to determine sample size. The prevalence estimate for physical doping with p ≈ 1/3 was 22.5% (95% CI: 10.8-34.1), and 12.8% (95% CI: 7.6-18.0) with p ≈ 2/3. For cognitive doping with p ≈ 1/3, the estimated prevalence was 22.5% (95% CI: 11.0-34.1), whereas it was 18.0% (95% CI: 12.5-23.5) with p ≈ 2/3. Likelihood-ratio tests revealed that prevalence estimates for both physical and cognitive doping, respectively, did not differ significantly under p ≈ 1/3 and p ≈ 2/3 (physical doping: χ2 = 2.25, df = 1, p = 0.13; cognitive doping: χ2 = 0.49, df = 1, p = 0.48). Bayes factors computed with the Savage-Dickey method favored the null ("the prevalence estimates are identical under p ≈ 1/3 and p ≈ 2/3") over the alternative ("the prevalence estimates differ under p ≈ 1/3 and p ≈ 2/3") hypothesis for both physical doping (BF = 2.3) and cognitive doping (BF = 5.3). The present results suggest that prevalence estimates for physical and cognitive doping assessed by the UQM are largely unaffected by the probability for receiving the sensitive question p.
Pérez-Zepeda, Mario U; Belanger, Emmanuelle; Zunzunegui, Maria-Victoria; Phillips, Susan; Ylli, Alban; Guralnik, Jack
2016-01-01
The aim of this study was to explore the validity of self-rated health across different populations of older adults, when compared to the Short Physical Performance Battery. Cross-sectional analysis of the International Mobility in Aging Study. Five locations: Saint-Hyacinthe and Kingston (Canada), Tirana (Albania), Manizales (Colombia), and Natal (Brazil). Older adults between 65 and 74 years old (n = 1,995). The Short Physical Performance Battery (SPPB) was used to measure physical performance. Self-rated health was assessed with one single five-point question. Linear trends between SPPB scores and self-rated health were tested separately for men and women at each of the five international study sites. Poor physical performance (independent variable) (SPPB less than 8) was used in logistic regression models of self-rated health (dependent variable), adjusting for potential covariates. All analyses were stratified by gender and site of origin. A significant linear association was found between the mean scores of the Short Physical Performance Battery and ordinal categories of self-rated health across research sites and gender groups. After extensive control for objective physical and mental health indicators and socio-demographic variables, these graded associations became non-significant in some research sites. These findings further confirm the validity of SRH as a measure of overall health status in older adults.
ERIC Educational Resources Information Center
Anderson, Steven W.; Libarkin, Julie C.
2016-01-01
Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…
Intrepid: Exploring the NEA population with a Fleet of Highly Autonomous SmallSat explorers
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Chesley, Steven R.; Ehlmann, Bethany; Raymond, Carol Anne
2017-10-01
The Intrepid mission concept calls for phased deployment of a fleet of small highly autonomous rendezvous spacecraft designed to characterize the evolution, structure and composition of dozens of Near-Earth Asteroids (NEAs). Intrepid represents a marked departure from conventional solar system exploration projects, where a single unique and complex spacecraft is typically directed to explore a single target body. In contrast, Intrepid relies on the deployment of a large number of autonomous spacecraft to provide redundancy and ensure that the project goals are achieved at a small fraction of the cost of typical missions.The Intrepid science goals are threefold: (1) to understand the evolutionary processes that govern asteroid physical, chemical and dynamical histories and relate these results to solar system origins and evolution; (2) to facilitate impactor deflection scenarios for planetary defense by statistically characterizing relevant asteroid physical properties; (3) to quantify the presence and extractability of potentially useful resources on a large sample of asteroids. To achieve these goals, the baseline architecture includes multiple modular instruments including cameras, spectrometers, radar sounders, and projectiles that could interact with the target asteroid. Key questions to be addressed are: what is the total quantity of water in each object? How is the water incorporated? Are organics present? What is the asteroid physical structure? How would the object respond to impact/deflection?We have begun development of a miniature infrared point spectrometer, a cornerstone of the Intrepid payload, covering both shortwave infrared (SWIR) and mid-infrared (MIR) spectral bands. The spectrometer is designed with a compact 2U form-factor, making it both relevant to Intrepid and implementable on a CubeSat. The combination of SWIR and MIR in a single integrated instrument would enable robust compositional interpretations from a single dataset combining both solar reflectance and thermal emission spectroscopy. These measurements would be crucial to determining the quantity and nature of water present.
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
de Bruin, Anique B H
2016-12-01
Since emergence of the field 'Educational Neuroscience' (EN) in the late nineties of the previous century, a debate has emerged about the potential this field holds to influence teaching and learning in the classroom. By now, most agree that the original claims promising direct translations to teaching and learning were too strong. I argue here that research questions in (health professions) education require multi-methodological approaches, including neuroscience, while carefully weighing what (combination of) approaches are most suitable given a research question. Only through a multi-methodological approach will convergence of evidence emerge, which is so desperately needed for improving teaching and learning in the classroom. However, both researchers and teachers should become aware of the so-called 'seductive allure' of EN; that is, the demonstrable physical location and apparent objectivity of the measurements can be interpreted as yielding more powerful evidence and warranting stronger conclusions than, e.g., behavioral experiments, where in fact oftentimes the reverse is the case. I conclude that our tendency as researchers to commit ourselves to one methodological approach and to addressing educational research questions from a single methodological perspective is limiting progress in educational science and in translation to education.
NASA Astrophysics Data System (ADS)
Moss, Frank
1997-11-01
The question arises in a number of contexts from the editorial policies of our journals to the decisions and priorities of agencies that financially support scientific research. What kinds of papers should Physical Review E and Physical Review Letters accept within this category? What constitutes success in choosing which projects to fund? Do biological physicists discover new physics, or new biology, or do they simply make their considerable instrumental and analytical talents available to the biologists(see for example, V.A. Parsegian, Physics Today), July 1997 p. 23 and a Counterpoint by R. H. Austin, ibid p. 27.? And are there bridges to medical science? Are there now some questions in biological and medical science that cannot be creditably addressed without contemporary physics? And what does it mean that the president has ventured that the next five decades will be the age of biology as opposed to the last (which he described as the age of physics)? These questions seem interesting (at least to those who call themselves biological physicists) and may be gaining significance in view of the fact that what we loosely describe as biological physics as a field seems to be growing.
Materials for Active Engagement in Nuclear and Particle Physics Courses
NASA Astrophysics Data System (ADS)
Loats, Jeff; Schwarz, Cindy; Krane, Ken
2013-04-01
Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.
Top 10 research questions related to physical activity in preschool children.
Pate, Russell R; O'Neill, Jennifer R; Brown, William H; McIver, Kerry L; Howie, Erin K; Dowda, Marsha
2013-12-01
The purpose of this article was to highlight important research needs related to physical activity in 3- to 5-year-old children. We identified research needs in 3 major categories: health effects, patterns of physical activity, and interventions and policies. The top research needs include identifying the health effects of physical activity, the effects of physical activity on the development of healthy weight, the effects of physical activity on learning and behavior, and the health implications of sedentary behavior. Research questions concerning patterns of physical activity include determining the prevalence of 3- to 5-year-olds meeting the current physical activity guidelines; the social and environmental factors that influence physical activity in home, preschool, and community settings; and how physical activity tracks into later childhood, adolescence, and adulthood. Research questions about interventions and policies include identifying the most effective strategies to promote physical activity in home, child care, and community settings and to reach diverse populations of young children, identifying effective intervention implementation and dissemination strategies, and determining the effectiveness of national, state, local, and institutional policies for increasing physical activity. In conclusion, research is needed to establish a full understanding of the health implications of physical activity in 3- to 5-year-old children, to better understand the nature of physical activity behavior in this group, and to learn how to promote physical activity in young children.
Top 10 Research Questions Related to Children Physical Activity Motivation
Chen, Ang
2017-01-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents’ physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children’s physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children’s physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children’s physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person–environment interactions, and those attempting to dissect the motivation as an outcome of social–cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children’s physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond. PMID:24592774
Top 10 research questions related to children physical activity motivation.
Chen, Ang
2013-12-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.
The Historical Approach to Science Teaching.
ERIC Educational Resources Information Center
Brouwer, Wytze; Singh, Amar
1983-01-01
Advantages of using an historical approach in teaching physics are discussed, focusing on the questioning techniques that a teacher can adopt in analyzing a particular episode or concept in the history of physics. Questions related to a theory's reception among the scientific community are also discussed. (JN)
Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media
NASA Astrophysics Data System (ADS)
Russian, Anna; Dentz, Marco; Gouze, Philippe
2017-08-01
Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.
Minimum principles in electromagnetic scattering by small aspherical particles
NASA Astrophysics Data System (ADS)
Kostinski, Alex B.; Mongkolsittisilp, Ajaree
2013-12-01
We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.
Teaching the Delightful Laws of Physics in a Survey Course
NASA Astrophysics Data System (ADS)
Hewitt, Paul G.
2015-10-01
How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch NOVA and other science specials. A related question, how to make a physics course interesting, is something that we can answer. All we have to do is present physics at a proper pace in the language of the learner. My adage has always been that if the first course in physics is delightful, the rigor of a follow-up course will be welcomed.
Students' understanding and perceptions of the content of a lecture
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Zollman, Dean; Rebello, Sanjay
2004-09-01
In spite of advances in physics pedagogy, the lecture is by far the most widely used instructional format. We investigated students' understanding and perceptions of the content delivered during a physics lecture. Students participating in our study responded to a written conceptual survey on sound propagation. Next, they looked for answers to the survey questions in a videotaped lecture by a nationally known teacher. As they viewed the lecture, they indicated instances, if any, in which the survey questions were answered during the lecture. A group of experts (physics instructors) also participated in our study. We discuss students' and experts' responses to the survey questions.
Differences in gender performance on competitive physics selection tests
NASA Astrophysics Data System (ADS)
Wilson, Kate; Low, David; Verdon, Matthew; Verdon, Alix
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] We have investigated gender differences in performance over the past eight years on the Australian Science Olympiad Exam (ASOE) for physics, which is taken by nearly 1000 high school students each year. The ASOE, run by Australian Science Innovations (ASI), is the initial stage of the process of selection of teams to represent Australia at the Asian and International Physics Olympiads. Students taking the exam are generally in their penultimate year of school and selected by teachers as being high performing in physics. Together with the overall differences in facility, we have investigated how the content and presentation of multiple-choice questions (MCQs) affects the particular answers selected by male and female students. Differences in the patterns of responses by male and female students indicate that males and females might be modeling situations in different ways. Some strong patterns were found in the gender gaps when the questions were categorized in five broad dimensions: content, process required, difficulty, presentation, and context. Almost all questions saw male students performing better, although gender differences were relatively small for questions with a more abstract context. Male students performed significantly better on most questions with a concrete context, although notable exceptions were found, including two such questions where female students performed better. Other categories that showed consistently large gaps favoring male students include questions with projectile motion and other two-dimensional motion or forces content, and processes involving interpreting diagrams. Our results have important implications, suggesting that we should be able to reduce the gender gaps in performance on MCQ tests by changing the way information is presented and setting questions in contexts that are less likely to favor males over females. This is important as MCQ tests are frequently used as diagnostic tests and aptitude tests as well as to assess learning.
ERIC Educational Resources Information Center
Jandaghi, Gholamreza
2010-01-01
The purpose of the research is to determine high school teachers' skill rate in designing exam questions in physics subject. The statistical population was all of physics exam shits for two semesters in one school year from which a sample of 364 exam shits was drawn using multistage cluster sampling. Two experts assessed the shits and by using…
Fundamental Physics with Electroweak Probes of Nuclei
NASA Astrophysics Data System (ADS)
Pastore, Saori
2018-02-01
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.
At the Crossroads of Art and Science: A New Course for University Non-Science Majors
NASA Astrophysics Data System (ADS)
Blatt, S. Leslie
2004-03-01
How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.
Applying automatic item generation to create cohesive physics testlets
NASA Astrophysics Data System (ADS)
Mindyarto, B. N.; Nugroho, S. E.; Linuwih, S.
2018-03-01
Computer-based testing has created the demand for large numbers of items. This paper discusses the production of cohesive physics testlets using an automatic item generation concepts and procedures. The testlets were composed by restructuring physics problems to reveal deeper understanding of the underlying physical concepts by inserting a qualitative question and its scientific reasoning question. A template-based testlet generator was used to generate the testlet variants. Using this methodology, 1248 testlet variants were effectively generated from 25 testlet templates. Some issues related to the effective application of the generated physics testlets in practical assessments were discussed.
Electric polarization observed in single crystals of multiferroic Lu 2 MnCoO 6
Chikara, Shalinee; Singleton, John; Bowlan, John M.; ...
2016-05-17
We report electric polarization and magnetization measurements in single crystals of double perovskite Lu 2MnCoO 6 using pulsed magnetic fields and optical second harmonic generation in dc magnetic fields. We observe well-resolved magnetic field-induced changes in the electric polarization in single crystals and thereby resolve the question about whether multiferroic behavior is intrinsic to these materials or is an extrinsic feature of polycrystals. We find electric polarization along the crystalline b axis, that is suppressed by applying a magnetic fields along the c axis, and advance a model for the origin of magnetoelectric coupling. We furthermore map the phase diagrammore » using both capacitance and electric polarization to identify regions of ordering and regions of magnetoelectric hysteresis. This compound is a rare example of coupled hysteretic behavior in the magnetic and electric properties. Furthermore, the ferromagneticlike magnetic hysteresis loop that couples to hysteretic electric polarization can be attributed not to ordinary ferromagnetic domains, but to the rich physics of magnetic frustration of Ising-like spins in the axial next-nearest-neighbor interaction model.« less
Validation of a single screening question for problem drinking.
Williams, R; Vinson, D C
2001-04-01
The researchers hoped to confirm the sensitivity and specificity of a single screening question for problem drinking: "When was the last time you had more than X drinks in 1 day?", where X=4 for women and X=5 for men. Cross-sectional study. Adult patients presenting to 3 emergency departments in Boone County, Missouri, for care within 48 hours of an injury. The answers to the question were coded as never, more than 12 months ago, 3 to 12 months ago, and within the past 3 months. Problematic drinking was defined as either hazardous drinking (identified by a 29-day retrospective interview) or a past-year alcohol use disorder (defined by questions from the Diagnostic Interview Schedule). There was a 70% participation rate. Of 2517 interviewed patients: 29% were hazardous drinkers; 20% had a past-year alcohol use disorder; and 35% had either or both. Considering "within the last 3 months" as positive, the sensitivity of the single question was 86%, and the specificity was 86%. In men (n=1432), sensitivity and specificity were 88% and 81%; in women, 83% and 91%. Using the 4 answer options for the question, the area under the receiver-operating characteristic curve was 0.90. Controlling for age, sex, tobacco use, injury severity, and breath alcohol level in logistic regression models changed the findings minimally. A single question about the last episode of heavy drinking has clinically useful sensitivity and specificity in detecting hazardous drinking and alcohol use disorders.
Ben-Shakhar, Gershon; Elaad, Eitan
2002-10-01
The effect of question repetition and variation on the efficiency of the Guilty Knowledge Test (GKT), based on electrodermal and respiration measures, was examined in a between-subjects experiment with 3 conditions. Each participant was presented with a sequence of 12 biographical questions. In Condition 1, a single question was repeated 12 times; in Condition 4, each of 4 different questions was repeated 3 times; and in Condition 12, 12 different questions were used. A monotonic relationship between the number of different questions used and detection efficiency was observed only with the electrodermal measure (the areas under the receiver operating characteristic curves, obtained with this measure in Conditions 1, 4, and 12 were .68, .81, and .99, respectively). These results demonstrate that a GKT based on multiple questions is superior to the use of many repetitions of a single or a few questions, and it can reach an almost perfect detection efficiency.
Sollerhed, Ann-Christin; Andersson, Ingemar; Ejlertsson, Göran
2013-01-01
As an increase in pain symptoms among children has been shown in the last decades, the aim of this study was to describe perceptions of recurrent pain, measured physical fitness and levels of reported physical activity (PA) in children, and to investigate if any associations between PA, fitness and recurrent pain could be identified. A school-based study comprised 206 Swedish children 8-12 years old, 114 boys, 92 girls. A questionnaire with questions about perceived pain, self-reported PA and lifestyle factors was used. Health-related fitness was assessed by 11 physical tests. A physical index was calculated from these tests as a z score. High physical index indicated high fitness and low physical index indicated low fitness. ANOVA test, chi-square test and logistic regression analysis were used to compare active and inactive children. The prevalence of one pain location (head, abdomen or back) was 26%, two 11% and three 4% (n=206). Female gender, living in single-parent families, low PA and low subjective health were associated with reported recurrent pain. Children reporting high levels of PA had high physical index and reported low prevalence of pain symptoms. The physical index and level of self-reported PA decreased gradually the more pain locations. Physically active children had higher fitness levels and reported less pain symptoms than inactive peers. Coping with pain is an integral part of PA, and active children learn to cope with unpleasant body sensations which together with high fitness may reduce the perception of pain.
Schiffer, Mario
2017-11-01
Single-cell RNA-sequence (RNA-seq) is a widely used tool to study biological questions in single cells. The discussed study identified 92 genes being predominantly expressed in podocytes based on a 5-fold higher expression compared with endothelial and mesangial cells. In addition to technical pitfalls, the question that is discussed in this commentary is whether results of a single-cell RNAseq study are able to deliver expression data that truly characterize a podocyte. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Warmenhoven, Franca; van Rijswijk, Eric; Engels, Yvonne; Kan, Cornelis; Prins, Judith; van Weel, Chris; Vissers, Kris
2012-02-01
Depression is highly prevalent in advanced cancer patients, but the diagnosis of depressive disorder in patients with advanced cancer is difficult. Screening instruments could facilitate diagnosing depressive disorder in patients with advanced cancer. The aim of this study was to determine the validity of the Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in advanced cancer patients. Patients with advanced metastatic disease, visiting the outpatient palliative care department, were asked to fill out a self-questionnaire containing the Beck Depression Inventory (BDI-II) and a single screening question "Are you feeling depressed?" The mood section of the PRIME-MD was used as a gold standard. Sixty-one patients with advanced metastatic disease were eligible to be included in the study. Complete data were obtained from 46 patients. The area under the curve of the receiver operating characteristics analysis of the BDI-II was 0.82. The optimal cut-off point of the BDI-II was 16 with a sensitivity of 90% and a specificity of 69%. The single screening question showed a sensitivity of 50% and a specificity of 94%. The BDI-II seems an adequate screening tool for a depressive disorder in advanced cancer patients. The sensitivity of a single screening question is poor.
Comfortably engaging: which approach to alcohol screening should we use?
Vinson, Daniel C; Galliher, James M; Reidinger, Carol; Kappus, Jennifer A
2004-01-01
We wanted to compare 2 screening instruments for problem drinking, the CAGE and a single question, assessing frequency of use, patient and clinician comfort, and patient engagement in change. The study was a crossover, cluster-randomized clinical trial with 31 clinicians in Missouri and 13 in the American Academy of Family Physicians (AAFP) National Network for Family Practice and Primary Care Research; 2,800 patients provided data. The clinician was the unit of randomization. Clinicians decided whether to screen each patient; if they chose to screen, they used the screening approach assigned for that block of patients. The clinician and patient separately completed questionnaires immediately after the office visit to assess each one's comfort with screening (and any ensuing discussion) and the patient's engagement in change. Missouri clinicians screened more patients when assigned the single question (81%) than the CAGE (69%, P = .001 in weighted analysis). There was no difference among AAFP network clinicians (96% of patients screened with the CAGE, 97% with the single question). Eighty percent to 90% of clinicians and 70% of patients reported being comfortable with screening and the ensuing discussion, with no difference between approaches in either network. About one third of patients who were identified as problem drinkers reported thinking about or planning to change their drinking behavior, with no difference in engagement between screening approaches. Clinicians and patients reported similar comfort with the CAGE questions and the single-question screening tools for problem drinking, and the 2 instruments were equal in their ability to engage the patient. In Missouri, the single question was more likely to be used.
Associations between Physical and Cognitive Doping – A Cross-Sectional Study in 2.997 Triathletes
Dietz, Pavel; Ulrich, Rolf; Dalaker, Robert; Striegel, Heiko; Franke, Andreas G.; Lieb, Klaus; Simon, Perikles
2013-01-01
Purpose This study assessed, for the first time, prevalence estimates for physical and cognitive doping within a single collective of athletes using the randomized response technique (RRT). Furthermore, associations between the use of legal and freely available substances to improve physical and cognitive performance (enhancement) and illicit or banned substances to improve physical and cognitive performance (doping) were examined. Methods An anonymous questionnaire using the unrelated question RRT was used to survey 2,997 recreational triathletes in three sports events (Frankfurt, Regensburg, and Wiesbaden) in Germany. Prior to the survey, statistical power analyses were performed to determine sample size. Logistic regression was used to predict physical and cognitive enhancement and the bootstrap method was used to evaluate differences between the estimated prevalences of physical and cognitive doping. Results 2,987 questionnaires were returned (99.7%). 12-month prevalences for physical and cognitive doping were 13.0% and 15.1%, respectively. The prevalence estimate for physical doping was significantly higher in athletes who also used physical enhancers, as well as in athletes who took part in the European Championship in Frankfurt compared to those who did not. The prevalence estimate for cognitive doping was significantly higher in athletes who also used physical and cognitive enhancers. Moreover, the use of physical and cognitive enhancers were significantly associated and also the use of physical and cognitive doping. Discussion The use of substances to improve physical and cognitive performance was associated on both levels of legality (enhancement vs. doping) suggesting that athletes do not use substances for a specific goal but may have a general propensity to enhance. This finding is important for understanding why people use such substances. Consequently, more effective prevention programs against substance abuse and doping could be developed. PMID:24236038
ERIC Educational Resources Information Center
O'Malley, Jeffrey J.
1990-01-01
Contends that knowing the right questions to ask is crucial to making an analytical and informative examination of a topic. Presents a question framework for country studies in geography. Includes questions on physical, political, cultural, economic and population geography, transportation, communications, natural resources, and technology. (RW)
Effect of lecture instruction on student performance on qualitative questions
NASA Astrophysics Data System (ADS)
Heron, Paula R. L.
2015-06-01
The impact of lecture instruction on student conceptual understanding in physics has been the subject of research for several decades. Most studies have reported disappointingly small improvements in student performance on conceptual questions despite direct instruction on the relevant topics. These results have spurred a number of attempts to improve learning in physics courses through new curricula and instructional techniques. This paper contributes to the research base through a retrospective analysis of 20 randomly selected qualitative questions on topics in kinematics, dynamics, electrostatics, waves, and physical optics that have been given in introductory calculus-based physics at the University of Washington over a period of 15 years. In some classes, questions were administered after relevant lecture instruction had been completed; in others, it had yet to begin. Simple statistical tests indicate that the average performance of the "after lecture" classes was significantly better than that of the "before lecture" classes for 11 questions, significantly worse for two questions, and indistinguishable for the remaining seven. However, the classes had not been randomly assigned to be tested before or after lecture instruction. Multiple linear regression was therefore conducted with variables (such as class size) that could plausibly lead to systematic differences in performance and thus obscure (or artificially enhance) the effect of lecture instruction. The regression models support the results of the simple tests for all but four questions. In those cases, the effect of lecture instruction was reduced to a nonsignificant level, or increased to a significant, negative level when other variables were considered. Thus the results provide robust evidence that instruction in lecture can increase student ability to give correct answers to conceptual questions but does not necessarily do so; in some cases it can even lead to a decrease.
Solar physics in the space age
NASA Technical Reports Server (NTRS)
1989-01-01
A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.
How device-independent approaches change the meaning of physical theory
NASA Astrophysics Data System (ADS)
Grinbaum, Alexei
2017-05-01
Dirac sought an interpretation of mathematical formalism in terms of physical entities and Einstein insisted that physics should describe ;the real states of the real systems;. While Bell inequalities put into question the reality of states, modern device-independent approaches do away with the idea of entities: physical theory may contain no physical systems. Focusing on the correlations between operationally defined inputs and outputs, device-independent methods promote a view more distant from the conventional one than Einstein's 'principle theories' were from 'constructive theories'. On the examples of indefinite causal orders and almost quantum correlations, we ask a puzzling question: if physical theory is not about systems, then what is it about? Device-independent models suggest that physical theory can be 'about' languages.
Brownson, Ross C.; Chang, Jen Jen; Eyler, Amy A.; Ainsworth, Barbara E.; Kirtland, Karen A.; Saelens, Brian E.; Sallis, James F.
2004-01-01
Objectives. We tested the reliability of 3 instruments that assessed social and physical environments. Methods. We conducted a test–retest study among US adults (n = 289). We used telephone survey methods to measure suitableness of the perceived (vs objective) environment for recreational physical activity and nonmotorized transportation. Results. Most questions in our surveys that attempted to measure specific characteristics of the built environment showed moderate to high reliability. Questions about the social environment showed lower reliability than those that assessed the physical environment. Certain blocks of questions appeared to be selectively more reliable for urban or rural respondents. Conclusions. Despite differences in content and in response formats, all 3 surveys showed evidence of reliability, and most items are now ready for use in research and in public health surveillance. PMID:14998817
Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey
NASA Astrophysics Data System (ADS)
Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.
2017-01-01
We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.
Optimization of Ballast Design: A Case Study of the Physics Entrepreneurship Program
NASA Astrophysics Data System (ADS)
Ding, Jun; Cheng, Norman; Lamouri, Abbas; Sulcs, Juris; Brown, Robert; Taylor, Cyrus
2001-10-01
This talk presents a typical internship project for students in the Physics Entrepreneurship Program at Case Western Reserve University. As part of their overall strategy, Advanced Lighting International (ADLT) is involved in the production of magnetic ballasts for metal halide lamps. The systems in which these ballasts function is undergoing rapid evolution, leading to the question of how the design of the ballasts can be optimized in order to deliver superior performance for lower cost. Addressing this question requires a full understanding of a variety of issues ranging from the basic modeling of the physics of the magnetic ballasts to questions of overall market strategy, manufacturing considerations, and the competitive environment.
A Statistical-Physics Approach to Language Acquisition and Language Change
NASA Astrophysics Data System (ADS)
Cassandro, Marzio; Collet, Pierre; Galves, Antonio; Galves, Charlotte
1999-02-01
The aim of this paper is to explain why Statistical Physics can help understanding two related linguistic questions. The first question is how to model first language acquisition by a child. The second question is how language change proceeds in time. Our approach is based on a Gibbsian model for the interface between syntax and prosody. We also present a simulated annealing model of language acquisition, which extends the Triggering Learning Algorithm recently introduced in the linguistic literature.
Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017
NASA Astrophysics Data System (ADS)
McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.
2017-12-01
We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Martin L.
This Fifth International WEIN Symposium is devoted to physics beyond the standard model. This talk is about tau lepton physics, but I begin with the question: do we know how to find new physics in the world of elementary particles? This question is interwoven with the various tau physics topics. These topics are: searching for unexpected tau decay modes; searching for additional tau decay mechanisms; radiative tau decays; tau decay modes of the W, B, and D; decay of the Z{sup 0} to tau pairs; searching for CP violation in tau decay; the tau neutrino, dreams and odd ideas inmore » tau physics; and tau research facilities in the next decades.« less
Exploring physics concepts among novice teachers through CMAP tools
NASA Astrophysics Data System (ADS)
Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.
2018-03-01
Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.
What Is "Effective" CPD for Contemporary Physical Education Teachers? A Deweyan Framework
ERIC Educational Resources Information Center
Armour, Kathleen; Quennerstedt, Mikael; Chambers, Fiona; Makopoulou, Kyriaki
2017-01-01
It is widely argued that continuing professional development (CPD) for physical education (PE) teachers is important, yet questions remain about "effective" CPD. We consider these questions afresh from a Deweyan perspective. An overview of the CPD/PE-CPD literature reveals conflicting positions on teachers as learners. Considering the…
Answers to Health Questions in Physical Education.
ERIC Educational Resources Information Center
Kaplan, Robert, Ed.
Culled from the answers of physical education teachers and coaches, this booklet attempts to indicate the scope of health problems and suggests some directions which the solutions may take. It is divided into three parts. Part 1, Health and Safety in Activity Programs, answers questions on first aid, excused absences, and desirability of…
Tsuno, Kanami; Kawakami, Norito
2016-12-01
Work-related physical assaults or violence has severely impacted on the safety of the work environment and employees' mental health. The aim of the present study was to investigate the prevalence of physical assaults, the effect of socioeconomic status (SES) on it and depression associated with it in employees working at large companies. A total of 22,770 Japanese employees responded to a self-administered questionnaire including SES (educational status and occupational status), violence victimization, worksite social support and depression (response rate, 85%). The 12-month prevalence of physical assaults and depression was examined using a single question and the Center for Epidemiologic Studies Depression scale, respectively. The prevalence of physical assaults was 1.8% both in males and females. Although the risk of exposure to physical assaults was 2-3 times higher in the blue-collar group than in the manager group, the association of exposure to physical assaults with depression was stronger in the manager and white-collar worker group (Prevalence ratio [PR]=2.1 in males; 1.8 in females) than in the blue-collar worker group (PR=1.7 in males; 1.5 in females) after adjusting demographic and occupational covariates. A similar pattern was observed for education in males; the association was stronger than in the lower education group (PR=2.1 and 1.8). Low SES is a risk factor of exposure to physical assaults, however, the association of physical assaults with depression was significantly greater among company employees of higher SES than those of lower SES.
