Science.gov

Sample records for single rat sympathetic

  1. On the secretory activity of single varicosities in the sympathetic nerves innervating the rat tail artery.

    PubMed Central

    Astrand, P; Stjärne, L

    1989-01-01

    1. Nerve terminal impulses (NTIs) and spontaneous or stimulus-evoked excitatory junction currents (SEJCs or EJCs), reflecting secretion of transmitter quanta from release sites in the sympathetic nerves of rat tail artery, were recorded by extracellular electrodes. 2. The release of transmitter quanta from single varicosities was analysed on a pulse-by-pulse basis. 3. Since the SEJCs were tetrodotoxin-resistant, and hence probably caused by single quanta, they were employed to analyse the quantal content of EJCs. 4. In the majority of recordings, EJCs were large compared to SEJCs from the same attachment, and preceded by prominent NTIs. This type of activity appeared to reflect simultaneous activation of several nerve fibres and numerous varicosities. 5. By focal stimulation, it was usually possible to improve the resolution by examining spots in which a large proportion of the suprathreshold stimuli failed to cause EJCs. Here, averaged NTIs preceding large EJCs were indistinguishable from averaged NTIs not followed by EJCs. Thus, failure of invasion by the nerve impulse was not a cause of the frequent secretory failure. 6. In these attachments the amplitude distribution of nerve stimulus-evoked EJCs was similar to that of the SEJCs and many individual EJCs could be matched in amplitude and time course by SEJCs. Thus, transmitter secretion from these sympathetic nerve varicosities seems to be basically monoquantal. 7. Under conditions when all EJCs were smaller than or equal to the largest SEJCs some characteristic EJC profiles appeared only a few times in response to several hundred suprathreshold stimuli at low frequency (0.5-1 Hz). Using tentatively these EJCs as 'fingerprints' of single quanta from particular release sites, the probability for activation of individual release sites ranges from 0.002 to 0.02. PMID:2573723

  2. Molecular reconstruction of mGluR5a-mediated endocannabinoid signaling cascade in single rat sympathetic neurons.

    PubMed

    Won, Yu-Jin; Puhl, Henry L; Ikeda, Stephen R

    2009-10-28

    Endocannabinoids (eCB) such as 2-arachidonylglycerol (2-AG) are lipid metabolites that are synthesized in a postsynaptic neurons and act upon CB(1) cannabinoid receptors (CB(1)R) in presynaptic nerve terminals. This retrograde transmission underlies several forms of short and long term synaptic plasticity within the CNS. Here, we constructed a model system based on isolated rat sympathetic neurons, in which an eCB signaling cascade could be studied in a reduced, spatially compact, and genetically malleable system. We constructed a complete eCB production/mobilization pathway by sequential addition of molecular components. Heterologous expression of four components was required for eCB production and detection: metabotropic glutamate receptor 5a (mGluR5a), Homer 2b, diacylglycerol lipase alpha, and CB(1)R. In these neurons, application of l-glutamate produced voltage-dependent modulation of N-type Ca(2+) channels mediated by activation of CB(1)R. Using both molecular dissection and pharmacological agents, we provide evidence that activation of mGluR5a results in rapid enzymatic production of 2-AG followed by activation of CB(1)R. These experiments define the critical elements required to recapitulate retrograde eCB production and signaling in a single peripheral neuron. Moreover, production/mobilization of eCB can be detected on a physiologically relevant time scale using electrophysiological techniques. The system provides a platform for testing candidate molecules underlying facilitation of eCB transport across the plasma membrane.

  3. [The somato-sympathetic and somato-somatic reflexes in the spontaneous hypertensive rats].

    PubMed

    Shcherbin, Iu I; Tsyrlin, V A

    2014-01-01

    In anaesthetized normotensive (Wistar) and hypertensive (SHR) rats, sympathetic and somatic reflexes were studied before and after cervical spinal cord transection. Single shock stimulation of a peripheral afferent nerve of brachial plexus produced reflex discharges in the cervical sympathetic trunk and the radial nerve. In rats with intact brain stem, evoked response in the cervical sympathetic trunk was composed of three components, but evoked response in radial nerve consisted of two components. The total somato-sympathetic reflex in hypertensive rats was more on 54 % than the somato-sympathetic reflex in normotensive rats. The total somato-somatic reflex in hypertensive rats was more on 70 % than the somato-somatic reflex in normotensive rats. In rats with transected brain stem, evoked response in the cervical sympathetic trunk was composed of two components, but evoked response in radial nerve consisted of one component. After neuraxis transection the total sympathetic and somatic reflexes in normotensive rats decreased by 85 and 83 %, respectively. The total sympathetic and somatic reflexes in hypertensive rats decreased by 88 and 84 %, respectively. However, the peak value of evoked discharges in sympathetic and somatic nerves were more in hypertensive rats than in normotensive rats. Suprasegmental and spinal mechanisms responsible for the augmentation of both sympathetic and somatic reflexes are discussed.

  4. Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour.

    PubMed

    Sivilotti, L G; McNeil, D K; Lewis, T M; Nassar, M A; Schoepfer, R; Colquhoun, D

    1997-04-01

    1. In order to establish the subunit composition of neuronal nicotinic receptors in rat superior cervical ganglia (SCG), their single-channel properties were compared with those of recombinant receptors expressed in Xenopus oocytes, using outside-out excised patch recording. 2. The mean main conductance of SCG channels from adult and 1-day-old rats was 34.8 and 36.6 pS, respectively. Less frequent openings to lower conductances occurred both as isolated bursts and as events connected to the main level by direct transitions. There was considerable interpatch variability in the values of the lower conductances. 3. Nicotinic receptors from oocytes expressing alpha3beta4 and alpha4beta4 subunits had chord conductances lower than that of SCG neurones (22 pS for alpha3beta4 and 29 pS for alpha4beta4). 4. Prolonged recording from both native and recombinant channels was precluded by 'run-down', i.e. channel activity could be elicited for only a few minutes after excision. Nevertheless, SCG channel openings were clearly seen to occur as short bursts (slowest component, 38 ms), whereas recombinant channels opened in very prolonged bursts of activity, the major component being the slowest (480 ms). 5. Addition of the alpha5 subunit to the alpha3beta4 pair produced channels with a higher conductance than those observed after injection of the pair alone (24.9 vs. 22 pS), suggesting incorporation of alpha5 into the channel. Addition of the beta2 subunit did not change alpha3beta4 single-channel properties. In one out of fourteen alpha3alpha5beta4 patches, both ganglion-like, high conductance, short burst openings and recombinant-type, low conductance, slow burst openings were observed. 6. Channels produced by expression in Xenopus oocytes of neuronal nicotinic subunits present in rat SCG as a rule differ from native ganglion receptors in single-channel conductance and gross kinetics. While it is possible that an essential nicotinic subunit remains to be cloned, it is perhaps

  5. Sympathetic neuroaxonal dystrophy in the aged rat pineal gland.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Parvin, Curtis A; Beaudet, Lucie N

    2006-10-01

    Dysfunction of circadian melatonin production by the pineal gland in aged humans and rats is thought to reflect the functional loss of its sympathetic innervation. Our ultrastructural neuropathologic studies of the sympathetic innervation of the pineal gland of aged (24 months old) Fischer-344 and Sprague-Dawley rats showed loss of nerve terminals as well as the development of neuroaxonal dystrophy (NAD), an ultrastructurally distinctive distal axonopathy, far in excess of that in young control rats. Immunolocalization of tyrosine hydroxylase confirmed the age-related loss of normal noradrenergic innervation and development of NAD. NAD was more frequent in aged female rats compared to males and was particularly severe in aged female Sprague-Dawley rats compared to Fischer-344 rats. Pineal NGF content was significantly increased or unchanged in female and male aged Fischer-344 rats, respectively, compared to young controls. The rat pineal is a sensitive experimental model for the quantitative ultrastructural examination of age-related neuropathological changes in nerve terminals of postganglionic noradrenergic sympathetic axons, changes which may reflect similar changes in the diffusely distributed sympathetic innervation of other targeted endorgans.

  6. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  7. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    PubMed Central

    Cabrera-Vásquez, Siraam; Navarro-Tableros, Víctor; Sánchez-Soto, Carmen; Gutiérrez-Ospina, Gabriel; Hiriart, Marcia

    2009-01-01

    Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0). Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life. PMID:19534767

  8. [The sympathetic baroreflex is enhanced during emotional stress in rats].

    PubMed

    Kanbar, R; Oréa, V; Barrès, C; Julien, C

    2007-08-01

    The sympathetic component of the baroreceptor reflex might play a major role in limiting hypertensive effects of emotional stress. However, it has been suggested that this type of stress inhibits or even suppresses the baroreflex. The aim of the present study was, therefore, to determine the effects of emotional stress on the sympathetic baroreflex in conscious rats. In 11 Sprague Dawley rats, arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were recorded simultaneously before and during exposure to a mild emotional stressor (jet of air). Under both conditions, baroreflex function curves relating AP and RSNA were constructed by fitting a sigmoid function to RSNA and AP measured during sequential nitroprusside and phenylephrine administrations. Air-jet stress significantly (P<0.01) increased the mean levels of AP (from 112 +/- 2 to 124 +/- 2 mmHg), heart rate (from 381 +/- 10 to 438 +/- 18 beats/min) and RSNA (from 0.80 +/- 0.14 to 1.49 +/- 0.23 microV). Sympathetic baroreflex function curves were shifted to a higher level of AP, and this was accompanied by an increase (P<0.01) in the maximum gain (from 9.0 +/- 1.3 to 16.2 +/- 2.1 normalized units (NU)/mmHg). The latter effect was a consequence of an increase (P<0.01) in the maximal range of variations of RSNA (from 285 +/- 33 to 619 +/- 59 NU). Finally, the operating range of the sympathetic baroreflex, which corresponds to the AP range over which the reflex is able to alter RSNA, was increased (from 34 +/- 2 to 41 +/- 3 mmHg; P<0.01). In conclusion, the baroreflex control of RSNA is sensitized and operates over a larger range during emotional stress in rats, which suggests that renal vascular tone, and possibly AP, are very efficiently controlled by the sympathetic nervous system under this condition.

  9. Development of sympathetic innervation to proximal and distal arteries of the rat mesentery.

    PubMed Central

    Hill, C E; Hirst, G D; van Helden, D F

    1983-01-01

    The changes which occur during the post-natal development of sympathetic innervation to proximal and distal arteries of the rat mesentery have been examined using intracellular recording and histochemical techniques. In the youngest animals examined, single perivascular stimuli initiated slow depolarizing potentials which were not calcium-dependent. After day 4, single stimuli failed to initiate membrane potential changes in a proportion of preparations. This stage coincided with the period of extensive ramification of sympathetic nerve fibres over the surface of the arterioles. From day 9 onwards, membrane potential changes were again initiated by single stimuli in the distal arteries. These responses were distinct from those recorded from the younger animals and in many ways resembled excitatory junction potentials recorded from the arteries of mature animals. There was a gradient in the development of the innervation to the arteries of the rat mesentery, with that to the distal vessels maturing earlier than that to the more proximal vessels. PMID:6875954

  10. Characteristics of Sympathetic Ophthalmia in a Single International Center

    PubMed Central

    Guzman-Salas, Pablo Jose; Serna-Ojeda, Juan Carlos; Guinto-Arcos, Ethel Beatriz; Pedroza-Seres, Miguel

    2016-01-01

    Aim: To report the main features of sympathetic ophthalmia in a referral ophthalmology center. Methods: Retrospective clinical study. We reviewed clinical records of patients with diagnosis of sympathetic ophthalmia attending the Uveitis Department from 2007 to 2013. Patients were selected by clinical criteria. Descriptive statistics were used to assess variables. Results: Twenty patients were included for analysis, 13 males and 7 females. Mean follow up was 1 year. The median age of presentation was 50 years. Fifty percent had history of ocular trauma and 50% had history of intraocular surgery, of which 40% underwent phacoemulsification. The time between injury and onset of symptoms ranged from 1 to 456 months. Most common ocular manifestations were mutton fat keratic precipitates and anterior chamber inflammation. All patients received oral prednisone as single or combined therapy. Sixty percent of the sympathizing eyes improved two or more lines of vision and 20% lost two or more lines of vision. Conclusion: This report from a single center adds to the body of literature of sympathetic ophthalmia occurring in a specific population. Our data found a high proportion of patients with sympathetic ophthalmia after phacoemulsification. PMID:27651849

  11. Differential Sympathetic Vasomotor Activation Induced by Liver Cirrhosis in Rats

    PubMed Central

    Bergamaschi, Cássia T.; Campos, Ruy R.

    2016-01-01

    We tested the hypothesis that there is a topographical sympathetic activation in rats submitted to experimental cirrhosis. Baseline renal (rSNA) and splanchnic (sSNA) sympathetic nerve activities were evaluated in anesthetized rats. In addition, we evaluated main arterial pressure (MAP), heart rate (HR), and baroreceptor reflex sensitivity (BRS). Cirrhotic Wistar rats were obtained by bile duct ligation (BDL). MAP and HR were measured in conscious rats, and cardiac BRS was assessed by changes in blood pressure induced by increasing doses of phenylephrine or sodium nitroprusside. The BRS and baseline for the control of sSNA and rSNA were also evaluated in urethane-anesthetized rats. Cirrhotic rats had increased baseline sSNA (BDL, 102 vs control, 58 spikes/s; p<0.05), but no baseline changes in the rSNA compared to controls. These data were accompanied by increased splanchnic BRS (p<0.05) and decreased cardiac (p<0.05) and renal BRS (p<0.05). Furthermore, BDL rats had reduced basal MAP (BDL, 93 vs control, 101 mmHg; p<0.05) accompanied by increased HR (BDL, 378 vs control, 356; p<0.05). Our data have shown topographical sympathetic activation in rats submitted to experimental cirrhosis. The BDL group had increased baseline sSNA, independent of dysfunction in the BRS and no changes in baseline rSNA. However, an impairment of rSNA and HR control by arterial baroreceptor was noted. We suggest that arterial baroreceptor impairment of rSNA and HR is an early marker of cardiovascular dysfunction related to liver cirrhosis and probably a major mechanism leading to sympathoexcitation in decompensated phase. PMID:27055088

  12. Sympathetic activation in rats with L-NAME-induced hypertension.

    PubMed

    Biancardi, V C; Bergamaschi, C T; Lopes, O U; Campos, R R

    2007-03-01

    We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means +/- SEM) 2.47 +/- 0.08 to 2.14 +/- 0.07; conscious, 7 days: from 2.85 +/- 0.13 to 2.07 +/- 0.33; anesthetized, 2 days: from 3.00 +/- 0.09 to 1.83 +/- 0.25 and anesthetized, 7 days: from 3.56 +/- 0.11 to 1.53 +/- 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 +/- 4.5 to 96 +/- 4; anesthetized: from 118 +/- 1.5 to 104 +/- 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.

  13. Hydrogen Sulfide in Paraventricular Nucleus Enhances Sympathetic Activity and Cardiac Sympathetic Afferent Reflex in Chronic Heart Failure Rats

    PubMed Central

    Gan, Xian-Bing; Liu, Tong-Yan; Xiong, Xiao-Qing; Chen, Wei-Wei; Zhou, Ye-Bo; Zhu, Guo-Qing

    2012-01-01

    Background Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H2S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H2S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF). Methodology/Principal Findings CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H2S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H2S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H2S level in the PVN in both sham-operated rats and CHF rats. Conclusions Exogenous H2S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H2S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats. PMID:23166827

  14. Plasma Catecholamines (CA) and Gene Expression of CA Biosynthetic Enzymes in Adrenal Medulla and Sympathetic Ganglia of Rats Exposed to Single or Repeated Hypergravity

    NASA Astrophysics Data System (ADS)

    Petrak, J.; Jurani, M.; Baranovska, M.; Hapala, I.; Frollo, I.; Kvetnansky, R.

    2008-06-01

    The aim of this study was to evaluate plasma epinephrine (EPI) and norepinephrine (NE) levels in blood collected directly during a single or 8-times repeated centrifugation at hypergravity 4G, using remote controlled equipment. Plasma EPI levels showed a huge hypergravity-induced increase. After the last blood collection during hypergravity, the centrifuge was turned off and another blood sampling was performed immediately after the centrifuge decelerated and stopped (10 min). In these samples plasma EPI showed significantly lower levels compared to centrifugation intervals. Plasma NE levels showed none or small changes. Repeated exposure to hypergravity 4G (8 days for 60 min) eliminated the increase in plasma EPI levels at the 15 min interval but did not markedly affect plasma NE levels. To explain these findings we measured mRNA levels of CA biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla (AM) and stellate ganglia (SG) of rats exposed to continuous hypergravity (2G) up to 6 days. In AM, TH, DBH and PNMT mRNA levels were significantly increased in intervals up to 3 days, however, after 6 day hypergravity exposure, no significant elevation was found. In SG, no significant changes in gene expression of CA enzymes were seen both after a single or repeated hypergravity. Thus, our data show that hypergravity highly activates the adrenomedullary system, whereas the sympathoneural system is not significantly changed. In conclusion, our results demonstrate that during repeated or continuous exposure of the organism to hypergravity the adrenomedullary system is adapted, whereas sympathoneural system is not affected.

  15. Endogenous hydrogen peroxide in paraventricular nucleus mediates sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    PubMed

    Xu, Yao; Gao, Qing; Gan, Xian-Bing; Chen, Lei; Zhang, Lei; Zhu, Guo-Qing; Gao, Xing-Ya

    2011-12-01

    An enhancement of the cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. Angiotensin II in the paraventricular nucleus (PVN) augments the CSAR and increases sympathetic outflow and blood pressure. The present study aimed to determine whether endogenous hydrogen peroxide in the PVN mediated the enhanced CSAR, sympathetic activity and the effects of angiotensin II in the PVN in renovascular hypertension induced by the two-kidney, one-clip method (2K1C) in rats. At the end of the fourth week, the rats underwent sino-aortic and vagal denervation under general anaesthesia with urethane and α-chloralose. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin. Microinjection of polyethylene glycol-catalase (PEG-CAT), an analogue of endogenous catalase, into the PVN decreased the RSNA and MAP and abolished the CSAR in both sham-operated and 2K1C rats. Microinjection into the PVN of the catalase inhibitor, aminotriazole, increased the RSNA and MAP and enhanced the CSAR. The effects of PEG-CAT or aminotriazole were greater in 2K1C rats than in sham-operated animals. The effects of angiotensin II in the PVN were abolished by pretreatment with PEG-CAT in both sham-operated and 2K1C rats; however, aminotriazole failed to potentiate the effects of angiotensin II. The catalase activity was decreased but the H(2)O(2) levels were increased in the PVN of 2K1C rats. These results indicate that endogenous H(2)O(2) in the PVN not only mediates the enhanced sympathetic activity and CSAR, but also the effects of angiotensin II in the PVN in renovascular hypertensive rats.

  16. Segmental origins of cardiac sympathetic nerve activity in rats.

    PubMed

    Pracejus, Natasha H; Farmer, David G S; McAllen, Robin M

    2015-01-01

    The segmental origins of cardiac sympathetic nerve activity (CSNA) were investigated in 8 urethane-anesthetized, artificially ventilated rats. The left upper thoracic sympathetic chain was exposed retropleurally after removing the heads of the second to fourth ribs. The preganglionic inputs to the chain from segments T1-T3 and the trunk distal to T3 were marked for later sectioning. CSNA was recorded conventionally, amplified, rectified and smoothed. Its mean level was quantified before and after each preganglionic input was cut, usually in rostro-caudal sequence. The level after all inputs were cut (i.e. noise and residual ECG pickup) was subtracted from previous measurements. The signal decrement from cutting each preganglionic input was then calculated as a percentage. CSNA in all rats depended on preganglionic drive from two or more segments, which were not always contiguous. Over the population, most preganglionic drive came from T3 and below, while the least came from T1. But there was striking inter-individual variation, such that the strongest drive to CSNA in any one rat could come from T1, T2, T3, or below T3. These findings provide new functional data on the segmental origins of CSNA in rats.

  17. Quantitative analysis of the sympathetic innervation of the rat knee joint

    PubMed Central

    CATRE, MEL G.; SALO, PAUL T.

    1999-01-01

    Retrograde tracing with Fluoro-Gold (FG) was used to identify the complete population of knee joint sympathetic postganglionic efferents in the lumbar sympathetic chain of adult female Wistar rats. In 6 rats, the total number and distribution of FG-labelled neurons in the lumbar sympathetic chain was determined. The rat knee joint is supplied by an average of 187±57 sympathetic afferents with the majority at the L3 and L4 levels. Immunohistochemistry using antibodies specific for tyrosine hydroxylase (TH), somatostatin (SS) or vasoactive intestinal polypeptide (VIP) revealed that 33% of knee joint sympathetic afferents contained TH, 42% contained VIP, and none contained somatostatin. Retrograde tracing with FG provided accurate and reproducible labelling of the joint-innervating subpopulation of sympathetic efferent neurons. This model lends itself to the further study of the molecular responses of this neuronal population in the various disorders and conditions affecting joints. PMID:10337955

  18. Production of compartmented cultures of rat sympathetic neurons.

    PubMed

    Campenot, Robert B; Lund, Karen; Mok, Sue-Ann

    2009-01-01

    The compartmented culture, in which primary neurons plated in a proximal compartment send their axons under silicone grease barriers and into left and right distal compartments, has enhanced the experimental capabilities of neuronal cultures. Treatments can be applied separately to cell bodies/proximal axons or distal axons, and cell bodies/proximal axons and distal axons can be separately harvested and analyzed. Distal axons can be axotomized, and the neurons can be studied while their axons regenerate. Construction of the culture dishes requires 3 h for 48 cultures, and preparing the neurons also requires 3 h. Compartmented cultures provide enough cellular material for biochemical analyses such as immunoblotting. The uses of compartmented cultures have included studies of neurotrophic factor retrograde signaling, axonal transport, and axonal protein and lipid biosynthesis. Here we focus on sympathetic neurons cultured from neonatal rats and provide protocols for the production and some of the uses of compartmented cultures.

  19. Effect of weightlessness on sympathetic-adrenomedullary activity of rats

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Torda, T.; Macho, L.; Tigranian, R. A.; Serova, L.; Genin, A. M.

    Three cosmic experiments were performed in which rats spent 18-20 days in space on board the biosatellites "COSMOS 782", "COSMOS 936" and "COSMOS 1129". The following indicators of the sympathetic-adrenomedullary system (SAS) activity were measured: tissue and plasma catecholamines (CA), CA-synthesizing enzymes—tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), phenylethanolamine-N-methyltransferase (PNMT)—as well as CA-degrading enzymes—monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). Adrenal epinephrine (EPI) and norepinephrine (NE) as well as CA-synthesizing and degrading enzymes were not significantly changed in the animals after flight on COSMOS 782. On the other hand, a significant increase was found in heart CA, the indicator which is usually decreased after stress. 26 days after landing all values were at control levels. The results obtained, compared to our previous stress experiments on Earth, suggest that prolonged weightlessness does not appear to be a pronounced stressful stimulus for the SAS. Heart and plasma CA, mainly NE, were increased both in the group living in the state of weightlessness and the group living in a centrifuge and exposed to artificial gravitation 1 g (COSMOS 936), suggesting again that prolonged weightlessness is not an intensive stressful stimulus for the SAS. The animals exposed after space flight on COSMOS 1129 to repeated immobilization stress on Earth showed a significant decrease of adrenal EPI and an expressive increase of adrenal TH activity compared to stressed animals which were not in space. Thus, the results corroborate that prolonged state of weightlessness during space flight though not representing by itself an intensive stressful stimulus for the sympathetic-adrenomedullary system, was found to potentiate the response of "cosmic rats" to stress exposure after return to Earth.

  20. The effect of the transplanted pineal gland on the sympathetic innervation of the rat sublingual gland.

    PubMed

    Chanthaphavong, R S; Murphy, S M; Anderson, C R

    2004-08-01

    We investigated the effect of the pineal on sympathetic neurons that normally innervate the sublingual gland of the rat. When the pineal gland was transplanted into the sublingual gland, it remained as a distinct mass that was innervated by sympathetic axons. Injection of the retrograde tracer, Fast Blue, into the sublingual gland labelled sympathetic neurons in the ipsilateral superior cervical ganglion (SCG). Thirty per cent of all neurons labelled retrogradely by Fast Blue injection into transplanted pineal glands were immunoreactive for both neuropeptide Y (NPY) and calbindin. This combination is characteristic of sympathetic neurons innervating the pineal gland in its normal location, but not the sympathetic vasoconstrictor neurons normally innervating the sublingual gland. This, and our previous study in which the pineal gland was shown to similarly influence the phenotype of salivary secretomotor neurons, suggests that a range of different functional classes of sympathetic neuron are able to change their phenotype in response to signals released by the pineal gland.

  1. Chemical Coding for Cardiovascular Sympathetic Preganglionic Neurons in Rats

    PubMed Central

    Gonsalvez, DG; Kerman, IA; McAllen, RM; Anderson, CR

    2010-01-01

    Cocaine and amphetamine-regulated transcript peptide (CART) is present in a subset of sympathetic preganglionic neurons in the rat. We examined the distribution of CART-immunoreactive terminals in rat stellate and superior cervical ganglia and adrenal gland and found that they surround neuropeptide Y-immunoreactive postganglionic neurons and noradrenergic chromaffin cells. The targets of CART-immunoreactive preganglionic neurons in the stellate and superior cervical ganglia were shown to be vasoconstrictor neurons supplying muscle and skin and cardiac-projecting postganglionic neurons: they did not target non-vasoconstrictor neurons innervating salivary glands, piloerector muscle, brown fat or adrenergic chromaffin cells. Transneuronal tracing using pseudorabies virus demonstrated that many, but not all, preganglionic neurons in the vasoconstrictor pathway to forelimb skeletal muscle were CART-immunoreactive. Similarly, analysis with the confocal microscope confirmed that 70% of boutons in contact with vasoconstrictor ganglion cells contained CART, while 30% did not. Finally, we show that CART-immunoreactive cells represented 69% of the preganglionic neuron population expressing c-fos after systemic hypoxia. We conclude that CART is present in most, although not all, cardiovascular preganglionic neurons, but not thoracic preganglionic neurons with non-cardiovascular targets. We suggest that CART-immunoreactivity may identify the postulated “accessory” preganglionic neurons, whose actions may amplify vasomotor ganglionic transmission. PMID:20810898

  2. Reflex patterns in preganglionic sympathetic neurons projecting to the superior cervical ganglion in the rat.

    PubMed

    Bartsch, T; Jänig, W; Häbler, H J

    2000-09-01

    Reflex patterns in preganglionic neurons projecting in the cervical sympathetic trunk (CST) were analyzed in response to stimulation of various afferent systems. We focused on the question whether these preganglionic neurons can be classified into functionally distinct subpopulations. Reflex responses were elicited by stimulation of trigeminal and spinal nociceptive, thermoreceptive as well as baroreceptor and chemoreceptor afferents. Multi- and single fiber preparations were studied in baroreceptor intact and sino-aortically denervated animals. Spontaneous activity of 36 preganglionic single neurons ranged from 0.2 to 3.5 imp/s (median= 1.11 imp/s). The degree of cardiac rhythmicity (CR) in the activity of sympathetic neurons was 69.5+/-13% (mean+/-S.D.; N=52; range=39-95%). Noxious stimulation of acral skin activated the majority (67%) of sympathetic preparations by 37+/-25% (N=35) above pre-stimulus activity; 15% were inhibited. In these neurons the response to noxious stimulation of acral skin was significantly correlated with the degree of CR (P<0.001, N=52) in that neurons showing the strongest excitation to noxious stimulation displayed the strongest CR. Noxious mechanical stimulation of body trunk skin (N=60) inhibited the majority (80%) of fiber preparations tested (by 34+/-18% of pre-stimulus activity, N=48); an activation was not observed. Cold stimulation of acral (N=9) and body trunk skin (N=42) activated most fiber preparations. Trigeminal stimulation evoked a uniform reflex activation of preganglionic neurons (+79+/-73% of pre-stimulus activity, N=32). Chemoreceptor stimulation by systemic hypercapnia elicited inhibitory (-31+/-19%, N=8) as well as excitatory (+59+/-5%, N=4) responses. These results show that preganglionic sympathetic neurons projecting to target organs in the head exhibit distinct reflex patterns to stimulation of various afferent systems; however, a clear classification into different functional subgroups did not emerge

  3. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  4. Effect of experimental hyperinsulinemia on sympathetic nervous system activity in the rat

    SciTech Connect

    Young, J.B.

    1988-01-01

    Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, (/sup 3/H)norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion.

  5. Changes in Sympathetic Innervation of Rat Caudal Artery in Experimental Myocardial Infarction. Effect of Semax Peptide.

    PubMed

    Gorbacheva, A M; Berdalin, A B; Stulova, A N; Nikogosova, A D; Lin, M D; Buravkov, S V; Gavrilova, S A; Koshelev, V B

    2016-08-01

    Activation of the sympathetic nervous system aggravates the course of myocardial infarction. Semax peptide moderated the degree of this activation and prevented the increase in the density of sympathetic endings in rat caudal artery in 28 days after ischemia or ischemia/reperfusion. The peptide reduced the density of α-adrenoreceptors in the caudal artery of rats with myocardial infarction. Semax produced no effect on β-adrenoreceptors in both experimental models. The experiments on isolated segments of the caudal artery revealed reduced vascular responsiveness to electrical stimulation and norepinephrine infusion in rats treated with Semax after ischemia/reperfusion injury.

  6. Development of neuropeptide Y-containing neurons in sympathetic ganglia of rats.

    PubMed

    Masliukov, Petr M; Konovalov, Vladimir V; Emanuilov, Andrey I; Nozdrachev, Alexandr D

    2012-12-01

    Expression of neuropeptide Y (NPY) in the sympathetic ganglia was investigated by immunohistochemistry and tract tracing. The distribution of NPY immunoreactivity (IR) was studied in the superior cervical ganglion (SCG), stellate ganglion (SG) and celiac ganglion (CG) from rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 24-month-old). We observed that the percentage of NPY-IR neuronal profiles increased during early postnatal development. In the SCG and SG, the percentage of NPY-IR profiles enlarged in the first month of life from 43±3.6% (SCG) and 46±3.8% (SG) until 64±4.1% (SCG) and 58±3.5% (SG). The percentage of NPY-IR profiles in the CG increased during the period between 20days (65±3.8%) and 30days (82±5.1%) of animals' life and did not change in further development. In newborn and 10-day-old rats, a large portion of NPY-IR neurons was also calbindin D28K (CB)-IR in all sympathetic ganglia. The proportion of CB-IR substantially decreased during next 10days in the SCG, SG and CG. NPY-IR was approximately present in a half of the postganglionic neurons innervating muscle vessels of the neck and forearm, and the percentage of labeled NPY-IR profiles did not change during the development. Only single Ki67-IR neurons were also NPY-IR in the SCG, SG and CG in newborns and not in older animals. No NPY+/caspase 3+IR neurons were observed. Finally, the process of morphological changes in the size and percentages of NPY-IR profiles is complete in rats by the first month of life.

  7. Experimental rat models of types 1 and 2 diabetes differ in sympathetic neuroaxonal dystrophy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Parvin, Curtis A; Zhang, Weixian; Sima, Anders A F

    2004-05-01

    Dysfunction of the autonomic nervous system is a recognized complication of diabetes, ranging in severity from relatively minor sweating and pupillomotor abnormality to debilitating interference with cardiovascular, genitourinary, and alimentary dysfunction. Neuroaxonal dystrophy (NAD), a distinctive distal axonopathy involving terminal axons and synapses, represents the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in man and several insulinopenic experimental rodent models. Although the pathogenesis of diabetic sympathetic NAD is unknown, recent studies have suggested that loss of the neurotrophic effects of insulin and/or insulin-like growth factor-I (IGF-I) on sympathetic neurons rather than hyperglycemia per se, may be critical to its development. Therefore, in our current investigation we have compared the sympathetic neuropathology developing after 8 months of diabetes in the streptozotocin (STZ)-induced diabetic rat and BB/ Wor rat, both models of hypoinsulinemic type 1 diabetes, with the BBZDR/Wor rat, a hyperglycemic and hyperinsulinemic type 2 diabetes model. Both STZ- and BB/Wor-diabetic rats reproducibly developed NAD in nerve terminals in the prevertebral superior mesenteric sympathetic ganglia (SMG) and ileal mesenteric nerves. The BBZDR/Wor-diabetic rat, in comparison, failed to develop superior mesenteric ganglionic NAD in excess of that of age-matched controls. Similarly, NAD which developed in axons of ileal mesenteric nerves of BBZDR/Wor rats was substantially less frequent than in BB/Wor- and STZ-rats. These data, considered in the light of the results of previous experiments, argue that hyperglycemia alone is not sufficient to produce sympathetic ganglionic NAD, but rather that it may be the diabetes-induced superimposed loss of trophic support, likely of IGF-I, insulin, or C-peptide, that ultimately causes NAD.

  8. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    PubMed

    Mul, Joram D; O'Duibhir, Eoghan; Shrestha, Yogendra B; Koppen, Arjen; Vargoviç, Peter; Toonen, Pim W; Zarebidaki, Eleen; Kvetnansky, Richard; Kalkhoven, Eric; Cuppen, Edwin; Bartness, Timothy J

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  9. Does the median preoptic nucleus contribute to sympathetic hyperactivity in spontaneously hypertensive rats?

    PubMed

    Mourão, Aline A; Moreira, Marina C S; Melo, Aryanne B S; Lopes, Paulo R; Rebelo, Ana C S; Rosa, Daniel A; Freiria-Oliveira, André H; Colombari, Eduardo; Pedrino, Gustavo R

    2016-02-01

    The present study sought to determine the involvement of median preoptic nucleus (MnPO) in the regulation of the cardiovascular function and renal sympathetic activity in normotensive (NT) and spontaneously hypertensive rats (SHR). MnPO inhibition evoked by Muscimol (4mM) nanoinjections, elicited fall in MAP and renal sympathoinhibition in NT-rats. Surprisingly, in SHRs these responses were greater than in NT-rats. These results demonstrated, for the first time that MnPO was involved in the tonic control of sympathetic activity in NT and SHRs. Furthermore, our data suggest the MnPO involvement in the increased sympathetic outflow and consequent arterial hypertension observed in SHRs.

  10. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  11. Subpopulations of rat B2(+) neuroblasts exhibit differential neurotrophin responsiveness during sympathetic development.

    PubMed

    Goldhawk, D E; Meakin, S O; Verdi, J M

    2000-02-15

    Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.

  12. TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

    PubMed Central

    Haykal-Coates, Najwa; Winsett, Darrell W.; Krantz, Q. Todd; King, Charly; Costa, Daniel L.; Farraj, Aimen K.

    2011-01-01

    Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias. Objective: We hypothesized that increased risk of triggered arrhythmias 1 day after DE exposure is mediated by airway sensory nerves bearing transient receptor potential (TRP) channels [e.g., transient receptor potential cation channel, member A1 (TRPA1)] that, when activated by noxious chemicals, can cause a centrally mediated autonomic imbalance and heightened risk of arrhythmia. Methods: Spontaneously hypertensive rats implanted with radiotelemeters were whole-body exposed to either 500 μg/m3 (high) or 150 μg/m3 (low) whole DE (wDE) or filtered DE (fDE), or to filtered air (controls), for 4 hr. Arrhythmogenesis was assessed 24 hr later by continuous intravenous infusion of aconitine, an arrhythmogenic drug, while heart rate (HR) and electrocardiogram (ECG) were monitored. Results: Rats exposed to wDE or fDE had slightly higher HRs and increased low-frequency:high-frequency ratios (sympathetic modulation) than did controls; ECG showed prolonged ventricular depolarization and shortened repolarization periods. Rats exposed to wDE developed arrhythmia at lower doses of aconitine than did controls; the dose was even lower in rats exposed to fDE. Pretreatment of low wDE–exposed rats with a TRPA1 antagonist or sympathetic blockade prevented the heightened sensitivity to arrhythmia. Conclusions: These findings suggest that a single exposure to DE increases the sensitivity of the heart to triggered arrhythmias. The gaseous components appear to play an important role in the proarrhythmic response, which may be mediated by activation of TRPA1, and subsequent sympathetic modulation. As such, toxic inhalants may partly exhibit their toxicity by lowering the threshold for secondary triggers, complicating assessment of their risk. PMID:21377951

  13. Evidence for Cholinergic Synapses Between Dissociated Rat Sympathetic Neurons in Cell Culture

    PubMed Central

    O'Lague, P. H.; Obata, K.; Claude, P.; Furshpan, E. J.; Potter, D. D.