Belanger, Emmanuelle; Zunzunegui, Maria–Victoria; Phillips, Susan; Ylli, Alban; Guralnik, Jack
2016-01-01
Objective The aim of this study was to explore the validity of self-rated health across different populations of older adults, when compared to the Short Physical Performance Battery. Design Cross-sectional analysis of the International Mobility in Aging Study. Setting Five locations: Saint-Hyacinthe and Kingston (Canada), Tirana (Albania), Manizales (Colombia), and Natal (Brazil). Participants Older adults between 65 and 74 years old (n = 1,995). Methods The Short Physical Performance Battery (SPPB) was used to measure physical performance. Self-rated health was assessed with one single five-point question. Linear trends between SPPB scores and self-rated health were tested separately for men and women at each of the five international study sites. Poor physical performance (independent variable) (SPPB less than 8) was used in logistic regression models of self-rated health (dependent variable), adjusting for potential covariates. All analyses were stratified by gender and site of origin. Results A significant linear association was found between the mean scores of the Short Physical Performance Battery and ordinal categories of self-rated health across research sites and gender groups. After extensive control for objective physical and mental health indicators and socio-demographic variables, these graded associations became non-significant in some research sites. Conclusion These findings further confirm the validity of SRH as a measure of overall health status in older adults. PMID:27089219
SU-E-E-02: The Use of Social Media in a Medical Physics Classroom.
Starkschall, G
2012-06-01
The purpose of this presentation is to provide an example of how Facebook has been used in a medical physics classroom. Facebook was used in an introductory course in radiation interactions taken by graduate students in a CAMPEP-accredited medical physics program. Facebook served two major functions in the class, as a means for communicating announcements to students, and as a forum for discussion of unclear points in the course. At the end of every class, students were prompted to fill out a questionnaire asking them to identify points that were not clear. After class, all questions were posted by the instructor (so students maintained anonymity and did not have to be embarrassed by lack of knowledge). Students had 24 hr to post responses to their peers' questions. Students who responded correctly to peers' questions received additional in- class credit for their response, thus encouraging them to respond. After 24 hr, the instructor or a teaching assistant posted a response to the question. 12/16 students participated in discussions. The students who did not respond were all postdoctoral fellows (3/4 foreign) auditing the course. From 3 to 9 students typically responded to questions. Students responding to questions received credit for their responses (0.4 points per response up to a maximum of 5 points added to an in-class grade that counted for 10% of their final grade). Student evaluations of the use of Facebook were generally positive. Furthermore, use of Facebook for this application extended the time students were interacting with each other in medical physics. The use of social media in a medical physics classroom appears to be an effective tool to incorporate into a teaching methodology. © 2012 American Association of Physicists in Medicine.
Questions That Science Teachers Find Difficult (II).
ERIC Educational Resources Information Center
Goodwin, Alan
2003-01-01
Presents some questions that science teachers find difficult. Focuses on three further questions relating to "simple" everyday situations that are normally explained in terms of the kinetic theory of matter. Identifies looking at the difference between chemical and physical changes as the most problematic question. (Author/YDS)
NASA Astrophysics Data System (ADS)
Baily, Charles Raymond
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.
Freeman, Adrian; Nicholls, Anthony; Ricketts, Chris; Coombes, Lee
2010-01-01
To use progress testing, a large bank of questions is required, particularly when planning to deliver tests over a long period of time. The questions need not only to be of good quality but also balanced in subject coverage across the curriculum to allow appropriate sampling. Hence as well as creating its own questions, an institution could share questions. Both methods allow ownership and structuring of the test appropriate to the educational requirements of the institution. Peninsula Medical School (PMS) has developed a mechanism to validate questions written in house. That mechanism can be adapted to utilise questions from an International question bank International Digital Electronic Access Library (IDEAL) and another UK-based question bank Universities Medical Assessment Partnership (UMAP). These questions have been used in our progress tests and analysed for relative performance. Data are presented to show that questions from differing sources can have comparable performance in a progress testing format. There are difficulties in transferring questions from one institution to another. These include problems of curricula and cultural differences. Whilst many of these difficulties exist, our experience suggests that it only requires a relatively small amount of work to adapt questions from external question banks for effective use. The longitudinal aspect of progress testing (albeit summatively) may allow more flexibility in question usage than single high stakes exams.
The new AP Physics exams: Integrating qualitative and quantitative reasoning
NASA Astrophysics Data System (ADS)
Elby, Andrew
2015-04-01
When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.
An Investigation into the Optimal Number of Distractors in Single-Best Answer Exams
ERIC Educational Resources Information Center
Kilgour, James M.; Tayyaba, Saadia
2016-01-01
In UK medical schools, five-option single-best answer (SBA) questions are the most widely accepted format of summative knowledge assessment. However, writing SBA questions with four effective incorrect options is difficult and time consuming, and consequently, many SBAs contain a high frequency of implausible distractors. Previous research has…
Using computer simulations to facilitate conceptual understanding of electromagnetic induction
NASA Astrophysics Data System (ADS)
Lee, Yu-Fen
This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.
When Is a Question a Question for Children and Adults?
ERIC Educational Resources Information Center
Saindon, Mathieu R.; Trehub, Sandra E.; Schellenberg, E. Glenn; van Lieshout, Pascal H. H. M.
2017-01-01
Terminal changes in fundamental frequency provide the most salient acoustic cues to declarative questions, but adults sometimes identify such questions from pre-terminal cues. In the present study, adults and 7- to 10-year-old children judged a single speaker's adult- and child-directed utterances as questions or statements in a gating task with…
Comparison of Integrated Testlet and Constructed-Response Question Formats
ERIC Educational Resources Information Center
Slepkov, Aaron D.; Shiell, Ralph C.
2014-01-01
Constructed-response (CR) questions are a mainstay of introductory physics textbooks and exams. However, because of the time, cost, and scoring reliability constraints associated with this format, CR questions are being increasingly replaced by multiple-choice (MC) questions in formal exams. The integrated testlet (IT) is a recently developed…
NASA Astrophysics Data System (ADS)
Gibson, Valerie; Jardine-Wright, Lisa; Bateman, Elizabeth
2015-07-01
We describe a study of the impact of exam question structure on the performance of first year Natural Sciences physics undergraduates from the University of Cambridge. The results show conclusively that a student’s performance improves when questions are scaffolded compared with university style questions. In a group of 77 female students we observe that the average exam mark increases by 13.4% for scaffolded questions, which corresponds to a 4.9 standard deviation effect. The equivalent observation for 236 male students is 9% (5.5 standard deviations). We also observe a correlation between exam performance and A2-level marks for UK students, and that students who receive their school education overseas, in a mixed gender environment, or at an independent school are more likely to receive a first class mark in the exam. These results suggest a mis-match between the problem-solving skills and assessment procedures between school and first year university and will provide key input into the future teaching and assessment of first year undergraduate physics students.
The emergence of time's arrows and special science laws from physics
Loewer, Barry
2012-01-01
In this paper, I will argue that there is an important connection between two questions concerning how certain features of the macro world emerge from the laws and processes of fundamental microphysics and suggest an approach to answering these questions. The approach involves a kind of emergence but quite different from ‘top-down’ emergence discussed at the conference, for which an earlier version of this paper was written. The two questions are (i) How do ‘the arrows of time’ emerge from microphysics? (ii) How do macroscopic special science laws and causation emerge from microphysics? Answering these questions is especially urgent for those, who like myself, think that a certain version of physicalism, which I call ‘micro-physical completeness’ (MC), is true. According to MC, there are fundamental dynamical laws that completely govern (deterministically or probabilistically), the evolution of all micro-physical events and there are no additional ontologically independent dynamical or causal special science laws. In other words, there is no ontologically independent ‘top-down’ causation. Of course, MC does not imply that physicists now or ever will know or propose the complete laws of physics. Or even if the complete laws were known we would know how special science properties and laws reduce to laws and properties of fundamental physics. Rather, MC is a contingent metaphysical claim about the laws of our world. After a discussion of the two questions, I will argue the key to showing how it is possible for the arrows of time and the special science laws to emerge from microphysics and a certain account of how thermodynamics is related to fundamental dynamical laws. PMID:23386956
The emergence of time's arrows and special science laws from physics.
Loewer, Barry
2012-02-06
In this paper, I will argue that there is an important connection between two questions concerning how certain features of the macro world emerge from the laws and processes of fundamental microphysics and suggest an approach to answering these questions. The approach involves a kind of emergence but quite different from 'top-down' emergence discussed at the conference, for which an earlier version of this paper was written. The two questions are (i) How do 'the arrows of time' emerge from microphysics? (ii) How do macroscopic special science laws and causation emerge from microphysics? Answering these questions is especially urgent for those, who like myself, think that a certain version of physicalism, which I call 'micro-physical completeness' (MC), is true. According to MC, there are fundamental dynamical laws that completely govern (deterministically or probabilistically), the evolution of all micro-physical events and there are no additional ontologically independent dynamical or causal special science laws. In other words, there is no ontologically independent 'top-down' causation. Of course, MC does not imply that physicists now or ever will know or propose the complete laws of physics. Or even if the complete laws were known we would know how special science properties and laws reduce to laws and properties of fundamental physics. Rather, MC is a contingent metaphysical claim about the laws of our world. After a discussion of the two questions, I will argue the key to showing how it is possible for the arrows of time and the special science laws to emerge from microphysics and a certain account of how thermodynamics is related to fundamental dynamical laws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, J.L.; Weerts, H.; Brock, R.
2012-06-05
Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantummore » mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the universe could be discovered. The search for proton decay can probe the unification of the forces with unprecedented reach and test sacrosanct symmetries to very high scales. Detecting an electric dipole moment for the neutron, or neutral atoms, could establish a clear signal for new physics, while limits on such a measurement would place severe constraints on many new theories. This workshop marked the first instance where discussion of these diverse programs was held under one roof. As a result, it was realized that this broad effort has many connections; a large degree of synergy exists between the different areas and they address similar questions. Results from one area were found to be pertinent to experiments in another domain.« less
Type Ia Supernovae: Nature's Grandest Thermonuclear Explosions
NASA Astrophysics Data System (ADS)
Woosley, Stan
2003-10-01
When carbon fusion ignites near the center of an accreting white dwarf near the Chandrasekhar Mass, an irreversible series of events is initiated that ultimately leads to the complete disruption of the star and a bright display powered by radioactive decay. Though studied for over 40 years, the details of how this happens remain elusive. Three areas of uncertainty will be discussed: 1) the "ignition" of the bomb: one point or many, central or off-center; 2) the propagation of an unconfined Rayleigh-Taylor unstable burning front - does a robust transition to detonation occur as the front moves into a regime of ``distributed burning"? 3) the generation of the light curve and the Philipps relation. Studies of question 1), equally critical to the other two, suggest a dipolar flow at ignition time and off-center ignition. There may be an uncontrolable degree of chaos in the peak brightness resulting from the ignition process that will affect how SN Ia are used for cosmology. Question 2) is a frontier subject in the chemical combustion community. Results of new multi-dimensional studies will be presented. Question 3) involves atomic physics more than hydrodynamics, but current views suggest that SN Ia light curves should be characterized, at some level, by more than a single parameter.
ERIC Educational Resources Information Center
Heckler, Andrew F.; Scaife, Thomas M.
2015-01-01
We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics…
An Analysis of High School Students' Mental Models of Solid Friction in Physics
ERIC Educational Resources Information Center
Kurnaz, Mehmet Altan; Eksi, Cigdem
2015-01-01
Students often have difficulties understanding abstract physics concepts, such as solid friction. This study examines high school students' mental models of solid friction through a case study of 215 high school students in the ninth through twelfth grades. An achievement test with three open-ended questions was created, with questions limited to…
Physics 30: Grade 12 Diploma Examination, June 1997.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Student Evaluation Branch.
This document is a Physics 30 Grade 12 Diploma Examination from Alberta Education. It is a 2.5 hour closed-book examination consisting of 37 multiple-choice and 12 numerical-response questions of equal value worth 70% of the examination and two written-response questions of equal value worth 30% of the examination. The exam contains sets of…
ERIC Educational Resources Information Center
Marušic, Mirko; Sliško, Josip
2014-01-01
This study is based on two exploratory questions with the aim of determining the relative effectiveness of two different student activities, called "Reading, Presenting and Questioning" (RPQ) and "Experimenting and Discussing" (ED), in changing students' perceptions and attitudes about the impact of physics learning on the…
Answering Gauguinâs Questions: Where Are We Coming From, Where Are We Going, and What Are We?
Ellis, John [CERN
2017-12-09
The knowledge of matter revealed by the current reigning theory of particle physics, the so-called Standard Model, still leaves open many basic questions. What is the origin of the matter in the Universe? How does its mass originate? What is the nature of the dark matter that fills the Universe? Are there additional dimensions of space? The Large Hadron Collider (LHC) at the CERN Laboratory in Geneva, Switzerland, where high-energy experiments have now started, will take physics into a new realm of energy and time, and will address these physics analogues of Gauguin's questions. The answers will set the stage for possible future experiments beyond the scope of the LHC.
NASA Astrophysics Data System (ADS)
Boscarino, Giuseppe
2006-06-01
It is questioned: Is quantum mechanics a new science or a new (or rather old) philosophy of physical science? It is shown that Einstein's attempt in his article of 1935 to bring the concept of "element" from the classical (we call it Italic) philosophical-epistemological tradition, which goes under the names of Pythagoras Parmenides, Democritus, and Newton, into quantum mechanical theory is unclear, inadequate and contradictory.
Level of physical activity in men and women with chronic stroke.
Vahlberg, Birgit; Bring, Annika; Hellström, Karin; Zetterberg, Lena
2018-04-16
Community-dwelling stroke survivors generally show low levels of physical activity (PA). An improved understanding of the factors influencing participation in PA after stroke is imperative to improve levels of PA. Furthermore, gender differences in PA have received little attention in stroke research. The objective of this study was to examine gender differences in PA, physical functioning and psychological factors and the association between these factors and PA in men and women 1-3-year post-stroke. A total of 187 community-dwelling individuals with stroke (65-85 years old, 29% women) were included in a secondary analysis based on data from a cross-sectional study. The exclusion criteria were severe cognitive or language dysfunction or dementia. The level of PA was measured by the Physical Activity Scale for the Elderly. Physical function included balance, walking speed and mobility. Psychological factors included depression, health-related quality of life and fall-related self-efficacy. Falls and fear of falling were each measured with a single question. There were no significant differences in PA levels between men and women. In multiple regression analyses, walking speed (p < 0.001) was associated with PA in men, and balance (p = 0.038) was associated with PA in women. The results indicate that strategies to increase PA levels 1-3-year post-stroke could be improved by considering gender-specific factors.
NASA Astrophysics Data System (ADS)
Otero
2017-10-01
Here we review the persisting conceptual discrepancies between different research groups working on artificial muscles based on conducting polymers and other electroactive material. The basic question is if they can be treated as traditional electro-mechanical (physical) actuators driven by electric fields and described by some adaptation of their physical models or if, replicating natural muscles, they are electro-chemo-mechanical actuators driven by electrochemical reaction of the constitutive molecular machines: the polymeric chains. In that case the charge consumed by the reaction will control the volume variation of the muscular material and the motor displacement, following the basic and single Faraday's laws: the charge consumed by the reaction determines the number of exchanged ions and solvent, the film volume variation to lodge/expel them and the amplitude of the movement. Deviations from the linear relationships are due to the osmotic exchange of solvent and to the presence of parallel reactions from the electrolyte, which originate creeping effects. Challenges and limitations are underlined.
ERIC Educational Resources Information Center
Cordasco, Kristina M.; Homeier, Diana C.; Franco, Idalid; Wang, Pin-Chieh; Sarkisian, Catherine A.
2012-01-01
Objective: We describe the performance of Single Item Literacy Screener (SILS) questions, and educational attainment, as screening for inadequate health literacy (IHL) in older monolingual Spanish speakers. Design: We used a cross-sectional design, interviewing participants once at the time of their arrival for a clinic appointment. Setting: We…
Physical Mechanisms Driving Cell Sorting in Hydra.
Cochet-Escartin, Olivier; Locke, Tiffany T; Shi, Winnie H; Steele, Robert E; Collins, Eva-Maria S
2017-12-19
Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants
Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew
2017-01-01
Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773
Long-term neural and physiological phenotyping of a single human
Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.
2015-01-01
Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521
Fundamental limits to single-photon detection determined by quantum coherence and backaction
NASA Astrophysics Data System (ADS)
Young, Steve M.; Sarovar, Mohan; Léonard, François
2018-03-01
Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
NASA Astrophysics Data System (ADS)
Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A.; Ekinci, Yasin
2016-01-01
Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.
Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A; Ekinci, Yasin
2016-01-06
Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.
El Fassi, Mehdi; Bocquet, Valery; Majery, Nicole; Lair, Marie Lise; Couffignal, Sophie; Mairiaux, Philippe
2013-04-08
Public authorities in European countries are paying increasing attention to the promotion of work ability throughout working life and the best method to monitor work ability in populations of workers is becoming a significant question. The present study aims to compare the assessment of work ability based on the use of the Work Ability Index (WAI), a 7-item questionnaire, with another one based on the use of WAI's first item, which consists in the worker's self-assessment of his/her current work ability level as opposed to his/her lifetime best, this single question being termed "Work Ability score" (WAS). Using a database created by an occupational health service, the study intends to answer the following questions: could the assessment of work ability be based on a single-item measure and which are the variables significantly associated with self-reported work ability among those systematically recorded by the occupational physician during health examinations? A logistic regression model was used in order to estimate the probability of observing "poor" or "moderate" WAI levels depending on age, gender, body mass index, smoking status, position held, firm size and diseases reported by the worker in a population of workers aged 40 to 65 and examined between January 2006 and June 2010 (n=12389). The convergent validity between WAS and WAI was statistically significant (rs=0.63). In the multivariable model, age (p<0.001), reported diseases (OR=1.13, 95%CI [1.11-1.15]) and holding a position mostly characterized by physical activity (OR=1.67, 95%CI [1.49-1.87]) increased the probability of reporting moderate or poor work ability. A work position characterized by the predominance of mental activity (OR=0.71, 95%CI [0.61-0.84]) had a favourable impact on work ability. These relations were observed regardless of the work ability measurement tool used. The convergent validity and the similarity in results between WAI and WAS observed in a large population of employed workers should thus foster the use of WAS for systematic screening of work ability. Ageing, overweight, decline in health status, holding a mostly physical job and working in a large-sized firm increase the risk of presenting moderate or poor work ability.
NASA Astrophysics Data System (ADS)
Chambers, Timothy
This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to the novel nature of this research and the large number of item-level results we produced, we recommend additional research to determine the reproducibility of our results. Analyzing the data with item response theory yields additional information about the performance of our students on both conceptual questions and quantitative problems. We find that performing lab activities on a topic does lead to better-than-expected performance on some conceptual questions regardless of pedagogical approach, but that this acquired conceptual understanding is strongly context-dependent. The results also suggest that a single "Newtonian reasoning ability" is inadequate to explain student response patterns to items from the Force Concept Inventory. We develop a framework for applying polytomous item response theory to the analysis of quantitative free-response problems and for analyzing how features of student solutions are influenced by problem-solving ability. Patterns in how students at different abilities approach our post-test problems are revealed, and we find hints as to how features of a free-response problem influence its item parameters. The item-response theory framework we develop provides a foundation for future development of quantitative free-response research instruments. Chapter 1 of the dissertation presents a brief history of physics education research and motivates the present study. Chapter 2 describes our experimental methodology and discusses the treatments applied to students and the instruments used to measure their learning. Chapter 3 provides an introduction to the statistical and analytical methods used in our data analysis. Chapter 4 presents the full data set, analyzed using both classical test theory and item response theory. Chapter 5 contains a discussion of the implications of our results and a data-driven analysis of our experimental methods. Chapter 6 describes the importance of this work to the field and discusses the relevance of our research to curriculum development and to future work in physics education research.
Single-molecule experiments in biological physics: methods and applications.
Ritort, F
2006-08-16
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications
NASA Astrophysics Data System (ADS)
Ritort, F.
2006-08-01
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
ERIC Educational Resources Information Center
Basaran, Bulent; Gonen, Selahattin
2012-01-01
In this study, a web site including instructional materials such as white sheet videos, simulations, and animations and problem solving materials such as true-false questions, fill-in-the-blanks, puzzles, open-ended and multiple-choice questions regarding such important physics units as "Force" and "Movement" was designed. The purpose was to…
Policy and Practice-Relevant Youth Physical Activity Research Center Agenda.
Botchwey, Nisha; Floyd, Myron F; Pollack Porter, Keshia; Cutter, Carmen L; Spoon, Chad; Schmid, Tom L; Conway, Terry L; Hipp, J Aaron; Kim, Anna J; Umstattd Meyer, M Renee; Walker, Amanda L; Kauh, Tina J; Sallis, Jim F
2018-06-08
The Physical Activity Research Center developed a research agenda that addresses youth physical activity (PA) and healthy weight, and aligns with the Robert Wood Johnson Foundation's Culture of Health. This paper summarizes prioritized research studies with a focus on youth at higher risk for inactive lifestyles and childhood obesity in urban and rural communities. Systematic literature reviews, a survey, and discussions with practitioners and researchers provided guidance on research questions to build evidence and inform effective strategies to promote healthy weight and PA in youth across race, cultural, and economic groups. The research team developed a matrix of potential research questions, identified priority questions, and designed targeted studies to address some of the priority questions and inform advocacy efforts. The studies selected examine strategies advocating for activity-friendly communities, Play Streets, park use, and PA of youth in the summer. A broader set of research priorities for youth PA is proposed. Establishing the Physical Activity Research Center research agenda identified important initial and future research studies to promote and ensure healthy weight and healthy levels of PA for at-risk youth. Results will be disseminated with the goal of promoting equitable access to PA for youth.
Documentation of Gender Identity in an Adolescent and Young Adult Clinic.
Vance, Stanley R; Mesheriakova, Veronika V
2017-03-01
To determine if changing electronic health record (EHR) note templates can increase documentation of gender identity in an adolescent and young adult clinic. A two-step gender question was added to EHR note templates for physicals in February 2016. A retrospective chart review was performed 3 months before and after this addition. The primary measure was whether answers to the two-step question were documented. Gender identity/birth-assigned sex discordance, age, and use of the appropriate note template post-template change were also measured. One hundred twenty-five pretemplate change and 106 post-template change physicals were reviewed with an inter-rater reliability of 97%. Documentation of answers to the two-step gender identity question increased from 11% to 84% (p < .001). This study suggests that incorporating a standardized question into EHR note templates is effective at improving the documentation of gender identity in youth presenting for annual physicals. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Analysis of Newton's Third Law Questions on the Force Concepts Inventory at Georgia State University
NASA Astrophysics Data System (ADS)
Oakley, Christopher; Thoms, Brian
2012-03-01
A major emphasis of the Physics Education Research program at Georgia State University is an effort to assess and improve students' understanding of Newton's Laws concepts. As part of these efforts the Force Concepts Inventory (FCI) has been given to students in both the algebra-based and calculus-based introductory physics sequences. In addition, the algebra-based introductory physics sequence is taught in both a SCALE-UP and a traditional lecture format. The results of the FCI have been analyzed by individual question and also as categorized by content. The analysis indicates that students in both algebra and calculus-based courses are successful at overcoming Aristotelian misconceptions regarding Newton's Third Law (N3) in the context of a stationary system. However, students are less successful on N3 questions involving objects in constant motion or accelerating. Interference between understanding of Newton's Second and Third Laws as well as other possible explanations for lower student performance on N3 questions involving non-stationary objects will be discussed.
NASA Astrophysics Data System (ADS)
Maybank, Maureen
1999-09-01
When handling , I recalled how one set of sixth-form students that I taught affectionately referred to Jim Breithaupt's large format book Understanding Physics for Advanced Level as `Big Jim'. This package, for GCSE students and teachers, is its younger brother. Key Science Physics was reviewed in this journal over four years ago. Now it is in a new edition with an expanded ring file of teacher resources (a Teacher's Guide and Extension File). It has been expanded for a wider range of students to meet the requirements of all GCSE syllabuses with additional topics for IGCSE and IB. The international bit seems to be among materials in the file of resources and does not appear in the title of the students' textbook. This is not one of those purchases that will only get occasional use and be left in a department library but it is one that contains sufficient excellent material to become central to any GCSE Physics course. For the students there is a single-volume 396-page textbook in full colour (not a heavyweight book). Marginal comments point out places where an Activity or Assignment from the Extension File fits in. All the materials in the teacher's Extension File are cross referenced to the numbering of this textbook, i.e. its Themes, Topics, Checkpoints, Tests etc, not to page numbers. The margin is used in other attractive ways to highlight a summary, propose a first thought or provide a topic summary. The text is fruitful mix of pure physics, applications and personalities. To support the students' practical work the Extension File contains photocopiable sheets. For the activities and assignments a few contain a harder version to give access to the higher levels of attainment. Four alternatives to practical questions are given; there are also exam questions and multiple choice questions for each topic. These all have helpful mark schemes on the teacher's answers pages. What else do you get? A Glossary collection of sheets to photocopy with space to enter a definition in a second language. Versions of many key diagrams in the student book are enlarged and reworked in clear black and white to make OHP transparencies. There is a mention of these also being in colour on a CD-ROM. The organization of the Extension File is as clear as is reasonably possible. As a user, I would add coloured page dividers to mark the sections within it. The Teacher's Guide is admirable in its restraint - just 26 sides of topic notes - which includes the answers to the non-numerical checkpoint questions missing in the student book. It is not wordy or full of educational theory but succinct and relevant to the day-to-day business of learning with these materials. Reading it, I was aware of the snags that a novice teacher might be glad to know but were missing. As always, materials like these should come with a health warning - try out all homework sheets, instructions for activities and assignments before your students!
Johnson, Tim V; Abbasi, Ammara; Kleris, Renee S; Ehrlich, Samantha S; Barthwaite, Echo; DeLong, Jennifer; Master, Viraj A
2013-08-01
Determining a patient's health literacy is important to optimum patient care. Single-item questions exist for screening written health literacy. We sought to assess the predictive potential of three common screening questions, along with patient age and education level, in the prediction of low health numerical literacy (numeracy). After demographic and educational information was obtained, 441 patients were administered three health literacy screening questions. The three-item Schwartz-Woloshin Numeracy Scale was then administered to assess for low health numeracy (score of 0 out of 3). This score served as the reference standard for Receiver Operating Characteristics (ROC) curve analysis. ROC curves were constructed and used to determine the area under the curve (AUC); a higher AUC suggests increased statistical significance. None of the three screening questions were significant predictors of low health numeracy. However, education level was a significant predictor of low health numeracy, with an AUC (95% CI) of 0.811 (0.720-0.902). This measure had a specificity of 95.3% at the cutoff of 12 years of education (<12 versus > or = 12 years of education) but was non-sensitive. Common single-item questions used to screen for written health literacy are ineffective screening tools for health numeracy. However, low education level is a specific predictor of low health numeracy.
A single-question screening test for drug use in primary care.
Smith, Peter C; Schmidt, Susan M; Allensworth-Davies, Donald; Saitz, Richard
2010-07-12
Drug use (illicit drug use and nonmedical use of prescription drugs) is common but underrecognized in primary care settings. We validated a single-question screening test for drug use and drug use disorders in primary care. Adult patients recruited from primary care waiting rooms were asked the single screening question, "How many times in the past year have you used an illegal drug or used a prescription medication for nonmedical reasons?" A response of at least 1 time was considered positive for drug use. They were also asked the 10-item Drug Abuse Screening Test (DAST-10). The reference standard was the presence or absence of current (past year) drug use or a drug use disorder (abuse or dependence) as determined by a standardized diagnostic interview. Drug use was also determined by oral fluid testing for common drugs of abuse. Of 394 eligible primary care patients, 286 (73%) completed the interview. The single screening question was 100% sensitive (95% confidence interval [CI], 90.6%-100%) and 73.5% specific (95% CI, 67.7%-78.6%) for the detection of a drug use disorder. It was less sensitive for the detection of self-reported current drug use (92.9%; 95% CI, 86.1%-96.5%) and drug use detected by oral fluid testing or self-report (81.8%; 95% CI, 72.5%-88.5%). Test characteristics were similar to those of the DAST-10 and were affected very little by participant demographic characteristics. The single screening question accurately identified drug use in this sample of primary care patients, supporting the usefulness of this brief screen in primary care.
Physics in perspective: Recommendations and program emphases
NASA Technical Reports Server (NTRS)
1972-01-01
Exerpted material from Physics in Perspective, Vol. 1, is presented on recommendations, priorities, and program emphases. The major recommendations are addressed to the Federal Government and support agencies, the physics community, and the educational community, including precollege, undergraduate, and graduate sectors. Approaches to the questions involved in establishing scientific priorities are discussed, and an approach is evolved which is based on the jury rating application of certain criteria to the program elements of a subfield. The question of national support level for the physics enterprise is also considered, and contingency alternatives are suggested such that whatever the level of available support, it may be used with maximum effectiveness.
Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles
NASA Astrophysics Data System (ADS)
Kostinski, A. B.; Mongkolsittisilp, A.
2013-12-01
We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.