    1974-01-01

    Sympathetic principal neurons were dissociated from superior cervical ganglia of new-born rats, and grown in cell culture. In electrophysiological experiments two types of excitatory synapses were found. One, which was relatively rare, was shown to operate by electrical transmission. The other, the predominant type, had several characteristics of chemical transmission, and pharmacological evidence indicated it was cholinergic. Images PMID:4372629

  14. The calcium-dependent potassium conductance in rat sympathetic neurones.

    PubMed Central

    Belluzzi, O; Sacchi, O

    1990-01-01

    1. Adult and intact sympathetic neurones of isolated rat superior cervical ganglia were subjected to a two-electrode voltage-clamp analysis at 37 degrees C in order to investigate the Ca2(+)-dependent K+ conductance. 2. At each potential a Ca2(+)-dependent K+ current, IKCa, was determined as the difference between the current that could be attributed to the voltage-dependent K+ current, IKV, following Ca2+ channel blockade by Cd2+ and the total current generated. The final IKCa curves were obtained after correcting the experimental tracings for the underlying ICa current component. 3. IKCa became detectable during commands to -30 mV. About 3.6 x 10(5) Ca2+ ions are required to enter the cell before IKCa is initiated. The current was modelled on the basis of a 0.4-0.6 ms delay followed by an exponential activation of a fast component, IKCaf, simultaneously with a much slower exponential activation, IKCas. Experiments indicate a sigmoidal activation curve for the fast conductance, gKCf, with half-maximal activation at -13.0 mV and a slope factor of 4.7 mV (for 5 mM-Ca2+ in the bath). The associated time constant, tau kcf, ranged from 0.8 to 2.0 ms. The slow conductance exhibited a similar steady-state activation curve but an activation time constant in the 48-280 ms range. The maximum mean gKC was 0.32 microS per neurone for either the fast or slow component. 4. Excess K+ ions accumulate in the perineuronal space during K+ current flow giving rise to rapidly occurring, large K+ reversal potential (EK) modifications (up to -45 mV for the largest currents). The kinetics of K+ extracellular load can be described satisfactorily by a simple exponential function (tau = 0.9-2.8 ms). The characteristics of K+ wash-out appear similar to those of accumulation. 5. The immediate effect of such an extracellular K+ build-up is to make the apparent IKCa activation kinetics faster and to reduce (up to 50%) the true value of the K+ conductance. We simulated the predictions of a K

  15. Acupuncture stimulation inhibits somato-renal sympathetic A- and C-reflexes in anesthetized rats.

    PubMed

    Li, Wei-Min; Wu, Gen-Cheng; Arita, Hideko; Hanaoka, Kazuo

    2002-01-01

    Stimulation of peripheral nerve afferent for example tibial nerve by a strong electrical stimulation (rectanfular wave with 20V amplitude; pulse duration of 0.5 ms, 0.3 pulses/sec) can evoke a discharge of the somato-sympathetic reflex which is recorded on the efferent of renal sympathetic nerve. The component of the somato-sympathetic reflex can be divided into two parts: one is related to the transmission of the myelinated afferent fibers with a short lantency (41+/-2 ms) and is defined A-reflex, the other is related to the transmission of the unmyelinated afferent fibers with a long latency (210+/-13 ms) and is defined C-reflex. In the present study, an acupuncture needle (diameter 0.34 mm) was inserted into the hind limbs of the rat, dorsolaterally at the area of acupoint: huantiao (GB30), at a depth of 4-5 mm and was twisted right and left twice every second during recording the somato-renal sympathetic reflex. It was found that acupuncture on the huantiao acupoint significantly inhibited both A- and C-reflexes. There was no different inhibition of the A- and C-reflexes by acupuncture on the right or left side. However acupuncture on the fore limbs of the rat dorsolaterally at the area of acupoint: quchi (LI11) showed no effect on neither A- nor C-reflexes. These results suggest that acupuncture at the same spinal segment of the acupoint inhibits the somatorenal sympathetic reflex.

  16. Amplified respiratory–sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension?

    PubMed Central

    Simms, Annabel E; Paton, Julian F R; Pickering, Anthony E; Allen, Andrew M

    2009-01-01

    Sympathetic nerve activity (SNA) is elevated in established hypertension. We tested the hypothesis that SNA is elevated in neonate and juvenile spontaneously hypertensive (SH) rats prior to the development of hypertension, and that this may be due to augmented respiratory–sympathetic coupling. Using the working heart–brainstem preparation, perfusion pressure, phrenic nerve activity and thoracic (T8) SNA were recorded in male SH rats and normotensive Wistar–Kyoto (WKY) rats at three ages: neonates (postnatal day 9–16), 3 weeks old and 5 weeks old. Perfusion pressure was higher in SH rats at all ages reflecting higher vascular resistance. The amplitude of respiratory-related bursts of SNA was greater in SH rats at all ages (P < 0.05). This was reflected in larger Traube–Hering pressure waves in SH rats (1.4 ± 0.8 versus 9.8 ± 1.5 mmHg WKY versus SH rat, 5 weeks old, n= 5 per group, P < 0.01). Recovery from hypocapnic-induced apnoea and reinstatement of Traube–Hering waves produced a significantly greater increase in perfusion pressure in SH rats (P < 0.05). Differences in respiratory–sympathetic coupling in the SH rat were not secondary to changes in central or peripheral chemoreflex sensitivity, nor were they related to altered arterial baroreflex function. We have shown that increased SNA is already present in SH rats in early postnatal life as revealed by augmented respiratory modulation of SNA. This is reflected in an increased magnitude of Traube–Hering waves resulting in elevated perfusion pressure in the SH rat. We suggest that the amplified respiratory-related bursts of SNA seen in the neonate and juvenile SH rat may be causal in the development of their hypertension. PMID:19064613

  17. Brain Perivascular Macrophages and the Sympathetic Response to Inflammation in Rats after Myocardial Infarction

    PubMed Central

    Yu, Yang; Zhang, Zhi-Hua; Wei, Shun-Guang; Serrats, Jordi; Weiss, Robert M; Felder, Robert B

    2010-01-01

    Inflammation is associated with increased sympathetic drive in cardiovascular diseases. Blood-borne pro-inflammatory cytokines, markers of inflammation, induce cyclooxygenase-2 (COX-2) activity in perivascular macrophages of the blood-brain barrier. COX-2 generates prostaglandin E2 (PGE2), which may enter the brain and increase sympathetic nerve activity. We examined the contribution of this mechanism to augmented sympathetic drive in rats following myocardial infarction (MI). Approximately 24h after acute MI, rats received an intracerebroventricular (ICV) injection (1 μl/min over 40 minutes) of clodronate liposomes (MI+CLOD) to eliminate brain perivascular macrophages, liposomes alone (MI+LIPO) or artificial cerebrospinal fluid (MI+aCSF). A week later, COX-2 immunoreactivity in perivascular macrophages and COX-2 mRNA and protein had increased in hypothalamic paraventricular nucleus (PVN) of MI+aCSF and MI+LIPO, compared with sham-operated (SHAM) rats. In MI+CLOD, neither perivascular macrophages nor COX-2 immunoreactivity was seen in PVN, and COX-2 mRNA and protein were similar to SHAM. PGE2 in cerebrospinal fluid, PVN neuronal excitation, and plasma norepinephrine were less in MI+CLOD than MI+aCSF and MI+LIPO but more than in SHAM. ICV CLOD had no effect on interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) mRNA and protein in PVN or plasma IL-1β and TNF-α, which were increased in MI compared with SHAM rats. In normal rats, pretreatment with ICV CLOD reduced (P<0.05) renal sympathetic, blood pressure and heart rate responses to intracarotid artery injection of TNF-α (0.5 μg/kg); ICV LIPO had no effect. The results suggest that pro-inflammatory cytokines stimulate sympathetic excitation after MI by inducing COX-2 activity and PGE2 production in perivascular macrophages of the blood-brain barrier. PMID:20142564

  18. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  19. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  20. Differential control of renal and lumbar sympathetic nerve activity during freezing behavior in conscious rats.

    PubMed

    Yoshimoto, Misa; Nagata, Keiko; Miki, Kenju

    2010-10-01

    The present study was designed to document changes in sympathetic nerve activity and cardiovascular function when conscious rats were challenged with a noise stressor to induce freezing behavior. The potential contribution of the arterial baroreceptors in regulating sympathetic nerve activity and cardiovascular adjustments during the freezing behavior was then examined. Wistar male rats were assigned to sham-operated (SO) and sinoaortic-denervated (SAD) groups and instrumented chronically with electrodes for measurements of renal (RSNA) and lumbar (LSNA) sympathetic nerve activity, electroencephalogram, electromyogram, and electrocardiogram and catheters for measurements of systemic arterial and central venous pressure. Both SO and SAD rats were exposed to 90 dB of white noise for 10 min, causing freezing behavior in both groups. In SO rats, freezing behavior was associated with an immediate and significant (P < 0.05) increase in RSNA, no changes in LSNA or mean arterial pressure, and a significant (P < 0.05) decrease in heart rate. SAD attenuated the magnitude of the immediate increase in RSNA and had no influence on the response in LSNA during freezing behavior compared with SO rats. Moreover, in SAD rats, mean arterial pressure increased significantly (P < 0.05) while heart rate did not change during the freezing behavior. These data indicate that freezing behavior evokes regionally different changes in sympathetic outflows, which may be involved in generating the patterned responses of cardiovascular function to stressful or threatening sensory stimulation. Moreover, it is suggested that the arterial baroreceptors are involved in generating the differential changes in RSNA and LSNA and thus the patterned changes in cardiovascular functions observed during freezing behavior in conscious rats.

  1. Pmch-Deficiency in Rats Is Associated with Normal Adipocyte Differentiation and Lower Sympathetic Adipose Drive

    PubMed Central

    Mul, Joram D.; O’Duibhir, Eoghan; Shrestha, Yogendra B.; Koppen, Arjen; Vargoviç, Peter; Toonen, Pim W.; Zarebidaki, Eleen; Kvetnansky, Richard; Kalkhoven, Eric; Cuppen, Edwin; Bartness, Timothy J.

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood. PMID:23555928

  2. Vitamin D deficiency leads to sensory and sympathetic denervation of the rat synovium

    PubMed Central

    Tague, Sarah E.; Smith, Peter G.

    2014-01-01

    Vitamin D deficiency is associated with increased susceptibility to inflammatory arthritis. Sensory and sympathetic synovial nerves are critical to the development of inflammatory arthritis and spontaneously degenerate in the early phases of disease. These nerves contain vitamin D receptors and vitamin D influences nerve growth and neurotrophin expression. We therefore examined the density of synovial nerves and neurotrophin-containing cells in vitamin D deficient rats. Seven week old Sprague Dawley rats were fed either control or vitamin D deficient diets for four weeks. Knee synovium sections extending from patella to meniscus were immunostained for total nerves, myelinated and unmyelinated nerves, sympathetic nerves, peptidergic and non-peptidergic sensory nerves, and neurotrophins and immune cell markers. In control rats, intimal innervation by unmyelinated sensory fibers was denser than subintimal innervation. In contrast, sympathetic innervation was confined to the subintima. Many sensory axons contained markers for both peptidergic and non-peptidergic nerves. NGF was primarily expressed by intimal CD163-negative type B synoviocytes, while neurturin, a ligand selective for non-peptidergic sensory neurons, was expressed by synovial mast cells. In vitamin D deficient rats, there were significant reductions in sensory nerves in the intima and sympathetic nerves in the subintima. While there was no significant change in NGF-immunoreactivity, the number of neurturin-expressing mast cells was significantly reduced in the intima, suggesting that intimal reductions in sensory nerves may be related to reductions in neurturin. Vitamin D deficiency therefore may increase susceptibility to inflammatory arthritis by depleting sensory and sympathetic synovial nerves as a result of reduced synovial neurotrophin content. PMID:25193239

  3. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  4. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  5. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    PubMed

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  6. Nonselective Blocking of the Sympathetic Nervous System Decreases Detrusor Overactivity in Spontaneously Hypertensive Rats

    PubMed Central

    Kim, Khae-Hawn; Jin, Long-Hu; Choo, Gwoan-Youb; Lee, Hun-Jae; Choi, Bo-Hwa; Kwak, Jiyeon; Yoon, Sang-Min; Park, Chang-Shin; Lee, Tack

    2012-01-01

    The involuntary dual control systems of the autonomic nervous system (ANS) in the bladder of awake spontaneously hypertensive rats (SHRs) were investigated through simultaneous registrations of intravesical and intraabdominal pressures to observe detrusor overactivity (DO) objectively as a core symptom of an overactive bladder. SHRs (n = 6) showed the features of overactive bladder syndrome during urodynamic study, especially DO during the filling phase. After injection of the nonselective sympathetic blocking agent labetalol, DO disappeared in 3 of 6 SHRs (50%). DO frequency decreased from 0.98 ± 0.22 min−1 to 0.28 ± 0.19 min−1 (p < 0.01), and DO pressure decreased from 3.82 ± 0.57 cm H2O to 1.90 ± 0.86 cm H2O (p < 0.05). This suggests that the DO originating from the overactive parasympathetic nervous system is attenuated by the nonselective blocking of the sympathetic nervous system. The detailed mechanism behind this result is still not known, but parasympathetic overactivity seems to require overactive sympathetic nervous system activity in a kind of balance between these two systems. These findings are consistent with recent clinical findings suggesting that patients with idiopathic overactive bladder may have ANS dysfunction, particularly a sympathetic dysfunction. The search for newer and better drugs than the current anticholinergic drugs as the mainstay for overactive bladder will be fueled by our research on these sympathetic mechanisms. Further studies of this principle are required. PMID:22606029

  7. Sympathetic activity is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    PubMed

    Matsuo, T; Shimomura, Y; Saitoh, S; Tokuyama, K; Takeuchi, H; Suzuki, M

    1995-07-01

    Effects of dietary fats consisting of different fatty acids on sympathetic activity and body fat accumulation were studied in rats. Rats were meal-fed an isoenergetic diet based on either beef tallow or safflower oil for 8 weeks. Carcass fat content was greater (P < .05) in rats fed the beef tallow diet than in rats fed the safflower oil diet. Norepinephrine (NE) turnover rate was significantly lower (P < .05) in interscapular brown adipose tissue (IBAT) and pancreas in rats fed the beef tallow diet than in rats fed the safflower oil diet, resulting in a decreased (P < .05) diet-induced thermogenesis (DIT) and an increased (P < .05) serum insulin concentration in the former. To confirm the effects of dietary fats on sympathetic activity in relation to body fat accumulation, rats were chemically sympathectomized. Sympathectomy abolished the differences in body fat accumulation, DIT, and serum insulin concentration between the two dietary groups. These results suggest that the beef tallow diet promotes body fat accumulation by reducing sympathetic activity as compared with intake of the safflower oil diet.

  8. [Responses of afferent unit of the caudal nerve of diabetic hyperalgesic rats to sympathetic efferent stimulation].

    PubMed

    Liu, J; Wang, K M; Zhang, Q J; Cao, D Y

    2001-12-01

    Responses of afferent unit to sympathetic stimulation (SS), intravenous injection of noradrenaline (NA) and phentolamine in the caudal nerve of diabetic rats were investigated. The results showed that the discharge frequencies of C and Adelta units with spontaneous discharges were increased in diabetic hyperalgesic rats after SS, and these spontaneous discharges were eliminated by adrenergic antagonist. The C (6/21) and Adelta (19/81) units with no spontaneous discharges of diabetic hyperalgesic rat turned from silent state into active state during SS; although SS did not elicit afferent discharges of the C mechanical receptive units (C-M), it elicited afferent discharges of a part of C mechano heat units (C-MH) and C polymodal units (C-Pol); afferent discharges of some of the Adelta mechanical receptive units (Adelta-M) and Adelta mechano heat units (Adelta-MH) were also elicited by SS. The latencies of the C and Adelta units responses upon SS were not equal, but no less than 5 s. SS elicited neither afferent discharges from Abeta mechanical receptive units of diabetic hyperalgesic rat, nor receptive units of all types in the control rat. The C(3/8) and Adelta (4/12) units of diabetic hyperalgesic rat were activated by intravenous injection of NA. The present data suggest that NA released from sympathetic nerve terminals excites C and Adelta units of diabetic hypesthesic rat, which may be a peripheral factor in hyperalgesia and paresthesia of diabetic rats.

  9. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats

    PubMed Central

    Phillips, Robert J.; Hudson, Cherie N.; Powley, Terry L.

    2013-01-01

    It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs. PMID:24104187

  10. Effects of oolong tea on renal sympathetic nerve activity and spontaneous hypertension in rats.

    PubMed

    Tanida, Mamoru; Tsuruoka, Nobuo; Shen, Jiao; Kiso, Yoshinobu; Nagai, Katsuya

    2008-04-01

    In a previous study, evidence was presented that oolong tea (OT) reduced abdominal fat accumulation in diet-induced obese mice. In the study presented here, we examined the sympathetic and cardiovascular effects of intraduodenal injection of OT in urethane-anesthetized rats and found that it suppressed renal sympathetic nerve activity (RSNA) and blood pressure (BP). In addition, pretreatment with the histaminergic H3-receptor antagonist thioperamide or bilateral subdiaphragmatic vagotomy eliminated the effects of OT on RSNA and BP. Furthermore, OT drinking for 14 weeks reduced BP elevation in spontaneously hypertensive rats. These results thus suggest that OT may exert its hypotensive action through changes in autonomic neurotransmission via an afferent neural mechanism. Moreover, we found that intraduodenal injection of decaffeinated OT lowered RSNA and BP as well as OT, indicating that substances other than caffeine contained in OT may function as effective modulators of RSNA and BP.

  11. Long-term facilitation of expiratory and sympathetic activities following acute intermittent hypoxia in rats

    PubMed Central

    Lemes, Eduardo V.; Aiko, Simone; Orbem, Caroline B.; Formentin, Cleiton; Bassi, Mirian; Colombari, Eduardo; Zoccal, Daniel B.

    2015-01-01

    Aim Acute intermittent hypoxia (AIH) promotes persistent increases in ventilation and sympathetic activity, referred as long-term facilitation (LTF). Augmented inspiratory activity is suggested as a major component of respiratory LTF. In the present study, we hypothesized that AIH also elicits a sustained increase in expiratory motor activity. We also investigated whether the expiratory LTF contributes to the development of sympathetic LTF after AIH. Methods Rats were exposed to AIH (10 × 6–7 % O2 for 45 s, every 5 min) and the cardiorespiratory parameters were evaluated during 60 min using in vivo and in situ approaches. Results In unanesthetized conditions (n=9), AIH elicited a modest but sustained increase in baseline mean arterial pressure (MAP, 104±2 vs 111±3 mmHg, P<0.05) associated with enhanced sympathetic and respiratory-related variabilities. In the in situ preparations (n=9), AIH evoked LTF in phrenic (33±12%), thoracic sympathetic (75±25%) and abdominal nerve activities (69±14%). The sympathetic overactivity after AIH was phase-locked with the emergence of bursts in abdominal activity during the late-expiratory phase. In anesthetized vagus-intact animals, AIH increased baseline MAP (113±3 vs 122±2 mmHg, P<0.05) and abdominal muscle activity (535±94%), which were eliminated after pharmacological inhibition of the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Conclusion These findings indicate that increased expiratory activity is also an important component of AIH-elicited respiratory LTF. Moreover, the development of sympathetic LTF after AIH is linked to the emergence of active expiratory pattern and depends on the integrity of the neurones of the RTN/pFRG. PMID:26910756

  12. Intermedin in paraventricular nucleus attenuates sympathetic activity and blood pressure via nitric oxide in hypertensive rats.

    PubMed

    Zhou, Ye-Bo; Sun, Hai-Jian; Chen, Dan; Liu, Tong-Yan; Han, Ying; Wang, Jue-Jin; Tang, Chao-Shu; Kang, Yu-Ming; Zhu, Guo-Qing

    2014-02-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide family, which shares the receptor system consisting of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs). This study investigated the effects of IMD in paraventricular nucleus (PVN) on renal sympathetic nerve activity and mean arterial pressure and its downstream mechanism in hypertension. Rats were subjected to 2-kidney 1-clip (2K1C) surgery to induce renovascular hypertension or sham operation. Acute experiments were performed 4 weeks later under anesthesia. IMD mRNA and protein were downregulated in 2K1C rats. Bilateral PVN microinjection of IMD caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in 2K1C rats than in sham-operated rats, which were prevented by pretreatment with adrenomedullin receptor antagonist AM22-52 or nonselective nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester, and attenuated by selective neuronal NO synthase inhibitor N(ω)-propyl-l-arginine hydrochloride or endothelial NO synthase inhibitor N(5)-(1-iminoethyl)-l-ornithine dihydrochloride. AM22-52 increased renal sympathetic nerve activity and mean arterial pressure in 2K1C rats but not in sham-operated rats, whereas calcitonin/calcitonin gene-related peptide receptor antagonist calcitonin/calcitonin gene-related peptide 8-37 had no significant effect. CRLR and RAMP3 mRNA, as well as CRLR, RAMP2, and RAMP3 protein expressions, in the PVN were increased in 2K1C rats. Microinjection of IMD into the PVN increased the NO metabolites (NOx) level in the PVN in 2K1C rats, which was prevented by AM22-52. Chronic PVN infusion of IMD reduced, but AM22-52 increased, blood pressure in conscious 2K1C rats. These results indicate that IMD in the PVN inhibits sympathetic activity and attenuates hypertension in 2K1C rats, which are mediated by adrenomedullin receptors (CRLR/RAMP2 or CRLR/RAMP3) and its downstream NO.

  13. Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans.

    PubMed

    Fadel, Paul J; Farias Iii, Martin; Gallagher, Kevin M; Wang, Zhongyun; Thomas, Gail D

    2012-01-15

    Sympathetic vasoconstriction is normally attenuated in exercising muscle, but this functional sympatholysis is impaired in rats with hypertension or heart failure due to elevated levels of reactive oxygen species (ROS) in muscle. Whether ROS have a similar effect in the absence of cardiovascular disease or whether these findings extend to humans is not known. We therefore tested the hypothesis that chronic treatment with nitroglycerin (NTG) to induce nitrate tolerance, which is associated with excessive ROS production, impairs functional sympatholysis in healthy rats and humans. NTG treatment increased ethidium fluorescence in rat muscles and urinary F(2)-isoprostanes in humans, demonstrating oxidative stress. In vehicle-treated rats, sympathetic nerve stimulation (1 to 5 Hz) evoked decreases in femoral vascular conductance at rest (range, -30 to -63%) that were attenuated during hindlimb contraction (range, -2 to -31%; P < 0.05). In NTG-treated rats, vasoconstrictor responses were similar at rest, but were enhanced during contraction (range, -17 to -50%; P < 0.05 vs. vehicle). Infusion of the ROS scavenger tempol restored sympatholysis in these rats. In humans, reflex sympathetic activation during lower body negative pressure (LBNP) evoked decreases in muscle oxygenation in resting forearm (-12 ± 1%) that were attenuated during handgrip exercise (-3 ± 1%; P < 0.05). When these subjects became nitrate tolerant, LBNP-induced decreases in muscle oxygenation were unaffected at rest, but were enhanced during exercise (-9 ± 1%; P < 0.05 vs. before NTG). Collectively, these data indicate that functional sympatholysis is impaired in otherwise healthy nitrate-tolerant rats and humans by a mechanism probably involving muscle oxidative stress.

  14. Upregulation of orexin receptor in paraventricular nucleus promotes sympathetic outflow in obese Zucker rats.

    PubMed

    Zhou, Jing-Jing; Yuan, Fang; Zhang, Yi; Li, De-Pei

    2015-12-01

    Sympathetic vasomotor tone is elevated in obesity-related hypertension. Orexin importantly regulates energy metabolism and autonomic function. We hypothesized that alteration of orexin receptor in the paraventricular nucleus (PVN) of the hypothalamus leads to elevated sympathetic vasomotor tone in obesity. We used in vivo measurement of sympathetic vasomotor tone and microinjection into brain nucleus, whole-cell patch clamp recording in brain slices, and immunocytochemical staining in obese Zucker rats (OZRs) and lean Zucker rats (LZRs). Microinjection of orexin 1 receptor (OX1R) antagonist SB334867 into the PVN reduced basal arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized OZRs but not in LZRs. Microinjection of orexin A into the PVN produced greater increases in ABP and RSNA in OZRs than in LZRs. Western blot analysis revealed that OX1R expression levels in the PVN were significantly increased in OZRs compared with LZRs. OX1R immunoreactivity was positive in retrogradely labeled PVN-spinal neurons. The basal firing rate of labeled PVN-spinal neurons was higher in OZRs than in LZRs. SB334867 decreased the basal firing activity of PVN-spinal neurons in OZRs but had no effect in LZRs. Orexin A induced a greater increase in the firing rate of PVN-spinal neurons in OZRs than in LZRs. In addition, orexin A induced larger currents in PVN-spinal neurons in OZRs than in LZRs. These data suggest that upregulation of OX1R in the PVN promotes hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in obesity.

  15. Estrogen-induced collagen reorientation correlates with sympathetic denervation of the rat myometrium.

    PubMed

    Martínez, G F; Bianchimano, P; Brauer, M M

    2016-12-01

    Estrogen inhibits the growth and causes the degeneration (pruning) of sympathetic nerves supplying the rat myometrium. Previous cryoculture studies evidenced that substrate-bound signals contribute to diminish the ability of the estrogenized myometrium to support sympathetic nerve growth. Using electron microscopy, here we examined neurite-substrate interactions in myometrial cryocultures, observing that neurites grew associated to collagen fibrils present in the surface of the underlying cryosection. In addition, we assessed quantitatively the effects of estrogen on myometrial collagen organization in situ, using ovariectomized rats treated with estrogen and immature females undergoing puberty. Under low estrogen levels, most collagen fibrils were oriented in parallel to the muscle long axis (83% and 85%, respectively). Following estrogen treatment, 89% of fibrils was oriented perpendicularly to the muscle main axis; while after puberty, 57% of fibrils acquired this orientation. Immunohistochemistry combined with histology revealed that the vast majority of fine sympathetic nerve fibers supplying the myometrium courses within the areas where collagen realignment was observed. Finally, to assess whether depending on their orientation collagen fibrils can promote or inhibit neurite outgrowth, we employed cryocultures, now using as substrate tissue sections of rat-tail tendon. We observed that neurites grew extensively in the direction of the parallel-aligned collagen fibrils in the tendon main axis but were inhibited to grow perpendicularly to this axis. Collectively, these findings support the hypothesis that collagen reorientation may be one of the factors contributing to diminish the neuritogenic capacity of the estrogen-primed myometrial substrate.

  16. Stress promotes development of ovarian cysts in rats: the possible role of sympathetic nerve activation.

    PubMed

    Paredes, A; Gálvez, A; Leyton, V; Aravena, G; Fiedler, J L; Bustamante, D; Lara, H E

    1998-06-01

    Activation of the sympathetic innervation precedes the induction of polycystic ovaries in rats given estradiol valerate (EV). The mechanism of induction by EV may thus involve both direct and neurogenic components. We tested this hypothesis using a combined cold and restraint stress to induce an increase in sympathetic tone, including that of the ovarian sympathetic nerves. Three weeks after the start of stress we found: 1. An increase in the content of norepinephrine (NE) in the celiac ganglion. 2. An increase in the release of NE from the ovary. 3. An unchanged NE uptake by the ovary. 4. An unchanged content of NE in the ovary. The ovarian content of neuropeptide Y (NPY) (colocalized with NE) was significantly decreased. These results suggest that NE synthesis and its secretion are increased during this period and correlate with the increase in secretion of androgens and estradiol, the development of precystic follicles, and a decrease in the ovulatory rate. After 11 wk, NE release had returned to control values, whereas the ovarian NE content had risen significantly, suggesting a maintained high rate of NE synthesis. In the ovary, NPY contents, steroid secretion, morphology, and ovulation had returned to the control state. These results suggest the participation of an extraovarian factor that might act locally to control the release of NE from the ovary, and further support the hypothesis that increased sympathetic activity plays a role in the development and maintenance of ovarian cysts.

  17. Chronic intermittent cold stress activates ovarian sympathetic nerves and modifies ovarian follicular development in the rat.

    PubMed

    Dorfman, M; Arancibia, S; Fiedler, J L; Lara, H E

    2003-06-01

    We studied the effects of a chronic intermittent cold stress regime on sympathetic nerve activation and ovarian physiology. This paradigm (4 degrees C for 3 h/day, Monday-Friday, for 3 or 4 wk) does not affect basal plasma levels of corticosterone. After 3 wk of stress, we detected a decrease in noradrenaline (NA) in the ovary, but after 4 wk, this ovarian neurotransmitter concentration increased over that of unstressed control rats. To analyze whether this effect on NA is preceded by an activation of the neurotrophic factor system responsible for growth and survival of sympathetic neurons, we measured both nerve growth factor (NGF) (by enzyme immunoassay) and the intraovarian levels of its low affinity receptor mRNA (by reverse transcription-polymerase chain reaction). The activation of sympathetic nerves was followed by an increase in NGF concentration without affecting the ovarian levels of either NGF or the mRNA of its receptor. Interestingly, follicular development changed during the stress procedure; after 3 or 4 wk of stress, we found a decrease in preantral healthy follicles without a compensatory increase in atresia. Concomitantly with the increase in NA and NGF in the ovary, we observed that a new population of follicles with hypertrophied thecal cell layers appeared after 4 wk of stress. These results suggest that chronic stress, through an intraovarian neurotrophin-mediated sympathetic activation, produces changes in follicular development that could lead to an impairment of reproductive function.

  18. Effect of photic stimuli on rat salivary glands. Role of sympathetic nervous system.

    PubMed

    Bellavía, S; Gallará, R

    2000-01-01

    Saliva secretion during feeding facilitates chewing, swallowing and other oral functions. Between meals, a "resting saliva" is elicited to allow speaking and contribute to maintain soft and hard tissues health. Chewing is the main stimulus for "stimulated saliva" secretion. Mouth dryness and other less well known stimuli control "resting saliva". In humans the stimulus of the light increases the parotid saliva flow rate. Saliva secretion occurs in response to a reflex. Both motor branches of the autonomous nervous system drive efferent outputs to the salivary glands. Cellular bodies of sympathetic motor fibers innervating salivary glands are located in the superior cervical ganglia. A multisynaptic pathway couples the superior cervical ganglia to hypothalamic areas related to the control of autonomous and endocrine functions. Projections from suprachiasmatic nuclei involved in circadian rhythms control reach those areas. Salivary glands postsynaptic beta-adrenoceptors control synthesis and secretion of proteins. Postsynaptic alpha 2-adrenoceptors modulate salivary responses mediated by alpha 1 and beta-adrenoceptors. Parotid alpha-amylase circadian rhythm in suckling rats, suggest that the sympathetic nervous system mediates an effect of light on saliva secretion. Analysis of: 1) parotid fine structure, 2) submandibular secretory response to adrenergic agonists, and 3) submandibular 3H-clonidine binding to alpha 2-adrenoceptors, demonstrated that an increase of sympathetic reflex activity occurs in salivary glands of rats chronically exposed to constant light. Similar effects were observed in rats chronically exposed to immobilization stress. Catecholamine biosynthetic enzyme mRNA levels in adrenal glands and superior cervical ganglia suggest that changes induced by light on salivary sympathetic reflex activity are mediated by plasma catecholamines released by adrenal glands. Post and presynaptic alpha 2 adrenoceptors could play an important role in saliva

  19. Somatostatin blocks a calcium current in rat sympathetic ganglion neurones.

    PubMed Central

    Ikeda, S R; Schofield, G G

    1989-01-01

    1. The effects of somatostatin and somatostatin analogues on a Ca2+ current from acutely isolated and short-term (24-48 h) cultured adult rat superior cervical ganglion (SCG) neurones were studied using the whole-cell variant of the patch-clamp technique. 2. [D-Trp8]Somatostatin (SOM) produced a rapid, reversible and concentration-dependent reduction of the Ca2+ current. Ca2+ current amplitude was reduced over the voltage range -15 to +40 mV with the greatest reduction occurring where the amplitude was maximal (ca +10 mV). In the presence of SOM, the Ca2+ current rising phase was slower and biphasic at potentials between 0 and +40 mV. 3. Application of 0.1 microM-SOM for greater than 10 s resulted in a desensitization of the response. During a 4 min application of 0.1 microM-SOM, Ca2+ current amplitude returned to about 90% of control. A second application of 0.1 microM-SOM produced less block than the initial application. 4. Concentration-response curves for SOM, somatostatin-14 (SOM-14) and somatostatin-28 (SOM-28) were fitted to a single-site binding isotherm. The concentrations producing half-maximal block and the maximal attainable blocks of the Ca2+ current for SOM, SOM-14 and SOM-28 were 3.3, 5.4 and 35 nM, respectively and 55, 51 and 54%, respectively. SOM-14 and SOM-28 slowed the Ca2+ current rising phase in a manner similar to that of SOM. Somatostatin-28 had no effect on the Ca2+ current at 1 microM. 5. The magnitude of the Ca2+ current block produced by 0.1 microM-SOM was not significantly altered in the presence of 1 microM-idazoxan, atropine, naloxone or the somatostatin antagonist aminoheptanoyl-Phe-D-Trp-Lys-O-benzyl-Thr. 6. Internal dialysis with solutions containing 500 microM-guanylyl-imidodiphosphate (Gpp(NH)p) or guanosine-5'-O-(3-thiotriphosphate)(GTP-gamma-S) decreased the Ca2+ current amplitude by 36 and 41%, respectively, and induced a biphasic rising phase in the Ca2+ current. Under these conditions, application of 0.1 microM-SOM produced

  20. The slow Ca(2+)-activated K+ current, IAHP, in the rat sympathetic neurone.

    PubMed Central

    Sacchi, O; Rossi, M L; Canella, R

    1995-01-01

    1. Adult and intact sympathetic neurones of the rat superior cervical ganglion maintained in vitro at 37 degrees C were analysed using the two-electrode voltage-clamp technique in order to investigate the slow component of the Ca(2+)-dependent K+ current, IAHP. 2. The relationship between the after-hyperpolarization (AHP) conductance, gAHP, and estimated Ca2+ influx resulting from short-duration calcium currents evoked at various voltages proved to be linear over a wide range of injected Ca2+ charge. An inflow of about 1.7 x 10(7) Ca2+ ions was required before significant activation of gAHP occurred. After priming, the gAHP sensitivity was about 0.3 nS pC-1 of Ca2+ inward charge. 3. IAHP was repeatedly measured at different membrane potentials; its amplitude decreased linearly with membrane hyperpolarization and was mostly abolished close to the K+ reversal potential, EK (-93 mV). The monoexponential decay rate of IAHP was a linear function of total Ca2+ entry and was not significantly altered by membrane potential in the -40 to -80 mV range. 4. Voltage-clamp tracings of IAHP could be modelled as a difference between two exponentials with tau on approximately 5 ms and tau off = 50-250 ms. 5. Sympathetic neurones discharged only once at the onset of a long-lasting depolarizing step. If IAHP was selectively blocked by apamin or D-tubocurarine treatments, accommodation was abolished and an unusual repetitive firing appeared. 6. Summation of IAHP was demonstrated under voltage-clamp conditions when the depolarizing steps were repeated sufficiently close to one another. Under current-clamp conditions the threshold depolarizing charge for action potential discharge significantly increased with progressive pulse numbers in the train, suggesting that an opposing conductance was accumulating with repetitive firing. This frequency-dependent spike firing ability was eliminated by pharmacological inhibition of the slow IAHP. 7. The IAHP was significantly activated by a single

  1. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure.

    PubMed

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G; Rozanski, George J; Zucker, Irving H

    2014-10-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympathoexcitation in chronic heart failure (CHF). Increased sympathoexcitation is positively related to mortality in patients with CHF. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here, we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. To delete the transient receptor potential vanilloid 1 receptor-expressing CSAR afferents selectively, epicardial application of resiniferatoxin (50 μg/mL), an ultrapotent analog of capsaicin, was performed during myocardium infarction surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of resiniferatoxin largely prevented the elevated left ventricle end-diastolic pressure, lung edema, and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart, and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that resiniferatoxin attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and transforming growth factor-β receptor I in CHF rats. Pressure-volume loop analysis showed that resiniferatoxin reduced the end-diastolic pressure volume relationships in CHF rats, indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. © 2014 American Heart Association, Inc.

  2. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    SciTech Connect

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-06-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total /sup 3/H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats.

  3. Angiotensin-(1-7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats.

    PubMed

    Zhou, Li-Min; Shi, Zhen; Gao, Juan; Han, Ying; Yuan, Ning; Gao, Xing-Ya; Zhu, Guo-Qing

    2010-04-01

    The rostral ventrolateral medulla (RVLM) plays a pivotal role in regulating sympathetic vasomotor activity. The cardiac sympathetic afferent reflex (CSAR) contributes to the enhanced sympathetic outflow in chronic heart failure and hypertension. The aim of the present study was to determine whether angiotensin (Ang) II and Ang-(1-7) in the RVLM modulate the CSAR and sympathetic activity. Bilateral sinoaortic denervation and vagotomy were carried out in anesthetized rats. The CSAR was evaluated as the renal sympathetic nerve activity (RSNA) response to epicardial application of capsaicin. The effects of bilateral microinjection of Ang II, Ang-(1-7), the AT(1) receptor antagonist losartan or the Mas receptor antagonist D: -alanine-Ang-(1-7) (A-779) into the RVLM were determined. Either Ang II or Ang-(1-7) enhanced the CSAR as well as increased RSNA and mean arterial pressure (MAP) in a dose-dependent manner. Pretreatment with losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan eliminated the effects of Ang-(1-7). The RVLM microinjection of losartan alone had no direct effect on the CSAR, RSNA, and MAP, but A-779 alone attenuated the CSAR and decreased RSNA and MAP. These results indicate that Ang-(1-7) is as effective as Ang II in sensitizing the CSAR and increasing sympathetic outflow. In contrast to Ang II, the effects of Ang-(1-7) are not mediated by AT(1) receptors but by Mas receptors. Mas receptors, but not the AT(1) receptors, in the RVLM are involved in the tonic control of the CSAR.

  4. Effect of postnatal lead exposure on the development of sympathetic innervation of the heart. [Rats

    SciTech Connect

    Abreu, M.E.

    1983-01-01

    To determine possible mechanisms for this Pb-induced cardiotoxicity, several neutrochemical parameters indicative of cardiac sympathetic innervation were measured in developing rats. Presynaptic indices of nerve terminal development which were studied included steady-state levels of norepinephrine, neuronal uptake and vesicular storage of /sup 3/H-norepinephrine. Analysis of postsynaptic development was accomplished by quantitating the density of ..beta..-adrenergic receptors and by measuring the activity of adenylate cyclase. Rat pups were exposed to Pb from birth to weaning (21 days) via the milk of dams whose drinking water contained 0.2% Pb acetate. This method and level of Pb treatment had no effect on body or heart weight development, however, it did result in a seven-fold increase in the blood Pb content (70-75 ..mu..g/dl) of the treated pups during the period of exposure. Pb exposure accelerated the development of sympathetic innervation of the heart as detected by significant increases in the vesicular uptake of /sup 3/H-norepinephrine and the steady-state concentration of norepinephrine measured at postnatal day 4. On the other hand, ontogeny of the neutronal uptake of /sup 3/H-norepinephrine in the heart and in the forebrain was not affected by Pb treatment. The apparent premature development of sympathetic innervation induced by Pb treatment was not reflected in significant alterations in either the density or the affinity of ..beta..-adrenergic receptor sites determined by the binding kinetics of /sup 3/H-dihydroalprenolol.

  5. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    PubMed

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.

  6. Paraplegia increased cardiac NGF content, sympathetic tonus, and the susceptibility to ischemia-induced ventricular tachycardia in conscious rats

    PubMed Central

    Lujan, Heidi L.; Chen, Ying; DiCarlo, Stephen E.