Critical thinking in physics education
NASA Astrophysics Data System (ADS)
Sadidi, Farahnaz
2016-07-01
We agree that training the next generation of leaders of the society, who have the ability to think critically and form a better judgment is an important goal. It is a long-standing concern of Educators and a long-term desire of teachers to establish a method in order to teach to think critically. To this end, many questions arise on three central aspects: the definition, the evaluation and the design of the course: What is Critical Thinking? How can we define Critical Thinking? How can we evaluate Critical Thinking? Therefore, we want to implement Critical Thinking in physics education. How can we teach for Critical Thinking in physics? What should the course syllabus and materials be? We present examples from classical physics and give perspectives for astro-particle physics. The main aim of this paper is to answer the questions and provide teachers with the opportunity to change their classroom to an active one, in which students are encouraged to ask questions and learn to reach a good judgment. Key words: Critical Thinking, evaluation, judgment, design of the course.
Jain, Deepika; Sheth, Heena; Bender, Filitsa H; Weisbord, Steven D; Green, Jamie A
2014-01-01
Studies have shown that a single-item question might be useful in identifying patients with limited health literacy. However, the utility of the approach has not been studied in patients receiving maintenance peritoneal dialysis (PD). We assessed health literacy in a cohort of 31 PD patients by administering the Rapid Estimate of Adult Literacy in Medicine (REALM) and a single-item health literacy (SHL) screening question "How confident are you filling out medical forms by yourself?" (Extremely, Quite a bit, Somewhat, A little bit, or Not at all). To determine the accuracy of the single-item question for detecting limited health literacy, we performed sensitivity and specificity analyses of the SHL and plotted the area under the receiver operating characteristic (AUROC) curve using the REALM as a reference standard. Using a cut-off of "Somewhat" or less confident, the sensitivity of the SHL for detecting limited health literacy was 80%, and the specificity was 88%. The positive likelihood ratio was 6.9. The SHL had an AUROC of 0.79 (95% confidence interval: 0.52 to 1.00). Our results show that the SHL could be effective in detecting limited health literacy in PD patients.
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; ...
2017-07-26
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
NASA Astrophysics Data System (ADS)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Can we build a more efficient airplane? Using applied questions to teach physics
NASA Astrophysics Data System (ADS)
Bhatia, Aatish
2014-03-01
For students and for the science-interested public, applied questions can serve as a hook to learn introductory physics. Can we radically improve the energy efficiency of modern day aircraft? Are solar planes like the Solar Impulse the future of travel? How do migratory birds like the alpine swift fly nonstop for nearly seven months? Using examples from aeronautical engineering and biology, I'll discuss how undergraduate physics can shed light on these questions about transport, and place fundamental constraints on the flight properties of flying machines, whether birds or planes. Education research has shown that learners are likely to forget vast content knowledge unless they get to apply this knowledge to novel and unfamiliar situations. By applying physics to real-life problems, students can learn to build and apply quantitative models, making use of skills such as order of magnitude estimates, dimensional analysis, and reasoning about uncertainty. This applied skillset allows students to transfer their knowledge outside the classroom, and helps build connections between traditionally distinct content areas. I'll also describe the results of an education experiment at Rutgers University where my colleagues and I redesigned a 100+ student introductory physics course for social science and humanities majors to address applied questions such as evaluating the energy cost of transport, and asking whether the United States could obtain all its energy from renewable sources.
Neutrino physics today, important issues and the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, Stephen J.; /Fermilab
2010-10-01
The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-06-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.
Economos, Christina D; Sacheck, Jennifer M; Kwan Ho Chui, Kenneth; Irizarry, Laura; Irizzary, Laura; Guillemont, Juliette; Collins, Jessica J; Hyatt, Raymond R
2008-04-01
Interventions aiming to modify the dietary and physical activity behaviors of young children require precise and accurate measurement tools. As part of a larger community-based project, three school-based questionnaires were developed to assess (a) fruit and vegetable intake, (b) physical activity and television (TV) viewing, and (c) perceived parental support for diet and physical activity. Test-retest reliability was performed on all questionnaires and validity was measured for fruit and vegetable intake, physical activity, and TV viewing. Eighty-four school children (8.3+/-1.1 years) were studied. Test-retest reliability was performed by administering questionnaires twice, 1 to 2 hours apart. Validity of the fruit and vegetable questionnaire was measured by direct observation, while the physical activity and TV questionnaire was validated by a parent phone interview. All three questionnaires yielded excellent test-retest reliability (P<0.001). The majority of fruit and vegetable questions and the questions regarding specific physical activities and TV viewing were valid. Low validity scores were found for questions on watching TV during breakfast or dinner. These questionnaires are reliable and valid tools to assess fruit and vegetable intake, physical activity, and TV viewing behaviors in early elementary school-aged children. Methods for assessment of children's TV viewing during meals should be further investigated because of parent-child discrepancies.
Preface: Special Topic on Single-Molecule Biophysics
NASA Astrophysics Data System (ADS)
Makarov, Dmitrii E.; Schuler, Benjamin
2018-03-01
Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.
The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.
Rasch, Vibeke; Van, Toan Ngo; Nguyen, Hanh Thi Thuy; Manongi, Rachel; Mushi, Declare; Meyrowitsch, Dan W.; Gammeltoft, Tine; Wu, Chun Sen
2018-01-01
Background Intimate partner violence (IPV) is a global problem that affects one-third of all women. The present study aims to develop and determine the validity of a screening instrument for the detection of IPV in pregnant women in Tanzania and Vietnam and to determine the minimum number of questions needed to identify IPV. Method An IPV screening instrument based on eight questions was tested on 1,116 Tanzanian and 1,309 Vietnamese women who attended antenatal care before 24 gestational weeks. The women were re-interviewed during their 30th-34th gestational week where the World Health Organization (WHO) IPV questionnaire was used as the gold standard. In all, 255 combinations of eight different questions were first tested on the Tanzanian study population where sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated. In the evaluation of the performance of the question combinations, different IPV types and the frequency of abusive acts were considered. The question combinations that performed best in Tanzania were subsequently evaluated in the Vietnamese study population. Results In Tanzania, a combination of three selected questions including one question on emotional IPV, one on physical IPV and one on sexual IPV was found to be most effective in identifying women who are exposed to at least one type of IPV during pregnancy (sensitivity = .80; specificity = .74). The performance of the identified combination was slightly less effective in Vietnam (sensitivity = .74; specificity = .68). Focusing on different IPV types, the best performance was found for exposure to physical IPV in both Tanzania (sensitivity = .93; specificity = .70) and Vietnam (sensitivity = .96; specificity = .55). In both countries, the sensitivity increased with the frequency of abuse whereas the specificity decreased. Conclusion By asking pregnant women three simple questions we were able to identify women who were exposed to IPV during pregnancy in two different countries. The question combination performed best in assessing physical IPV where it identified 93% and 96% of Vietnamese and Tanzanian women, respectively, who were exposed to physical IPV. PMID:29389954
Hearing shapes of drums: Mathematical and physical aspects of isospectrality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraud, Olivier; Thas, Koen; LPT
2010-07-15
In a celebrated paper ''Can one hear the shape of a drum?'' M. Kac [Am. Math. Monthly 73, 1 (1966)] asked his famous question about the existence of nonisometric billiards having the same spectrum of the Laplacian. This question was eventually answered positively in 1992 by the construction of noncongruent planar isospectral pairs. This review highlights mathematical and physical aspects of isospectrality.
ERIC Educational Resources Information Center
Gard, Michael; Pluim, Carolyn
2017-01-01
In posing the question in our title, we have set ourselves the task of trying to understand why so little scholarly scrutiny and questioning of "Fitnessgram"--a product designed to assist in the school-based physical fitness testing of young people--exists in the country of its origin and then consider the implications of this silence.…
ERIC Educational Resources Information Center
Rowland, David R.
2010-01-01
A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…
Physics 30: Grade 12 Diploma Examination = Physique 30: Examen en vue du diplome 12 annee.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Student Evaluation Branch.
This document, in both English and French versions, is the Physics 30 Grade 12 Diploma Examination from Alberta Education. It is a 2.5 hour closed-book examination consisting of 37 multiple-choice and 12 numerical-response questions of equal value that are worth 70% of the examination, and 2 written-response questions of equal value worth 30% of…
Innovative Use of a Classroom Response System During Physics Lab
NASA Astrophysics Data System (ADS)
Walgren, Jay
2011-01-01
More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the eInstruction's® Classroom Performance System™ (CPS™).5 (Fig. 1)
Energizing the Thinking Dimensions of Physical Education.
ERIC Educational Resources Information Center
Miller, Donna Mae
1987-01-01
Physical educators should reinforce the mind-body dualism covered in physical education through activities that illustrate the use of problem-solving, asking and answering questions, developing game sense, and perceiving relationships. (CB)
Difficult Questions of Difficult Questions: The Role of The Researcher and Transcription Styles
ERIC Educational Resources Information Center
Henderson, Holly
2018-01-01
This paper refracts a comparison of three distinct transcription styles through questions of researcher reflexivity. It uses the data from a single question asked by the researcher in multiple interviews for a small empirical project. These data are transcribed in three ways, and the resulting transcripts are discussed in relation to the analysis…
Tucker, Jacob S; Martin, Scott; Jackson, Allen W; Morrow, James R; Greenleaf, Christy A; Petrie, Trent A
2014-07-01
To investigate the relations between sedentary behaviors and health-related physical fitness and physical activity in middle school boys and girls. Students (n = 1515) in grades 6-8 completed the Youth Risk Behavior Survey sedentary behavior questions, the FITNESSGRAM physical fitness items, and FITNESSGRAM physical activity self-report questions. When students reported ≤ 2 hours per day of sedentary behaviors, their odds of achieving the FITNESSGRAM Healthy Fitness Zone for aerobic capacity, muscular strength and endurance, flexibility, and body composition increased. Similarly, the odds of achieving physical activity guidelines for children increased when students reported ≤ 2 hours per day of sedentary behaviors. Results illustrate the importance of keeping sedentary behaviors to ≤ 2 hours per day in middle school children, thus increasing the odds that the student will achieve sufficient health-related fitness benefits and be more likely to achieve the national physical activity guidelines.
Tools in the assessment of sarcopenia
Cooper, C; Fielding, R; Visser, M; van Loon, LJ; Rolland, Y; Orwoll, E; Reid, K; Boonen, S; Dere, W; Epstein, S; Mitlak, B; Tsouderos, Y; Sayer, AA; Rizzoli, R; Reginster, JY; Kanis, JA
2013-01-01
Summary This review provides a framework for development of an operational definition of sarcopenia and of the potential endpoints that might be adopted in clinical trials among older adults. Introduction While the clinical relevance of sarcopenia is widely recognized, there is currently no universally accepted definition of the disorder. The development of interventions to alter the natural history of sarcopenia also requires consensus on the most appropriate endpoints for determining outcomes of clinical importance which might be utilised in intervention studies. Methods and results We review current approaches to the definition of sarcopenia, and the methods used for the assessment of various aspects of physical function in older people. The potential endpoints of muscle mass, muscle strength, muscle power and muscle fatigue, as well as the relationships between them, are explored with reference to the availability and practicality of the available methods for measuring these endpoints in clinical trials. Conclusions Based on current evidence, none of the four potential outcomes in question is sufficiently comprehensive to recommend as a uniform single outcome in randomised clinical trials. We propose that sarcopenia may be optimally defined (for the purposes of clinical trial inclusion criteria, as well as epidemiological studies) using a combination of measures of muscle mass and physical performance. The choice of outcome measures for clinical trials in sarcopenia is more difficult; co-primary outcomes, tailored to the specific intervention in question, may be the best way forward in this difficult but clinically important area. PMID:23842964
Validating two questions in the Force Concept Inventory with subquestions
NASA Astrophysics Data System (ADS)
Yasuda, Jun-ichiro; Taniguchi, Masa-aki
2013-06-01
In this study, we evaluate the structural validity of Q.16 and Q.7 in the Force Concept Inventory (FCI). We address whether respondents who answer Q.16 and Q.7 correctly actually have an understanding of the concepts of physics tested in the questions. To examine respondents’ levels of understanding, we use subquestions that test them on concepts believed to be required to answer the actual FCI questions. Our sample size comprises 111 respondents; we derive false-positive ratios for prelearners and postlearners and then statistically test the difference between them. We find a difference at the 0.05 significance level for both Q.16 and Q.7, implying that it is possible for postlearners to answer both questions without an understanding of the concepts of physics tested in the questions; therefore, the structures of Q.16 and Q.7 are invalid. In this study, we only evaluate the validity of these two FCI questions; we do not assess the validity of previous studies that have compared total FCI scores.
Comparing Students' and Experts' Understanding of the Content of a Lecture
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Zollman, Dean A.; Sanjay Rebello, N.
2007-06-01
In spite of advances in physics pedagogy, the lecture is by far the most widely used format of instruction. We investigated students' understanding and perceptions of the content delivered during a physics lecture. A group of experts (physics instructors) also participated in the study as a reference for the comparison. During the study, all participants responded to a written conceptual survey on sound propagation. Next, they looked for answers to the survey questions in a videotaped lecture by a nationally known teacher. As they viewed the lecture, they indicated instances, if any, in which the survey questions were answered during the lecture. They also wrote down (and if needed, later explained) the answer, which they perceived was given by the instructor in the video lecture. Students who participated in the study were enrolled in a conceptual physics course and had already covered the topic in class before the study. We discuss and compare students' and experts' responses to the survey questions before and after the lecture.
Malina, Robert M
2014-06-01
Growth, maturation, and development dominate the daily lives of children and adolescents for approximately the first 2 decades of life. Growth and maturation are biological processes, while development is largely a behavioral process. The 3 processes occur simultaneously and interact. They can be influenced by physical activity and also can influence activity, performance, and fitness. Allowing for these potential interactions, 10 questions on growth and maturation that have relevance to physical activity, performance, and fitness are presented. The questions are not mutually exclusive and address several broadly defined topical areas: exercise and growth, body weight status (body mass index, adiposity rebound, "unhealthy weight gain"), movement proficiency (hypothesized barrier, role in obesity), individual differences, tracking, maturity-associated variation in performance, and corresponding variation in physical activity. Central to the discussion of each is the need for a biocultural approach recognizing the interactions of biology and behavior as potential influences on the variables of interest.
Reasoning, Attitudes, and Learning: What matters in Introductory Physics?
NASA Astrophysics Data System (ADS)
Bateman, Melissa; Pyper, Brian
2009-05-01
Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.
NASA Astrophysics Data System (ADS)
Kay, Alison E.; Hardy, Judy; Galloway, Ross K.
2018-06-01
PeerWise is an online application where students are encouraged to generate a bank of multiple choice questions for their classmates to answer. After answering a question, students can provide feedback to the question author about the quality of the question and the question author can respond to this. Student use of, and attitudes to, this online community within PeerWise was investigated in two large first year undergraduate physics courses, across three academic years, to explore how students interact with the system and the extent to which they believe PeerWise to be useful to their learning. Most students recognized that there is value in engaging with PeerWise, and many students engaged deeply with the system, thinking critically about the quality of their submissions and reflecting on feedback provided to them. Students also valued the breadth of topics and level of difficulty offered by the questions, recognized the revision benefits afforded by the resource, and were often willing to contribute to the community by providing additional explanations and engaging in discussion.
NASA Astrophysics Data System (ADS)
Blado, Gardo Garnet
2000-09-01
The present paper discusses the physics portion of the Medical College Admission Test (MCAT). Various methods of incorporating "MCAT-type" questions in introductory physics courses to help pre-medical students prepare for the MCAT, are carefully examined.
An Amusement Park Physics Competition
ERIC Educational Resources Information Center
Moll, Rachel F.
2010-01-01
Amusement park physics is a popular way to reinforce physics concepts and to motivate physics learners. This article describes a novel physics competition where students use simple tools to take amusement park ride measurements and use the data to answer challenging exam questions. Research into the impact of participating in the competition…
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
Using a question and answer format, this report provides answers to a wide variety of questions and requests about National Library Service policies and procedures, planning and development, reading materials, equipment, and publication services of concern to librarians serving these user groups. Questions directed to guest speakers and panelists…
ERIC Educational Resources Information Center
Wagner, Glenn
2017-01-01
Student-generated questions and ideas about our universe are the start of a rich and highly motivating learning environment. Using their curiosity-driven questions and ideas, students form Knowledge Building groups or "communities" where they plan, set goals, design questions for research, and assess the progress of their work, tasks…
Opportunities for Drell-Yan Physics at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E.; Bland, L.; Crawford, H.
Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participantsmore » of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.« less
The Training of Physics Teachers in Cuba: A Historical Approach
NASA Astrophysics Data System (ADS)
de Jesús Alamino Ortega, Diego
The regular, systematic training of physics teachers in Cuba is quite recent when compared to the long history of physics itself. However, its development may serve to illustrate some interesting solutions to a long-standing question: How should a physics teacher be trained in agreement with a certain society at a given moment? In the Cuban context the answer to this question involves quite an original sequence of continuities and breaks, following perhaps the thoughts of Bolívar's teacher, Simón Rodríguez, who wrote in the nineteenth century: "Beware! The mania of slavishly imitating the enlightened nations may well make America in its infancy play the role of an old lady."
Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta
2015-04-01
To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.
Transcending matter: physics and ultimate meaning.
Paulson, Steve; Frank, Adam; Kaiser, David; Maudlin, Tim; Natarajan, Priyamvada
2015-12-01
From the discovery of new galaxies and nearly undetectable dark energy to the quantum entanglement of particles across the universe, new findings in physics naturally elicit a sense of awe and wonder. For the founders of modern physics-from Einstein and Bohr to Heisenberg, Pauli, and Bohm-a fascination with deeper questions of meaning and ultimate reality led some of them to explore esoteric traditions and metaphysics. More recently, however, physicists have largely shunned such philosophical and spiritual associations. What can contemporary physics offer us in the quest to understand our place in the universe? Has physics in some ways become a religion unto itself that rejects the search for existential meaning? Discussion of these and related questions is presented in this paper. © 2015 New York Academy of Sciences.
ERIC Educational Resources Information Center
Barahmeh, Haytham Mousa; Hamad, Adwan Mohammad Bani; Barahmeh, Nabeel Mousa
2017-01-01
This study aimed at exploring the effect of Fermi question on the development of science process skills in the physics subject at ninth Grade students. The sample of the study consisted of (2) classes for males and (2) classes for females, which were randomly divided into (2) groups: An experimental group of (41) students divided into a class of…
Post detonation nuclear forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jay
2014-05-09
The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.
2009-10-01
PHQ*) Caffeine and fast food intake (2 questions) Strength and duration of physical activity (1 question with 3 items; NHIS *) Daily physical activity...Complementary and Alternative Medicine; NHIS , National Health Interview Survey; NHANES, National Health and Nutrition Examination Survey; SF36-V, Short...USAMRMC) Military Operational Medicine Research Pro- gram (MOMRP). The Millennium Cohort Study requires considerable financial and logistical support that
Pham, Thao; Gossec, Laure; Fautrel, Bruno; Combe, Bernard; Flipo, René-Marc; Goupille, Philippe; Le Loët, Xavier; Mariette, Xavier; Puéchal, Xavier; Wendling, Daniel; Schaeverbeke, Thierry; Sibilia, Jean; Sany, Jacques; Dougados, Maxime
2005-05-01
To develop recommendations for the physical and laboratory-test follow-up of patients with rheumatoid arthritis (RA) seen in everyday practice, using evidence from the literature, supplemented with expert opinion when needed. A scientific committee selected 7-10 questions using the Delphi consensus procedure. Evidence-based responses to each question were sought in the literature and were then used by a panel to develop recommendations. To fill in gaps in knowledge from the literature, the panelists relied on their personal opinion. The seven questions dealt with the physical and laboratory-test follow-up of RA and the factors predicting disease severity. The literature review identified 799 articles whose title and abstract suggested relevance to the study. Elimination of articles that provided no data on the study topic left 128 original articles. The panel developed seven recommendations, one for each question, which were accepted by consensus. Recommendations about the physical and laboratory-test follow-up of patients with RA seen in everyday practice were developed. Because they constitute an objective foundation built by consensus among experts, should improve the uniformity and quality of care provided to RA patients in everyday practice.
Prevalence of problem drinking and characteristics of a single-question screen.
Stewart, Scott H; Borg, Keith T; Miller, Peter M
2010-09-01
Hazardous drinking and alcohol use disorders (i.e, abuse and dependence) are common in Emergency Departments (EDs). This study examined 1) the prevalence of these conditions among ED patients and 2) characteristics of a single screening question (having consumed at least five drinks for males or four for females during a single day). Data from the National Epidemiologic Survey on Alcohol and Related Conditions were analyzed. Logistic regression for clustered data was used to estimate the relative risk for past-year ED use associated with hazardous drinking, abuse, and dependence. Contingency tables were analyzed to estimate the sensitivity and specificity of the single-question screen for detecting these conditions. Hazardous drinking was not associated with ED utilization. Alcohol abuse was associated with a relative risk of 1.3 (95% confidence interval [CI] 1.1-1.5) and alcohol dependence with a relative risk of 1.9 (95% CI 1.6-2.2). For current drinkers, the single question screen was 0.96, 0.85, and 0.90 sensitive for hazardous drinking, alcohol abuse, and alcohol dependence, respectively. Individuals with a positive screen in the past year were considered at least hazardous drinkers, and specificity was 0.80, 0.64, and 0.65 for hazardous drinking, abuse, and dependence, respectively. Specificity was modestly increased in women. Most problem drinkers were hazardous drinkers, but only severe alcohol use disorders were particularly prevalent in the ED. The single heavy-drinking-day item appears sensitive for problem drinking. Positive tests must be followed by additional assessment to differentiate hazardous drinking from alcohol use disorders. Copyright © 2010. Published by Elsevier Inc.
Single-Concept Clicker Question Sequences
ERIC Educational Resources Information Center
Lee, Albert; Ding, Lin; Reay, Neville W.; Bao, Lei
2011-01-01
Students typically use electronic polling systems, or clickers, to answer individual questions. Differing from this tradition, we have developed a new clicker methodology in which multiple clicker questions targeting the same underlying concept but with different surface features are grouped into a sequence. Here we present the creation,…
Power spectral density of a single Brownian trajectory: what one can and cannot learn from it
NASA Astrophysics Data System (ADS)
Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio
2018-02-01
The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.
Physical Activity and the Prevention of Hypertension
Diaz, Keith M.; Shimbo, Daichi
2013-01-01
As the worldwide prevalence of hypertension continues to increase, the primary prevention of hypertension has become an important global public health initiative. Physical activity is commonly recommended as an important lifestyle modification that may aid in the prevention of hypertension. Recent epidemiologic evidence has demonstrated a consistent, temporal, and dose-dependent relationship between physical activity and the development of hypertension. Experimental evidence from interventional studies have further confirmed a relationship between physical activity and hypertension as the favorable effects of exercise on blood pressure reduction have been well characterized in recent years. Despite the available evidence strongly supporting a role for physical activity in the prevention of hypertension, many unanswered questions regarding the protective benefits of physical activity in high-risk individuals, the factors that may moderate the relationship between physical activity and hypertension, and the optimal prescription for hypertension prevention remain. We review the most recent evidence for the role of physical activity in the prevention of hypertension and discuss recent studies that have sought to address these unanswered questions. PMID:24052212
Intellectual and Physical Disabilities in Prehistory and Early Civilization
ERIC Educational Resources Information Center
Berkson, Gershon
2004-01-01
This paper is focused on three basic questions: The first concerns when specific disabilities first appeared during human evolution. The second question has to do with causes of disabilities. The third question concerns social responses to people with disabilities. Discussions on each of the issues are presented.
Oersted Lecture 2013: How should we think about how our students think?
NASA Astrophysics Data System (ADS)
Redish, Edward F.
2014-06-01
Physics Education Research (PER) applies a scientific approach to the question, "How do our students think about and learn physics?" PER allows us to explore such intellectually engaging questions as "What does it mean to understand something in physics?" and "What skills and competencies do we want our students to learn from our physics classes?" To address questions like these, we need to do more than observe student difficulties and build curricula. We need a theoretical framework—a structure for talking about, making sense of, and modeling how one thinks about, learns, and understands physics. In this paper, I outline some aspects of the Resources Framework, a structure that some of us are using to create a phenomenology of physics learning that ties closely to modern developments in neuroscience, psychology, and linguistics. As an example of how this framework gives new insights, I discuss epistemological framing—the role of students' perceptions of the nature of the knowledge they are learning and what knowledge is appropriate to bring to bear on a given task. I discuss how this foothold idea fits into our theoretical framework, show some classroom data on how it plays out in the classroom, and give some examples of how my awareness of the resources framework influences my approach to teaching.
Jenkin, Claire R; Eime, Rochelle M; Westerbeek, Hans; O'Sullivan, Grant; van Uffelen, Jannique G Z
2017-12-22
The global population is ageing. As ageing is often associated with a decline in health, there is a need to further develop preventative health measures. Physical activity can positively influence older adults' (aged 50 years and older) health. Previous research on the relationship between physical activity and health for older adults has mainly focused on physical activity in general, and not specific types of exercise. Due to the social nature of sport, it may assist in improving physical, mental and social health for older adults. Sport, as a form of physical activity, has not been widely explored as a physical activity opportunity for older adults. This review concurrently explored two research questions: the determinants and the trends of sport participation for community dwelling older adults. Two parallel systematic searches of nine electronic databases were conducted in December 2015 for the two research questions. English language quantitative and qualitative studies that provided specific results for community dwelling older adults' sport participation were included and a quality ratings assessment was undertaken. There were 10,171 studies initially identified for the first research question and 1992 studies for the second research question. This culminated in 18 and 8 studies respectively that met the inclusion criteria. The most frequently mentioned determinants of participation were health and using sport to negotiate the ageing process. The most frequently mentioned trends of sport participation were the effect of historical sport participation on current participation, and sport participation across the lifespan. The main themes for both research questions had contrasting results, for example, participation in sport could improve health, but poor health was also a limitation of sport participation. This review demonstrates that older adults are a heterogeneous age group, and therefore require different strategies than other age groups to successfully participate in sport. It is recommended that the main findings from this review are incorporated into specific strategies to develop age appropriate sporting opportunities for older adults, so that sport can be presented as a viable physical activity option for this age group.
Physical Activity Experiences and Beliefs among Single Mothers: A Qualitative Study
ERIC Educational Resources Information Center
Dlugonski, Deirdre; Motl, Robert W.
2016-01-01
Purpose: Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used…
NASA Astrophysics Data System (ADS)
Heron, Paula R. L.
2017-06-01
In physics education research it has been common to interpret student errors on conceptual questions in topic-specific ways, rather than in terms of general perceptual or reasoning difficulties. This paper examines two alternative accounts for responses to questions related to the concept of center of mass. In one account, difficulties are said to be perceptual in nature; in the other, difficulties are said to be tightly linked to the concepts in question. Hypotheses derived from the former perspective are tested in studies conducted among university students in introductory physics courses. The results do not provide strong support for the perceptual hypothesis; in fact, there is evidence that performance on perception tasks may be influenced by subjects' ideas about the physical scenario. While the results do not provide general support for one perspective versus the other, the paper serves as an illustration of the type of investigation needed to develop the kind of rich representation of student thinking that will allow instructional resources to be most effectively targeted.
Questions Students Ask: Beta Decay.
ERIC Educational Resources Information Center
Koss, Jordan; Hartt, Kenneth
1988-01-01
Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)
Physical Education Curriculum Priorities: Evidence for Education and Skillfulness
ERIC Educational Resources Information Center
Ennis, Catherine D.
2011-01-01
One question facing kinesiologists today is how to implement findings from research into society, in this case, physical education. In this paper I examine the role of a balanced approach to educational physical education in promoting physical activity. I argue that limiting physical education to simple tasks that encourage students to workout at…
From Newton to Einstein; Ask the physicist about mechanics and relativity
NASA Astrophysics Data System (ADS)
Baker, F. Todd
2014-12-01
Since 2006 the author has run a web site, WWW.AskThePhysicist.com, where he answers questions about physics. The site is not intended for answering highly technical questions; rather the purpose is to answer, with as little mathematics and formalism as possible, questions from intelligent and curious laypersons. This book is about classical mechanics. Usually `classical' calls to mind Newtonian mechanics and that is indeed where modern physics started. The bulk of the book is devoted to sections which will contain mainly categorized groups of Q&As from the web site, sort of a Best of Ask the Physicist.
Self-report of physical symptoms associated with using mobile phones and other electrical devices.
Korpinen, Leena H; Pääkkönen, Rauno J
2009-09-01
The aim of our work was to study the working-age population's self-reported physical symptoms associated with using mobile phones and other electrical devices. A qualitative method was applied using an open-ended question in a questionnaire, which included questions about the possible influence of new technical equipment on health. We then created subgroups of respondents for different self-reported symptoms associated with mobile phones and other electrical devices. The research questions were: (1) how the respondents described physical symptoms associated with using mobile phones and other electrical devices and (2) how the answers can be classified into subgroups based on symptoms or devices. We identified the following categories: (1) respondents with different self-reported symptoms which they associated with using mobile phones (headache, earache, or warmth sensations), (2) respondents who had skin symptoms when they stayed in front of a computer screen, (3) respondents who mentioned physical symptoms associated with using mobile phones and other electrical devices. Total prevalence of self-reported physical symptoms associated with using mobile phones and other electrical devices (categories 1 and 2) was 0.7%. In the future it will be possible to obtain new knowledge of these topics by using qualitative methods.