    2009-01-01

    Midthoracic spinal cord injury is associated with ventricular arrhythmias that are mediated, in part, by enhanced cardiac sympathetic activity. Furthermore, it is well known that sympathetic neurons have a lifelong requirement for nerve growth factor (NGF). NGF is a neurotrophin that supports the survival and differentiation of sympathetic neurons and enhances target innervation. Therefore, we tested the hypothesis that paraplegia is associated with an increased cardiac NGF content, sympathetic tonus, and susceptibility to ischemia-induced ventricular tachyarrhythmias. Intact and paraplegic (6–9 wk posttransection, T5 spinal cord transection) rats were instrumented with a radiotelemetry device for recording arterial pressure, temperature, and ECG, and a snare was placed around the left main coronary artery. Following recovery, the susceptibility to ventricular arrhythmias (coronary artery occlusion) was determined in intact and paraplegic rats. In additional groups of matched intact and paraplegic rats, cardiac nerve growth factor content (ELISA) and cardiac sympathetic tonus were determined. Paraplegia, compared with intact, increased cardiac nerve growth factor content (2,146 ± 286 vs. 180 ± 36 pg/ml, P < 0.05) and cardiac sympathetic tonus (154 ± 4 vs. 68 ± 4 beats/min, P < 0.05) and decreased the ventricular arrhythmia threshold (3.6 ± 0.2 vs. 4.9 ± 0.2 min, P < 0.05). Thus altered autonomic behavior increases the susceptibility to ventricular arrhythmias in paraplegic rats. PMID:19286942

  7. Inhibitory effect of sympathetic stimulation on activities of masseter muscle spindles and the jaw jerk reflex in rats.

    PubMed Central

    Matsuo, R; Ikehara, A; Nokubi, T; Morimoto, T

    1995-01-01

    1. To evaluate sympathetic effects on jaw muscles, the discharges of masseter muscle spindle afferents, jaw muscle electromyographic (EMG) activities and blood flow changes were compared in anaesthetized decerebrate rats before and during electrical stimulation of the cervical sympathetic trunk. 2. To eliminate the possibility of efferent control from the trigeminal motoneurones, muscle spindle activity was recorded from the cut peripheral end of the masseter nerve. The absence of a sympathetic component in the masseter nerve was confirmed by the horseradish peroxidase method. 3. Electrical stimulation of the sympathetic nerve at frequencies within the physiological range reduced muscle spindle afferent discharges evoked by passive jaw opening. 4. Sympathetic stimulation also reduced the EMG activity evoked by the jaw jerk reflex, which may reflect a sympathetic effect on spindle afferents. After cessation of stimulation, a transient increase in EMG activity was observed, which may be due to efferent supply from the trigeminal motoneurones. During rhythmical jaw movements, no sympathetic effect on EMG activity was detected. 5. The above sympathetic effect on muscle spindle afferents and EMG activity was independent of blood flow changes. PMID:7776235

  8. Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats.

    PubMed

    Bertagnolli, Mariane; Schenkel, Paulo C; Campos, Cristina; Mostarda, Cristiano T; Casarini, Dulce E; Belló-Klein, Adriane; Irigoyen, Maria C; Rigatto, Katya

    2008-11-01

    Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)-induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF: 0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. ET reduced mean arterial pressure, SAP variability (SAP var), LF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r = 0.89, P < 0.01) and heart weight/body weight ratio (r = 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r = -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r = -0.82, P < 0.01). ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability.

  9. Effect of global and regional sympathetic blockade on arterial pressure during water deprivation in conscious rats.

    PubMed

    Veitenheimer, Britta J; Engeland, William C; Guzman, Pilar A; Fink, Gregory D; Osborn, John W

    2012-10-15

    Forty-eight hours of water deprivation (WD) in conscious rats results in a paradoxical increase in mean arterial pressure (MAP). Previous studies suggest this may be due to increased sympathetic nerve activity (SNA). However, this remains to be investigated in conscious, freely behaving animals. The purpose of this study was to determine, in conscious rats, the role of the sympathetic nervous system (SNS) in mediating WD-induced increases in MAP and to identify which vascular beds are targeted by increased SNA. Each rat was chronically instrumented with a radiotelemetry transmitter to measure MAP and heart rate (HR) and an indwelling venous catheter for plasma sampling and/or drug delivery. MAP and HR were continuously measured during a 2-day baseline period followed by 48 h of WD and then a recovery period. By the end of the WD period, MAP increased by ∼15 mmHg in control groups, whereas HR did not change significantly. Chronic blockade of α(1)/β(1)-adrenergic receptors significantly attenuated the WD-induced increase in MAP, suggesting a role for global activation of the SNS. However, the MAP response to WD was unaffected by selective denervations of the hindlimb, renal, or splanchnic vascular beds, or by adrenal demedullation. In contrast, complete adrenalectomy (with corticosterone and aldosterone replaced) significantly attenuated the MAP response to WD in the same time frame as α(1)/β(1)-adrenergic receptor blockade. These results suggest that, in conscious water-deprived rats, the SNS contributes to the MAP response and may be linked to release of adrenocortical hormones. Finally, this sympathetically mediated response is not dependent on increased SNA to one specific vascular bed.

  10. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats.

    PubMed

    Kenney, Michael J; Fels, Richard J

    2003-11-01

    Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.

  11. Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia.

    PubMed

    Masliukov, P M; Emanuilov, A I; Madalieva, L V; Moiseev, K Y; Bulibin, A V; Korzina, M B; Porseva, V V; Korobkin, A A; Smirnova, V P

    2014-01-03

    Neurochemical features in sympathetic and afferent neurons are subject to change during development. Nitric oxide (NO) plays a developmental role in the nervous system. To better understand the neuroplasticity of sympathetic and afferent neurons during postnatal ontogenesis, the distribution of neuronal NO synthase (nNOS) immunoreactivity was studied in the sympathetic para- and prevertebral, nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from female Wistar rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 1-year-old, and 3-year-old). nNOS-positive neurons were revealed in all sensory ganglia but not in sympathetic ones from birth onward. The percentage of nNOS-immunoreactive (IR) neurons increased during first 10 days of life from 41.3 to 57.6 in Th2 DRG, from 40.9 to 59.1 in L4 DRG and from 31.6 to 38.5 in NG. The percentage of nNOS-IR neurons did not change in the NG later during development and senescence. However, in Th2 and L4 DRG the proportion of nNOS-IR neurons was high in animals between 10 and 30days of life and decreased up to the second month of life. In 2-month-old rats, the percentage of nNOS-IR neurons was 52.9 in Th2 DRG and 51.3 in L4 DRG. We did not find statistically significant differences in the percentage of nNOS-IR neurons between Th2 and L4 DRG and between young and aged rats. In NG and DRG of 10-day-old and older rats, a high proportion of nNOS-IR neurons binds isolectin B4. In newborn animals, only 41.3%, 45.3% and 28.4% of nNOS neuron profiles bind to IB4 in Th2, L4 DRG and NG, respectively. In 10-day-old and older rats, the number of sensory nNOS-IR neurons binding IB4 reached more than 90% in DRG and more than 80% in NG. Only a small number of nNOS-positive cells showed immunoreactivity to calcitonin gene-related peptide, neurofilament 200, calretinin. The information provided here will also serve as a basis for future studies investigating mechanisms of the development of

  12. ATP-sensitive potassium channels mediate contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle.

    PubMed

    Thomas, G D; Hansen, J; Victor, R G

    1997-06-01

    Sympathetic vasoconstriction is sensitive to inhibition by metabolic events in contracting rat and human skeletal muscle, but the underlying cellular mechanisms are unknown. In rats, this inhibition involves mainly alpha2-adrenergic vasoconstriction, which relies heavily on Ca2+ influx through voltage-dependent Ca2+ channels. We therefore hypothesized that contraction-induced inhibition of sympathetic vasoconstriction is mediated by ATP-sensitive potassium (KATP) channels, a hyperpolarizing vasodilator mechanism that could be activated by some metabolic product(s) of skeletal muscle contraction. We tested this hypothesis in anesthetized rats by measuring femoral artery blood flow responses to lumbar sympathetic nerve stimulation or intraarterial hindlimb infusion of the specific alpha2-adrenergic agonist UK 14,304 during KATP channel activation with diazoxide in resting hindlimb and during KATP channel block with glibenclamide in contracting hindlimb. The major new findings are twofold. First, like muscle contraction, pharmacologic activation of KATP channels with diazoxide in resting hindlimb dose dependently attenuated the vasoconstrictor responses to either sympathetic nerve stimulation or intraarterial UK 14,304. Second, the large contraction-induced attenuation in sympathetic vasoconstriction elicited by nerve stimulation or UK 14,304 was partially reversed when the physiologic activation of KATP channels produced by muscle contraction was prevented with glibenclamide. We conclude that contraction-induced activation of KATP channels is a major mechanism underlying metabolic inhibition of sympathetic vasoconstriction in exercising skeletal muscle.

  13. A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions.

    PubMed Central

    Belluzzi, O; Sacchi, O; Wanke, E

    1985-01-01

    Post-ganglionic neurones of the isolated rat superior cervical ganglion were voltage clamped at 37 degrees C using separate intracellular voltage and current micro-electrodes. Control experiments in current clamp suggested that the neurone is electrotonically compact, the soma and the proximal dendritic membranes being under good spatial voltage uniformity. Depolarizing voltage steps from membrane potentials near -50 mV evoked: (i) a voltage-dependent inward Na+ current, (ii) an inward Ca2+ current, (iii) a voltage-dependent outward K+ current, (iv) a Ca2+-activated K+ outward current. Depolarizations from holding potentials more negative than -60 mV elicited, besides the currents mentioned above, a fast transient outward current IA which peaked in 1-2.5 ms and then decayed to zero following an exponential time course. The IA current was shown to be primarily, if not exclusively, carried by K+. It was unaffected by removal of external Ca2+ or addition of Cd2+ and was weakly blocked by tetraethylammonium ions and partially by 4-aminopyridine. The IA current showed a linear instantaneous current-voltage relationship. Its activation ranged from -60 to 0 mV with a mid-point at -30 mV. The A conductance could be described in terms of a simple Boltzmann distribution for a single gating particle with a valency of +3. Both the development and removal of inactivation followed a single exponential time course with a voltage-dependent time constant which was large near the resting potential (42 ms at -70 mV) and small (11 ms) near -100 and -40 mV. Steady-state inactivation h infinity ranged from -100 to -50 mV, with a mid-point at -78 mV, suggesting that approximately 50% of the IA channels are available at the physiological resting potential. Action potentials elicited from various holding potentials showed maximal repolarization rates dependent on the holding potential itself. This voltage dependence was found to be in reasonably good agreement with that of h infinity curve

  14. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen

    PubMed Central

    Shi, Zhigang; Brooks, Virginia L

    2015-01-01

    Key points Leptin increases sympathetic nerve activity (SNA) in males, which contributes to obesity-induced hypertension; however, whether leptin is equally effective in females is unknown. We report that leptin does increase SNA and heart rate in female rats; however, for lumbar and renal SNA, this action is only evident in pro-oestrus and in oestrogen-treated ovariectomized rats, but not in ovariectomized or dioestrus rats. Leptin increases SNA and heart rate similarly in male and pro-oestrus female rats; however, leptin increases arterial pressure only in males. Blockade of MC3/4 receptors in the paraventricular nucleus (PVN) with SHU9119 decreases SNA in leptin-treated pro-oestrus rats, suggesting that leptin increases SNA in part by increasing α-melanocyte-stimulating hormone drive of PVN presympathetic neurons. Our data establish sex differences in leptin's effects to increase SNA and arterial pressure, which emphasizes the need for enhanced recognition and investigation of sex differences in obesity-induced sympathoexcitation and hypertension. Abstract Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR

  15. Short-term sustained hypoxia induces changes in the coupling of sympathetic and respiratory activities in rats

    PubMed Central

    Moraes, Davi J A; Bonagamba, Leni G H; Costa, Kauê M; Costa-Silva, João H; Zoccal, Daniel B; Machado, Benedito H

    2014-01-01

    Individuals experiencing sustained hypoxia (SH) exhibit adjustments in the respiratory and autonomic functions by neural mechanisms not yet elucidated. In the present study we evaluated the central mechanisms underpinning the SH-induced changes in the respiratory pattern and their impact on the sympathetic outflow. Using a decerebrated arterially perfused in situ preparation, we verified that juvenile rats exposed to SH (10% O2) for 24 h presented an active expiratory pattern, with increased abdominal, hypoglossal and vagal activities during late-expiration (late-E). SH also enhanced the activity of augmenting-expiratory neurones and depressed the activity of post-inspiratory neurones of the Bötzinger complex (BötC) by mechanisms not related to changes in their intrinsic electrophysiological properties. SH rats exhibited high thoracic sympathetic activity and arterial pressure levels associated with an augmented firing frequency of pre-sympathetic neurones of the rostral ventrolateral medulla (RVLM) during the late-E phase. The antagonism of ionotropic glutamatergic receptors in the BötC/RVLM abolished the late-E bursts in expiratory and sympathetic outputs of SH rats, indicating that glutamatergic inputs to the BötC/RVLM are essential for the changes in the expiratory and sympathetic coupling observed in SH rats. We also observed that the usually silent late-E neurones of the retrotrapezoid nucleus/parafacial respiratory group became active in SH rats, suggesting that this neuronal population may provide the excitatory drive essential to the emergence of active expiration and sympathetic overactivity. We conclude that short-term SH induces the activation of medullary expiratory neurones, which affects the pattern of expiratory motor activity and its coupling with sympathetic activity. PMID:24614747

  16. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease.

    PubMed

    Salman, Ibrahim M; Sarma Kandukuri, Divya; Harrison, Joanne L; Hildreth, Cara M; Phillips, Jacqueline K

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12-13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p < 0.05) and MAP (151 ± 8 vs. 97 ± 2 mmHg, p < 0.05) compared to Lewis. MAP was negatively correlated with UCr (r = -0.80, p = 0.002) and positively correlated with RSNA (r = 0.66, p = 0.014), with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p < 0.05). This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  17. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    PubMed Central

    Salman, Ibrahim M.; Sarma Kandukuri, Divya; Harrison, Joanne L.; Hildreth, Cara M.; Phillips, Jacqueline K.

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p < 0.05) and MAP (151 ± 8 vs. 97 ± 2 mmHg, p < 0.05) compared to Lewis. MAP was negatively correlated with UCr (r = −0.80, p = 0.002) and positively correlated with RSNA (r = 0.66, p = 0.014), with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p < 0.05). This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways. PMID:26300784

  18. Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats.

    PubMed

    Tsuchimochi, Hirotsugu; Nakamoto, Tomoko; Matsukawa, Kanji

    2010-01-01

    To examine whether feedforward control by central command activates preganglionic adrenal sympathetic nerve activity (AdSNA) and releases catecholamines from the adrenal medulla, we investigated the effects of electrical stimulation of the hypothalamic locomotor region on preganglionic AdSNA and secretion rate of adrenal catecholamines in anaesthetized rats. Pre- or postganglionic AdSNA was verified by temporary sympathetic ganglionic blockade with trimethaphan. Adrenal venous blood was collected every 30 s to determine adrenal catecholamine output and blood flow. Hypothalamic stimulation for 30 s (50 Hz, 100-200 microA) induced rapid activation of preganglionic AdSNA by 83-181% depending on current intensity, which was followed by an immediate increase of 123-233% in adrenal adrenaline output. Hypothalamic stimulation also increased postganglionic AdSNA by 42-113% and renal sympathetic nerve activity by 94-171%. Hypothalamic stimulation induced preferential secretion of adrenal adrenaline compared with noradrenaline, because the ratio of adrenaline to noradrenaline increased greatly during hypothalamic stimulation. As soon as the hypothalamic stimulation was terminated, preganglionic AdSNA returned to the prestimulation level in a few seconds, and the elevated catecholamine output decayed within 30-60 s. Adrenal blood flow and vascular resistance were not affected or slightly decreased by hypothalamic stimulation. Thus, it is likely that feedforward control of catecholamine secretion from the adrenal medulla plays a role in conducting rapid hormonal control of the cardiovascular system at the beginning of exercise.

  19. Role of sympathetic nervous system in rat model of chronic visceral pain.

    PubMed

    Gil, D W; Wang, J; Gu, C; Donello, J E; Cabrera, S; Al-Chaer, E D

    2016-03-01

    Changes in central pain modulation have been implicated in generalized pain syndromes such as irritable bowel syndrome (IBS). We have previously demonstrated that reduced descending inhibition unveils a role of sympathoneuronal outflow in decreasing peripheral sensory thresholds, resulting in stress-induced hyperalgesia. We investigated whether sympathetic nervous system (SNS) exacerbation of pain sensation when central pain inhibition is reduced is relevant to chronic pain disorders using a rat colon irritation (CI) model of chronic visceral hypersensitivity with hallmarks of IBS. Rats were treated to a series of colorectal balloon distensions (CRD) as neonates resulting in visceral and somatic hypersensitivity and altered stool function that persists into adulthood. The visceral sensitivity was assessed by recording electromyographic (EMG) responses to CRD. Somatic sensitivity was assessed by paw withdrawal thresholds to radiant heat. The effects on the hypersensitivity of (i) inhibiting sympathoneuronal outflow with pharmacological and surgical interventions and (ii) enhancing the outflow with water avoidance stress (WAS) were tested. The alpha2-adrenergic agonist, clonidine, and the alpha1-adrenergic antagonist, prazosin, reduced the visceral hypersensitivity and WAS enhanced the pain. Chemical sympathectomy with guanethidine and surgical sympathectomy resulted in a loss of the chronic visceral hypersensitivity. The results support a role of the SNS in driving the chronic visceral and somatic hypersensitivity seen in CI rats. The findings further suggest that treatments that decrease sympathetic outflow or block activation of adrenergic receptors on sensory nerves could be beneficial in the treatment of generalized pain syndromes. © 2015 John Wiley & Sons Ltd.

  20. Role of the sympathetic nervous system in cerebrovascular responses to air-jet stress in rats.

    PubMed

    Revel, Aurélia; Oréa, Valérie; Chapuis, Bruno; Barrès, Christian; Julien, Claude

    2012-01-01

    This study examined the role of sympathetic nerves in the control of cerebral hemodynamics during air-jet stress. In adult male Sprague-Dawley rats, blood flow velocity (pulsed Doppler) was measured in both internal carotid arteries 1 week after excision of one superior cervical ganglion. Blood pressure (BP) and carotid blood flows (CBFs) were simultaneously recorded during exposure to air-jet stress. In 5 out of 13 rats, stress was applied after β(2)-adrenoceptor blockade with ICI 118551 (0.4 mg/kg, then 0.2 mg/kg/h, i.v). Stress evoked an immediate rise in BP, CBFs, and vascular conductances. Vasodilatation was much larger on the denervated side than on the intact side (mean ± SEM: 78 ± 7 versus 19 ± 4%; P < 0.02) and lasted about 10 s. Thereafter, blood flows returned to or near normal and showed parallel variations while BP remained elevated. There was, therefore, a net vasoconstriction on both sides. In ICI 118551-treated rats, the initial vasodilatation was not significantly reduced on the denervated side (64 ± 4%), but the subsequent vasoconstriction was enhanced (P < 0.05) on both sides. In conclusion, air-jet stress evokes an immediate, short-lasting vasodilatation through a mechanism unrelated to β(2)-adrenoceptor stimulation. Sympathetic nerves powerfully limit this phenomenon, and thus contribute to protect the cerebral circulation from stress-induced BP surges.

  1. Alterations in Perivascular Sympathetic and Nitrergic Innervation Function Induced by Late Pregnancy in Rat Mesenteric Arteries

    PubMed Central

    Caracuel, Laura; Callejo, María; Balfagón, Gloria

    2015-01-01

    Background and Purpose We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved. Experimental Approach We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed. Key Results EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response. Conclusions and Implications Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy. PMID:25951331

  2. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen.

    PubMed

    Shi, Zhigang; Brooks, Virginia L

    2015-04-01

    Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Increase of renal sympathetic nerve activity by metoprolol or propranolol in conscious spontaneously hypertensive rats.

    PubMed

    Majcherczyk, S; Mikulski, A; Sjölander, M; Thorén, P

    1987-08-01

    1 Mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in conscious spontaneously hypertensive rats (SHR). 2 Infusion of metoprolol (4 mumol kg-1 h-1) or propranolol (1.5 mumol kg-1 h-1) reduced HR and significantly increased RSNA. 3 Administration of metoprolol caused a sustained decrease of MAP starting in the third hour of infusion. In contrast, administration of propranolol induced a biphasic response in MAP. It is suggested that the increase of RSNA after both beta-adrenoceptor blocking drugs is due to a decrease in arterial baroreceptor activity.

  4. Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats.

    PubMed

    Liang, Nan; Mitchell, Jere H; Smith, Scott A; Mizuno, Masaki

    2016-01-01

    The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented vascular response to exercise in this disease. We hypothesized that augmentations in central command function contribute to the heightened cardiovascular response to exercise in hypertension. To test this hypothesis, changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to electrical stimulation of mesencephalic locomotor region (MLR; 20-50 μA in 10-μA steps evoking fictive locomotion), a putative component of the central command pathway, were examined in decerebrate, paralyzed normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Tibial nerve discharge during MLR stimulation significantly increased in an intensity-dependent manner in both WKY and SHR but was not different between groups. Stimulation of the MLR evoked significantly larger increases in RSNA and MAP with increasing stimulation intensity in both groups. Importantly, the increases in sympathetic and pressor responses to this fictive locomotion were significantly greater in SHR compared with WKY across all stimulation intensities (e.g., at 50 μA, ΔRSNA: WKY 153 ± 31%, SHR 287 ± 42%; ΔMAP: WKY 87 ± 9 mmHg, SHR 139 ± 7 mmHg). These findings provide the first evidence that central command may be a critical contributor to the exaggerated rise in sympathetic activity and blood pressure during exercise in hypertension. Copyright © 2016 the American Physiological Society.

  5. Impaired Function of Prejunctional Adenosine A1 Receptors Expressed by Perivascular Sympathetic Nerves in DOCA-Salt Hypertensive Rats

    PubMed Central

    Dong, Hua; Swain, Gregory M.; Galligan, James J.; Xu, Hui

    2013-01-01

    Increased sympathetic nervous system activity contributes to deoxycorticosterone acetate (DOCA)-salt hypertension in rats. ATP and norepinephrine (NE) are coreleased from perivascular sympathetic nerves. NE acts at prejunctional α2-adrenergic receptors (α2ARs) to inhibit NE release, and α2AR function is impaired in DOCA-salt rats. Adenosine, an enzymatic ATP degradation product, acts at prejunctional A1 adenosine receptors (A1Rs) to inhibit NE release. We tested the hypothesis that prejunctional A1R function is impaired in sympathetic nerves supplying mesenteric arteries (MAs) and veins (MVs) of DOCA-salt rats. Electrically evoked NE release and constrictions of blood vessels were studied in vitro with use of amperometry to measure NE oxidation currents and video microscopy, respectively. Immunohistochemical methods were used to localize tyrosine hydroxylase (TH) and A1Rs in perivascular sympathetic nerves. TH and A1Rs colocalized to perivascular sympathetic nerves. Adenosine and N6-cyclopentyl-adenosine (CPA, A1R agonist) constricted MVs but not MAs. Adenosine and CPA (0.001–10 µM) inhibited neurogenic constrictions and NE release in MAs and MVs. DOCA-salt arteries were resistant to adenosine and CPA-mediated inhibition of NE release and constriction. The A2A adenosine receptor agonist CGS21680 (C23H29N7O6.HCl.xH2O) (0.001–0.1 μM) did not alter NE oxidation currents. We conclude that there are prejunctional A1Rs in arteries and both pre- and postjunctional A1Rs in veins; thus, adenosine selectively constricts the veins. Prejunctional A1R function is impaired in arteries, but not veins, from DOCA-salt rats. Sympathetic autoreceptor dysfunction is not specific to α2ARs, but there is a more general disruption of prejunctional mechanisms controlling sympathetic neurotransmitter release in DOCA-salt hypertension. PMID:23397055

  6. Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure.

    PubMed

    Zhu, Guo-Qing; Gao, Xing-Ya; Zhang, Feng; Wang, Wei

    2004-02-25

    The purpose of this study was to determine the effect of nitric oxide (NO) in the rostral ventrolateral medulla (RVLM) on the central integration of the cardiac sympathetic afferent reflex (CSAR) in normal rats and in rats with coronary ligation-induced chronic heart failure (CHF). Under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate and renal sympathetic nerve activity (RSNA) were recorded at baseline and during elicitation of the CSAR evoked by electrical stimulation of the cardiac afferent sympathetic nerves in sino-aortic denervated and cervical vagotomized rats. A cannula was inserted into the left RVLM for microinjection of NO synthase inhibitor, S-methyl-L-thiocitruline (MeTC) or NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). The CSAR was tested by electrical stimulation (5, 10, 20 and 30 Hz at 10 V for 1 ms) of the afferent cardiac sympathetic nerves. It was observed that (1) the responses of RSNA to stimulation were enhanced in rats with CHF; (2) MeTC (80 nmol) potentiated the responses of RSNA to stimulation in sham rats but not in rats with CHF; (3) SNAP (50 nmol) depressed the enhanced RSNA response to stimulation in CHF rats but had no effect in sham rats; and (4) MeTC increased the baseline RSNA and MAP only in sham rats, but SNAP inhibited the baseline RSNA and MAP in both sham and CHF rats. These results indicate that reductance of NO in the RVLM is involved in the augmentation of CSAR in CHF rats.

  7. Targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia-induced sustained ventricular tachycardia in conscious rats

    PubMed Central

    Lujan, Heidi L.; Palani, Gurunanthan; Zhang, Lijie

    2010-01-01

    The Cardiac Arrhythmia Suppression Trial demonstrated that antiarrhythmic drugs not only fail to prevent sudden cardiac death, but actually increase overall mortality. These findings have been confirmed in additional trials. The “proarrhythmic” effects of most currently available antiarrhythmic drugs makes it essential that we investigate novel strategies for the prevention of sudden cardiac death. Targeted ablation of cardiac sympathetic neurons may become a therapeutic option by reducing sympathetic activity. Thus cholera toxin B subunit (CTB) conjugated to saporin (a ribosomal inactivating protein that binds to and inactivates ribosomes; CTB-SAP) was injected into both stellate ganglia to test the hypothesis that targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia-induced, sustained ventricular tachycardia in conscious rats. Rats were randomly divided into three groups: 1) control (no injection); 2) bilateral stellate ganglia injection of CTB; and 3) bilateral stellate ganglia injection of CTB-SAP. CTB-SAP rats had a reduced susceptibility to ischemia-induced, sustained ventricular tachycardia. Associated with the reduced susceptibility to ventricular arrhythmias were a reduced number of stained neurons in the stellate ganglia and spinal cord (segments T1-T4), as well as a reduced left ventricular norepinephrine content and sympathetic innervation density. Thus CTB-SAP retrogradely transported from the stellate ganglia is effective at ablating cardiac sympathetic neurons and reducing the susceptibility to ventricular arrhythmias. PMID:20173045

  8. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats.

    PubMed

    Jendzjowsky, Nicholas G; Just, Timothy P; DeLorey, Darren S

    2014-11-01

    We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg(-1), i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg(-1), i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: -11 ± 4%FVC; 5 Hz: -21 ± 5%FVC) and sedentary rats (2 Hz: -7 ± 6%FVC; 5 Hz: -18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: -27 ± 5%FVC; 5 Hz: -39 ± 5%FVC) compared to sedentary (2 Hz: -17 ± 6%FVC; 5 Hz: -27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of sympathetic

  9. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats

    PubMed Central

    Jendzjowsky, Nicholas G; Just, Timothy P; DeLorey, Darren S

    2014-01-01

    We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague–Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min−1, 5° grade; 5 days week−1 for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg−1, i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg−1, i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: −11 ± 4%FVC; 5 Hz: −21 ± 5%FVC) and sedentary rats (2 Hz: −7 ± 6%FVC; 5 Hz: −18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: −27 ± 5%FVC; 5 Hz: −39 ± 5%FVC) compared to sedentary (2 Hz: −17 ± 6%FVC; 5 Hz: −27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of

  10. Role of the sympathetic nervous system in cold-induced hypertension in rats.

    PubMed

    Papanek, P E; Wood, C E; Fregly, M J

    1991-07-01

    Hypertension develops in rats exposed chronically to cold [6 +/- 2 degrees C (SE)] and includes both an elevation of mean arterial pressure and cardiac hypertrophy. Previous studies suggest that cold-exposed animals, at least initially, have a large sustained increase in the activity of their sympathetic nervous system, suggesting a failure of the baroreceptor system to provide sufficient negative feedback to the central nervous system. The present study was designed to investigate whether alterations in the activity of the sympathetic nervous system, including the baroreceptor reflex, occur during exposure to cold and whether they contribute to cold-induced hypertension. Twenty male rats were prepared with indwelling catheters in the femoral artery and vein. Ten of the rats were exposed to cold (6 +/- 2 degrees C) chronically, while the remaining 10 were kept at 26 +/- 2 degrees C. Withdrawal of arterial blood samples (less than 5 ml/kg), measurement of direct arterial pressures, and measurement of baroreflex function were carried out at 0800 h at intervals throughout the experiment. Norepinephrine and epinephrine concentrations in plasma were also determined at intervals throughout the experiment. Systolic, diastolic, and mean blood pressures of cold-exposed rats were increased to levels significantly above those of controls. The sensitivity of the baroreflex (delta heart period/delta mean arterial pressure) was decreased in the cold-treated group. The concentration of norepinephrine in plasma increased after 24 h of exposure to cold and remained elevated throughout the experiment, whereas the concentration of epinephrine in plasma increased initially but returned to control levels after 19 days of exposure to cold.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Sympathetic, parasympathetic and non-autonomic contributions to cardiovascular spectral powers in unanesthetized spontaneously hypertensive rats.

    PubMed

    Daffonchio, A; Franzelli, C; Di Rienzo, M; Castiglioni, P; Mancia, G; Ferrari, A U

    1995-12-01

    To determine whether spectral powers of blood pressure and pulse interval can specifically reflect sympathetic and parasympathetic effects in unanesthetized, free-moving spontaneously hypertensive rats (SHR). Spectral powers were observed before and after various autonomic interventions in chronically instrumented rats. Chemical sympathectomy was produced in 12-week-old SHR by repeated injections of 6-hydroxydopamine, while control rats were given vehicle alone. Chronic arterial and venous catheters were inserted in the femoral artery and vein. Blood pressure was recorded beat-to-beat for 90 min in free-moving rats; further recording sessions were obtained under additional alpha-receptor blockade with phenoxybenzamine at 1 mg/kg and/or additional cholinergic blockade with atropine at 0.8 mg/kg. Off-line computer analysis (fast Fourier transform) provided estimates of low- (0.025-0.1 Hz), mid- (0.1-0.6 Hz) and high-frequency (0.8-3.0 Hz) powers for blood pressure and pulse interval over consecutive periods of 100 s. The most noticeable findings were that sympathectomy produced a striking increase in the low-frequency power of blood pressure and a tendency (borderline statistical significance) to reduce the mid-frequency power of blood pressure. Additional alpha-receptor blockade had no effect on any spectral power whereas additional cholinergic blockade caused a further increase in the low-frequency blood pressure power and a drastic reduction in all pulse interval powers. In the unanesthetized SHR, sympathetic activity opposes low-frequency and marginally promotes mid-frequency blood pressure fluctuations; the pulse interval spectral expression of vagal effects is spread throughout the range of frequencies explored and is not confined to the high-frequency band. These data indicate that in SHR no spectral power can specifically reflect the effects of either autonomic limb.

  12. Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats.

    PubMed

    Stocker, Sean D; Hunwick, Kimberly J; Toney, Glenn M

    2005-02-15

    The present study sought to determine whether the hypothalamic paraventricular nucleus (PVN) contributes in a time-dependent manner to the differential patterning of lumbar and renal sympathetic nerve activity (SNA) in water-deprived rats. Mean arterial blood pressure (MAP) and both lumbar SNA (LSNA) and renal SNA (RSNA) were recorded simultaneously in control, 24 and 48 h water-deprived rats, and the PVN was inhibited bilaterally with microinjection of the GABA(A) agonist muscimol (100 pmol in 100 nl per side). Inhibition of the PVN significantly decreased RSNA in 48 h water-deprived rats but not in 24 h water-deprived or control rats (48 h, -17 +/- 4%; 24 h, -2 +/- 5%; control, 4 +/- 6%; P < 0.05). In addition, injection of muscimol significantly decreased LSNA in 48 and 24 h water-deprived rats but not in control rats (48 h, -41 +/- 4%; 24 h, -14 +/- 6%; control, -3 +/- 2%; P < 0.05). Interestingly, the decrease in LSNA was significantly greater than the decrease in RSNA of 24 and 48 h water-deprived rats (P < 0.05). Inhibition of the PVN also significantly decreased MAP to a greater extent in 48 and 24 h water-deprived rats compared to control rats (48 h, -34 +/- 5 mmHg; 24 h, -26 +/- 4 mmHg; control, -15 +/- 3 mmHg; P < 0.05). When 48 h water-deprived rats were acutely rehydrated by giving access to tap water 2 h before experiments, inhibition of the PVN with muscimol did not alter LSNA (-12 +/- 8%) or RSNA (7 +/- 4%) but did produce a small decrease in MAP (-15 +/- 4 mmHg) that was not different from control rats. In a parallel set of experiments, acute rehydration of 48 h water-deprived rats significantly attenuated the increased Fos immunoreactivity in PVN neurones that project to the spinal cord or rostral ventrolateral medulla. Collectively, the present findings suggest that PVN autonomic neurones are synaptically influenced during water deprivation, and that these neurones differentially contribute to LSNA and RSNA in water-deprived rats.

  13. A quantitative description of the sodium current in the rat sympathetic neurone.

    PubMed Central

    Belluzzi, O; Sacchi, O

    1986-01-01

    The somata of rat sympathetic neurones were voltage-clamped in vitro at 27 degrees C using separate intracellular voltage and current micro-electrodes. Na currents were isolated from other current contributions by using: Cd to block the Ca current (ICa) and the related Ca-dependent K current (IK(Ca)), and external tetraethylammonium to suppress the delayed rectifier current (IK(V) ). The holding potential was maintained at -50 mV to inactivate the fast transient K current (IA) when the IA contamination was unacceptable. Step depolarizations beyond -30 mV activated a fast, transient inward current carried by Na ions; it was suppressed by tetrodotoxin and was absent in Na-free solution. Once activated, INa declined exponentially to zero with a voltage-dependent time constant. The underlying conductance, gNa, showed a sigmoidal activation between -30 and +10 mV, with half-activation at -21.1 mV and a maximal value (mean gNa) of 4.44 microS per neurone. The steady-state inactivation level, h infinity, varied with membrane potential, ranging from complete inactivation at -30 mV to minimal inactivation at about -90 mV with a midpoint at -56.2 mV. Double-pulse experiments showed that development and removal of inactivation followed a single-exponential time course; tau h was markedly voltage-dependent and ranged from 46 ms at -50 mV to 2.5 ms at -100 mV. Besides the fast inactivation, the Na conductance showed a slow component of inactivation. The steady-state value, s infinity, was maximal at -80 mV and minimal at -40 mV. The removal of slow inactivation is a two-time-constant process, the first with a time constant in the order of hundreds of milliseconds and the second with a time constant of seconds. Slow inactivation onset appeared to be a faster process than its removal. When slow inactivation was fully removed the peak INa increased by a factor of 1.8. INa was well described by assuming it to be proportional to m3h. The temperature dependence of peak INa, tau m and

  14. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii

    PubMed Central

    Pickering, Anthony E; Boscan, Pedro; Paton, Julian F R

    2003-01-01

    Somatic noxious stimulation can evoke profound cardiovascular responses by altering activity in the autonomic nervous system. This noxious stimulation attenuates the cardiac vagal baroreflex, a key cardiovascular homeostatic reflex. This attenuation is mediated via NK1 receptors expressed on GABAergic interneurones within the nucleus of the solitary tract (NTS). We have investigated the effect of noxious stimulation and exogenous substance P (SP) on the sympathetic component of the baroreflex. We recorded from the sympathetic chain in a decerebrate, artificially perfused rat preparation. Noxious hindlimb pinch was without effect on the sympathetic baroreflex although the cardiac vagal baroreflex gain was decreased (56%, P < 0.01). Bilateral NTS microinjection of SP (500 fmol) produced a similar selective attenuation of the cardiac vagal baroreflex gain (62%, P < 0.005) without effect on the sympathetic baroreflex. Recordings from the cardiac sympathetic and vagal nerves confirmed the selectivity of the SP inhibition. Control experiments using a GABAA receptor agonist, isoguvacine, indicated that both components of the baroreflex (parasympathetic and sympathetic) could be blocked from the NTS injection site. The NTS microinjection of a NK1 antagonist (CP-99,994) in vivo attenuated the tachycardic response to hindlimb pinch. Our data suggest that noxious pinch releases SP within the NTS to selectively attenuate the cardiac vagal, but not the sympathetic, component of the baroreflex. This selective withdrawal of the cardiac vagal baroreflex seems to underlie the pinch-evoked tachycardia seen in vivo. Further, these findings confirm that baroreflex sympathetic and parasympathetic pathways diverge, and can be independently controlled, within the NTS. PMID:12813142

  15. Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats

    PubMed Central

    Ye, Yang; Wang, Xue-Rui; Li, Fang; Xiao, Ling-Yong; Shi, Guang-Xia

    2017-01-01

    The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs. PMID:28270938

  16. Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats.

    PubMed

    Yang, Jing-Wen; Ye, Yang; Wang, Xue-Rui; Li, Fang; Xiao, Ling-Yong; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-01-01

    The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs.

  17. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.

    PubMed

    Jendzjowsky, Nicholas G; DeLorey, Darren S

    2013-07-01

    Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats (n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 (n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 (n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (-25 ± 7 and -44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-7 ± 3 and -19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (-32 ± 6 and -49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-21 ± 4 and -28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased (P < 0.05) the sympathetic vasoconstrictor

  18. Dual activation of cardiac sympathetic and parasympathetic components during conditioned fear to context in the rat.

    PubMed

    Carrive, Pascal

    2006-12-01

    1. The present study investigates the contribution of the sympathetic and vagal parasympathetic systems to the tachycardic response of long-lasting (40 min) conditioned fear responses to context. 2. The conditioned fear response evoked by re-exposure to a footshock chamber was tested 10 min after intravenous injection of the beta-adrenoceptor antagonist propranolol (2 mg/kg) or the muscarinic antagonist atropine methyl nitrate (2 mg/kg) in rats implanted with radiotelemetric probes. 3. Compared with saline controls, the drugs did not change the behavioural component of the response (freezing, 22 kHz ultrasonic vocalizations) or its pressor component (+28 mmHg). 4. Propranolol abolished the tachycardic response of fear, whereas atropine more than doubled it (from +75 to +175 b.p.m. above resting baseline). 5. The results demonstrate that both sympathetic and vagal parasympathetic outflows to the heart are strongly activated during conditioned fear. The vagal activation may act to hold back cardiac acceleration while the animal waits for the aversive stimulus to come.