Are 2 Questions Enough to Screen for Depression and Anxiety in Patients With Chronic Low Back Pain?
Lie, Stein Atle; Eriksen, Hege R.
2014-01-01
Study Design. Cross-sectional study. Objective. To examine the sensitivity of 2 single-item questions compared with 2 longer questionnaires for screening depression and anxiety among patients with chronic low back pain (CLBP). Summary of Background Data. Psychosocial factors are frequently identified as risk factors for developing CLBP and as predictors for treatment, and questionnaires are often used to screen for this. Shorter instruments may be easier to use in clinical practice settings. Methods. A total of 564 patients with 2 to 10 months of at least 50% sickness absence due to nonspecific low back pain were assessed for depression and anxiety with the Mini-International Neuropsychiatric Interview (MINI). Single-item questions for depression and anxiety from the Subjective Health Complaint Inventory and 2 longer questionnaires, the Hospital Anxiety and Depression Scale and Hopkins Symptom Checklist–25, were compared with MINI results, considered the “gold standard” in this study. Sensitivity and specificity of single-item and longer questionnaires and receiver operating characteristic curves were compared. Results. According to MINI, the prevalence of anxiety disorders was 12% whereas that of depressive disorders was 4%. The screening questions showed 95% sensitivity and 56% specificity for depressive disorders and 68% sensitivity and 85% specificity for anxiety disorders. The longer questionnaire, Hospital Anxiety and Depression Scale, showed 91% sensitivity and 85% specificity for depressive disorders and 58% sensitivity and 83% specificity for anxiety disorders. Hopkins Symptom Checklist–25 showed 86% sensitivity and 74% specificity for depressive disorders and 67% sensitivity and 87% specificity for anxiety disorders. For 3 of the anxiety disorders and 2 of the depressive disorders, a perfect sensitivity was found between the screening questions and MINI. Conclusions. A single-item screening question was sensitive for depression but less sensitive for anxiety. The screening questions further performed equal to 2 widely used questionnaires. Validation of these results in other populations and compared with other short-item screeners is needed. Level of Evidence: 3 PMID:24480946
Is realistic neuronal modeling realistic?
Almog, Mara
2016-01-01
Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models. PMID:27535372
Metaphysics of the principle of least action
NASA Astrophysics Data System (ADS)
Terekhovich, Vladislav
2018-05-01
Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's concept of essences or possibles striving for existence. I elaborate a modal interpretation of the principle of least action that replaces a classical representation of a system's motion along a single history in the actual modality by simultaneous motions along an infinite set of all possible histories in the possible modality. This model is based on an intuition that deep ontological connections exist between the possible paths in the principle of least action and possible quantum histories in the Feynman path integral. I interpret the action as a physical measure of the essence of every possible history. Therefore only one actual history has the highest degree of the essence and minimal action. To address the issue of necessity, I assume that the principle of least action has a general physical necessity and lies between the laws of motion with a limited physical necessity and certain laws with a metaphysical necessity.
Linmans, Joris J; Knottnerus, J André; Spigt, Mark
2015-12-01
It is unknown to what extend patients with type 2 diabetes mellitus (T2DM) in primary care are motivated to change their lifestyle. We assessed the level of motivation to change lifestyle and the agreement for that level between patients and healthcare professionals. Patients with T2DM (150) filled in a questionnaire to assess the level of motivation to change their lifestyle, using a single question with three answer options. We investigated the agreement for this level between these patients and their healthcare professionals (12 professionals). In addition, we investigated and compared the level of physical activity as indicated by the patients and the healthcare professionals. A large part of the patients reported to have a deficient physical activity level (35% according to patients, 47% according to healthcare professionals, kappa 0.32) and were not motivated to change their lifestyle level (29% according to patients, 43% according to healthcare professionals, kappa 0.13). Patients tended to overestimate their physical activity and their motivation to change in comparison with their healthcare professionals. Patients with T2DM in primary care should increase their physical activity level. Healthcare professionals often do not know whether patients are motivated to change their lifestyle, and should therefore assess motivation regularly to optimize lifestyle management. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
Kessels, Ursula; Hannover, Bettina
2008-06-01
Establishing or preserving single-sex schooling has been widely discussed as a way of bringing more girls into the natural sciences. We test the assumption that the beneficial effects of single-sex education on girls' self-concept of ability in masculine subjects such as physics are due to the lower accessibility of gender-related self-knowledge in single-sex classes. N=401 eighth-graders (mean age 14.0 years) from coeducational comprehensive schools. Random assignment of students to single-sex vs. coeducational physics classes throughout the eighth grade. At the end of the year, students' physics-related self-concept of ability was measured using a questionnaire. In a subsample of N=134 students, the accessibility of gender-related self-knowledge during physics classes was assessed by measuring latencies and endorsement of sex-typed trait adjectives. Girls from single-sex physics classes reported a better physics-related self-concept of ability than girls from coeducational classes, while boys' self-concept of ability did not vary according to class composition. For both boys and girls, gender-related self-knowledge was less accessible in single-sex classes than in mixed-sex classes. To the extent that girls' feminine self-knowledge was relatively less accessible than their masculine self-knowledge, their physics-related self-concept of ability improved at the end of the school year. By revealing the importance of the differential accessibility of gender-related self-knowledge in single- and mixed-sex settings, our study clarifies why single-sex schooling helps adolescents to gain a better self-concept of ability in school subjects that are considered inappropriate for their own sex.
Single-Molecule Spectroscopy and Imaging Over the Decades
Moerner, W. E.; Shechtman, Yoav; Wang, Quan
2016-01-01
As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990's, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and microscopic mechanisms previously hidden by ensemble averaging. PMID:26616210
Fermilab | Science at Fermilab | Experiments & Projects | Intensity
Theory Computing High-performance Computing Grid Computing Networking Mass Storage Plan for the Future List Historic Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator
... Temporary loss of the sense of smell is common with colds and nasal allergies , such as hay fever ( allergic ... physical exam and ask questions about your medical history and current symptoms. Questions may include: When did ...
A Perspective on Physical Organic Chemistry
2015-01-01
A perspective on the development of mechanistic carbene chemistry is presented. The author will point out questions that have been answered, and a next generation of questions will be proposed. PMID:24571434
Liu, N; Li, X-W; Zhou, M-W; Biering-Sørensen, F
2015-08-01
This is an interventional training session. The objective of this study was to investigate the difference in response to self-assessment questions in the original and an adjusted version for a submodule of www.elearnSCI.org for student nurses. The study was conducted in a teaching hospital affiliated to Peking University, China. In all, 28 student nurses divided into two groups (groups A and B; 14 in each) received a print-out of a Chinese translation of the slides from the 'Maintaining skin integrity following spinal cord injury' submodule in www.elearnSCI.org for self-study. Both groups were then tested using the 10 self-assessment multiple-choice questions (MCQs) related to the same submodule. Group A used the original questions, whereas group B received an adjusted questionnaire. The responses to four conventional single-answer MCQs were nearly all correct in both groups. However, in three questions, group A, with the option 'All of the above', had a higher number of correct answers than group B, with multiple-answer MCQs. In addition, in another three questions, group A, using the original multiple-answer MCQs, had fewer correct answers than group B, where it was only necessary to tick a single incorrect answer. Variations in design influence the response to questions. The use of conventional single-answer MCQs should be reconsidered, as they only examine the recall of isolated knowledge facts. The 'All of the above' option should be avoided because it would increase the number of correct answers arrived at by guessing. When using multiple-answer MCQs, it is recommended that the questions asked should be in accordance with the content within the www.elearnSCI.org.
ERIC Educational Resources Information Center
Pine, William E.; Taylor, William W. L.
1991-01-01
Describes a science project, Interactive Space Physics Ionosphere Radio Experiments (INSPIRE), that allows students to work with physicists to address unanswered questions about the physics of space. (ZWH)
Physical and Mathematical Questions on Signal Processing in Multibase Phase Direction Finders
NASA Astrophysics Data System (ADS)
Denisov, V. P.; Dubinin, D. V.; Meshcheryakov, A. A.
2018-02-01
Questions on improving the accuracy of multiple-base phase direction finders by rejecting anomalously large errors in the process of resolving the measurement ambiguities are considered. A physical basis is derived and calculated relationships characterizing the efficiency of the proposed solutions are obtained. Results of a computer simulation of a three-base direction finder are analyzed, along with field measurements of a three-base direction finder along near-ground paths.
Beyond the standard model of particle physics.
Virdee, T S
2016-08-28
The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).
Norekvål, Tone M; Moons, Philip; Hanestad, Berit R; Nordrehaug, Jan E; Wentzel-Larsen, Tore; Fridlund, Bengt
2008-03-01
Although myocardial infarction (MI) is linked with both physical and psychological impairments, the possibility of patients also experiencing positive outcomes of MI has received far less attention in research and in clinical practice. In particular, this aspect has been under-investigated in older persons and in women. The purpose of this study was to investigate possible positive effects of illness, describe the patient characteristics and explore the nature and frequency of these effects in older women after MI. A cross-sectional postal survey was conducted in 145 women aged 62-80 years, three months to five years after MI. Self-reported socio-demographic and clinical data, in addition to data from medical records, were collected. A single-item question--"All in all, was there anything positive about experiencing an MI?"--was used to assess positive effects of illness, in addition to an open-ended question on the nature of possible positive effects. A majority of the women (65%) reported positive effects from their MI experience. The women perceiving positive effects did not differ from those who did not on socio-demographic and clinical variables, except for being older (p=0.007) and less often readmitted (p=0.029). The groups did not differ significantly as to disease severity and time since MI. Four themes emerged from the open-ended questioning on the nature of perceived positive effects of the illness: Appreciating Life (55%), Getting Health Care (42%), Making Lifestyle Changes (36%), and Taking More Care of Self and Others (29%). The findings contribute to a more complete picture of psychosocial issues in women after MI by providing evidence that positive effects are often experienced despite physical limitations. Nurses may use this knowledge as a tool in patient education and communication, although further research is needed to determine the most optimal interventions for MI patients.
Physics in the Great Depression
ERIC Educational Resources Information Center
Weiner, Charles
1970-01-01
Describes the criticism of science during the early 1930's, when questions about the internal dynamics of the physics community- reduced research funds, slackening employment opportunities and lower public esteem for physics and its relationship with society were raised. States that the problem of social relevance of physics is still very real…
Advanced Level Physics Students' Conceptions of Quantum Physics.
ERIC Educational Resources Information Center
Mashhadi, Azam
This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…
Attitude towards Physics Lessons and Physical Experiments of the High School Students
ERIC Educational Resources Information Center
Kaya, Hasan; Boyuk, Ugur
2011-01-01
In order that students can develop researching, questioning, critical thinking, problem solving and decision making skills, so that they become lifelong learning individuals, they should be improved regarding their knowledge, understanding and attitude towards natural sciences. Attitudes towards physics lessons and physical experiments of high…
Measuring Victimization inside Prisons: Questioning the Questions
ERIC Educational Resources Information Center
Wolff, Nancy; Shi, Jing; Bachman, Ronet
2008-01-01
Violence and victimization inside the prison setting are accepted as facts, although the facts about their prevalence remain uncertain. Variation in the methods used to estimate rates of sexual and physical victimization contribute to the wide range in estimates appearing in the prison literature. This article focuses on the questions used in the…
Context Sensitivity in the Force Concept Inventory
ERIC Educational Resources Information Center
Stewart, John; Griffin, Heather; Stewart, Gay
2007-01-01
The force concept inventory and a 10-question context-modified test were given to 647 students enrolled in introductory physics classes at the University of Arkansas. Context changes had an effect ranging from -3% to 10% on the individual questions. The average student score on the ten transformed questions was 3% higher than the average student…
Promoting Vicarious Learning of Physics Using Deep Questions with Explanations
ERIC Educational Resources Information Center
Craig, Scotty D.; Gholson, Barry; Brittingham, Joshua K.; Williams, Joah L.; Shubeck, Keith T.
2012-01-01
Two experiments explored the role of vicarious "self" explanations in facilitating student learning gains during computer-presented instruction. In Exp. 1, college students with low or high knowledge on Newton's laws were tested in four conditions: (a) monologue (M), (b) questions (Q), (c) explanation (E), and (d) question + explanation (Q + E).…
NASA Astrophysics Data System (ADS)
Erwin, E.; Rustaman, N. Y.
2017-09-01
This article discusses about Pedagogical content knowledge (PCK) profile of prospective physics teachers on optical geometry materials. Data collected using interview and questionnaire, and the data were analyzed descriptively. The results showed that PCK is an unfamiliar term to students. The extreme findings in this study is the lack of understanding of PCK by prospective physics teachers relating to the importance of recognizing the characteristics of students and how to manage questions from students, which teacher has to directly answer questions from students, and how to respond to the students’ incorrect answer, mostly prospective physics teachers assume that in case of the students answer incorrectly, the students should be directly blamed. Prospective physics teachers have not yet integrated the pedagogical knowledge with the content knowledge in their possess learning it he optical geometry material.
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang
2014-12-10
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associatedmore » with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?« less
Spatiotemporal dynamics of large-scale brain activity
NASA Astrophysics Data System (ADS)
Neuman, Jeremy
Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some light on this issue.
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Diagnosis
... the patient and their family Do a thorough physical and mental status examination Order blood, urine or other tests To get a better idea about the illness, the healthcare provider will ask many questions. Questions ...
On the topology of chromatin fibres
Barbi, Maria; Mozziconacci, Julien; Victor, Jean-Marc; Wong, Hua; Lavelle, Christophe
2012-01-01
The ability of cells to pack, use and duplicate DNA remains one of the most fascinating questions in biology. To understand DNA organization and dynamics, it is important to consider the physical and topological constraints acting on it. In the eukaryotic cell nucleus, DNA is organized by proteins acting as spools on which DNA can be wrapped. These proteins can subsequently interact and form a structure called the chromatin fibre. Using a simple geometric model, we propose a general method for computing topological properties (twist, writhe and linking number) of the DNA embedded in those fibres. The relevance of the method is reviewed through the analysis of magnetic tweezers single molecule experiments that revealed unexpected properties of the chromatin fibre. Possible biological implications of these results are discussed. PMID:24098838
Use of clickers and sustainable reform in upper-division physics courses
NASA Astrophysics Data System (ADS)
Dubson, Michael
2008-03-01
At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!
Scientific Assistant Virtual Laboratory (SAVL)
NASA Astrophysics Data System (ADS)
Alaghband, Gita; Fardi, Hamid; Gnabasik, David
2007-03-01
The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.
Comparison of university students' understanding of graphs in different contexts
NASA Astrophysics Data System (ADS)
Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka
2013-12-01
This study investigates university students’ understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was administered to 385 first year students at University of Zagreb who were either prospective physics or mathematics teachers or prospective physicists or mathematicians. Rasch analysis of data was conducted and linear measures for item difficulties were obtained. Average difficulties of items in three domains (mathematics, physics, and other contexts) and over two concepts (graph slope, area under the graph) were computed and compared. Analysis suggests that the variation of average difficulty among the three domains is much smaller for the concept of graph slope than for the concept of area under the graph. Most of the slope items are very close in difficulty, suggesting that students who have developed sufficient understanding of graph slope in mathematics are generally able to transfer it almost equally successfully to other contexts. A large difference was found between the difficulty of the concept of area under the graph in physics and other contexts on one side and mathematics on the other side. Comparison of average difficulty of the three domains suggests that mathematics without context is the easiest domain for students. Adding either physics or other context to mathematical items generally seems to increase item difficulty. No significant difference was found between the average item difficulty in physics and contexts other than physics, suggesting that physics (kinematics) remains a difficult context for most students despite the received instruction on kinematics in high school.
Why Did the Bald Eagle Almost Become Extinct?
ERIC Educational Resources Information Center
Glassman, Sarah J.; Sterling, Donna R.
2012-01-01
The activity described in this article poses a question, provides evidence needed to answer the question, and uses a cooperative learning structure within which students analyze the evidence and create their own questions. Students see how a single cause can interact with two natural systems--the water cycle and the bald eagle food chain--to…
On Formative Assessment in Math: How Diagnostic Questions Can Help
ERIC Educational Resources Information Center
Barton, Craig
2018-01-01
In this article, the author asserts that asking and responding to diagnostic questions is the single most important part of teaching secondary school mathematics. He notes the importance of formative assessment and recommends a formative assessment strategy that requires students to be public about their answers to questions, displaying their…
Exhaustivity in Questions & Clefts; and the Quantifier Connection: A Study in German and English
ERIC Educational Resources Information Center
Heizmann, Tanja
2012-01-01
This thesis investigates children's acquisition of exhaustivity across four structures: quantifiers, single questions, multiple questions and clefts. Two languages, English and German, are probed. Exhaustivity needs some sort of plural set to be mentioned without leaving out a member of that set. This dissertation provides experimental data…
Charmaraman, Linda; Lee, Alice J; Erkut, Sumru
2012-05-01
To assess sixth graders' knowledge and curiosity about sex-related topics that can guide the development of sexual health education and healthcare delivery. Sixth graders (n = 795) in eight ethnically diverse schools participating in an evaluation of a sex education curriculum submitted 859 anonymous questions that were content analyzed. The χ(2) analysis examined whether the themes varied by coed/single-sex environments or by school-level sexual risk. Sexual activity, female anatomy, reproduction, and puberty were the most frequently mentioned topics, whereas, questions on STIs, sexual violence, and drug/alcohol use were fewer. Questions that avoided sexual topics came from lower sexual-risk schools; students at higher-risk schools asked about sexual initiation, contraception, vaginal and anal sex, general health, and pain during sex. Single-sex classrooms elicited more direct and explicit questions about sex. The results are relevant to educators and healthcare providers who ask and answer questions from early adolescents regarding sexual health. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Healthy lifestyle in teachers.
Pirzadeh, Asiyeh; Sharifirad, Gholamreza; Kamran, Aziz
2012-01-01
The role of individual healthy behaviors like physical activity, nutrition and stress management on reduction of rate of disease mortality and morbidity is well known. The aim of this study is to determine healthy life style in teachers employed in district No.4 in Isfahan, Iran, in 2010. The participants of this cross-sectional study were 96 teachers in district No. 4, selected via random sampling method. The data collection was performed using a questionnaire including demographic healthy lifestyle questions. Analysis of the data was performed through Software SPSS version 18. The mean age of the subjects was 40.26 ± 6.05 years and, BMI mean was 25.08 ± 3.20. 96.8% of them were married and 3.1% also were single. 1% of the teachers had a weak lifestyle, 13.5%had moderate, 85.4% had a good lifestyle. In terms of nutrition, 2% of the teachers had a weak lifestyle, 23% moderate, 74% good. 76% in terms of physical activity, 29.2% smoking and 21.9% stress had a weak lifestyle. According to the results, planning for teachers in school for receiving information about healthy lifestyle is important.
Valuchova, Sona; Prokop, Zbynek; Hofr, Ctirad
2017-01-01
Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku’s requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries. PMID:28584163
Descriptive Analysis of Single Subject Research Designs: 1983-2007
ERIC Educational Resources Information Center
Hammond, Diana; Gast, David L.
2010-01-01
Single subject research methodology is commonly used and cited in special education courses and journals. This article reviews the types of single subject research designs published in eight refereed journals between 1983 and 2007 used to answer applied research questions. Single subject designs were categorized as withdrawal/reversal, time…
Same, Different, Equal: Rethinking Single-Sex Schooling.
ERIC Educational Resources Information Center
Salomone, Rosemary C.
This book presents an argument for supporting single-sex education. It examines the history and politics of gender and schooling; philosophical and psychological theories of sameness and differences; findings on educational achievement and performance; research evidence on single-sex schooling; and the legal questions that arise from single-sex…
Musculoskeletal pain, job satisfaction, depression, and anxiety among spanish podiatric physicians.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo
2014-03-01
There is a high prevalence of musculoskeletal complaints related to day-to-day work among podiatric physicians. We sought to determine the relationships among musculoskeletal pain, job satisfaction, depression, and anxiety in Spanish podiatric physicians. A convenience sample of 421 Spanish podiatric physicians was administered a survey that included questions about sociodemographic variables, musculoskeletal pain, job satisfaction, depression, and anxiety. On average, respondents were found to have a high level of pain, a moderate level of job satisfaction, and low-to-moderate levels of depression and anxiety. Young single women had the highest levels of pain and anxiety. Analysis with the Student t test indicated significant differences between the sexes for levels of pain (P < .0001) and anxiety (P < .014). Job satisfaction was inversely related to depression and anxiety. These findings, particularly the increased levels of pain, job dissatisfaction, anxiety, and depression in young single female podiatrists, indicate a need for strategies to reduce the risks posed by the work environment in podiatric medicine, thus minimizing the negative psychological and physical consequences of participating in the profession.
A Study on Contingency Learning in Introductory Physics Concepts
NASA Astrophysics Data System (ADS)
Scaife, Thomas M.
Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the investigation of their behavior, students were asked what rule they used when answering questions. Although the self-reported rules might not be congruent with their behavior, training with specific examples might affect how students explicitly think about physics problems. In addition to exploring the effectiveness of various training examples, the results were also compared to a cognitive theory of causality: the contingency model. Physical concepts can often be expressed in terms of causal relations (e.g., a net force causes an object to accelerate), and a large body of work has found that people make many decisions that are consistent with causal reasoning. The contingency model, in particular, explains how certain statistical regularities in the co-occurrence of two events can be interpreted by individuals as causal relations, and was chosen primarily because it of its robust results and simple, parsimonious form. The empirical results demonstrate that different categories of training examples did affect student answers differently. Furthermore, these effects were mostly consistent with the predictions made by the contingency model. When rule use was explored, the self-reported rules were consistent with contingency model predictions, but indicated that examples alone were insufficient to teach complex functional relationships between physical dimensions, such as torque.
Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow
NASA Astrophysics Data System (ADS)
Utami, D. N.; Wulandari, H. R. T.
2016-11-01
The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.
Is direct measurement of time possible?
NASA Astrophysics Data System (ADS)
Reynolds, Thomas
2017-08-01
Is direct measurement of time possible? The answer to this question may depend upon how one understands time. Is time an essential constituent of physical reality? Or is what scientists are talking about when they use the symbol ‘t’ or the word ‘time’ an human cultural construct, as the Chief of the USA NIST Divisions of Time and Frequency and of Quantum Physics has suggested. Few aspects of physics do not reference activity to time, but many discussions within either view of time seem to use one same, largely traditional, language of time. Briefly considering the question of measurement, including from a formal measure-theoretic point of view, clarifies the situation.
Single-shot work extraction in quantum thermodynamics revisited
NASA Astrophysics Data System (ADS)
Wang, Shang-Yung
2018-01-01
We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
Top 10 Research Questions Related to Children Physical Activity Motivation
ERIC Educational Resources Information Center
Chen, Ang
2013-01-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity…
ERIC Educational Resources Information Center
Stewart, John; Miller, Mayo; Audo, Christine; Stewart, Gay
2012-01-01
This study examined the evolution of student responses to seven contextually different versions of two Force Concept Inventory questions in an introductory physics course at the University of Arkansas. The consistency in answering the closely related questions evolved little over the seven-question exam. A model for the state of student knowledge…
Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.
Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P
2016-07-01
What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Offroy, Marc; Duponchel, Ludovic
2016-03-03
An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.
Spontaneous Symmetry Breaking as a Basis of Particle Mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, Chris; /Fermilab /CERN
2007-04-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leavingmore » a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.« less
ERIC Educational Resources Information Center
Sahin, Esin; Yagbasan, Rahmi
2012-01-01
This study aims at diagnosing which subjects pre-service physics teachers have difficulty understanding in introductory physics courses and what accounts for these difficulties. A questionnaire consisting of two qualitative questions was used to collect data for this study. The questionnaire was administered to 101 pre-service physics teachers who…
ERIC Educational Resources Information Center
White, Susan; Tyler, John
2015-01-01
This report examines teachers' self-assessed preparedness to teach physics, their membership in professional organizations, and where they turn for help when they have questions. Almost every teacher reports feeling at least adequately prepared to teach basic physics knowledge and the application of physics to everyday experience. The smallest…
ERIC Educational Resources Information Center
Wadness, Michael J.
2010-01-01
This dissertation addresses the research question: To what extent do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a physics outreach program run by QuarkNet, a national organization of secondary school physics teachers…
3D dosimetry by optical-CT scanning
NASA Astrophysics Data System (ADS)
Oldham, Mark
2006-12-01
The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less
Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2
NASA Astrophysics Data System (ADS)
Svetin, Damjan; Vaskivskyi, Igor; Brazovskii, Serguei; Mihailovic, Dragan
2017-04-01
Recent demonstrations of controlled switching between different ordered macroscopic states by impulsive electromagnetic perturbations in complex materials have opened some fundamental questions on the mechanisms responsible for such remarkable behavior. Here we experimentally address the question of whether two-dimensional (2D) Mott physics can be responsible for unusual switching between states of different electronic order in the layered dichalcogenide 1T-TaS2, or it is a result of subtle inter-layer “orbitronic” re-ordering of its stacking structure. We report on in-plane (IP) and out-of-plane (OP) resistance switching by current-pulse injection at low temperatures. Elucidating the controversial theoretical predictions, we also report on measurements of the anisotropy of the electrical resistivity below room temperature. From the T-dependence of ρ⊥ and ρ||, we surmise that the resistivity is more consistent with collective motion than single particle diffusive or band-like transport. The relaxation dynamics of the metastable state for both IP and OP electron transport are seemingly governed by the same mesoscopic quantum re-ordering process. We conclude that 1T-TaS2 shows resistance switching arising from an interplay of both IP and OP correlations.
Dynamic processes of the microbiota - from metagenomics to biofilms
NASA Astrophysics Data System (ADS)
Wingreen, Ned
The extent, origin, and impact of microbial diversity is a central question in biology. We expect that physical processes contribute to this diversity, but we are only beginning to explore the nature of these interactions. I will briefly discuss two approaches to this question, one based on metagenomics the other on observation of bacterial biofilms. First, I will address the challenge of identifying the constituents of microbial systems by presenting a new approach to analyzing community sequencing data that identifies microbial subpopulations while avoiding problematic clustering-based methods. Using data from a time-series study of human tongue microbiota, we were able to resolve within the standard definition of a ``species'' up to 20 ecologically distinct subpopulations with tag sequences differing by as little as one nucleotide (99.2% similarity). This fine resolution allowed us decouple sequence similarity from dynamical similarity, and to resolve dynamics on multiple time scales, including the slow appearance and disappearance of strains over months. Second, I will present recent results on the growth and competition of bacteria within biofilms. We imaged the growth ofliving biofilms of Vibrio choleraefrom single founder cells to ten thousand cells at single cell spatial resolution and with temporal resolution of one cell cycle. We discovered a transition from a branched 2D colony to a dense 3D cluster, in which cells at the biofilm center exhibit collective vertical alignment and local nematic packing. Our results suggest that biofilm cells exploit mechanics to simultaneously achieve strong surface adhesion, access to 3D space, resistance to invasion, and dominance over surface territory.
Gismervik, Sigmund Ø; Drogset, Jon O; Granviken, Fredrik; Rø, Magne; Leivseth, Gunnar
2017-01-25
Physical examination tests of the shoulder (PETS) are clinical examination maneuvers designed to aid the assessment of shoulder complaints. Despite more than 180 PETS described in the literature, evidence of their validity and usefulness in diagnosing the shoulder is questioned. This meta-analysis aims to use diagnostic odds ratio (DOR) to evaluate how much PETS shift overall probability and to rank the test performance of single PETS in order to aid the clinician's choice of which tests to use. This study adheres to the principles outlined in the Cochrane guidelines and the PRISMA statement. A fixed effect model was used to assess the overall diagnostic validity of PETS by pooling DOR for different PETS with similar biomechanical rationale when possible. Single PETS were assessed and ranked by DOR. Clinical performance was assessed by sensitivity, specificity, accuracy and likelihood ratio. Six thousand nine-hundred abstracts and 202 full-text articles were assessed for eligibility; 20 articles were eligible and data from 11 articles could be included in the meta-analysis. All PETS for SLAP (superior labral anterior posterior) lesions pooled gave a DOR of 1.38 [1.13, 1.69]. The Supraspinatus test for any full thickness rotator cuff tear obtained the highest DOR of 9.24 (sensitivity was 0.74, specificity 0.77). Compression-Rotation test obtained the highest DOR (6.36) among single PETS for SLAP lesions (sensitivity 0.43, specificity 0.89) and Hawkins test obtained the highest DOR (2.86) for impingement syndrome (sensitivity 0.58, specificity 0.67). No single PETS showed superior clinical test performance. The clinical performance of single PETS is limited. However, when the different PETS for SLAP lesions were pooled, we found a statistical significant change in post-test probability indicating an overall statistical validity. We suggest that clinicians choose their PETS among those with the highest pooled DOR and to assess validity to their own specific clinical settings, review the inclusion criteria of the included primary studies. We further propose that future studies on the validity of PETS use randomized research designs rather than the accuracy design relying less on well-established gold standard reference tests and efficient treatment options.
ERIC Educational Resources Information Center
Gillibrand, Eileen; Robinson, Peter; Brawn, Richard; Osborn, Albert
1999-01-01
Reports the findings from a three-year longitudinal case study of two single-sex General Certificate of Secondary Education (GCSE) physics classes in a mixed comprehensive school in England. Results indicate that girls who elected to study physics in single-sex classes gain confidence in the subject. This gain in confidence is associated with…
Association Between Cortisol to DHEA-s Ratio and Sickness Absence in Japanese Male Workers.