  19. Frequency components of systolic blood pressure variability reflect vasomotor and cardiac sympathetic functions in conscious rats.

    PubMed

    Yoshimoto, Takahiko; Eguchi, Kunihiro; Sakurai, Hiroki; Ohmichi, Yusuke; Hashimoto, Tatsuyuki; Ohmichi, Mika; Morimoto, Atsuko; Yamaguchi, Yoshiko; Ushida, Takahiro; Iwase, Satoshi; Sugenoya, Junichi; Kumazawa, Takao

    2011-09-01

    In this study, after confirming the suppression of autonomic nervous function by isoflurane anesthesia using autonomic antagonists, we pharmacologically investigated the involvement of vasomotor and cardiac sympathetic functions in systolic blood pressure variability (SBPV) frequency components in conscious rats at rest and during exposure to low-ambient temperature (LT-exposure, 9°C for 90 min). Under unanesthesia, phentolamine administration (α-adrenoceptor antagonist, 10 mg/kg) decreased the mid-frequency component (MF 0.33-0.73 Hz) and inversely increased the high-frequency component (HF 1.3-2.5 Hz). The increased HF was suppressed by subsequent treatment with atenolol (β-adrenoceptor antagonist, 10 mg/kg), but not with atropine (muscarinic receptor antagonist, 10 mg/kg). Moreover, phentolamine administration after atenolol decreased MF, but did not increase HF. LT-exposure increased MF and HF; however, phentolamine pretreatment suppressed the increased MF during LT-exposure, and atenolol pretreatment dose-dependently decreased the increased HF. These results suggest that MF and HF of SBPV may reflect α-adrenoceptor-mediated vasomotor function and β-adrenoceptor-mediated cardiac sympathetic function, respectively, in the conscious state.

  20. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation.

    PubMed

    Cruz, Gonzalo; Fernandois, Daniela; Paredes, Alfonso H

    2017-02-01

    Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause, also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during ovarian ageing, with a focus on the subfertile period.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/2/R61/suppl/DC1. © 2017 Society for Reproduction and Fertility.

  1. The release of sympathetic neurotransmitters is impaired in aged rats after an inflammatory stimulus. A possible link between cytokine production and sympathetic transmission

    PubMed Central

    Donoso, Verónica; Gomez, Christian R.; Orriantia, Miguel Ángel; Pérez, Viviana; Torres, Claudio; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Morales, Bernardo; Fernandez, Ricardo; Imarai, Mónica; Huidobro-Toro, Juan Pablo; Sierra, Felipe; Acuña-Castillo, Claudio

    2009-01-01

    Aging results in a general decline in the response to external insults, including acute inflammatory challenges. In young animals, the inflammatory response requires activation of the sympathetic system, including neurotransmitters such as ATP, and catecholamines (epinephrine and norepinephrine). To test whether aging affects activation of this axis, and whether this in turn might affect cytokine release, we administered lipopolysaccharide (LPS) i.p. to adult, middle-aged and aged Fisher 344 rats (6, 15 and 23-month old, respectively) and evaluated the early (0–12 hours) serum levels of Neuropeptide-Y (NP-Y), ATP and vanillyl mandelic acid (VMA, as an indirect measurement of catecholamine levels). In addition, we evaluated the association between these factors and serum levels of the cytokines tumor necrosis factor-alpha (TNFα)3 and interleukin-10 (IL-10). Induction of both ATP and NP-Y was markedly reduced in the serum of aged animals, when compared to their younger counterparts, while induction of VMA was not affected by age. In spite of these changes, serum levels of TNFα and IL-10 were strongly hyper induced and delayed in aged rats. The results suggest that during aging there is a dysregulation in sympathetic neurotransmitter regulatory mechanisms, and this might play a role in the impairment of the inflammatory response. PMID:18973771

  2. Targeted ablation of mesenteric projecting sympathetic neurons reduces the hemodynamic response to pain in conscious, spinal cord-transected rats.

    PubMed

    Lujan, Heidi L; Palani, Gurunanthan; Peduzzi, Jean D; DiCarlo, Stephen E

    2010-05-01

    Individuals with spinal cord injuries above thoracic level 6 (T(6)) experience episodic bouts of life-threatening hypertension as part of a condition termed autonomic dysreflexia. The paroxysmal hypertension can be caused by a painful stimulus below the level of the injury. Targeted ablation of mesenteric projecting sympathetic neurons may reduce the severity of autonomic dysreflexia by reducing sympathetic activity. Therefore, cholera toxin B subunit (CTB) conjugated to saporin (SAP; a ribosomal inactivating protein that binds to and inactivates ribosomes) was injected into the celiac ganglion to test the hypothesis that targeted ablation of mesenteric projecting sympathetic neurons reduces the pressor response to pain in conscious, spinal cord-transected rats. Nine Sprague-Dawley male rats underwent a spinal cord transection between thoracic vertebrae 4 and 5. Following recovery (5 wk), all rats were instrumented with a radio telemetry device for recording arterial pressure and bilateral catheters in the gluteus maximus muscles for the infusion of hypertonic saline (hNa(+)Cl(-)). Subsequently, the hemodynamic responses to intramuscular injection of hNa(+)Cl(-) (100 microl and 250 microl, in random order) were determined. Following the experiments in the no celiac ganglia injected condition (NGI), rats received injections of CTB-SAP (n = 5) or CTB (n = 3) into the celiac ganglia. CTB-SAP rats, compared with NGI and CTB rats, had reduced pressor responses to hNa(+)Cl(-). Furthermore, the number of stained neurons in the celiac ganglia and spinal cord (segments T(6)-T(12)), was reduced in CTB-SAP rats. Thus, CTB-SAP retrogradely transported from the celiac ganglia is effective at ablating mesenteric projecting sympathetic neurons and reducing the pressor response to pain in spinal cord-transected rats.

  3. Angiotensin II Triggered p44/42 Mitogen-Activated Protein Kinase Mediates Sympathetic Excitation in Heart Failure Rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Weiss, Robert M.; Felder, Robert B.

    2009-01-01

    Angiotensin II (ANG II), acting via angiotensin type 1 receptors (AT1-R) in the brain, activates the sympathetic nervous system in heart failure (HF). We recently reported that ANG II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain AT1-R in HF rats. In this study we tested the hypothesis that ANG II-activated MAPK signaling pathways contribute to sympathetic excitation in HF. Intracerebroventricular (ICV) administration of PD98059 and UO126, two selective p44/42 MAPK inhibitors, induced significant decreases in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in HF rats, but had no effect on these variables in SHAM rats. Pretreatment with losartan attenuated the effects of PD98059. ICV administration of the p38 MAPK inhibitor SB203580 and the c-Jun N-terminal kinase inhibitor SP600125 had no effect on MAP, HR or RSNA in HF. The phosphatidylinositol-3 kinase inhibitor LY294002 induced a small decrease in MAP and HR, but no change in RSNA. Immunofluorescent staining demonstrated increased p44/42 MAPK activity in neurons of the paraventricular nucleus of the hypothalamus (PVN) of HF rats, co-localized with Fra-like activity (indicating chronic neuronal excitation). ICV PD98059 and UO126 reduced Fra-like activity in PVN neurons in HF rats. In confirmatory acute studies, ICV ANG II increased MAP, HR and RSNA in baroreceptor-denervated rats and Fra-LI immunoreactivity in the PVN of neurally intact rats. Central administration of PD98059 markedly reduced these responses. These data demonstrate that intracellular p44/42 MAPK activity contributes to ANG II-induced PVN neuronal excitation and augmented sympathetic nerve activity in rats with HF. PMID:18574076

  4. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  5. Neuronal and Endothelial Nitric Oxide Synthases in the Paraventricular Nucleus Modulate Sympathetic Overdrive in Insulin-Resistant Rats

    PubMed Central

    Lu, Qing-Bo; Feng, Xue-Mei; Tong, Ning; Sun, Hai-Jian; Ding, Lei; Wang, Yu-Jiao; Wang, Xuan; Zhou, Ye-Bo

    2015-01-01

    A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR. PMID:26485682

  6. Chewing reduces sympathetic nervous response to stress and prevents poststress arrhythmias in rats.

    PubMed

    Koizumi, So; Minamisawa, Susumu; Sasaguri, Kenichi; Onozuka, Minoru; Sato, Sadao; Ono, Yumie

    2011-10-01

    Reducing stress is important in preventing sudden death in patients with cardiovascular disease, as stressful events may cause autonomic imbalance and trigger fatal arrhythmias. Since chewing has been shown to inhibit stress-induced neuronal responses in the hypothalamus, we hypothesized that chewing could ameliorate stress-induced autonomic imbalance and prevent arrhythmias. To test this hypothesis, we analyzed changes in radiotelemetered electrocardiograms in rats that were allowed to chew a wooden stick during a 1-h period of immobilization stress. Chewing significantly reduced the occurrence of ventricular premature beats (VPBs) and complex ventricular ectopy after immobilization and prevented stress-induced prolongation of the QT interval of VPBs throughout the 10-h experimental period. It also prevented prolongation of the QRS complex and fluctuations in the QT interval in normal sinus rhythm beats preceding VPBs during both immobilization and in the poststress period. Fast Fourier transform-based spectral analysis of heart-rate variability further showed that chewing significantly inhibited the stress-induced increase in the power ratio of low-to-high frequency activity (LF/HF: a marker of sympathetic activity) during immobilization and in addition was associated with blunting of the stress-induced increase in plasma noradrenaline observed at the termination of immobilization. Similar suppressive effects on the occurrence of VPBs and the LF/HF were observed in rats that were administered the β-adrenergic blocker propranolol before immobilization. These results indicate that chewing can ameliorate sympathetic hyperactivity during stress and prevent poststress arrhythmias and suggest that chewing may provide a nonpharmacological and cost-effective treatment option for patients with a high risk of stress-induced fatal arrhythmia.

  7. Correlation of discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats.

    PubMed

    Tseng, Wan-Ting; Chen, Ruei-Feng; Tsai, Meng-Li; Yen, Chen-Tung

    2009-04-17

    The rostral ventrolateral medulla (RVLM) is critically important in the generation of sympathetic activity. The purpose of this study was to investigate whether discharges of RVLM neurons contribute to low-frequency (LF) sympathetic rhythms. Blood pressure (BP), renal sympathetic nerve activity (SNA), and neuronal activity in the RVLM were simultaneously recorded in seven anesthetized, paralyzed, and artificially ventilated rats. Fifty-one RVLM neurons were recorded and classified into three differential functional groups according to their activities related to baroreceptor input. Those in the category of spike firing inhibited by a BP increase (BP(I)) and which excited sympathetic discharges was the most abundant (24%). Coherence analysis was used to examine the relationship of the firing frequency of RVLM neurons with the LF (0.2-0.8Hz) rhythm of SNA. Forty-one percent of RVLM neurons showed a significant correlation to LF rhythms, and BP(I) neurons with sympathoexcitatory properties were the major contributors. In another 4 baroreceptor-denervated rats, 36 RVLM neurons were recorded. In these rats, RVLM neuronal activities no longer changed with BP fluctuations. Nevertheless, more than 40% of RVLM neurons were sympathoexcitatory, and 36% of RVLM neurons were still correlated with the LF SNA rhythm. Our results suggest that there are RVLM neurons involved in generating the LF rhythm in SNA and that the baroreflex can induce the participation of more neurons in LF rhythm generation.

  8. Interaction of perivascular adipose tissue and sympathetic nerves in arteries from normotensive and hypertensive rats.

    PubMed

    Török, J; Zemančíková, A; Kocianová, Z

    2016-10-24

    The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.

  9. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats.

    PubMed

    Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M; Kopp, Ulla C

    2013-04-15

    Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R(2) > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation.

  10. Sympathetic regulation of vascular tone via noradrenaline and serotonin in the rat carotid body as revealed by intracellular calcium imaging.

    PubMed

    Yokoyama, Takuya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-01-30

    Hypoxia-induced chemosensory activity in the carotid body (CB) may be enhanced by the sympathetic regulation of vascular tone in the CB. In the present study, we recorded cervical sympathetic nerve activity in rats exposed to hypoxia, and examined noradrenaline (NA)- and serotonin (5-HT)-induced intracellular Ca(2+) ([Ca(2+)]i) responses in smooth muscle cells and pericytes in isolated blood vessels from the CB. Multifiber electrical activity recorded from the cervical sympathetic trunk was increased during the inhalation of hypoxic gas. NA induced [Ca(2+)]i increases in smooth muscle cells in arteriole specimens, whereas 5-HT did not cause any [Ca(2+)]i responses. However, NA did not induce [Ca(2+)]i increases in pericytes in capillaries, whereas 5-HT did and this response was inhibited by the 5-HT2 receptor antagonist, ketanserin. In conclusion, cervical sympathetic nerves enhanced by hypoxia may reduce blood flow in the CB in order to increase chemosensitivity. Thus, hypoxic chemosensitivity in the CB may involve a positive feedback mechanism via sympathetic nerves. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats.

    PubMed

    Dagnino-Subiabre, Alexies; Orellana, Juan A; Carmona-Fontaine, Carlos; Montiel, Juan; Díaz-Velíz, Gabriela; Serón-Ferré, María; Wyneken, Ursula; Concha, Miguel L; Aboitiz, Francisco

    2006-06-01

    Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.

  12. Inhibitory 5-hydroxytryptamine receptors involved in pressor effects obtained by stimulation of sympathetic outflow from spinal cord in pithed rats.

    PubMed Central

    Morán, A; Velasco, C; Salvador, T; Martín, M L; San Román, L

    1994-01-01

    1. A study was made of the effects of 5-hydroxytryptamine (5-HT) on pressor response induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Intravenous infusion of 5-hydroxytryptamine at doses of 10 and 20 micrograms kg-1 min-1 reduced the pressor effects obtained by electrical stimulation at intervals of 10 min over the 1 h of infusion. 2. This inhibitory action of 5-HT was depressed by cyproheptadine and methiothepin but was not modified by ketanserin or MDL-72222. By contrast, the inhibitory action of 5-HT was lost in pithed rats that had been pretreated with exogenous noradrenaline. 3. The 5-HT1 receptor agonist 5-carboxamidotryptamine (5-CT) caused an inhibition of the pressor response, whereas the 5-HT3 receptor agonist, 1-phenylbiguanide, produced a variable but significant increase in the pressor response. The 5-HT2 receptor agonist, m-CPP, did not modify the pressor sympathetic response. 4. Our results suggest that 5-hydroxytryptamine interferes with sympathetic neurotransmission by inhibiting pressor effects as a result of stimulation of the complete sympathetic outflow, and that this inhibition is mainly through a presynaptic 5-HT1 mechanism. PMID:7889292

  13. Modulation of sympathetic neurotransmission by neuropeptide Y Y2 receptors in rats and guinea pigs.

    PubMed

    Potter, Erica K; Tripovic, Diana

    2006-08-01

    We have investigated the effect of the Y2 receptor agonist (Y2 agonist; N-acetyl [Leu28,31] NPY 24-36), on contractions evoked by transmural electrical stimulation of sympathetic nerves of isolated arteries from a range of vascular beds in rats and guinea pigs. Contractions evoked by transmural stimulation of the rat renal, mesenteric and femoral arteries were significantly attenuated in the presence of the Y2 agonist. In these arteries, contractions were significantly inhibited in the presence of an alpha-adrenoceptor antagonist (76-97%). So we conclude that these responses were primarily mediated by noradrenaline and that the Y2 agonist attenuates the release of noradrenaline via presynaptic Y2 receptors. Contractions of the rat carotid artery were not attenuated by the Y2 agonist but were completely abolished in the presence of an alpha-adrenoceptor antagonist suggesting that in this artery the Y2 agonist has no effect on release of noradrenaline. In the guinea pig, carotid arteries contractions evoked by transmural nerve stimulation were attenuated in the presence of the Y2 agonist and inhibited by an alpha-adrenoceptor antagonist 75-87% suggesting that the Y2 agonist attenuates the release of noradrenaline via presynaptic Y2 receptors in this vessel. In the guinea pig femoral artery contractions evoked by transmural stimulation were not modified in the presence of the Y2 agonist but were completely abolished in the presence of an alpha-adrenoceptor antagonist. This suggests that the Y2 agonist does not modify noradrenaline release in this vessel. Contractions of the guinea pig mesenteric artery were significantly potentiated by the Y2 agonist, possibly by potentiation of neuropeptide Y (NPY) at the Y1 receptor. The Y1 antagonist inhibited more than 70 % of the response, indicating that the majority of the contraction was mediated by NPY. The current study demonstrates heterogeneity of neurotransmitter substances in sympathetic nerves supplying vascular beds

  14. Vasovagal Oscillations and Vasovagal Responses Produced by the Vestibulo-Sympathetic Reflex in the Rat

    PubMed Central

    Yakushin, Sergei B.; Martinelli, Giorgio P.; Raphan, Theodore; Xiang, Yongqing; Holstein, Gay R.; Cohen, Bernard

    2014-01-01

    Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025–0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated. PMID:24772102

  15. Enhanced sympathetic reactivity associates with insulin resistance in the young Zucker rat.

    PubMed

    Ruggeri, Piero; Brunori, Andrea; Cogo, Carla E; Storace, Daniela; Di Nardo, Francesco; Burattini, Roberto

    2006-08-01

    Somatosympathetic reflexes were studied in young hyperinsulinemic, insulin-resistant (Zucker fatty) rats (ZFR) and a related control (Zucker lean) strain (ZLR). Glucose metabolism was characterized by minimal model analysis of intravenous glucose tolerance test data. Seven-week-old ZFR (n=18) and ZLR (n=17) were studied under pentobarbital anesthesia. Mean body weight and plasma glucose and insulin concentration were significantly greater (P<0.05) in ZFR than in ZLR, whereas basal values of mean arterial pressure (MAP) and heart rate (HR) were not significantly different. Increments of MAP (DeltaMAP) and HR (DeltaHR) elicited by electrical stimulation of the sciatic nerve (5-s trains of 100 pulses, 0.5-ms pulse duration, 100- to 400-microA pulse intensity) were significantly higher (ANOVA, P<0.05) in ZFR at each level of stimulus intensity. Regression analysis showed a linear increase in DeltaMAP and DeltaHR with increasing sciatic nerve stimulus intensity. Pressor responses to phenylephrine after ganglionic blockade demonstrated that vascular reactivity to adrenergic stimulation is not increased in ZFR compared with ZLR. Thus this factor does not contribute to enhancement of somatosympathetic reflexes observed in this strain. Insulin sensitivity in ZFR was one-fourth (P<0.05) that in ZLR. These results suggest that stronger sympathetic nervous reactivity in ZFR is associated with a severe insulin-resistant state before the onset of hypertension and support the hypothesis that insulin-mediated stimulation of the sympathetic nervous system is involved in the development of cardiovascular diseases related to alterations of glucose metabolism.