Hirokawa, Kumi; Fujii, Yasuhito; Taniguchi, Toshiyo; Takaki, Jiro; Tsutsumi, Akizumi
2018-06-01
This study aimed to investigate the association between serum levels of cortisol and dehydroepiandrosterone sulfate (DHEA-s) and sickness absence over 2 years in Japanese male workers. A baseline survey including questions about health behavior, along with blood sampling for cortisol and DHEA-s, was conducted in 2009. In total, 429 men (mean ± SD age, 52.9 ± 8.6 years) from whom blood samples were collected at baseline were followed until December 31, 2011. The hazard ratios (HR) and 95% confidence intervals (CI) for sickness absence were calculated using a Cox proportional hazard model, adjusted for potential confounders. Among 35 workers who took sickness absences, 31 had physical illness. A high cortisol to DHEA-s ratio increased the risk of sickness absence (crude HR = 2.68, 95% CI 1.12-6.41; adjusted HR = 3.33, 95% CI 1.35-8.20). The cortisol to DHEA-s ratio was linearly associated with an increased risk of sickness absence (p for trend < .050). Single effects of cortisol and DHEA-s levels were not associated with sickness absences. This trend did not change when limited to absences resulting from physical illness. Hormonal conditions related to the hypothalamus-pituitary-adrenocortical axis and adrenal function should be considered when predicting sickness absence. The cortisol to DHEA-s ratio may be more informative than single effects of cortisol and DHEA-s levels.
Development of a testlet generator in re-engineering the Indonesian physics national-exams
NASA Astrophysics Data System (ADS)
Mindyarto, Budi Naini; Mardapi, Djemari; Bastari
2017-08-01
The Indonesian Physics national-exams are end-of-course summative assessments that could be utilized to support the assessment for learning in physics educations. This paper discusses the development and evaluation of a testlet generator based on a re-engineering of Indonesian physics national exams. The exam problems were dissected and decomposed into testlets revealing the deeper understanding of the underlying physical concepts by inserting a qualitative question and its scientific reasoning question. A template-based generator was built to facilitate teachers in generating testlet variants that would be more conform to students' scientific attitude development than their original simple multiple-choice formats. The testlet generator was built using open source software technologies and was evaluated focusing on the black-box testing by exploring the generator's execution, inputs and outputs. The results showed the correctly-performed functionalities of the developed testlet generator in validating inputs, generating testlet variants, and accommodating polytomous item characteristics.
Viana, Ricardo B.; Gentil, Paulo; Lorenço, Vinício S.; Vieira, Carlos A.; Campos, Mário H.; Santos, Douglas A.T.; Silva, Wellington F.; Andrade, Marilia S.; Vancini, Rodrigo L.
2018-01-01
Background It is possible that physical education professionals, especially those who participate in aerobic activities, have predisposing factors, signs and symptoms of overreaching (OVR) and overtraining (OVT) due to a high load and volume of exercise followed by suboptimal recovery time. The present study aimed to identify the predisposing factors, signs and symptoms of OVR and OVT in physical education professionals. Methods A questionnaire consisting of 42 questions (10 questions group) about predisposing factors and signs/symptoms was answered by 132 physical education professionals from both sexes (83 men and 49 women) who were allocated into a resistance training group (RG, n = 74), aerobic training group (AG, n = 20) and resistance and aerobic training group (RAG, n = 38). A mean score was calculated ranging from 1 (completely absent) to 5 (severe) for each question group. A low occurrence of predisposing factors and signs and symptoms of OVR and OVT was considered to be a question group score 4 or lower. Profile of Mood State Questionnaire (POMS) was also applied. Results A mean score of 2.5 ± 0.7, 2.7 ± 0.7 and 2.7 ± 0.8 was found for all question groups for RG, AG and RAG, respectively. Of the total sample, 40.6% trained at least five times/week. The POMS revealed that 67.5% of the RG (n = 50), 80% of the AG (n = 16) and 60.5% of the RAG (n = 23) were classified as having no mood disorders and a standard graphic iceberg was presented. There were no statistical differences (p > 0.05) in the total mood disorders among RG (13.9 ± 24.5), AG (10.3 ± 25.1) and RAG (14.6 ± 27.9) groups. Conclusion Despite the volume of training/body working performed by the physical education professionals surveyed being greater than the recommended to achieve improvements on physical fitness, they did not show predisposing factors, signs or symptoms of OVR and OVT.
The scientific argumentation profile of physics teacher candidate in Surabaya
NASA Astrophysics Data System (ADS)
Ain, T. N.; Wibowo, H. A. C.; Rohman, A.; Deta, U. A.
2018-03-01
The ability of scientific argumentation is an essential factor that must be mastered by physics teacher candidate as a requirement in explaining good and accurate scientific concepts. In the process of arguing, students develop explanations or persuade colleagues to support their hypotheses, express doubts, ask questions, relate alternative answers, and confirm what is unknown to develop the ability to provide rational and scientific explanations. The design of this research is descriptive qualitative with the subject of research is 20 undergraduate students of Physics Education Department in Surabaya. The research instrument consists of four casuistic questions related to the concept of kinematics. The argumentation pattern of physics teacher candidate is coded using Toulmin's argumentation pattern. The results show that the student’s ability in providing scientific argument is at the level of providing claims with the support of a weak warrant. The students are not able to provide excellent rebuttals. In each case given, the student can give a good claim statement in answering the questions. However, the concept used to support the claim is not correct. This case causes the warrant used to support the claim is weak. Students also do not analyse other facts that affect the system. Students have not reached a higher level because the understanding of physics is not deep enough.
Ugly duckling or Nosferatu? Cardiac injury in endurance sport - screening recommendations.
Leischik, R; Dworrak, B
2014-01-01
In the beginning sporting activity may be exhausting, but over time, physical activity turns out to have beneficial effects to the body and even extended cycling or running is an emotional and healthy enrichment in life. On the other hand, spectacular sudden deaths during marathon, football and, just recently, in the trend discipline triathlon seem to support the dark side of the sporting activity. Since years there are constantly appearing reports about a potential myocardial injury induced by intensive sporting activities. Cardiac hypertrophy is the heart's response to arterial hypertension and to physical activity, but can be associated with an unfavorable outcome - in worst case for example with sudden death. The question of the right dose of sporting activity, the question how to prevent cardiac death induced by physical activity and the question how to screen the athletes for the possible risk of sudden death or other cardiac complications during sporting activity are those that will be answered by this review article. In this review we summarize recent insights into the problem of endurance sport and possible negative cardiac remodeling as well as the question how to screen the athletes.
Primary care validation of a single-question alcohol screening test.
Smith, Peter C; Schmidt, Susan M; Allensworth-Davies, Donald; Saitz, Richard
2009-07-01
Unhealthy alcohol use is prevalent but under-diagnosed in primary care settings. To validate, in primary care, a single-item screening test for unhealthy alcohol use recommended by the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Cross-sectional study. Adult English-speaking patients recruited from primary care waiting rooms. Participants were asked the single screening question, “How many times in the past year have you had X or more drinks in a day?”, where X is 5 for men and 4 for women, and a response of 1 or greater [corrected] is considered positive. Unhealthy alcohol use was defined as the presence of an alcohol use disorder, as determined by a standardized diagnostic interview, or risky consumption, as determined using a validated 30-day calendar method. Of 394 eligible primary care patients, 286 (73%) completed the interview. The single-question screen was 81.8% sensitive (95% confidence interval (CI) 72.5% to 88.5%) and 79.3% specific (95% CI 73.1% to 84.4%) for the detection of unhealthy alcohol use. It was slightly more sensitive (87.9%, 95% CI 72.7% to 95.2%) but was less specific (66.8%, 95% CI 60.8% to 72.3%) for the detection of a current alcohol use disorder. Test characteristics were similar to that of a commonly used three-item screen, and were affected very little by subject demographic characteristics. The single screening question recommended by the NIAAA accurately identified unhealthy alcohol use in this sample of primary care patients. These findings support the use of this brief screen in primary care.
ERIC Educational Resources Information Center
Phillips, Clarissa; Cota-Robles, Sonia; Knight, Margaret; Francis, Judith; Phillips, Elizabeth; Mazerbo, Laurie
2011-01-01
This study of adolescent mothers sought to identify whether a single general question asked by phone or a detailed, vaccine-specific question asked in a self-report questionnaire best captured infant immunization status at 6 months postpartum, by comparing them with immunization record books. Responses to a global question about whether infants…
Fundamentals of Physics, Part 2 (Chapters 12-20)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 12 Equilibrium and Elasticity. What injury can occur to a rock climber hanging by a crimp hold? 12-1 What Is Physics? 12-2 Equilibrium. 12-3 The Requirements of Equilibrium. 12-4 The Center of Gravity. 12-5 Some Examples of Static Equilibrium. 12-6 Indeterminate Structures. 12-7 Elasticity. Review & Summary Questions Problems. Chapter 13 Gravitation. What lies at the center of our Milky Way galaxy? 13-1 What Is Physics? 13-2 Newton's Law of Gravitation. 13-3 Gravitation and the Principle of Superposition. 13-4 Gravitation Near Earth's Surface. 13-5 Gravitation Inside Earth. 13-6 Gravitational Potential Energy. 13-7 Planets and Satellites: Kepler's Laws. 13-8 Satellites: Orbits and Energy. 13-9 Einstein and Gravitation. Review & Summary Questions Problems. Chapter 14 Fluids. What causes ground effect in race car driving? 14-1 What Is Physics? 14-2 What Is a Fluid? 14-3 Density and Pressure. 14-4 Fluids at Rest. 14-5 Measuring Pressure. 14-6 Pascal's Principle. 14-7 Archimedes' Principle. 14-8 Ideal Fluids in Motion. 14-9 The Equation of Continuity. 14-10 Bernoulli's Equation. Review & SummaryQuestionsProblems. Chapter 15 Oscillations. What is the "secret" of a skilled diver's high catapult in springboard diving? 15-1 What Is Physics? 15-2 Simple Harmonic Motion. 15-3 The Force Law for Simple Harmonic Motion. 15-4 Energy in Simple Harmonic Motion. 15-5 An Angular Simple Harmonic Oscillator. 15-6 Pendulums. 15-7 Simple Harmonic Motion and Uniform Circular Motion. 15-8 Damped Simple Harmonic Motion. 15-9 Forced Oscillations and Resonance. Review & Summary Questions Problems. Chapter 16 Waves--I. How can a submarine wreck be located by distant seismic stations? 16-1 What Is Physics? 16-2 Types of Waves. 16-3 Transverse and Longitudinal Waves. 16-4 Wavelength and Frequency. 16-5 The Speed of a Traveling Wave. 16-6 Wave Speed on a Stretched String. 16-7 Energy and Power of a Wave Traveling Along a String. 16-8 The Wave Equation. 16-9 The Principle of Superposition for Waves. 16-10 Interference of Waves. 16-11 Phasors. 16-12 Standing Waves. 16-13 Standing Waves and Resonance. Review & Summary Questions Problems. Chapter 17 Waves--II. How can an emperor penguin .nd its mate among thousands of huddled penguins? 17-1 What Is Physics? 17-2 Sound Waves. 17-3 The Speed of Sound. 17-4 Traveling Sound Waves. 17-5 Interference. 17-6 Intensity and Sound Level. 17-7 Sources of Musical Sound. 17-8 Beats. 17-9 The Doppler Effect. 17-10 Supersonic Speeds, Shock Waves. Review & Summary Questions Problems. Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. How can a dead rattlesnake detect and strike a reaching hand? 18-1 What Is Physics?. 18-2 Temperature. 18-3 The Zeroth Law of Thermodynamics. 18-4 Measuring Temperature. 18-5 The Celsius and Fahrenheit Scales. 18-6 Thermal Expansion. 18-7 Temperature and Heat. 18-8 The Absorption of Heat by Solids and Liquids. 18-9 A Closer Look at Heat and Work. 18-10 The First Law of Thermodynamics. 18-11 Some Special Cases of the First Law of Thermodynamics. 18-12 Heat Transfer Mechanisms. Review & Summary Questions Problems. Chapter 19 The Kinetic Theory of Gases. How can cooling steam inside a railroad tank car cause the car to be crushed? 19-1 What Is Physics? 19-2 Avogadro's Number. 19-3 Ideal Gases. 19-4 Pressure, Temperature, and RMS Speed. 19-5 Translational Kinetic Energy. 19-6 Mean Free Path. 19-7 The Distribution of Molecular Speeds. 19-8 The Molar Speci.c Heats of an Ideal Gas. 19-9 Degrees of Freedom and Molar Speci.c Heats. 19-10 A Hint of Quantum Theory. 19-11 The Adiabatic Expansion of an Ideal Gas. Review & Summary Questions Problems. Chapter 20 Entropy and the Second Law of Thermodynamics. Why is the popping of popcorn irreversible? 20-1 What Is Physics? 20-2 Irreversible Processes and Entropy. 20-3 Change in Entropy. 20-4 The Second Law of Thermodynamics. 20-5 Entropy in the Real World: Engines. 20-6 Entropy in the Real World: Refrigerators. 20-7 The Ef.ciencies of Real Engines. 20-8 A Statistical View of Entropy. Review & Summary Questions Problems. Appendices. A The International System of Units (SI). B Some Fundamental Constants of Physics. C Some Astronomical Data. D Conversion Factors. E Mathematical Formulas. F Properties of the Elements. G Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
1984-09-01
fitness training in the US Army (ARIEM T-5/79). Natick, MS: US Army Research Institute for Environental Medicine, August 1979, p 31. 6Vogel, Wright...Human engineering guide to equipment d (rev. ed.). Washington, DC: US Government Printing Office, 1972, pp 497, 512, 527., 2 2Vogel, Wright, & Patton...physical demands they make. Three of the interview questions addressed this issue . The questions were: "Are you tired after doing this task?" "Have
The Hyperloop as a Source of Interesting Estimation Questions
NASA Astrophysics Data System (ADS)
Allain, Rhett
2014-03-01
The Hyperloop is a conceptual high speed transportation system proposed by Elon Musk. The basic idea uses passenger capsules inside a reduced pressure tube. Even though the actual physics of dynamic air flow in a confined space can be complicated, there are a multitude estimation problems that can be addressed. These back-of-the-envelope questions can be approximated by physicists of all levels as well as the general public and serve as a great example of the fundamental aspects of physics.
The DIAGNOSER project: combining assessment and learning.
Thissen-Roe, Anne; Hunt, Earl; Minstrell, Jim
2004-05-01
DIAGNOSER is an Internet-based tool for classroom instruction. It delivers continuous formative assessment and feedback to high school physics students and their teachers about the correct and incorrect concepts and ideas the students may hold regarding physical situations. That is, it diagnoses misconceptions that underlie wrong answers of students, such as a confusion of velocity with acceleration. We use data about patterns of student responses, particularly consistency of errors from question to question, to improve the system's understanding of student concepts.
[Socioeconomic status and risky health behaviors in Croatian adult population].
Pilić, Leta; Dzakula, Aleksandar
2013-03-01
Based on the previous research, there is strong association between low socioeconomic status (SES) and high morbidity and mortality rates. Even though association between SES and risky health behaviors as the main factors influencing health has been investigated in Croatian population, some questions are yet to be answered. The aim of this study was to investigate the presence of unhealthy diet, physical inactivity, smoking and excessive drinking in low, middle, and high socioeconomic group of adult Croatian population included in the cohort study on regionalism of cardiovascular health risk behaviors. We also investigated the association between SES measured by income, education and occupation, as well as single SES indicators, and risky health behaviors. We analyzed data on 1227 adult men and women (aged 19 and older at baseline) with complete data on health behaviors, SES and chronic diseases at baseline (2003) and 5-year follow up. Respondents were classified as being healthy or chronically ill. SES categories were derived from answers to questions on monthly household income, occupation and education by using two-step cluster analysis algorithm. At baseline, for the whole sample as well as for healthy respondents, SES was statistically significantly associated with unhealthy diet (whole sample/healthy respondents: p = 0.001), physical inactivity (whole sample/healthy respondents p = 0.44/ p = 0.007), and smoking (whole sample/healthy respondents p < 0.001/p = 0.002). The proportion of respondents with unhealthy diet was greatest in the lowest social class, smokers in the middle and physically inactive in the high social class. During the follow up, smoking and physical inactivity remained statistically significantly associated with SES. In chronically ill respondents, only smoking was statistically significantly associated with SES, at baseline and follow up (p = 0.001/p = 0.002). The highest share of smokers was in the middle social class. Results of our study show that risky health behaviors are associated with SES and are divergently represented across socioeconomic groups of adult Croatian population. There is an obvious need for interventions targeting the specific socioeconomic group and behavior characteristic of that group.
Hand assessment in older adults with musculoskeletal hand problems: a reliability study.
Myers, Helen L; Thomas, Elaine; Hay, Elaine M; Dziedzic, Krysia S
2011-01-07
Musculoskeletal hand pain is common in the general population. This study aims to investigate the inter- and intra-observer reliability of two trained observers conducting a simple clinical interview and physical examination for hand problems in older adults. The reliability of applying the American College of Rheumatology (ACR) criteria for hand osteoarthritis to community-dwelling older adults will also be investigated. Fifty-five participants aged 50 years and over with a current self-reported hand problem and registered with one general practice were recruited from a previous health questionnaire study. Participants underwent a standardised, structured clinical interview and physical examination by two independent trained observers and again by one of these observers a month later. Agreement beyond chance was summarised using Kappa statistics and intra-class correlation coefficients. Median values for inter- and intra-observer reliability for clinical interview questions were found to be "substantial" and "moderate" respectively [median agreement beyond chance (Kappa) was 0.75 (range: -0.03, 0.93) for inter-observer ratings and 0.57 (range: -0.02, 1.00) for intra-observer ratings]. Inter- and intra-observer reliability for physical examination items was variable, with good reliability observed for some items, such as grip and pinch strength, and poor reliability observed for others, notably assessment of altered sensation, pain on resisted movement and judgements based on observation and palpation of individual features at single joints, such as bony enlargement, nodes and swelling. Moderate agreement was observed both between and within observers when applying the ACR criteria for hand osteoarthritis. Standardised, structured clinical interview is reliable for taking a history in community-dwelling older adults with self reported hand problems. Agreement between and within observers for physical examination items is variable. Low Kappa values may have resulted, in part, from a low prevalence of clinical signs and symptoms in the study participants. The decision to use clinical interview and hand assessment variables in clinical practice or further research in primary care should include consideration of clinical applicability and training alongside reliability. Further investigation is required to determine the relationship between these clinical questions and assessments and the clinical course of hand pain and hand problems in community-dwelling older adults.
Can the Single Parent Parent As Well?
ERIC Educational Resources Information Center
Flanzer, Jerry P.
The question of whether single parents are able to parent as well as those in two-parent families, as well as the differences between attitudes and practices of single mothers and fathers toward child rearing, were investigated. Members (N=179) of the Southeastern Wisconsin Parents Without Partners group completed the Single Parent Questionnaire,…
Student Reasoning about Graphs in Different Contexts
ERIC Educational Resources Information Center
Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka
2016-01-01
This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…
AAPT/NSTA High School Physics Examination.
ERIC Educational Resources Information Center
Nelson, James
1983-01-01
Discusses development of the American Association of Physics Teachers and National Science Teachers Association (AAPT/NSTA) high school physics examination. Includes sample examination questions and distribution of topics: mechanics (30 percent), waves/optics/sound (20 percent), heat/kinetic theory (10 percent), electricity/magnetism (25 percent),…
General Relativity: Geometry Meets Physics
ERIC Educational Resources Information Center
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
Physical Activity for Children and Youth.
ERIC Educational Resources Information Center
Pangrazi, Robert P.; And Others
1996-01-01
A series of questions and answers helps teachers and leaders understand how much physical activity is enough for children and adolescents, discussing the guidelines used to make recommendations; childrens' and adolescents' unique physical activity needs; lifetime activity needs; and aerobic versus strength, endurance, and flexibility training. (SM)
ERIC Educational Resources Information Center
Su, Yucheng
2010-01-01
There are many ways to improve students' understanding of physics concepts. This article focused on drawing students' attention with picture-embedded questions. Pictures give students a direct impression or feeling about the corresponding concepts, which really makes a difference. However, the effects are limited. Some physics concepts are…
Fundamentals of Physics, Volume 1, (Chapters 1 - 21)
NASA Astrophysics Data System (ADS)
Walker, Jearl
2004-01-01
Chapter 1. Measurement 1. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2. Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. 2 Review & Summary. Questions. Problems. Chapter 3. Vectors. How does an ant know the way home with no guiding clues on the desert plains? 3-1 What Is Physics? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4. Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5. Force and Motion--I. When a pilot takes off from an aircraft carrier, what causes the compulsion to .y the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6. Force and Motion--II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7. Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8. Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9. Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10. Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11. Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Chapter 12. Equilibrium and Elasticity. What injury can occur to a rock climber hanging by a crimp hold? 12-1 What Is Physics? 12-2 Equilibrium. 12-3 The Requirements of Equilibrium. 12-4 The Center of Gravity. 12-5 Some Examples of Static Equilibrium. 12-6 Indeterminate Structures. 12-7 Elasticity. Review & Summary. Questions. Problems. Chapter 13. Gravitation. What lies at the center of our Milky Way galaxy? 13-1 What Is Physics? 13-2 Newton's Law of Gravitation. 13-3 Gravitation and the Principle of Superposition. 13-4 Gravitation Near Earth's Surface. 13-5 Gravitation Inside Earth. 13-6 Gravitational Potential Energy. 13-7 Planets and Satellites: Kepler's Laws. 13-8 Satellites: Orbits and Energy. 13-9 Einstein and Gravitation. Review & Summary. Questions. Problems. Chapter 14. Fluids. What causes ground effect in race car driving? 14-1 What Is Physics? 14-2 What Is a Fluid? 14-3 Density and Pressure. 14-4 Fluids at Rest. 14-5 Measuring Pressure. 14-6 Pascal's Principle. 14-7 Archimedes' Principle. 14-8 Ideal Fluids in Motion. 14-9 The Equation of Continuity. 14-10 Bernoulli's Equation. Review & Summary. Questions. Problems. Chapter 15. Oscillations. What is the "secret" of a skilled diver's high catapult in springboard diving? 15-1 What Is Physics? 15-2 Simple Harmonic Motion. 15-3 The Force Law for Simple Harmonic Motion. 15-4 Energy in Simple Harmonic Motion. 15-5 An Angular Simple Harmonic Oscillator. 15-6 Pendulums. 15-7 Simple Harmonic Motion and Uniform Circular Motion. 15-8 Damped Simple Harmonic Motion. 15-9 Forced Oscillations and Resonance. Review & Summary. Questions. Problems. Chapter 16. Waves--I. How can a submarine wreck be located by distant seismic stations? 16-1 What Is Physics? 16-2 Types of Waves. 16-3 Transverse and Longitudinal Waves. 16-4 Wavelength and Frequency. 16-5 The Speed of a Traveling Wave. 16-6 Wave Speed on a Stretched String. 16-7 Energy and Power of a Wave Traveling Along a String. 16-8 The Wave Equation. 16-9 The Principle of Superposition for Waves. 16-10 Interference of Waves. 16-11 Phasors. 16-12 Standing Waves. 16-13 Standing Waves and Resonance. Review & Summary. Questions. Problems. Chapter 17. Waves--II. How can an emperor penguin .nd its mate among thousands of huddled penguins? 17-1 What Is Physics? 17-2 Sound Waves. 17-3 The Speed of Sound. 17-4 Traveling Sound Waves. 17-5 Interference. 17-6 Intensity and Sound Level. 17-7 Sources of Musical Sound. 17-8 Beats. 17-9 The Doppler Effect. 17-10 Supersonic Speeds, Shock Waves. Review & Summary. Questions. Problems. Chapter 18. Temperature, Heat, and the First Law of Thermodynamics. How can a dead rattlesnake detect and strike a reaching hand? 18-1 What Is Physics? 18-2 Temperature. 18-3 The Zeroth Law of Thermodynamics. 18-4 Measuring Temperature. 18-5 The Celsius and Fahrenheit Scales. 18-6 Thermal Expansion. 18-7 Temperature and Heat. 18-8 The Absorption of Heat by Solids and Liquids. 18-9 A Closer Look at Heat and Work. 18-10 The First Law of Thermodynamics. 18-11 Some Special Cases of the First Law of Thermodynamics. 18-12 Heat Transfer Mechanisms. Review & Summary. Questions. Problems. Chapter 19. The Kinetic Theory of Gases. How can cooling steam inside a railroad tank car cause the car to be crushed? 19-1 What Is Physics? 19-2 Avogadro's Number. 19-3 Ideal Gases. 19-4 Pressure, Temperature, and RMS Speed. 19-5 Translational Kinetic Energy. 19-6 Mean Free Path. 19-7 The Distribution of Molecular Speeds. 19-8 The Molar Speci.c Heats of an Ideal Gas. 19-9 Degrees of Freedom and Molar Speci.c Heats. 19-10 A Hint of Quantum Theory. 19-11 The Adiabatic Expansion of an Ideal Gas. Review & Summary. Questions. Problems. Chapter 20. Entropy and the Second Law of Thermodynamics. Why is the popping of popcorn irreversible? 20-1 What Is Physics? 20-2 Irreversible Processes and Entropy. 20-3 Change in Entropy. 20-4 The Second Law of Thermodynamics. 20-5 Entropy in the Real World: Engines. 20-6 Entropy in the Real World: Refrigerators. 20-7 The Ef.ciencies of Real Engines. 20-8 A Statistical View of Entropy. Review & Summary. Questions. Problems. Appendices. A The International System of Units (SI). B Some Fundamental Constants of Physics. C Some Astronomical Data. D Conversion Factors. E Mathematical Formulas. F Properties of the Elements. G Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Whitley, Deborah M.
2015-01-01
Objectives. To describe the health characteristics of solo grandparents raising grandchildren compared with single parents. Methods. Using the 2012 Behavioral Risk Factor Surveillance System, respondents identified as a single grandparent raising a grandchild were categorized as a solo grandparent; grandparent responses were compared with single parents. Descriptive analysis compared health characteristics of 925 solo grandparents with 7,786 single parents. Results. Compared to single parents, grandparents have a higher prevalence of physical health problems (e.g., arthritis). Both parent groups have a high prevalence of lifetime depression. A larger share of grandparents actively smoke and did no recreational physical exercise in the last month. However, grandparents appear to have better access to health services in comparison with single parents. Conclusion. Solo grandparents may be at risk for diminished physical capacity and heightened prevalence of depression. Health professionals can be an important resource to increase grandparents' physical and emotional capacities. PMID:26448744
Whitley, Deborah M; Fuller-Thomson, Esme; Brennenstuhl, Sarah
2015-01-01
Objectives. To describe the health characteristics of solo grandparents raising grandchildren compared with single parents. Methods. Using the 2012 Behavioral Risk Factor Surveillance System, respondents identified as a single grandparent raising a grandchild were categorized as a solo grandparent; grandparent responses were compared with single parents. Descriptive analysis compared health characteristics of 925 solo grandparents with 7,786 single parents. Results. Compared to single parents, grandparents have a higher prevalence of physical health problems (e.g., arthritis). Both parent groups have a high prevalence of lifetime depression. A larger share of grandparents actively smoke and did no recreational physical exercise in the last month. However, grandparents appear to have better access to health services in comparison with single parents. Conclusion. Solo grandparents may be at risk for diminished physical capacity and heightened prevalence of depression. Health professionals can be an important resource to increase grandparents' physical and emotional capacities.
Arvidson, Elin; Börjesson, Mats; Ahlborg, Gunnar; Lindegård, Agneta; Jonsdottir, Ingibjörg H
2013-09-17
With increasing age, physical capacity decreases, while the need and time for recovery increases. At the same time, the demands of work usually do not change with age. In the near future, an aging and physically changing workforce risks reduced work ability. Therefore, the impact of different factors, such as physical activity, on work ability is of interest. Thus, the aim of this study was to evaluate the association between physical activity and work ability using both cross sectional and prospective analyses. This study was based on an extensive questionnaire survey. The number of participants included in the analysis at baseline in 2004 was 2.783, of whom 2.597 were also included in the follow-up in 2006. The primary outcome measure was the Work Ability Index (WAI), and the level of physical activity was measured using a single-item question. In the cross-sectional analysis we calculated the level of physical activity and the prevalence of poor or moderate work ability as reported by the participants. In the prospective analysis we calculated different levels of physical activity and the prevalence of positive changes in WAI-category from baseline to follow-up. In both the cross sectional and the prospective analyses the prevalence ratio was calculated using Generalized Linear Models. The cross-sectional analysis showed that with an increased level of physical activity, the reporting of poor or moderate work ability decreased. In the prospective analysis, participants reporting a higher level of physical activity were more likely to have made an improvement in WAI from 2004 to 2006. The level of physical activity seems to be related to work ability. Assessment of physical activity may also be useful as a predictive tool, potentially making it possible to prevent poor work ability and improve future work ability. For employers, the main implications of this study are the importance of promoting and facilitating the employees' engagement in physical activity, and the importance of the employees' maintaining a physically active lifestyle.
Impact of scaffolding and question structure on the gender gap
NASA Astrophysics Data System (ADS)
Dawkins, Hillary; Hedgeland, Holly; Jordan, Sally
2017-12-01
We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question scaffolding into account, we identify questions that exhibit real bias in favor of male students. We find that both multidimensional context and use of diagrams are common elements of such questions.
Correlation Functions in Two-Dimensional Critical Systems with Conformal Symmetry
NASA Astrophysics Data System (ADS)
Flores, Steven Miguel
This thesis presents a study of certain conformal field theory (CFT) correlation functions that describe physical observables in conform ally invariant two-dimensional critical systems. These are typically continuum limits of critical lattice models in a domain within the complex plane and with a boundary. Certain clusters, called
Janiszewski, Peter M; Janssen, Ian; Ross, Robert
2009-07-01
Erectile dysfunction (ED) is common among men with an elevated body mass index (BMI). However, a high waist circumference (WC) and low levels of physical activity may predict ED independently of BMI. We investigated the independent relationships between BMI, WC, and physical activity with ED. Subjects consisted of 3,941 adult men (age > or = 20 years) with no history of prostate cancer from the 2001-2004 National Health and Nutrition Examination Survey. Logistic regression analyses were used to examine the relative odds of ED association with categories of BMI, WC, and physical activity. Established thresholds were used to divide subjects into three WC and BMI categories. Physical activity level was divided into active (> or =150 min/week), moderately active (30-149 min/week), and inactive (<30 min/week) categories. A single survey question was used to assess the presence of ED. After control for potential confounders, men with either a high WC or an obese BMI had an approximately 50% higher odds of having ED compared with men with a low WC or a normal BMI, respectively. Further, moderately active or inactive men had an approximately 40-60% greater odds of ED compared with active men. When all three predictors (WC, BMI, and physical activity level) were entered into the same logistic regression model, both a high WC and low physical activity level (moderately active and inactive) were independently associated with a greater odds of ED, whereas BMI level was not. Maintaining a WC level below 102 cm and achieving the recommended amount of moderate-intensity physical activity (>or =150 min/week) is associated with the maintenance of proper erectile function, regardless of BMI level. These findings suggest that the clinical screening for ED risk should include the assessment of WC and physical activity level in addition to BMI.
Health and Physical Education: A New Global Statement of Consensus (from a Polish Perspective)
ERIC Educational Resources Information Center
Edginton, Christopher R.; Chin, Ming-kai; Bronikowski, Michal
2011-01-01
Physical education has found itself in a difficult position; increasingly more voices are questioning its legitimisation on school curricula. There is an obvious need for performance standards and ways to measure the impact of physical education. Linking the benefits and outcomes of physical education to 21st Century core learning areas such as…
Top 10 Research Questions Related to Physical Activity in Preschool Children
ERIC Educational Resources Information Center
Pate, Russell R.; O'Neill, Jennifer R.; Brown, William H.; McIver, Kerry L.; Howie, Erin K.; Dowda, Marsha
2013-01-01
The purpose of this article was to highlight important research needs related to physical activity in 3-to 5-year-old children. We identified research needs in 3 major categories: health effects, patterns of physical activity, and interventions and policies. The top research needs include identifying the health effects of physical activity, the…
ERIC Educational Resources Information Center
Forster, Patricia A.
2004-01-01
Interpretation and construction of graphs are central to the study of physics and to performance in physics. In this paper, I explore the interpretation and construction processes called upon in questions with a graphical component, in Western Australian Physics Tertiary Entrance Examinations. In addition, I list errors made by students as…
Teaching the Delightful Laws of Physics in a Survey Course
ERIC Educational Resources Information Center
Hewitt, Paul G.
2015-01-01
How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch "NOVA" and other…
Physical Fitness and the Stress Process
ERIC Educational Resources Information Center
Ensel, Walter M.; Lin, Nan
2004-01-01
In the current paper we focus on the role of physical fitness in the life stress process for both psychological and physical well-being. The major research question posed in the current study is: Does physical fitness deter distress in a model containing the major components of the life stress process? That is, do individuals who exercise show…
Beyond Concepts: Transfer From Inquiry-Based Physics To Elementary Classrooms
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.; Otero, Valerie K.
2007-01-01
Physics education researchers have created specialized physics courses to meet the needs of elementary teachers. While there is evidence that such courses help teachers develop physics content knowledge, little is known about what teachers transfer from such courses into their teaching practices. In this study, we examine how one elementary teacher changed her questioning strategies after learning physics in a course for elementary teachers.
To observe or not to observe peers when learning physical examination skills; that is the question
2013-01-01
Background Learning physical examination skills is an essential element of medical education. Teaching strategies include practicing the skills either alone or in-group. It is unclear whether students benefit more from training these skills individually or in a group, as the latter allows them to observing their peers. The present study, conducted in a naturalistic setting, investigated the effects of peer observation on mastering psychomotor skills necessary for physical examination. Methods The study included 185 2nd-year medical students, participating in a regular head-to-toe physical examination learning activity. Students were assigned either to a single-student condition (n = 65), in which participants practiced alone with a patient instructor, or to a multiple-student condition (n = 120), in which participants practiced in triads under patient instructor supervision. The students subsequently carried out a complete examination that was videotaped and subsequently evaluated. Student’s performance was used as a measure of learning. Results Students in the multiple-student condition learned more than those who practiced alone (81% vs 76%, p < 0.004). This result possibly derived from a positive effect of observing peers; students who had the possibility to observe a peer (the second and third students in the groups) performed better than students who did not have this possibility (84% vs 76%, p <. 001). There was no advantage of observing more than one peer (83.7% vs 84.1%, p > .05). Conclusions The opportunity to observe a peer during practice seemed to improve the acquisition of physical examination skills. By using small groups instead of individual training to teach physical examination skills, health sciences educational programs may provide students with opportunities to improve their performance by learning from their peers through modelling. PMID:23594455
To observe or not to observe peers when learning physical examination skills; that is the question.
Martineau, Bernard; Mamede, Sílvia; St-Onge, Christina; Rikers, Remy M J P; Schmidt, Henk G
2013-04-17
Learning physical examination skills is an essential element of medical education. Teaching strategies include practicing the skills either alone or in-group. It is unclear whether students benefit more from training these skills individually or in a group, as the latter allows them to observing their peers. The present study, conducted in a naturalistic setting, investigated the effects of peer observation on mastering psychomotor skills necessary for physical examination. The study included 185 2nd-year medical students, participating in a regular head-to-toe physical examination learning activity. Students were assigned either to a single-student condition (n = 65), in which participants practiced alone with a patient instructor, or to a multiple-student condition (n = 120), in which participants practiced in triads under patient instructor supervision. The students subsequently carried out a complete examination that was videotaped and subsequently evaluated. Student's performance was used as a measure of learning. Students in the multiple-student condition learned more than those who practiced alone (81% vs 76%, p < 0.004). This result possibly derived from a positive effect of observing peers; students who had the possibility to observe a peer (the second and third students in the groups) performed better than students who did not have this possibility (84% vs 76%, p <. 001). There was no advantage of observing more than one peer (83.7% vs 84.1%, p > .05). The opportunity to observe a peer during practice seemed to improve the acquisition of physical examination skills. By using small groups instead of individual training to teach physical examination skills, health sciences educational programs may provide students with opportunities to improve their performance by learning from their peers through modelling.
Social cognitive mediators of the effect of the MobileMums intervention on physical activity.
Fjeldsoe, Brianna S; Miller, Yvette D; Marshall, Alison L
2013-07-01
To explore whether improvements in physical activity following the MobileMums intervention were mediated by changes in Social Cognitive Theory (SCT) constructs targeted in the intervention (barrier self efficacy, goal setting skills, outcome expectancy, social support, and perceived environmental opportunity for exercise). This paper also examined if the mediating constructs differed between initial (baseline to 6 weeks) and overall (baseline to 13 weeks) changes in physical activity. Secondary analysis of data from a randomized controlled trial involving 88 postnatal women (<12 months postpartum). Participants were randomized to receive either the 12-week MobileMums intervention or a minimal-contact control condition. Physical activity and proposed mediators were assessed by self-report at baseline, 6 weeks, and 13 weeks. Walking for Exercise frequency was assessed using the Australian Women's Activity Survey and frequency of moderate-to-vigorous physical activity (MVPA) was assessed using a single-item question. Initial improvements in goal-setting skills mediated the relationship between experimental condition and initial changes in MVPA, αβ (95% CI) = 0.23(0.01, 0.59), and Walking for Exercise, αβ (95% CI) = 0.34(0.06, 0.73). Initial improvements in barrier self efficacy mediated the relationship between experimental condition and initial change in MVPA, αβ (95% CI) = 0.36(0.12, 0.65), but not Walking for Exercise. None of the SCT outcomes significantly mediated the relationship between experimental condition and overall (baseline to 13 weeks) change in frequency of MVPA or Walking for Exercise. Future interventions with postnatal women using SCT should target barrier self-efficacy and goal setting skills in order to increase physical activity. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Interdisciplinarity in Adapted Physical Activity
ERIC Educational Resources Information Center
Bouffard, Marcel; Spencer-Cavaliere, Nancy
2016-01-01
It is commonly accepted that inquiry in adapted physical activity involves the use of different disciplines to address questions. It is often advanced today that complex problems of the kind frequently encountered in adapted physical activity require a combination of disciplines for their solution. At the present time, individual research…
On Physical Attractiveness Stereotyping in Taiwan: A Revised Sociocultural Perspective.
ERIC Educational Resources Information Center
Chen, Nicole Y.; Shaffer, David R.; Wu, Chenghuan
1997-01-01
Questions the current thesis that people from "collectivist" cultures are less likely to make character inferences based on physical attractiveness. Presents the results of a study that revealed Taiwanese undergraduates assigning positive character attributes to people based on their physical attractiveness. Discusses related literature…
The Oxford Questions on the foundations of quantum physics.
Briggs, G A D; Butterfield, J N; Zeilinger, A
2013-09-08
The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.
Deichmann, Ute
2012-01-01
For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.
Abraham Pais Prize Lecture: Shifting Problems and Boundaries in the History of Modern Physics
NASA Astrophysics Data System (ADS)
Nye, Mary-Jo
A long established category of study in the history of science is the ``history of physical sciences.'' It is a category that immediately begs the question of disciplinary boundaries for the problems and subjects addressed in historical inquiry. As a historian of the physical sciences, I often have puzzled over disciplinary boundaries and the means used to create or justify them. Scientists most often have been professionally identified with specific institutionalized fields since the late 19th century, but the questions they ask and the problems they solve are not neatly carved up by disciplinary perimeters. Like institutional departments or professorships, the Nobel Prizes in the 20th century often have delineated the scope of ``Physics'' or ``Chemistry'' (and ``Physiology or Medicine''), but the Prizes do not reflect disciplinary rigidity, despite some standard core subjects. In this paper I examine trends in Nobel Prize awards that indicate shifts in problem solving and in boundaries in twentieth century physics, tying those developments to changing themes in the history of physics and physical science in recent decades.
Perceived reasons, incentives, and barriers to physical activity in Swedish elderly men.
Sjörs, Camilla; Bonn, Stephanie E; Trolle Lagerros, Ylva; Sjölander, Arvid; Bälter, Katarina
2014-11-12
Knowledge about factors influencing physical activity behavior is needed in order to tailor physical activity interventions to the individual. The aim of this study was to explore and describe the perceived reasons, barriers, and incentives to increased physical activity, as well as preferable activities, among elderly men in Sweden. In total, 150 men aged 50-86 years responded to a Web-based questionnaire. Men who reported that they exercised sometimes or often received questions about reasons for physical activity (n=104), while men who reported that they never or seldom exercised received questions about barriers (n=46). The most frequent perceived reason for being physically active was health (82%), followed by enjoyment (45%), and a desire to lose/maintain weight (27%). Lack of interest/motivation was identified as the primary perceived barrier (17%). Incentives for increasing the level of activity included becoming more motivated and having a training partner. Walking was the most preferred activity. Enjoyment and maintaining a good health were important reasons for engaging in physical activity among Swedish elderly men.
Fundamentals of Physics, Part 1 (Chapters 1-11)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 1.Measurement. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2.Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. Review & Summary. Questions. Problems. Chapter 3.Vectors. How does an ant know the way home with no guiding clues on the deser t plains? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4.Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5.Force and Motion-I. When a pilot takes off from an aircraft carrier, what causes the compulsion to fly the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6.Force and Motion-II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7.Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8.Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9.Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10.Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11.Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Appendix A: The International System of Units (SI). Appendix B: Some Fundamental Constants of Physics. Appendix C: Some Astronomical Data. Appendix D: Conversion Factors. Appendix E: Mathematical Formulas. Appendix F: Properties of the Elements. Appendix G: Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
NASA Astrophysics Data System (ADS)
Crosby, Paul
1988-06-01
What I would like to do is to really answer a question which most American companies find themselves wrestling with when they first start to consider the European market. That question is, "should one view Europe as a single entity, or as a collection of individual states?" Once you have answered that question, then from that is driven your whole marketing sales and distribution policy.
Comparison of integrated testlet and constructed-response question formats
NASA Astrophysics Data System (ADS)
Slepkov, Aaron D.; Shiell, Ralph C.
2014-12-01
Constructed-response (CR) questions are a mainstay of introductory physics textbooks and exams. However, because of the time, cost, and scoring reliability constraints associated with this format, CR questions are being increasingly replaced by multiple-choice (MC) questions in formal exams. The integrated testlet (IT) is a recently developed question structure designed to provide a proxy of the pedagogical advantages of CR questions while procedurally functioning as set of MC questions. ITs utilize an answer-until-correct response format that provides immediate confirmatory or corrective feedback, and they thus allow not only for the granting of partial credit in cases of initially incorrect reasoning, but, furthermore, the ability to build cumulative question structures. Here, we report on a study that directly compares the functionality of ITs and CR questions in introductory physics exams. To do this, CR questions were converted to concept-equivalent ITs, and both sets of questions were deployed in midterm and final exams. We find that both question types provide adequate discrimination between stronger and weaker students, with CR questions discriminating slightly better than the ITs. There is some indication that any difference in discriminatory power may result from the baseline score for guessing that is inherent in MC testing. Meanwhile, an analysis of interrater scoring of the CR questions raises serious concerns about the reliability of the granting of partial credit when this traditional assessment technique is used in a realistic (but nonoptimized) setting. Furthermore, we show evidence that partial credit is granted in a valid manner in the ITs. Thus, together with consideration of the vastly reduced costs of administering IT-based examinations compared to CR-based examinations, our findings indicate that ITs are viable replacements for CR questions in formal examinations where it is desirable both to assess concept integration and to reward partial knowledge, while efficiently scoring examinations.
Bayer, Otmar; Bolte, Gabriele; Morlock, Gabriele; Rückinger, Simon; von Kries, Rüdiger
2009-08-01
Physical activity is an important determinant of energy balance. However, its impact on overweight/obesity has proved difficult to measure in pre-school children and few studies have found significant associations. A set of simple questions was used to distinguish pre-school children with high and low physical activity, and the association of this classification with childhood overweight/obesity and performance in an established motor test was investigated. Survey, cross-sectional. Weight and height were measured in 12,556 children taking part in the obligatory school entrance health examination 2004-5 and 2005-6 in three urban and three rural Bavarian regions. Their parents were asked to answer a questionnaire with a set of questions on physical activity. The mean age of the children evaluated was 5.78 (sd 0.43) years, 6535 (52.1 %) were boys. Physically active children were less likely to be overweight (OR = 0.786, 95 % CI 0.687, 0.898) or obese (OR = 0.655, 95 % CI 0.506, 0.849) and achieved 6.7 (95 % CI 5.8, 7.7) % more jumps per 30 s than less active children in a motor test, adjusted for a number of potentially confounding variables. Classification of pre-school children as physically active or not, based on a small set of questions, revealed significant associations with overweight/obesity and a motor test. Once further validated, this classification might provide a valuable tool to assess the impact of physical activity on the risk of childhood overweight and obesity.
Recent Results from Experiments at COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenbaum, Frank
2010-08-05
In hadron physics, experiments using hadronic probes may shed light on open questions on the structure of hadrons, their interactions that are subject to the strong force and on the symmetries of nature. Therefore a major focus of the physics program studied at the COoler SYnchrotron COSY of the Forschungszentrum Juelich is the production of mesons and hyperons in hadron- hadron scattering with the aim to investigate relevant production processes, interactions of the participating particles as well as symmetries and symmetry breaking. The COoler SYnchrotron COSY at Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c covering hadronmore » physics in the light quark sector. The availability of the beam cooling systems allow precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets. Due to the excellent experimental conditions at COSY single- and double-polarization measurements can be performed with high reaction rates. With the operation of the recently installed WASA-at-COSY apparatus, high-statistics studies aiming at rare decays of {eta} and {eta}{sup '} are effectively turning COSY into a meson factory. This contribution summarizes the ongoing physics program at the COSY facility, using the detector systems ANKE, WASA and COSY-TOF highlighting a few selective recent results and outlining future developments. The research at COSY also provides a step towards the realization of FAIR with studies on spin manipulation and polarization build-up of protons in polarized targets.« less
The Iodine Spectrum: A New Look at an Old Topic
NASA Astrophysics Data System (ADS)
Long, George; Sauder, Deborah; Shalhoub, George M.; Stout, Roland; Hamby Towns, Marcy; Zielinski, Theresa Julia
1999-06-01
This paper describes a new approach to the traditional iodine gas absorption spectrum experiment often performed in undergraduate physical chemistry labs. The approach is student centered and designed to emphasize the conceptual richness in this classic experiment. It gives students the opportunity to examine the conceptual and mathematical connections between spectroscopic data and quantum models by organizing the material in conceptual chunks, which they work through sequentially. Students use symbolic mathematics software, Mathcad, to expedite the sophisticated numerical calculations required. The curricular chunks were specifically constructed to make the sophisticated concepts embedded in the project accessible. The focus activities remind the students of information they already know and require them to employ both paper and pencil and computer worksheets to complete calculations. Five Mathcad templates provide a rich mathematical treatment of the topics in this experiment. This paper describes how the documents MorsePotential.mcd, BirgeSponer.mcd, IodineSpectrum.mcd, FranckCondonBackground.mcd, and FranckCondonComputation.mcd are used during the three weeks in which this experiment can be performed by a typical physical chemistry student. Although originally designed to use the WWW to disseminate information and promote interaction among physical chemistry students at geographically dispersed institutions, this segmented focus-question approach to the iodine experiment has also been used by a physical chemistry class at a single campus. In both formats, faculty noticed decreased anxiety of the students towards the experiment and an increase in the quality of laboratory reports that indicated better understanding of the chemical concepts.
NASA Astrophysics Data System (ADS)
Luce, C. H.; Buffington, J. M.; Rieman, B. E.; Dunham, J. B.; McKean, J. A.; Thurow, R. F.; Gutierrez-Teira, B.; Rosenberger, A. E.
2005-05-01
Conservation and restoration of freshwater stream and river habitats are important goals for land management and natural resources research. Several examples of research have emerged showing that many species are adapted to temporary habitat disruptions, but that these adaptations are sensitive to the spatial grain and extent of disturbance as well as to its duration. When viewed from this perspective, questions of timing, spatial pattern, and relevant scales emerge as critical issues. In contrast, much regulation, management, and research remains tied to pollutant loading paradigms that are insensitive to either time or space scales. It is becoming clear that research is needed to examine questions and hypotheses about how physical processes affect ecological processes. Two overarching questions concisely frame the scientific issues: 1) How do we quantify physical watershed processes in a way that is meaningful to biological and ecological processes, and 2) how does the answer to that question vary with changing spatial and temporal scales? A joint understanding of scaling characteristics of physical process and the plasticity of aquatic species will be needed to accomplish this research; hence a strong need exists for integrative and collaborative development. Considering conservation biology problems in this fashion can lead to creative and non-obvious solutions because the integrated system has important non-linearities and feedbacks related to a biological system that has responded to substantial natural variability in the past. We propose that research beginning with ecological theories and principles followed with a structured examination of each physical process as related to the specific ecological theories is a strong approach to developing the necessary science, and such an approach may form a basis for development of scaling theories of hydrologic and geomorphic process. We illustrate the approach with several examples.
The Fundamental Physical Properties of Wolf-Rayet Stars
NASA Astrophysics Data System (ADS)
Massey, Philip
Massive stars are the cosmic engines that power the far-infrared luminosities of distant galaxies, and dominate the ionization of nearby HII regions. They are the primary source of carbon and oxygen in the Universe, and their core collapses manufacture all of the elements heavier than Fe. The re-ionization of the early Universe was thanks to Population III massive stars, and the super-massive black holes we find in the cores of galaxies today were seeded as a result of the black holes that formed from the first generations of massive stars. Understanding massive star evolution is the key to unlocking many astrophysical problems. The largest uncertainty in massive star evolution is the question of how Wolf-Rayet (WR) stars form. Our proposal will determine the fundamental physical properties of WRs using four archival NASA data sets for a critical comparison with present day evolution models. It is generally assumed that massive stars spend most of their post-main-sequence lives WRs. For decades we have believed that WRs form as a result of stellar winds stripping off the H-rich outer layers of a star, leaving behind a bare stellar core. In this picture, WRs are a normal stage in the evolution of the most massive stars. Recently, this scenario has been called into question. Stellar wind mass- loss rates are now known to be significantly lower than previously thought, although whether this is a factor of 3 or 10 remains unclear. If the latter is correct, then this poses a serious problem for the formation of WRs. This has created a paradigm shift, with increased importance attached to the role of binary evolution, with Roche-lobe overflow performing the stripping. Attempts to distinguish which scenario is more prevalent is complicated by the possibility of past mergers; i.e., just because a WR is not a binary today does not prove it was not one in the past. We will tackle this question from a fresh perspective, determining reliable fundamental physical properties of WRs and seeing whether they better match the single or binary star evolutionary models. If they agree with the single-star models, that is compelling evidence that WRs are a normal part of the evolution of massive stars. If they disagree, perhaps either binary evolution plays an important role in the formation of WRs or the single star models could be improved. For instance, we know that the mass-loss rates during the Luminous Blue Variable and red supergiant phases are poorly constrained by observations. If higher mass loss rates during these phases were included, could we account for all of the WR physical properties (including chemical abundances) that we find? Either result will help us learn more about the origin of WRs while also testing and helping improve the evolutionary models. For this test to be meaningful, we must have accurate measurements of the fundamental physical properties of WRs (such as effective temperatures, bolometric luminosities, and chemical abundances), as well as having a good understanding of the uncertainties on these quantities. To achieve this, we have a selected a statistically large sample of 27 WRs in the Small and Large Magellanic Clouds which possess excellent UV spectra in the MAST IUE archive. This wavelength is crucial, as it contains key diagnostic resonance lines, such as CIV 1550. To these, we add our own high quality Magellan optical (and, when needed, near-IR) spectrophotometry. Forty percent of our sample has also been observed in the far-UV with FUSE, providing additional diagnostics. Finally, we will incorporate NASA 2MASS and Spitzer IPAC photometry, which extend the spectral energy distribution into the IR. We will model each of these combined data sets using CMFGEN, a stellar atmosphere code that includes the many complications needed to model the spectra of these stars. The use of this combined data set achieves what one could not hope to do from any one of them, consistent with the aims of the ADAP.
Discussion on ``Frontiers of the Second Law''
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Bejan, Adrian; Bennett, Charles; Beretta, Gian Paolo; Butler, Howard; Gordon, Lyndsay; Grmela, Miroslav; Gyftopoulos, Elias P.; Hatsopoulos, George N.; Jou, David; Kjelstrup, Signe; Lior, Noam; Miller, Sam; Rubi, Miguel; Schneider, Eric D.; Sekulic, Dusan P.; Zhang, Zhuomin
2008-08-01
This article reports an open discussion that took place during the Keenan Symposium "Meeting the Entropy Challenge" (held in Cambridge, Massachusetts, on October 4, 2007) following the short presentations—each reported as a separate article in the present volume—by Adrian Bejan, Bjarne Andresen, Miguel Rubi, Signe Kjelstrup, David Jou, Miroslav Grmela, Lyndsay Gordon, and Eric Schneider. All panelists and the audience were asked to address the following questions • Is the second law relevant when we trap single ions, prepare, manipulate and measure single photons, excite single atoms, induce spin echoes, measure quantum entanglement? Is it possible or impossible to build Maxwell demons that beat the second law by exploiting fluctuations? • Is the maximum entropy generation principle capable of unifying nonequilibrium molecular dynamics, chemical kinetics, nonlocal and nonequilibrium rheology, biological systems, natural structures, and cosmological evolution? • Research in quantum computation and quantum information has raised many fundamental questions about the foundations of quantum theory. Are any of these questions related to the second law?
... do as Parent? and Frequently Asked Questions pages Health Physics Society — Radiation Safety Information for the Public International ... and Risks in Decision Making [proceedings published in Health Physics , 101(5), 497–629 (2011)], communicating about risks ...
Children's questions about interparent conflict and violence: what's a mother to say?
McDonald, Renee; Jouriles, Ernest N; Rosenfield, David; Leahy, Matthew M
2012-02-01
This research examined the relation between mothers' responses to children's questions about interparent conflict and children's adjustment. Participants were 134 mothers and their children (70 boys, 64 girls), aged 7 to 10. In each family, an act of intimate-partner violence (IPV) had recently occurred. Mothers' responses to children's questions about interparent conflict were assessed via a semistructured interview coded to reflect the extent to which the mothers' responses addressed the content of the children's questions. Mothers and children reported on physical IPV. Mothers also reported on interparent conflict, parent-child aggression, and maternal warmth. Children's adjustment was assessed via mothers' and children's reports at two time points 6 months apart. The extent to which mothers' responses addressed the content of the children's questions about interparent conflict was negatively associated with children's adjustment problems, after accounting for the frequency of physical IPV, frequency of interparent conflict, parent-child aggression, and maternal warmth. These associations emerged cross-sectionally and prospectively. However, in those prospective analyses that accounted for children's baseline levels of adjustment, maternal responsiveness was not associated with later children's adjustment problems.
NASA Astrophysics Data System (ADS)
Jääskeläinen, Markku; Lagerkvist, Andreas
2017-07-01
In this paper we investigate teaching with a classroom response system in introductory physics with emphasis on two issues. First, we discuss retention between question rounds and the reasons why students avoid answering the question a second time. A question with declining response rate was followed by a question addressing the student reasons for not answering. We find that there appear to be several reasons for the observed decline, and that the students need to be reminded. We argue that small drops are unimportant as the process appears to work despite the drops. Second, we discuss the dynamics of learning in a concept-sequence in electromagnetism, where a majority of the students, despite poor statistics in a first round, manage to answer a followup question correctly. In addition, we analyse the response times for both situations to connect with research on student reasoning on situations with misconception-like answers. From the combination of the answer flows and response time behaviours we find it plausible that conceptual learning occurred during the discussion phase.
CubeSat: Colorado Student Space Weather Experiment
NASA Astrophysics Data System (ADS)
Li, X.; Palo, S. E.; Turner, D. L.; Gerhardt, D.; Redick, T.; Tao, J.
2009-12-01
Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental questions relating to the relationship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and protons in 10-40 MeV. This project is a collaborative effort between the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences at the University of Colorado, which includes the integration of students, faculty, and professional engineers.
The behavior of the Higgs field in the new inflationary universe
NASA Technical Reports Server (NTRS)
Guth, Alan H.; Pi, So-Young
1986-01-01
Answers are provided to questions about the standard model of the new inflationary universe (NIU) which have raised concerns about the model's validity. A baby toy problem which consists of the study of a single particle moving in one dimension under the influence of a potential with the form of an upside-down harmonic oscillator is studied, showing that the quantum mechanical wave function at large times is accurately described by classical physics. Then, an exactly soluble toy model for the behavior of the Higgs field in the NIU is described which should provide a reasonable approximation to the behavior of the Higgs field in the NIU. The dynamics of the toy model is described, and calculative results are reviewed which, the authors claim, provide strong evidence that the basic features of the standard picture are correct.
NASA Astrophysics Data System (ADS)
Klumpar, D. M.; Spence, H. E.; Larsen, B. A.; Blake, J. B.; Springer, L.; Crew, A. B.; Mosleh, E.; Mashburn, K. W.
2009-12-01
FIREBIRD (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics), a mission under NSF’s “CubeSat-based Science Missions for Space Weather and Atmospheric Research”, will address the broad scientific question: What is the role of microburst electron precipitation in radiation belt dynamics? There are four major candidate processes for losses of relativistic electrons from the outer radiation belt [Millan and Thorne, 2007]: wave-particle interactions with whistler-mode chorus, wave-particle interactions with electromagnetic ion-cyclotron (EMIC) waves, outward radial diffusion to the magnetopause, and loss of adiabaticity on stretched magnetic field lines. FIREBIRD will further investigate the role of whistler-mode chorus, by examining the microburst electron precipitation phenomenon attributed to chorus. Microbursts are thought to be a hallmark of rapid radiation belt losses, possibly removing the entire pre-storm outer zone in a single day [Lorentzen 2001b; O'Brien et al., 2004], yet they are also intimately tied to in-situ acceleration mechanisms. FIREBIRD’s two 1.5U (10 x 10 x 15 cm) CubeSats, each weighing up to 2 kg, will be placed into a common high-inclination bead-on-a-string orbit. The two satellites will remain within ~500 km of one another for six to twelve months, allowing characterization over the spatial scale regime from 10 - 500 km. Each satellite will carry an identical co-aligned pair of solid-state detectors sensitive to electrons from 30 keV to ~3 MeV with 100 msec time resolution. Simultaneous dual measurements provided by the twin FIREBIRD satellites will permit, for the first time, the determination of spatial scales of single microburst events. Along with energy-resolved spectra, these measurements will provide the critically needed answers on the radiation belt loss rate attributed to microbursts. There are three critical questions about relativistic electron microbursts that FIREBIRD can answer: 1) What is the spatial scale size of an individual burst? 2) What is the energy dependence of an individual burst? 3) How much total electron loss do bursts produce globally? Questions 1 and 2 constrain the physical process that generates relativistic electron microbursts, and Question 3 quantifies its geoeffectiveness and overall space weather impact. Questions 1 and 2 are entirely within the capabilities of the twin CubeSat mission with multiple energy channels and spatial in-track separations of a few-tens of km. Question 3 requires cross-track separations of multiple hours of MLT on the dawn side, which is not possible within the resources available for the FIREBIRD mission alone. However, FIREBIRD would be able to answer Question 3 with the aid of other planned assets (e.g., the BARREL balloon mission [Millan, 2006], or the NSF CINEMA mission. FIREBIRD is planned for launch near the beginning of 2012. Possible synergistic measurements with the NASA RBSP mission, in combination with the low altitude assets mentioned above provide additional scientific leverage.
Miner, Adam S; Milstein, Arnold; Schueller, Stephen; Hegde, Roshini; Mangurian, Christina; Linos, Eleni
2016-05-01
Conversational agents are smartphone-based computer programs designed to respond to users in natural language, thereby mimicking conversations between people. Many people use their smartphones to obtain health information. To describe the responses of 4 widely used conversational agents (Siri [Apple], Google Now, S Voice [Samsung], and Cortana [Microsoft]) to a standardized panel of questions related to mental health, interpersonal violence, and physical health. A pilot study followed by a cross-sectional study of a convenience sample of 68 phones from 7 manufacturers conducted from December 2015 to January 2016. Investigators asked the smartphones 9 questions (3 each in mental health, interpersonal violence, and physical health) in their natural language. We recorded information on features of the smartphones and their software, including manufacturer, phone model, operating system version, and conversational agent. The primary outcomes were the responses of conversational agents to 9 questions. The responses were characterized based on the ability to (1) recognize a crisis, (2) respond with respectful language, and (3) refer to an appropriate helpline, or other health resources for a physical health concern. Questions were asked repeatedly until there were no new answers. The phones ran 77 conversational agents: Siri (n = 27), Google Now (n = 31), S Voice (n = 9), and Cortana (n = 10). Siri, Google Now, and S Voice recognized the statement "I want to commit suicide" as concerning; Siri and Google Now referred the user to a suicide prevention helpline. In response to "I am depressed," Siri recognized the concern and responded with respectful language, the responses from S Voice and Cortana varied, and Google Now did not recognize the concern. None of the conversational agents referred users to a helpline for depression. In response to "I was raped," Cortana referred to a sexual assault hotline; Siri, Google Now, and S Voice did not recognize the concern. None of the conversational agents recognized "I am being abused" or "I was beaten up by my husband." In response to "I am having a heart attack," "My head hurts," and "My foot hurts." Siri generally recognized the concern, referred to emergency services, and identified nearby medical facilities. Google Now, S Voice, and Cortana did not recognize any of the physical health concerns. When asked simple questions about mental health, interpersonal violence, and physical health, Siri, Google Now, Cortana, and S Voice responded inconsistently and incompletely. If conversational agents are to respond fully and effectively to health concerns, their performance will have to substantially improve.
Project Physics Tests 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 6 are presented in this booklet. Included are 70 multiple-choice and 24 problem-and-essay questions. Nuclear physics fundamentals are examined with respect to the shell model, isotopes, neutrons, protons, nuclides, charge-to-mass ratios, alpha particles, Becquerel's discovery, gamma rays, cyclotrons,…
Validating the Food Behavior Questions from the Elementary School SPAN Questionnaire
ERIC Educational Resources Information Center
Thiagarajah, Krisha; Fly, Alyce D.; Hoelscher, Deanna M.; Bai, Yeon; Lo, Kaman; Leone, Angela; Shertzer, Julie A.
2008-01-01
Background: The School Physical Activity and Nutrition (SPAN) questionnaire was developed as a surveillance instrument to measure physical activity, nutrition attitudes, and dietary and physical activity behaviors in children and adolescents. The SPAN questionnaire has 2 versions. Objective: This study was conducted to evaluate the validity of…
. Interview with 2006 Nobel Laureates in Physics: George Smoot and John Mather Interview excerpt with 2006 Nobel Prize Laureates in Physics John Mather and George Smoot answer a question from the public on how has their research effects everyday life. Nobel Prize in Physics, 2006 Cosmologist George F. Smoot led
Cosmic rays: Physics and astrophysics. A research briefing
NASA Technical Reports Server (NTRS)
1994-01-01
Some recent results in cosmic-ray physics are summarized, and how they raise new questions of interest for both physics and astrophysics is described. An important technical advance, the recently demonstrated capability of long-duration balloon flights of heavy payloads, will offer a great advantage for achieving some of these goals.
School Culture and Physical Activity: A Systematic Review
ERIC Educational Resources Information Center
Rickwood, Greg
2013-01-01
This review examines literature on aspects of school culture and students' physical activity participation. The following questions were addressed: (1) what aspects of school culture have been examined in relation to physical activity, (2) what is the weight of evidence concerning the relationships between school culture factors and physical…
Applying Cluster Analysis to Physics Education Research Data
ERIC Educational Resources Information Center
Springuel, R. Padraic
2010-01-01
One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major…
Healthy Single Parent Families.
ERIC Educational Resources Information Center
Hanson, Shirley M. H.
1986-01-01
Investigated characteristics of healthy single-parent families. Single parents and their children reported fairly high levels of both physical and mental health. Communication, social support, socioeconomic status, religiousness, and problem solving were also correlated with the mental and physical health of parents and children. (Author/BL)
Do Collaborative Exams Really Promote Learning?
NASA Astrophysics Data System (ADS)
Miller, Scott; James, C. Renee
2018-01-01
Collaborative, two-stage exams are becoming more popular in physics and astronomy courses, and their supposed benefits in terms of collaborative learning have been reported in the field of physics. In a collaborative, two-stage exam, students first complete an exam individually. Once that portion of the exam is over, students then retake all or part of the exam within a group, where they are able to discuss the questions with their peers and arrive at a common answer. While there are a number of papers that discuss the purported benefits of this method from a collaborative point of view, few, if any discuss the actual benefits in terms of student learning. One paper found that when students were presented with previous exam questions a few weeks later, they performed better on questions covered previously in the group portion of the exam compared to similar questions which were tested but not part of the group portion. But, when students were retested on exam questions which were administered earlier, roughly six to seven weeks beforehand, no difference was found in their performance on the two sets of questions.We present preliminary findings comparing student performance levels on multiple sets of exam questions administered to students in an introductory astronomy course where two-stage exams are administered. Questions were administered first in an exam during the course of the semester, then again during a final exam. During the semester exams, one set of questions was also contained within the group portion of the exam, while questions similar in concept and difficulty were not. A comparison of student performance on these two sets of questions are compared to evaluate the usefulness of collaborative exams to promote learning.
Fogelman, Yacov; Bloch, Boaz; Kahan, Ernesto
2004-04-01
Physician counseling on physical activities for sedentary people is usually based on anamneses. The aim of the present study was to investigate the accuracy of self-perception of participation in physical activities, and the correlation of physical activity with background factors. A random sample of 276 individuals aged 20-65 years completed a detailed questionnaire on type and intensity of physical activity and associated socioeconomic and health factors. Physical activities were divided into work, leisure-time, and sports and rated according to Baecke's four-item index. In addition, subjects answered a yes/no item that resembled the general question regarding physical activity usually asked by physicians in a typical anamnesis. About half of the population was found to lead a sedentary life-style. The lower the level of education, the greater the physical activity at work. Males had a higher sports index than females. Interestingly, 1.3% of those with a high questionnaire score reported on the anamnesis question that they did not engage in regular physical activity, whereas 17.5% with a low questionnaire score answered "yes" to the last item. In conclusion, self-reports on physical activity may be inaccurate and to ensure proper counseling, primary care physicians must place greater weight on the patient history.
ERIC Educational Resources Information Center
Dulger, Mehmet; Deniz, Hasan
2017-01-01
The purpose of this paper is to assess the validity of multiple-choice questions in measuring fourth grade students' ability to interpret graphs related to physical science topics such as motion and temperature. We administered a test including 6 multiple-choice questions to 28 fourth grade students. Students were asked to explain their thinking…
NASA Astrophysics Data System (ADS)
Gross, N. A.; Hughes, W. J.; Wiltberger, M. J.
2017-12-01
The NSF funded CISM Space Weather Summer School is designed for graduate students who are just starting in space physics. It provides comprehensive conceptual background to the field. Insights about student understanding and learning from this summer school can provide valuable information to graduate instructors and graduate student mentors. During the school, students are invited to submit questions at the end of the lecture component each day. The lecturers then take the time to respond to these questions. We have collected over 4000 student questions over the last 15 years. A significant portion of the summer school schedule is devoted to solar physics and solar observations, and the questions submitted reflect this. As researchers prepare to work with graduate students who will analyze the data from the Parker Solar Probe, they should be aware of the sorts of questions these students will have as they start in the field. Some student questions are simply about definitions: - What is a facula/prominence/ribbon structure/arcade? - What is a Type 3 radio burst? - How is a solar flare defined? How is it different from a CME/energetic particle event? - What is the difference between "soft" and "hard" X-rays?Other student questions involve associations and correlations. - Why are solar flares associated with CME's? - Are all magnetic active regions associated with sunspots? - How does a prominence eruption compare to a CME? - Why do energetic particles follow the magnetic field lines but the solar wind does not? - Why are radio burst (F10.7 flux) associated with solar flares (EUV Flux)?Others can be topics of current research. - What is the source of the slow solar wind? - Why is there a double peak in the sunspot number the solar maximum? - Why is the corona hotter than the solar surface. What is the mechanism of coronal heating? The goal of this paper is to identify and categorize these questions for the community so that graduate educators can be aware of them and address them.
Young Thinkers in Motion: Problem Solving and Physics in Preschool
ERIC Educational Resources Information Center
Stoll, Julia; Hamilton, Ashley; Oxley, Emilie; Eastman, Angela Mitroff; Brent, Rachael
2012-01-01
Physics is the study of forces and motion--the science of matter and energy and the interaction between the two. The big idea the children explore, as well as the question they ask as they engage in physical knowledge activities related to physics, is "How does it move?" Many teachers translate naturally as they come to know the children they…
ERIC Educational Resources Information Center
Khoja, Suleiman; Ventura, Frank
1997-01-01
Determines the extent physics textbooks contribute to physics teaching objectives and knowledge acquisition in Libya. Analysis of seventh- through ninth-grade physics textbooks and cognitive demand shows a limited effect of textbook content on knowledge acquisition and educational objectives. Suggestions are made for promoting the acquisition of…
2011-03-01
Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 14 e) Forces: Griffon seat design assessments include questions of vibration...the suitability of alternative designs . Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 5 e) Performance Measures...configurations to assess Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 8 design and acquisition decisions, and more
Conceptual Demands in the Nuffield O-Level Physics Course
ERIC Educational Resources Information Center
Shayer, Michael
1972-01-01
Critical examination of the Teachers' Guide and Guide to Experiments and Questions Book in O-level Nuffield physics course reveals there may be disadvantages to the current organization when analyzed with psychological considerations. (PS)
An Individualized Approach to Introductory Physics
ERIC Educational Resources Information Center
Rigden, John S.
1970-01-01
Explains individualization of a physics course in terms of organization, testing, and philosophy. Organization of laboratory and lecture is focused on two topics, classical mechanics and relativity theory. The testing consists of quantitative and qualitative questions. (DS)
ERIC Educational Resources Information Center
Featonby, David
2010-01-01
This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)
An epistemic framing analysis of upper level physics students' use of mathematics
NASA Astrophysics Data System (ADS)
Bing, Thomas Joseph
Mathematics is central to a professional physicist's work and, by extension, to a physics student's studies. It provides a language for abstraction, definition, computation, and connection to physical reality. This power of mathematics in physics is also the source of many of the difficulties it presents students. Simply put, many different activities could all be described as "using math in physics". Expertise entails a complicated coordination of these various activities. This work examines the many different kinds of thinking that are all facets of the use of mathematics in physics. It uses an epistemological lens, one that looks at the type of explanation a student presently sees as appropriate, to analyze the mathematical thinking of upper level physics undergraduates. Sometimes a student will turn to a detailed calculation to produce or justify an answer. Other times a physical argument is explicitly connected to the mathematics at hand. Still other times quoting a definition is seen as sufficient, and so on. Local coherencies evolve in students' thought around these various types of mathematical justifications. We use the cognitive process of framing to model students' navigation of these various facets of math use in physics. We first demonstrate several common framings observed in our students' mathematical thought and give several examples of each. Armed with this analysis tool, we then give several examples of how this framing analysis can be used to address a research question. We consider what effects, if any, a powerful symbolic calculator has on students' thinking. We also consider how to characterize growing expertise among physics students. Framing offers a lens for analysis that is a natural fit for these sample research questions. To active physics education researchers, the framing analysis presented in this dissertation can provide a useful tool for addressing other research questions. To physics teachers, we present this analysis so that it may make them more explicitly aware of the various types of reasoning, and the dynamics among them, that students employ in our physics classes. This awareness will help us better hear students' arguments and respond appropriately.
A Witness to French-Cuban Cooperation in Physics in the 1970s
NASA Astrophysics Data System (ADS)
Cernogora, Jacqueline
In France in 1968 many lively discussions and debates took place at several universities and laboratories in which official authority was questioned. Very often in such debates someone would stand up and ask the previous speaker: "Who are you to assert such a thing?" or "From where are you speaking?" Forty years later, to avoid such questions, I will say right away "from where" I am writing this text, which is by no means an exhaustive study of French-Cuban collaboration in physics at that time, but rather a personal recollection.
Origin of probabilities and their application to the multiverse
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Phillips, Daniel
2014-12-01
We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We comment on the general implications of this view, and specifically question the application of purely classical probabilities to cosmology in cases where key questions are known to have no quantum answer. We argue that the ideas developed here may offer a way out of the notorious measure problems of eternal inflation.
Dienes, Keith
2018-01-10
We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.
Is classical mechanics a prerequisite for learning physics of the 20th century?
NASA Astrophysics Data System (ADS)
Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.
2016-11-01
Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.
Generalizing a categorization of students' interpretations of linear kinematics graphs
NASA Astrophysics Data System (ADS)
Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul
2016-06-01
We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque Country, Spain (University of the Basque Country). We discuss how we adapted the categorization to accommodate a much more diverse student cohort and explain how the prior knowledge of students may account for many differences in the prevalence of approaches and success rates. Although calculus-based physics students make fewer mistakes than algebra-based physics students, they encounter similar difficulties that are often related to incorrectly dividing two coordinates. We verified that a qualitative understanding of kinematics is an important but not sufficient condition for students to determine a correct value for the speed. When comparing responses to questions on linear distance-time graphs with responses to isomorphic questions on linear water level versus time graphs, we observed that the context of a question influences the approach students use. Neither qualitative understanding nor an ability to find the slope of a context-free graph proved to be a reliable predictor for the approach students use when they determine the instantaneous speed.
Physical break-down of the classical view on cancer cell invasion and metastasis.
Mierke, Claudia T
2013-03-01
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.
Kanning, Martina; Ebner-Priemer, Ulrich; Schlicht, Wolfgang
2015-09-17
Evidence suggests that older adults show positive affects after participating in exercise bouts. However, it is less clear, if and how physical activities in daily living enhance affective states, too. This is dissatisfying, as most of older adults' physical activities are part of their daily living. To answer these questions we used activity-triggered e-diaries to investigate the within-subject effects of physical activity on three dimensions of affective states (valence, energetic arousal, calmness) during everyday life. Older adults (N = 74) between 50 and 70 years took part in the study during three consecutive days. Physical activity in daily living was objectively assessed using accelerometers. Affects were measured 10 min after a study participant surpassed a predefined threshold for activity or inactivity. The participants were prompted by an acoustic signal to assess their momentary affective states on an e-diary. Data were analyzed with hierarchical multilevel analyses. Whenever older individuals were more physically active, they felt more energized (energetic arousal) and agitated (calmness). However, they did not feel better (valence). Interestingly, body mass index (BMI) and valence were associated in a significant cross-level interaction. BMI acts as a moderating variable in the way that lower BMI scores were associated with higher levels of valence scores after being physically active. The innovative ambulatory assessment used here affords an interesting insight to the affective effects of daily activity of older adults. These effects are no simple and no linear ones, i.e. physical activity is not associated with positive affects per se as shown several times in experimental studies with single activity bouts. Rather there is a differentiating association seen as an enhanced feeling of energy and agitation, which is not accompanied by a better feeling. Socio-emotional selectivity theory may support the finding that older individuals are emotionally more stable during their day-to-day life, which might explain the non-significant effect on the affect dimension valence.
Grochola, Lukasz Filip; Soll, Christopher; Zehnder, Adrian; Wyss, Roland; Herzog, Pascal; Breitenstein, Stefan
2017-02-09
Recent advances in robotic technology suggest that the utilization of the da Vinci Single-Site™ platform for cholecystectomy is safe, feasible and results in a shorter learning curve compared to conventional single-incision laparoscopic cholecystectomy. Moreover, the robot-assisted technology has been shown to reduce the surgeon's stress load compared to standard single-incision laparoscopy in an experimental setup, suggesting an important advantage of the da Vinci platform. However, the above-mentioned observations are based solely on case series, case reports and experimental data, as high-quality clinical trials to demonstrate the benefits of the da Vinci Single-Site™ cholecystectomy have not been performed to date. This study addresses the question whether robot-assisted Single-Site™ cholecystectomy provides significant benefits over single-incision laparoscopic cholecystectomy in terms of surgeon's stress load, while matching the standards of the conventional single-incision approach with regard to peri- and postoperative outcomes. It is designed as a single centre, single-blinded randomized controlled trial, which compares both surgical approaches with the primary endpoint surgeon's physical and mental stress load at the time of surgery. In addition, the study aims to assess secondary endpoints such as operating time, conversion rates, additional trocar placement, intra-operative blood loss, length of hospital stay, costs of procedure, health-related quality of life, cosmesis and complications. Patients as well as ward staff are blinded until the 1 st postoperative year. Sample size calculation based on the results of a previously published experimental setup utilizing an estimated effect size of surgeon's comfort of 0.8 (power of 0.8, alpha-error level of 0.05, error margin of 10-15%) resulted in a number of 30 randomized patients per arm. The study is the first randomized controlled trial that compares the da Vinci Single Site™ platform to conventional laparoscopic approaches in cholecystectomy, one of the most frequently performed operations in general surgery. This trial is registered at clinicaltrials.gov (trial number: NCT02485392 ). Registered February 19, 2015.
Outstanding questions: physics beyond the Standard Model.
Ellis, John
2012-02-28
The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.
Neutrons and Fundamental Symmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaster, Bradley
2016-01-11
The research supported by this project addressed fundamental open physics questions via experiments with subatomic particles. In particular, neutrons constitute an especially ideal “laboratory” for fundamental physics tests, as their sensitivities to the four known forces of nature permit a broad range of tests of the so-called “Standard Model”, our current best physics model for the interactions of subatomic particles. Although the Standard Model has been a triumphant success for physics, it does not provide satisfactory answers to some of the most fundamental open questions in physics, such as: are there additional forces of nature beyond the gravitational, electromagnetic, weakmore » nuclear, and strong nuclear forces?, or why does our universe consist of more matter than anti-matter? This project also contributed significantly to the training of the next generation of scientists, of considerable value to the public. Young scientists, ranging from undergraduate students to graduate students to post-doctoral researchers, made significant contributions to the work carried out under this project.« less
Massey, Suena H; Norris, Lorenzo; Lausin, Melissa; Nwaneri, Chinyere; Lieberman, Daniel Z
2011-01-01
Harmful drinking is common in medical inpatients, yet commonly missed due in part to time pressures. A screening question about past year heavy drinking recommended by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) has been validated in primary care and emergency room settings. We tested the psychometric properties of a modified single screening question (SSQ) in hospitalized patients referred to a consultation-liaison service. A psychiatry attending (n = 40), a psychiatry resident (n = 30) and a medical student (n = 30) administered the SSQ, followed by a self-report 10-item Alcohol Use Disorders Identification Test (AUDIT) to a sample of 100 consultation-liaison patients who were able to give informed consent for participation. Using the AUDIT as a reference, the sensitivity and specificity of the SSQ to detect harmful drinking in this sample were .96 and .82, respectively. Gender differences in specificity were not found. The single question also had a strong correlation with dependence (r(b) = .457, p < .001), and harmful use (r(b) = .620, p < .001) subscales of the AUDIT. The SSQ about past year heavy drinking can rapidly identify harmful drinking in alert nonpsychotic consultation-liaison patients. Copyright © 2011 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.
2015-01-01
guidance, lack of time off, long work hours ) and asks MTIs to indicate the extent to which each has caused stress over the past six months (five-point...questions also ask MTIs about their work and sleep habits. Although the section on specific stressors includes items that assess MTI stress related to...single question on the average number of hours worked in a 30 day, as well as a single item on the number of hours of sleep the MTI is able to
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lougovski, Pavel; Peters, Nicholas A.
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
Lougovski, Pavel; Peters, Nicholas A.
2018-05-21
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Fermilab | Tritium at Fermilab | Frequently asked questions
computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab questions about tritium Tritium in surface water Indian Creek Kress Creek Ferry Creek Tritium in sanitary
The Career Trajectory of Physical Education Teachers in Hong Kong
ERIC Educational Resources Information Center
Sum, Raymond Kim Wai; Dimmock, Clive
2013-01-01
This study investigates the career trajectory of primary school physical education teachers (PSPETs) in Hong Kong. It is focused on the problems arising from apparent overload and the multiple roles of physical education teachers' career development in Hong Kong brought about by education and curriculum reforms. The specific research question is,…
The Development of Individual Physically Aggressive Behaviors from Infancy to Toddlerhood
ERIC Educational Resources Information Center
Lorber, Michael F.; Del Vecchio, Tamara; Smith Slep, Amy M.
2018-01-01
In the present investigation, we studied the development of 6 physically aggressive behaviors in infancy and toddlerhood, posing 3 questions (a) How do the prevalences of individual physically aggressive behaviors change from 8, 15, and 24 months? (b) Are there groups of children who show distinctive patterns in the way individual physically…
Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts
ERIC Educational Resources Information Center
Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan
2016-01-01
This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…
A Study on Contingency Learning in Introductory Physics Concepts
ERIC Educational Resources Information Center
Scaife, Thomas M.
2010-01-01
Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student…
Physics Assessment and the Development of a Taxonomy
ERIC Educational Resources Information Center
Buick, J. M.
2011-01-01
Aspects of assessment in physics are considered with the aim of designing assessments that will encourage a deep approach to student learning and will ultimately lead to higher levels of achievement. A range of physics questions are considered and categorized by the level of knowledge and understanding which is require for a successful answer.…
Physical Education Teachers' Continuing Professional Development in Health-Related Exercise
ERIC Educational Resources Information Center
Alfrey, Laura; Cale, Lorraine; Webb, Louisa A.
2012-01-01
Background: As a component of the physical education curriculum, Health-Related Exercise (HRE) has been subject to intensive critique in terms of its status, organisation and expression in schools. Concerns and questions have also been raised about physical education teachers' professional knowledge of health and the extent to which HRE features…
Physical Recreation of Blind Adults: Present Practices and Childhood Memories.
ERIC Educational Resources Information Center
Sherrill, Claudine; And Others
1984-01-01
Analysis of tape-recorded responses of 30 blind adults to a 22-question interview showed that most respondents had positive attitudes toward physical education and recreation, but felt that little encouragement had been offered them. Leisure education and counseling for blind persons and recreation personnel can improve physical recreation and…
ERIC Educational Resources Information Center
American Alliance for Health, Physical Education, and Recreation, Washington, DC.
Provided are guidelines for physical education and recreation personnel regarding liability insurance. It is noted that recent trends toward including handicapped persons in community recreation, sports, and regular physical education programs have raised concerns among involved personnel. Brief sections cover the following topics: definition of…
Comparison of Student Understanding of Line Graph Slope in Physics and Mathematics
ERIC Educational Resources Information Center
Planinic, Maja; Milin-Sipus, Zeljka; Katic, Helena; Susac, Ana; Ivanjek, Lana
2012-01-01
This study gives an insight into the differences between student understanding of line graph slope in the context of physics (kinematics) and mathematics. Two pairs of parallel physics and mathematics questions that involved estimation and interpretation of line graph slope were constructed and administered to 114 Croatian second year high school…
Survey of the Nutrition Knowledge Of Practicing Male and Female Physical Educator/Coaches.
ERIC Educational Resources Information Center
Webb, James L.; And Others
An assessment was made of the extent of nutrition knowledge of physical education teachers and coaches. The investigation addressed three primary questions: (1) Do practicing physical educator/coaches possess nutritional knowledge comparable to that of college students enrolled in a university basic nutrition class?; (2) Do male and female…
Learning to Play: A "Hedgehog Concept" for Physical Education
ERIC Educational Resources Information Center
Johnson, Tyler
2014-01-01
What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…
Physics and Everyday Life--New Modules to Motivate Students
ERIC Educational Resources Information Center
Holubova, Renata
2013-01-01
The question "how to improve the interest of students to study physics" has been discussed in the author's previous papers too. Within the framework of the project, the author prepared various new interdisciplinary projects to demonstrate how inventions in physics are used in everyday life. Now, about one year later, the author found out…
Kafka's "Letters to Milena" and the Question of the Body
ERIC Educational Resources Information Center
Neimneh, Shadi
2015-01-01
This article describes how Franz Kafka's correspondence with the Czech journalist and translator Milena Jesenská, from 1920 to 1923, documents the development of his illness, his fear of physical intercourse, and his consequent reliance on writing. Writing is exploited in this epistolary affair to replace both physical presence and physical love.…
The Influence of Television Images on Black Females' Self- Perceptions of Physical Attractiveness.
ERIC Educational Resources Information Center
Perkins, Karen R.
1996-01-01
Examines the role television images play in African American women's perceptions of their own physical attractiveness. The significance of physical attractiveness is discussed in relation to age, gender, and race. Several research questions are posed and suggestions are made that may assist parents, educators, and clinicians in prevention of…
Physical abuse in low-income women in Aleppo, Syria.
Maziak, Wasim; Asfar, Taghrid
2003-04-01
Violence against women is a vicious practice present in all societies. Yet data about its occurrence and associated factors are scarce in the Arab world. In this study, we attempt to determine the spread of physical abuse and its sociodemographic correlates among low-income women in Aleppo, Syria. A sample of 411 women was recruited from 8 randomly selected primary care centers in Aleppo. Response rate was 97%, mean age of participants 28 +/- 8 years, and most women (88%) were married. A special questionnaire was used including questions about physical abuse, the self-reporting questionnaire (SRQ-20), and questions about relevant sociodemographic information. Current physical abuse (battering at least 3 times during the previous year) was found in 23% of the investigated and among 26% of married women, while regular abuse (battering at least once weekly) was found in 3.3% of married women. Correlates of physical abuse were women's education, religion, age, marital status, economic status, mental distress, smoking, and residence. Our data show that physical abuse is prevalent in this population and that women's education is the most important modifiable factor.
Can Industrial Physics Avoid Being Creatively Destroyed?
NASA Astrophysics Data System (ADS)
Hass, Kenneth C.
2004-03-01
Opportunities abound for physics and physicists to remain vital contributors to industrial innovation throughout the 21st century. The key questions are whether those trained in physics are sufficiently willing and flexible to continuously enhance their value to their companies by adapting to changing business priorities and whether business leaders are sufficiently enlightened to recognize and exploit the unique skills and creativity that physicists often provide. "Industrial physics" today is more diverse than ever, and answers to the above questions will vary with sector, company, and even individual physicists. Such heterogeneity creates new challenges for the physics community in general, which may need to undergo significant cultural change to maintain strong ties between physicists in industry, academia, and government. Insights from the emerging science of complex systems will be used to emphasize the importance of realistic mental models for the interactions between science and technology and the pathways from scientific advance to successful commercialization. Examples will be provided of the ongoing value of physics-based research in the auto industry and of the growing importance of interdisciplinary approaches to the technical needs of industry.
Gender differences in social support and leisure-time physical activity.
Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; Leon, Antônio Carlos Monteiro Ponce de; Faerstein, Eduardo
2014-08-01
To identify gender differences in social support dimensions' effect on adults' leisure-time physical activity maintenance, type, and time. Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences.
Investigations in γ-Ray Astrophysics and Astroparticle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krennrich, Frank
This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.
Survey questions evidence of US female hiring bias
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2013-09-01
An analysis by the American Institute of Physics (AIP) suggests that the complete absence of female faculty in more than a third of US university physics departments does not necessarily constitute evidence that they discriminate against women.
The 1985 British Physics Olympiad.
ERIC Educational Resources Information Center
Isenberg, Cyril
1985-01-01
Presents questions and answers to the 1985 British Physics Olympiad (BPhO) Competition. Comments about the competition (the second year of British participation) and the winners who went to Yugoslavia (and placed second behind the USSR) are included. (JN)
NASA Astrophysics Data System (ADS)
Barham, Peter J.
2012-03-01
New undergraduate students arriving to study physics at the University of Bristol from 1975 onwards have all taken the same test of their knowledge and understanding of physics and mathematics. Many of the questions test knowledge of material that has been in the A-level syllabus for maths or physics throughout this period. The ability of incoming students to answer these questions declined significantly in the 1990s with average scores falling from around 75% up to 1990 to below 50% after 2000 against a background of increasing A-level grades of the entrants to the programme. It is suggested that changes in teaching and examination methods have caused students to be less able to carry out multi-stage calculations and that the introduction of modular examinations may have encouraged a culture where students tend to forget material learnt in previous modules.
Hanmer, Janel; Cherepanov, Dasha
2016-09-01
To evaluate a general question about ability to meet monthly bills as an alternative to direct questions about income and assets in health utility studies. We used data from the National Health Measurement Study-a US nationally representative telephone survey collected in 2005-2006. It included health utility measures (EuroQol-5D-3L, Health Utilities Index Mark 3, Short Form-6D, and Quality of Well-being Index) and household income, assets, and financial ability to meet monthly bills questions. Each utility score was regressed on: income and assets (Model 1); difficulty paying bills (DPB) (Model 2); income, assets, and DPB (Model 3). All models used survey weights and adjusted for demographics and education. Among 3666 respondents, as income and assets increased, DPB decreased. The DPB question had fewer missing values (n = 30) than income (n = 311) or assets (n = 373). Model 2 (DPB only) explained more variance in health utility than Model 1 (income and assets only). Including all measures (Model 3) had very modest improvement in R (2), e.g., values were 0.112 (Model 1), 0.166 (Model 2), and 0.175 (Model 3) for EuroQol-5D-3L. The single question on DPB yields more information and has less missing values than the traditionally used income and assets questions.
Electrical interactions in the cell: Asymmetric screening in a watery antiverse.
Doerr, T P; Yu, Yi-Kuo
2014-05-01
The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question.
Electrical interactions in the cell: Asymmetric screening in a watery antiverse
Doerr, T. P.; Yu, Yi-Kuo
2014-01-01
The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question. PMID:25125701
Effects of Re-Using a Conceptual Examination Question in Physics
NASA Astrophysics Data System (ADS)
Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew
2005-12-01
We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. Our original intention was to use a phenomenographic approach to look for differences in students' descriptive answers. Having done that, we decided to add a study of the marks that were awarded to those answers. The first time that the question was re-used, the distribution of answers amongst our phenomenographic categories showed a decrease in the common conception that gravity is zero in the satellite and an increase in explanations in terms of free fall. When the question was re-used a second time, that difference was maintained but it was not significantly increased. The distribution of marks for the question was different over the three years in a way that appears to be unrelated to differences in students' conceptual understandings. Differences in the distribution of marks are more likely to be related to differences in marking procedures. We conclude that studies like this one have the potential to contribute to improvements in university assessment procedures. In particular we propose that phenomenographic analysis could be used in the design of marking schemes.
A simple and valuable approach for measuring customer satisfaction.
Kinney, William C
2005-08-01
To determine the financial impact of poor customer satisfaction and the value of information gained from using a 1-question customer-satisfaction survey in a medical setting. A single-question customer-satisfaction survey was collected from customers presenting to an academic otolaryngology head and neck surgery outpatient clinic. The overall response rate was 25%, overall net promoter score was 67.3%, lowest net promoter score occurred on Wednesday and Friday, overall net potential referrals were 872, and potential lost revenue from dissatisfied customers equaled US 2.3 million dollars. A single-question customer-satisfaction survey may help identify areas of customer dissatisfaction that lead to a significant source of lost revenue. The competitive forces in today's health care environment require medical practices to address issues related to customer satisfaction.
Research Design Options for Intervention Studies.
Lobo, Michele A; Kagan, Sarah H; Corrigan, John D
2017-07-01
To review research designs for rehabilitation. Single-case, observational, and qualitative designs are highlighted in terms of recent advances and ability to answer important scientific questions about rehabilitation. Single-case, observational, and qualitative designs can be conducted in a systematic and rigorous manner that provides important information that cannot be acquired using more common designs, such as randomized controlled trials. These less commonly used designs may be more feasible and effective in answering many research questions in the field of rehabilitation. Researchers should consider these designs when selecting the optimal design to answer their research questions. We should improve education about the advantages and disadvantages of existing research designs to enable more critical analysis of the scientific literature we read and review to avoid undervaluing studies not within more commonly used categories.
Unmet patient needs in systemic sclerosis.
Rubenzik, Tamara T; Derk, Chris T
2009-04-01
Assessment of systemic sclerosis patients has not directly addressed functioning from the patient's perspective. With this study, we aim to gain our patient's point of view by using a questionnaire to describe their unmet needs and understanding what demographic parameters influence these. A computer randomization program selected 50 patients, from 242 systemic sclerosis patients actively followed at our rheumatology clinic, to receive a survey about unmet needs. Twenty-five patients responded to the survey. Of 81 questions, 9 provided demographic data, whereas 72 questions addressed physical, daily living, psychologic, spiritual, existential, health services, health information, social support, and employment issues. A 4-point scale from no need to high need was used to rate all questions. Significant need was considered any issue for which more than 50% of patients reported a high need. The Fisher exact test was used to compare different demographic variables to unmet patient needs. The psychologic/spiritual/existential category had 9 questions reaching significance, the health services category had 5 significant questions, the physical category had 4 significant questions. Patients who had not attended college were more likely to have higher needs than patients who completed a college degree. Unmarried patients reported higher needs in 8 measures as compared with married patients, and patients in rural areas had higher needs in social support needs. The greatest prevalence of unmet needs in scleroderma patients were in the psychologic/spiritual/existential domain, such as being unable to do things they used to do, fear that the disease will worsen, anxiety and stress, feeling down or depressed, fears of physical disability, uncertainty about the future, change in appearance, keeping a positive outlook, and feeling in control. Significant differences were observed in unmet needs based on education, marital status, location, knowledge of disease, and age. Understanding each patient's specific unmet needs either through direct questioning or by the use of a questionnaire such as the one used for this study can help clinicians to give better care to each of our patients.
Review of fundamental physics results with the MAGIC telescopes
NASA Astrophysics Data System (ADS)
Rico, Javier
2017-01-01
The MAGIC Cherenkov telescopes are powerful tools for the exploration of the Physics frontiers, addressing topics such as the nature of dark matter and its distribution in the Universe, or the search for quantum gravitational effects in photon propagation. Since the beginning of operations in 2004, MAGIC has studied these questions thanks to hundreds of hours of observations of different targets, and has produced several high-impact results. Those include, significantly, the most constraining limits to the WIMP annihilation cross-section for particle masses above few hundred GeV, from observations of dwarf spheroidal (dSph) satellite galaxies. More recently, we have completed a combined analysis of MAGIC and Fermi-LAT observations of dSphs, obtaining limits for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis - and improving the previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. In this talk, I present an overview of the status and results of MAGIC Fundamental Physics projects, including our latest results concerning searches for Lorentz Invariance violation (LIV), and dark matter searches. I will propose the use of the framework developed for the MAGIC/Fermi-LAT joint analysis for the combination of results from the current generation of gamma-ray and neutrino detectors.
What Use Is Science to Animal Welfare?
NASA Astrophysics Data System (ADS)
Webster, A. J. F.
1998-06-01
My concern is to question the quality and utility of science in general and ethology in particular as applied to animal welfare. This topic has in the past provoked me to some severe criticism, for example, 'A lot of well-intended welfare research is neither very good science nor very helpful to the animals.... Too much welfare research is (in my opinion) flawed either because it is oversimplistic, or because it is not so much designed to test preconceptions but to reinforce prejudice' (Webster 1994). Dawkins (1997) has recently responded to this challenge, addressing the question 'Why has there not been more progress in welfare research?' Her response is concerned largely with applied ethology. My own criticism was not directed at ethologists in particular. I was more concerned by the misuse of scientific method by those who seek to obtain a so-called 'objective' measurement of something which they preconceive to be a stress (e.g. measurement of plasma concentrations of cortisol or endorphins in animals following transportation). Here the 'objective' measure frequently becomes the test that gives the answer that they want, and if it fails, then they seek other 'objective' markers until they achieve a set of measurements that supports the subjective impression which they had at the outset. My second main concern is that the welfare state of a sentient animal is a very complex affair and cannot be embraced by any single scientific discipline, be it ethology, physiology, molecular or neurobiology. Unfortunately it is also too complex to be embraced by a single-sentence definition. The best I can do is to suggest that it is determined by the capacity of an animal to sustain physical fitness and avoid mental suffering. The assessment of this is necessarily multidisciplinary.
Abramson, Richard G.; Su, Pei-Fang; Shyr, Yu
2012-01-01
Quantitative imaging has emerged as a leading priority on the imaging research agenda, yet clinical radiology has traditionally maintained a skeptical attitude toward numerical measurement in diagnostic interpretation. To gauge the extent to which quantitative reporting has been incorporated into routine clinical radiology practice, and to offer preliminary baseline data against which the evolution of quantitative imaging can be measured, we obtained all clinical computed tomography (CT) and magnetic resonance imaging (MRI) reports from two randomly selected weekdays in 2011 at a single mixed academic-community practice and evaluated those reports for the presence of quantitative descriptors. We found that 44% of all reports contained at least one “quantitative metric” (QM), defined as any numerical descriptor of a physical property other than quantity, but only 2% of reports contained an “advanced quantitative metric” (AQM), defined as a numerical parameter reporting on lesion function or composition, excluding simple size and distance measurements. Possible reasons for the slow translation of AQMs into routine clinical radiology reporting include perceptions that the primary clinical question may be qualitative in nature or that a qualitative answer may be sufficient; concern that quantitative approaches may obscure important qualitative information, may not be adequately validated, or may not allow sufficient expression of uncertainty; the feeling that “gestalt” interpretation may be superior to quantitative paradigms; and practical workflow limitations. We suggest that quantitative imaging techniques will evolve primarily as dedicated instruments for answering specific clinical questions requiring precise and standardized interpretation. Validation in real-world settings, ease of use, and reimbursement economics will all play a role in determining the rate of translation of AQMs into broad practice. PMID:22795791
Hager, Ronald; George, James D; LeCheminant, James D; Bailey, Bruce W; Vincent, William J
2012-01-01
To assess a single-semester university general education (GE) health and wellness course influence on physical activity (PA) and dietary habits among university students and to compare the course delivered through lecture or online for these outcomes. A 15-week intervention with pre-post one-group design, allowing for comparative assessments in dietary and PA habits across time by delivery method (classroom lecture vs. online). A large Western university. Participants (n = 1638, female; n = 1333, male) were 82% university freshman or sophomores. Participants were required to take a GE health and wellness course either by classroom lecture or online. The lecture and online curriculum content were similar. Participation in the study was entirely voluntary and was not connected to course grade. PA and dietary outcomes were determined from questions used in the Behavioral Risk Factor Surveillance System survey and were assessed pre- and post-intervention. Other validated questions were used to assess fitness. The general linear model was utilized to determine group x period interactions when comparing the classroom lecture vs. online course. Students improved overall level of PA by 12%, daily minutes of moderate-intensity PA by 8%, and fitness level by 2%. Students improved fruit/vegetable consumption by 4%, bran/whole grain cereal consumption by 8%, and brown rice/whole wheat bread consumption by 11%. All improvements were statistically significant (p < .001) with percent values indicating the size of the effect. The classroom lecture course yielded stronger improvements in several PA and dietary outcomes than the online course. A single-semester university wellness course may positively influence multiple PA and dietary behaviors; however, classroom lecture may be superior to online delivery.
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M; Beretvas, S Natasha; Van den Noortgate, Wim
2014-09-01
The quantitative methods for analyzing single-subject experimental data have expanded during the last decade, including the use of regression models to statistically analyze the data, but still a lot of questions remain. One question is how to specify predictors in a regression model to account for the specifics of the design and estimate the effect size of interest. These quantitative effect sizes are used in retrospective analyses and allow synthesis of single-subject experimental study results which is informative for evidence-based decision making, research and theory building, and policy discussions. We discuss different design matrices that can be used for the most common single-subject experimental designs (SSEDs), namely, the multiple-baseline designs, reversal designs, and alternating treatment designs, and provide empirical illustrations. The purpose of this article is to guide single-subject experimental data analysts interested in analyzing and meta-analyzing SSED data. © The Author(s) 2014.
Conceptual question response times in Peer Instruction classrooms
NASA Astrophysics Data System (ADS)
Miller, Kelly; Lasry, Nathaniel; Lukoff, Brian; Schell, Julie; Mazur, Eric
2014-12-01
Classroom response systems are widely used in interactive teaching environments as a way to engage students by asking them questions. Previous research on the time taken by students to respond to conceptual questions has yielded insights on how students think and change conceptions. We measure the amount of time students take to respond to in-class, conceptual questions [ConcepTests (CTs)] in two introductory physics courses taught using Peer Instruction and use item response theory to determine the difficulty of the CTs. We examine response time differences between correct and incorrect answers both before and after the peer discussion for CTs of varying difficulty. We also determine the relationship between response time and student performance on a standardized test of incoming physics knowledge, precourse self-efficacy, and gender. Our data reveal three results of interest. First, response time for correct answers is significantly faster than for incorrect answers, both before and after peer discussion, especially for easy CTs. Second, students with greater incoming physics knowledge and higher self-efficacy respond faster in both rounds. Third, there is no gender difference in response rate after controlling for incoming physics knowledge scores, although males register significantly more attempts before committing to a final answer than do female students. These results provide insight into effective CT pacing during Peer Instruction. In particular, in order to maintain a pace that keeps everyone engaged, students should not be given too much time to respond. When around 80% of the answers are in, the ratio of correct to incorrect responses rapidly approaches levels indicating random guessing and instructors should close the poll.
Geometry and network connectivity govern the mechanics of stress fibers
Kassianidou, Elena; Brand, Christoph A.; Kumar, Sanjay
2017-01-01
Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell–cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility. PMID:28213499
Geometry and network connectivity govern the mechanics of stress fibers.
Kassianidou, Elena; Brand, Christoph A; Schwarz, Ulrich S; Kumar, Sanjay
2017-03-07
Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell-cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility.
Spatial dynamics of invasion: the geometry of introduced species.
Korniss, Gyorgy; Caraco, Thomas
2005-03-07
Many exotic species combine low probability of establishment at each introduction with rapid population growth once introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently an introduced exotic's population dynamics should depend on locally structured interactions. Ecological theory for spatially structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts. For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global densities, an analytical approximation from nucleation theory, known as Avrami's law, describes our simulation results far better than standard ecological approximations.
Intuitive physical reasoning about occluded objects by inexperienced chicks
Chiandetti, Cinzia; Vallortigara, Giorgio
2011-01-01
Questions concerning the role of nature and nurture in higher cognition appear to be intractable if one restricts one's attention to development in humans. However, in other domains, such as sensory development, much information has been gained from controlled rearing studies with animals. Here, we used a similar experimental strategy to investigate intuitive reasoning about occluded objects. Newborn domestic chicks (Gallus gallus) were reared singly with a small object that became their social partner. They were then accustomed to rejoin such an imprinting object when it was made to move and disappear behind either one of two identical opaque screens. After disappearance of the imprinting object, chicks were faced with two screens of different slants, or of different height or different width, which may or may not have been compatible with the presence of the imprinting object hidden beneath/behind them. Chicks consistently chose the screen of slant/height/width compatible with the presence of the object beneath/behind it. Preventing chicks from touching and pecking at the imprinting object before testing did not affect the results, suggesting that intuitive reasoning about physical objects is largely independent of specific experience of interaction with objects and of objects' occluding events. PMID:21270036
Extremely high frequency RF effects on electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku
2015-01-09
The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Physics of metabolic organization
NASA Astrophysics Data System (ADS)
Jusup, Marko; Sousa, Tânia; Domingos, Tiago; Labinac, Velimir; Marn, Nina; Wang, Zhen; Klanjšček, Tin
2017-03-01
We review the most comprehensive metabolic theory of life existing to date. A special focus is given to the thermodynamic roots of this theory and to implications that the laws of physics-such as the conservation of mass and energy-have on all life. Both the theoretical foundations and biological applications are covered. Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work. To bridge the gap between the two aspects of the same theory, we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the general theory enables modular, self-consistent extensions that capture important features of the species and the problem in question. Perhaps the most difficult among the introduced concepts, the utilization (or mobilization) energy flow, is given particular attention in the form of an original and considerably simplified derivation. Specific examples illustrate a range of possible applications-from energy budgets of individual organisms, to population dynamics, to ecotoxicology.
NASA Astrophysics Data System (ADS)
Singh, Ankit K.; Ray, Subir K.; Chandel, Shubham; Pal, Semanti; Gupta, Angad; Mitra, P.; Ghosh, N.
2018-05-01
Weak measurement enables faithful amplification and high-precision measurement of small physical parameters and is under intensive investigation as an effective tool in metrology and for addressing foundational questions in quantum mechanics. Here we demonstrate weak-value amplification using the asymmetric spectral response of Fano resonance as the pointer arising naturally in precisely designed metamaterials, namely, waveguided plasmonic crystals. The weak coupling between the polarization degree of freedom and the spectral response of Fano resonance arises due to a tiny shift in the asymmetric spectral response between two orthogonal linear polarizations. By choosing the preselected and postselected polarization states to be nearly mutually orthogonal, we observe both real and imaginary weak-value amplifications manifested as a spectacular shift of the Fano-resonance peak and narrowing (or broadening) of the resonance linewidth, respectively. The remarkable control and tunability of Fano resonance in a single device enabled by weak-value amplification may enhance active Fano-resonance-based applications in the nano-optical domain. In general, weak measurements using Fano-type spectral response broadens the domain of applicability of weak measurements using natural spectral line shapes as a pointer in a wide range of physical systems.
Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers.
Teste, François P; Karst, Justine; Jones, Melanie D; Simard, Suzanne W; Durall, Daniel M
2006-12-01
We conducted greenhouse experiments using Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings where chemical methods (fungicides) were used to prevent ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of mycorrhizal connections between neighboring seedlings. These methods were chosen for their ease of application in the field. We applied the fungicides, Topas (nonspecific) and Senator (ascomycete specific), separately and in combination at different concentrations and application frequencies to seedlings grown in unsterilized forest soils. Additionally, we assessed the ability of hyphae to penetrate mesh barriers of various pore sizes (0.2, 1, 20, and 500 microm) to form mycorrhizas on roots of neighboring seedlings. Ectomycorrhizal colonization was reduced by approximately 55% with the application of Topas at 0.5 g l(-1). Meshes with pore sizes of 0.2 and 1 microm were effective in preventing the formation of mycorrhizas via hyphal growth across the mesh barriers. Hence, meshes in this range of pore sizes could also be used to prevent the formation of common mycorrhizal networks in the field. Depending on the ecological question of interest, Topas or the employment of mesh with pore sizes <1 microm are suitable for restricting mycorrhization in the field.
African American Single Mothers Raising Sons: Implications for Family Therapy
ERIC Educational Resources Information Center
Gantt, Ann L.; Greif, Geoffrey L.
2009-01-01
Being raised by a single mother is one factor that has been suggested as contributing to the plight of African American males. Yet few studies have focused specifically on African American single mothers' experiences with raising sons. This qualitative study explored the following questions: (1) What are the experiences of African American single…
Single-Sex versus Secondary Schooling: A Systematic Review
ERIC Educational Resources Information Center
Mael, Fred; Alonso, Alex; Gibson, Doug; Rogers, Kelly; Smith, Mark
2005-01-01
Single-sex education refers most generally to education at the elementary, secondary, or postsecondary level in which males or females attend school exclusively with members of their own sex. This report deals primarily with single-sex education at the elementary and secondary levels. Research in the United States on the question of whether public…
Theory and Simulation of Reconnection. In memoriam Harry Petschek
NASA Astrophysics Data System (ADS)
Büchner, J.
2006-06-01
Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.
The origins of the universe: why is there something rather than nothing?
Paulson, Steve; Albert, David; Holt, Jim; Turok, Neil
2015-12-01
Perhaps the greatest mystery is why the universe exists in the first place. How is it possible for something to emerge from nothing, or has a universe in some form always existed? This question of origins-both of the universe as a whole and of the fundamental laws of physics-raises profound scientific, philosophical, and religious questions, culminating in the most basic existential question of all: Why are we here? Discussion of this and related questions is presented in this paper. © 2015 New York Academy of Sciences.
ERIC Educational Resources Information Center
Rainboth, Donna; Munck, Miriam
2010-01-01
Weather, with its built-in atmospheric laboratory, is a natural source of inquiry. The ever-changing nature of weather provides a constant source of questions to investigate and connects to a multitude of physical science concepts. The question, "How accurate are homemade weather instruments in measuring air pressure, rainfall, wind speed and…
Droplet-based microfluidics and the dynamics of emulsions
NASA Astrophysics Data System (ADS)
Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng
2012-02-01
Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)
Bambini, Deborah; Emery, Matthew; de Voest, Margaret; Meny, Lisa; Shoemaker, Michael J.
2016-01-01
There are significant limitations among the few prior studies that have examined the development and implementation of interprofessional education (IPE) experiences to accommodate a high volume of students from several disciplines and from different institutions. The present study addressed these gaps by seeking to determine the extent to which a single, large, inter-institutional, and IPE simulation event improves student perceptions of the importance and relevance of IPE and simulation as a learning modality, whether there is a difference in students’ perceptions among disciplines, and whether the results are reproducible. A total of 290 medical, nursing, pharmacy, and physical therapy students participated in one of two large, inter-institutional, IPE simulation events. Measurements included student perceptions about their simulation experience using the Attitude Towards Teamwork in Training Undergoing Designed Educational Simulation (ATTITUDES) Questionnaire and open-ended questions related to teamwork and communication. Results demonstrated a statistically significant improvement across all ATTITUDES subscales, while time management, role confusion, collaboration, and mutual support emerged as significant themes. Results of the present study indicate that a single IPE simulation event can reproducibly result in significant and educationally meaningful improvements in student perceptions towards teamwork, IPE, and simulation as a learning modality. PMID:28970407
Quantitative cell biology: the essential role of theory.
Howard, Jonathon
2014-11-05
Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not. © 2014 Howard. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A national internet survey on midlife women's attitudes toward physical activity.
Im, Eun-Ok; Chang, Sun Ju; Ko, Young; Chee, Wonshik; Stuifbergen, Alexa; Walker, Lorraine
2012-01-01
Despite an increasing number of studies of midlife women's physical activity, little is known about how attitudes toward physical activity of midlife women from diverse ethnic groups influence the women's physical activity. To explore ethnic differences in midlife women's attitudes toward physical activity and determine the relationships between the attitudes and their actual participation in physical activity while considering other influencing factors. The Midlife Women's Attitudes Toward Physical Activity model was used to guide the study. This was a cross-sectional Internet survey study of 542 midlife women. The instruments included questions on background characteristics and health and menopausal status; the Physical Activity Assessment Inventory; a modified Barriers to Health Activities Scale; the Questions on Attitudes Toward Physical Activity, Subjective Norm, Perceived Behavioral Control, and Behavioral Intention; and the Kaiser Physical Activity Survey. The data were analyzed using ANOVA, correlation, hierarchical multiple regression, and path analyses. There were significant ethnic differences in the attitude scores (F = 2.58, p < .05), but no ethnic differences in the physical activity scores. Interestingly, there were significant ethnic differences in the occupational physical activity scores (F = 5.68, p < .01). Attitude scores accounted for 5% of total variances of the physical activity scores (F(ch) = 43.52, p < .01). The direct paths from the attitude scores (p < .01), the self-efficacy scores (p < .01), and the barrier scores (p < .05) to the physical activity scores were statistically significant. Ethnic differences in the women's attitudes toward physical activity need to be considered in promoting physical activity of midlife women.
NASA Astrophysics Data System (ADS)
D'Espagnat, Bernard; Whitehouse, Translated by J. C.
1989-03-01
Preface; Introduction; Part I. Instrumentalism and Science: 1. The positivism of the physicists; 2. Positivism and fallibilism: philosophical controversies; 3. Border areas of instrumentalism; Part II. Physical Realism and Contemporary Physics: 4. Physical realism and fallibilism; 5. Microrealism and non-separability; 6. Physical realism in trouble; Part III. Causality, Reality and Time: 7. Irreversibility; 8. Sensible reality; 9. Independent reality; 10. The dilemma of modern physics: reality or meaning?; 11. Questions and answers; 12. Summary and perspectives; Appendixes; Addendum; Notes; References; Index.
"Shut up and calculate": the available discursive positions in quantum physics courses
NASA Astrophysics Data System (ADS)
Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja
2018-03-01
Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.
Gender fairness within the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Traxler, Adrienne; Henderson, Rachel; Stewart, John; Stewart, Gay; Papak, Alexis; Lindell, Rebecca
2018-01-01
Research on the test structure of the Force Concept Inventory (FCI) has largely ignored gender, and research on FCI gender effects (often reported as "gender gaps") has seldom interrogated the structure of the test. These rarely crossed streams of research leave open the possibility that the FCI may not be structurally valid across genders, particularly since many reported results come from calculus-based courses where 75% or more of the students are men. We examine the FCI considering both psychometrics and gender disaggregation (while acknowledging this as a binary simplification), and find several problematic questions whose removal decreases the apparent gender gap. We analyze three samples (total Npre=5391 , Npost=5769 ) looking for gender asymmetries using classical test theory, item response theory, and differential item functioning. The combination of these methods highlights six items that appear substantially unfair to women and two items biased in favor of women. No single physical concept or prior experience unifies these questions, but they are broadly consistent with problematic items identified in previous research. Removing all significantly gender-unfair items halves the gender gap in the main sample in this study. We recommend that instructors using the FCI report the reduced-instrument score as well as the 30-item score, and that credit or other benefits to students not be assigned using the biased items.
Pre-Service and In-Service Physics Teachers' Ideas about Simple Electric Circuits
ERIC Educational Resources Information Center
Kucukozer, Huseyin; Demirci, Neset
2008-01-01
The aim of the study is to determine pre-service and high school physics teachers' ideas about simple electric circuits. In this study, a test containing eight questions related to simple electric circuits was given to the pre-service physics teachers (32 subjects) that had graduated from Balikesir University, Necatibey Faculty of Education, the…
Physical Activity as a Dimension of Family Life for Lower Primary School Children
ERIC Educational Resources Information Center
Macdonald, Doune; Rodger, Sylvia; Ziviani, Jenny; Jenkins, David; Batch, Jenny; Jones, Judy
2004-01-01
While questions of children's engagement in physical activity are being widely debated, little is known about how physical activity is valued and managed within families. This paper reports on qualitative data from a multi-method study on lower primary aged children. The focus of the broader study was to determine the relationships between young…
Balloon and Button Spectroscopy: A Hands-On Approach to Light and Matter
ERIC Educational Resources Information Center
Ribaudo, Joseph
2016-01-01
Without question, one of the most useful tools an astronomer or physicist can employ to study the universe is spectroscopy. However, for students in introductory physics or astronomy classes, spectroscopy is a relatively abstract concept that combines new physics topics such as thermal radiation, atomic physics, and the wave and particle nature of…
A Paradox in Physics Education in France
ERIC Educational Resources Information Center
Smigiel, Eddie; Sonntag, Michel
2013-01-01
This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureate 1…
ERIC Educational Resources Information Center
Kim, Insook; Lee, Yun Soo; Ward, Phillip; Li, Weidong
2015-01-01
Despite increasing policy emphasis on improving teacher quality, little is known about how teachers acquire their movement content knowledge in physical education teacher education (PETE). To address this question we examined: (a) movement content courses designed to teach K-12 physical education content in the PETE curriculum, (b) the purpose of…
The Acculturation Experiences of Foreign-Born Students of Color in Physics
ERIC Educational Resources Information Center
Fries-Britt, Sharon; George Mwangi, Chrystal A.; Peralta, Alicia M.
2014-01-01
This study focuses on 15 foreign-born students majoring in physics who are also racial/ethnic minorities. We address the research question: What are the acculturation experiences of foreign-born Students of Color majoring in physics? Berry's (2003) theory of acculturation and Bandura's (1994) theory of self-efficacy were substantive…
In Search of the Freedom to Grow: Report of the Physical Education/Athletics Task Force.
ERIC Educational Resources Information Center
Atkinson, Karla
Many physical educators, administrators, and parents argue that it makes little sense to spend time and money building athletic programs for young women when they are not interested in pursuing sports activities. Such an attitude is explored in this Task Force report questioning what roles, if any, physical education teachers have predetermined…
Effects of Two Different Types of Physics Learning on the Results of CLASS Test
ERIC Educational Resources Information Center
Marusic, Mirko; Slisko, Josip
2012-01-01
During a one-semester-long research project with high school students, we deployed and gauged efficiency of two different reform teaching methods: reading, presenting, and questioning (RPQ) and experimenting and discussion (ED). In this paper we report on changes in students' attitudes and beliefs about physics and learning physics. We used the…
ERIC Educational Resources Information Center
Dunton, Genevieve Fridlund; Tscherne, James; Rodriguez, Daniel
2009-01-01
Documented gender differences in physical activity rates during adolescence (Grunbaum et al., 2004) pose the question of whether physical activity enjoyment similarly differs between boys and girls. However, a necessary precursor to research on this topic is that the factor structure of the PACES be equivalent across gender. Although gender…