  16. Electrochemical and electrophysiological characterization of neurotransmitter release from sympathetic nerves supplying rat mesenteric arteries

    PubMed Central

    Dunn, William R; Brock, James A; Hardy, Todd A

    1999-01-01

    Characteristic features of noradrenaline (NA) and adenosine 5′-triphosphate (ATP) release from postganglionic sympathetic nerves in rat small mesenteric arteries in vitro have been investigated on an impulse-by-impulse basis. NA release was measured using continuous amperometry and ATP release was monitored by intracellular recording of excitatory junction potentials (e.j.ps). Electrical stimuli evoked transient increases in oxidation current. During trains of ten stimuli at 0.5–4 Hz there was a depression in the amplitude of oxidation currents evoked following the first stimulus in the train. The neuronal NA uptake inhibitor, desmethylimipramine (1 μM), increased the amplitude of the summed oxidation current evoked by ten stimuli at 1 Hz and slowed the decay of oxidation currents evoked by trains of ten stimuli at 1 and 10 Hz. The α2-adrenoceptor antagonist, idazoxan (1 μM), increased the amplitudes of the oxidation currents evoked during trains of ten stimuli at 0.5–10 Hz but had no effect on the oxidation currents evoked by the first stimulus in the train. Idazoxan (1 μM) increased the amplitude of all e.j.ps evoked during trains of stimuli at 0.5 and 1 Hz. In addition, the facilitatory effect of idazoxan on e.j.ps was significantly greater than that on oxidation currents. The findings indicate that NA release from sympathetic nerves supplying small mesenteric arteries is regulated by activation of presynaptic α2-adrenoceptors and that clearance of released NA in this tissue depends, in part, upon neuronal uptake. The different effects of idazoxan on the oxidation currents and e.j.ps may indicate that the release of NA and ATP is differentially modulated. PMID:10498849

  17. Contribution of excitatory amino acid receptors of the retrotrapezoid nucleus to the sympathetic chemoreflex in rats.

    PubMed

    Takakura, Ana C; Moreira, Thiago S

    2011-10-01

    In the present study, we evaluated the role of glutamatergic mechanisms in the retrotrapezoid nucleus (RTN) in changes of splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) elicited by central and peripheral chemoreceptor activation. Mean arterial pressure (MAP), sSND and PND were recorded in urethane-anaesthetized, vagotomized, sino-aortic denervated and artificially ventilated male Wistar rats. Hypercapnia (10% CO(2)) increased MAP by 32 ± 4 mmHg, sSND by 104 ± 4% and PND amplitude by 101 ± 5%. Responses to hypercapnia were reduced after bilateral injection of the NMDA receptor antagonist d,l-2-amino-5-phosphonovalerate (AP-5; 100 mm in 50 nl) in the RTN (MAP increased by 16 ± 3 mmHg, sSND by 82 ± 3% and PND amplitude by 63 ± 7%). Bilateral injection of the non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 100 mm in 50 nl) and the metabotropic receptor antagonist (+/-)-α-methyl-4-carboxyphenylglycine (MCPG; 100 mm in 50 nl) in the RTN did not affect sympathoexcitatory responses induced by hypercapnia. Injection of DNQX reduced hypercapnia-induced phrenic activation, whereas MCPG did not. In animals with intact carotid chemoreceptors, bilateral injections of AP-5 and DNQX in the RTN reduced increases in MAP, sSND and PND amplitude produced by intravenous injection of NaCN (50 μg kg(-1)). Injection of MCPG in the RTN did not change responses produced by NaCN. These data indicate that RTN ionotropic glutamatergic receptors are involved in the sympathetic and respiratory responses produced by central and peripheral chemoreceptor activation.

  18. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats

    PubMed Central

    Shibamoto, Toshishige; Zhang, Tao; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka

    2016-01-01

    During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF) and lumbar sympathetic nerve activity (LSNA) mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group): (1) non-sensitized, (2) anaphylaxis, (3) anaphylaxis-lumbar sympathectomy (LS) and (4) anaphylaxis-sinoaortic denervation (SAD) groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP), heart rate (HR), central venous pressure (CVP), FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats. PMID:26998924

  19. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    PubMed

    Song, Jie; Tanida, Mamoru; Shibamoto, Toshishige; Zhang, Tao; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka

    2016-01-01

    During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF) and lumbar sympathetic nerve activity (LSNA) mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group): (1) non-sensitized, (2) anaphylaxis, (3) anaphylaxis-lumbar sympathectomy (LS) and (4) anaphylaxis-sinoaortic denervation (SAD) groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP), heart rate (HR), central venous pressure (CVP), FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  20. Trophic influence of the sympathetic nervous system on the rat portal vein.

    PubMed

    Aprigliano, O; Hermsmeyer, K

    1977-08-01

    Adrenergic denervation of the rat portal vein was produced in vivo by the sympatholytic agent 6-hydroxydopamine (6-OHDA). Treatment of rats with 6-OHDA decreased the responses of the portal veins to nerve stimulation, reduced 3H-norepinephrine (NE) uptake, and decreased catecholamine fluorescence, indicating that partial adrenergic denervation was achieved. The main findings of this study indicate that the in vivo denervation produced: (1) a (time-dependent) increase in sensitivity of the veins to NE, which was not of prejunctional origin, (2) an increase in sensitivity to BaC12, and (3) a partial depolarization of the myovascular cells. The results suggest that the in vivo denervation of the portal veins by 6-OHDA produces a postjunctional alteration, which may be due to the removal of a trophic influence of the sympathetic nervous system. It is proposed that the partial depolarization and associated ionic changes may be components of the mechanism. These results provide the first direct evidence that membrane excitability changes are involved in trophic nerve-muscle interactions in blood vessels.

  1. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction.

    PubMed

    Zicha, J; Dobešová, Z; Behuliak, M; Kuneš, J; Vaněčková, I

    2011-05-01

    Increased potassium intake attenuates the development of salt-dependent hypertension, but the detailed mechanisms of blood pressure (BP) reduction are still unclear. The aims of our study were (i) to elucidate these mechanisms, (ii) to compare preventive potassium effects in immature and adult animals and (iii) to evaluate the therapeutic effects of dietary potassium supplementation in rats with established salt hypertension.   Young (4-week-old) and adult (24-week-old) female salt-sensitive Dahl rats were fed a high-salt diet (5% NaCl) or a high-salt diet supplemented with 3% KCl for 5 weeks. The participation of vasoconstrictor (renin-angiotensin and sympathetic nervous systems) and vasodilator systems [prostanoids, Ca(2+) -activated K(+) channels, nitric oxide (NO)] was evaluated using a sequential blockade of these systems. Preventive potassium supplementation attenuated the development of severe salt hypertension in young rats, whereas it had no effects on BP in adult rats with moderate hypertension. Enhanced sympathetic vasoconstriction was responsible for salt hypertension in young rats and its attenuation for potassium-induced BP reduction. Conversely, neither salt hypertension nor its potassium-induced attenuation were associated with significant changes of the vasodilator systems studied. The relative deficiency of vasodilator action of NO and Ca(2+) -activated K(+) channels in salt hypertensive Dahl rats was not improved by potassium supplementation. The attenuation of enhanced sympathetic vasoconstriction is the principal mechanism of antihypertensive action exerted by preventive potassium supplementation in immature Dahl rats. Dietary potassium supplementation has no preventive effects on BP in adult salt-loaded animals or no therapeutic effects on established salt hypertension in young rats. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  2. Single-Unit Muscle Sympathetic Nerve Activity Reflects Sleep Apnea Severity, Especially in Severe Obstructive Sleep Apnea Patients

    PubMed Central

    Hamaoka, Takuto; Murai, Hisayoshi; Kaneko, Shuichi; Usui, Soichiro; Okabe, Yoshitaka; Tokuhisa, Hideki; Kato, Takeshi; Furusho, Hiroshi; Sugiyama, Yu; Nakatsumi, Yasuto; Takata, Shigeo; Takamura, Masayuki

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with augmented sympathetic nerve activity, as assessed by multi-unit muscle sympathetic nerve activity (MSNA). However, it is still unclear whether single-unit MSNA is a better reflection of sleep apnea severity according to the apnea-hypopnea index (AHI). One hundred and two OSAS patients underwent full polysomnography and single- and multi-unit MSNA measurements. Univariate and multivariate regression analysis were performed to determine which parameters correlated with OSAS severity, which was defined by the AHI. Single- and multi-unit MSNA were significantly and positively correlated with AHI severity. The AHI was also significantly correlated with multi-unit MSNA burst frequency (r = 0.437, p < 0.0001) and single-unit MSNA spike frequency (r = 0.632, p < 0.0001). Multivariable analysis revealed that SF was correlated most significantly with AHI (T = 7.27, p < 0.0001). The distributions of multiple single-unit spikes per one cardiac interval did not differ between patients with an AHI of <30 and those with and AHI of 30–55 events/h; however, the pattern of each multiple spike firing were significantly higher in patients with an AHI of >55. These results suggest that sympathetic nerve activity is associated with sleep apnea severity. In addition, single-unit MSNA is a more accurate reflection of sleep apnea severity with alternation of the firing pattern, especially in patients with very severe OSAS. PMID:26973534

  3. NO and endogenous angiotensin II interact in the generation of renal sympathetic nerve activity in conscious rats.

    PubMed

    McKeogh, Donogh F; O'Donaughy, Theresa L; Brooks, Virginia L

    2004-04-01

    Nitric oxide (NO) appears to inhibit sympathetic tone in anesthetized rats. However, whether NO tonically inhibits sympathetic outflow, or whether endogenous angiotensin II (ANG II) promotes NO-mediated sympathoinhibition in conscious rats is unknown. To address these questions, we determined the effects of NO synthase (NOS) inhibition on renal sympathetic nerve activity (RSNA) and heart rate (HR) in conscious, unrestrained rats on normal (NS), high-(HS), and low-sodium (LS) diets, in the presence and absence of an ANG II receptor antagonist (AIIRA). When arterial pressure was kept at baseline with intravenous hydralazine, NOS inhibition with l-NAME (10 mg/kg i.v.) resulted in a profound decline in RSNA, to 42 +/- 11% of control (P < 0.01), in NS animals. This effect was not sustained, and RSNA returned to control levels by 45 min postinfusion. l-NAME also caused bradycardia, from 432 +/- 23 to 372 +/- 11 beats/min postinfusion (P < 0.01), an effect, which, in contrast, was sustained 60 min postdrug. The effects of NOS inhibition on RSNA and HR did not differ between NS, HS, and LS rats. However, when LS and HS rats were pretreated with AIIRA, the initial decrease in RSNA after l-NAME infusion was absent in the LS rats, while the response in the HS group was unchanged by AIIRA. These findings indicate that, in contrast to our hypotheses, NOS activity provides a stimulatory input to RSNA in conscious rats, and that in LS animals, but not HS animals, this sympathoexcitatory effect of NO is dependent on the action of endogenous ANG II.

  4. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats.

    PubMed

    Briant, Linford J B; Stalbovskiy, Alexey O; Nolan, Matthew F; Champneys, Alan R; Pickering, Anthony E

    2014-12-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. Copyright © 2014 the American Physiological Society.

  5. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats

    PubMed Central

    Briant, Linford J. B.; Stalbovskiy, Alexey O.; Nolan, Matthew F.; Champneys, Alan R.

    2014-01-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15–30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. PMID:25122704

  6. Sympathetic preganglionic neurons project to superior cervical ganglion via C7 spinal nerve in pup but not in adult rats.

    PubMed

    Huang, Yi-Gang; Chen, Liang; Gu, Yu-Dong; Yu, Guang-Rong

    2010-04-19

    We investigated the distribution of sympathetic preganglionic fibers in each spinal nerve of the brachial plexus, and its correlation with presence of Horner's syndrome in the pup and adult rats. According to surgical intervention to the C7-T1 spinal nerves in the right side, rats of 7 days postnatal (P7), P14 and adulthood (24 for each age group) were subdivided into four subgroups of six each, respectively, i.e., C7 or C8 or T1 spared subgroup--where C7 or C8 or T1 alone was kept intact with avulsion of the other two spinal nerves and division of the sympathetic chain caudal to the stellate ganglion; C7-T1 avulsed subgroup--where C7-T1 were all avulsed but the sympathetic chain kept intact. Fluoro-Gold (FG) was injected bilaterally into the superior cervical ganglion (SCG) for labeling of sympathetic preganglionic neurons (SPNs). Furthermore, Horner's syndrome was examined after avulsion of different spinal nerves for P14 and adult rats. In C7 spared subgroups, FG-labeled neurons accounted averagely for 16.9% in P7, 13.5 in P14 and 1.0 in adult rats, and difference was statistically significant between P7 and adults (Z=-2.9, P=0.004), P14 and adults (Z=-2.9, P=0.004). When both C7 and C8 were avulsed, Horner's syndrome was more prone to be produced in pups than in adults (chi(2)=4.2, P=0.04). These results indicate that some SPNs project to SCG via C7 in the pup, but this pathway disappears during postnatal development. It suggests that in newborns with brachial plexopathy, presence of Horner's syndrome may be correlated with avulsion of C7. 2009. Published by Elsevier B.V.

  7. Effects of central sympathetic activation on repolarization-dispersion during short-term myocardial ischemia in anesthetized rats.

    PubMed

    Kolettis, Theofilos M; La Rocca, Vassilios; Psychalakis, Nikolaos; Karampela, Eleftheria; Kontonika, Marianthi; Tourmousoglou, Christos; Baltogiannis, Giannis G; Papalois, Apostolos; Kyriakides, Zenon S

    2016-01-01

    Sympathetic activation during myocardial ischemia enhances arrhythmogenesis, but the underlying pathophysiologic mechanisms remain unclear. We investigated the central sympathetic effects on ventricular repolarization during the early-period post-coronary artery occlusion. We studied 12 Wistar rats (254±2 g) for 30 min following left coronary artery ligation, with (n=6) or without (n=6) pretreatment with the central sympatholytic agent clonidine. Mapping of left and right ventricular epicardial electrograms was performed with a 32-electrode array. As an index of sympathetic activation, heart rate variability in the frequency domain was calculated. Heart rate and repolarization duration were measured with a custom-made recording and analysis software, followed by calculation of intra- and inter-ventricular dispersion of repolarization. Heart rate and heart rate variability indicated lower sympathetic activation in clonidine-treated rats during ischemia. Repolarization duration in the left ventricle prolonged after clonidine at baseline, independently of heart rate, but no differences were present 30 min post-ligation. Dispersion of repolarization in the right ventricle remained stable during ischemia, whereas it increased in the left ventricle, equally in both groups. A similar trend was observed for inter-ventricular dispersion, without differences between groups. In addition to intra-ventricular repolarization-dispersion, anterior-wall myocardial ischemia may also increase inter-ventricular repolarization-dispersion. Progressive central sympathetic activation occurs during myocardial ischemia, but it does not affect intra- or inter-ventricular dispersion of ventricular repolarization during the early phase. Further research is warranted on the potential effects during subsequent time-periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  9. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  10. Neuroendocrine secretory protein 55 (NESP55) immunoreactivity in male and female rat superior cervical ganglion and other sympathetic ganglia.

    PubMed

    Li, Yongling; Wang, Zhanyou; Dahlström, Annica

    2007-03-30

    Neuroendocrine secretory protein 55 (NESP55) is a soluble, acidic and heat-stable protein, belonging to the class of chromogranins. It is expressed specifically in endocrine cells and the nervous system, and is probably involved in both constitutive and regulated secretion. In the present study, we investigated the distribution of NESP55 in various rat sympathetic ganglia by immunohistochemistry. The expression of NESP55-IR was detected in a subpopulation of principal neurons in the rat SCG, which was also TH positive, and, thus, adrenergic. In the rat stellate ganglion, more than two thirds of NESP55 positive neurons were adrenergic. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP) in cholinergic neurons was also observed. In the rat thoracic chain, however, the majority of NESP55 positive neurons appeared to lack TH. No detectable NESP55-IR was found in the mouse SCG. Furthermore, in the sexually dimorphic SCG, it was demonstrated that, 80% of the NESP55 positive principal neurons were also NPY positive in the male rat, while a slightly higher, but statistically significant proportion, 87%, was found in the female. Whether or not this small difference is physiologically significant is unknown. The present data provide basic knowledge about the expression of NESP55 in the sympathetic autonomic nervous system of rat, which may further our understanding of the functional significance of NESP55.

  11. Presynaptic actions of 4-aminopyridine and gamma-aminobutyric acid on rat sympathetic ganglia in vitro.

    PubMed

    Galvan, M; Grafe, P; ten Bruggencate, G

    1980-11-01

    Responses to bath-applications of 4-aminopyridine(4-AP) and gamma-aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1-1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B- and C-fibre potentials were prolonged. In 4-AP solution (0.2-0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked "bursts" of spikes and EPSPs in addition to a neuronal depolarization. These "bursts", which were not elicited by glycine, glutamate, taurine or (+/-)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane.

  12. Fast and local electrochemical monitoring of noradrenaline release from sympathetic terminals in isolated rat tail artery.

    PubMed

    Gonon, F; Bao, J X; Msghina, M; Suaud-Chagny, M F; Stjärne, L

    1993-04-01

    Noradrenaline release from sympathetic nerve terminals was evoked by electrical nerve stimulation of an isolated segment of rat tail artery. This release was recorded by a carbon fiber electrode combined with differential pulse amperometry. The active part of the electrode (one carbon fiber 8 microns in diameter and 50 microns in length) was placed in close contact with the arterial surface. The oxidation current appearing at +120 mV and corresponding to the local noradrenaline concentration at the electrode surface was recorded every 0.5 s. No oxidation current was detected under resting conditions, but electrical stimulation evoked an immediate increase in this current. This response was suppressed when tetrodotoxin was added to the perfusion medium and was enhanced when noradrenaline reuptake was inhibited by cocaine. The amplitude of the response was increased with increasing stimulation frequencies (2-25 Hz) and train lengths (1-16 pulses). Finally, the time resolution of the method (0.5 s) was good enough to show that noradrenaline release precedes the postsynaptic response, i.e., the electrically evoked contraction of the artery.

  13. Predominant role of neural arc in sympathetic baroreflex resetting of spontaneously hypertensive rats.

    PubMed

    Sata, Yusuke; Kawada, Toru; Shimizu, Shuji; Kamiya, Atsunori; Akiyama, Tsuyoshi; Sugimachi, Masaru

    2015-01-01

    There is ongoing controversy over whether neural or peripheral factors are the predominant cause of hypertension. The closed-loop negative feedback operation of the arterial baroreflex hampers understanding of how arterial pressure (AP) is determined through the interaction between neural and peripheral factors. METHODS AND RESULTS: A novel analysis of an isolated open-loop baroreceptor preparation to examine sympathetic nervous activity (SNA) and AP responses to changes in carotid sinus pressure (CSP) in adult spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was conducted. In the neural arc (CSP-SNA relationship), the midpoint pressure (128.9±3.8 vs. 157.9±8.1 mmHg, P<0.001) and the response range of SNA to CSP (90.5±3.7 vs. 115.4±7.6%/mmHg, P=0.011) were higher in SHR. In the peripheral arc (SNA-AP relationship), slope and intercept did not differ. A baroreflex equilibrium diagram was obtained by depicting neural and peripheral arcs in a pressure-SNA plane with rescaled SNA (% in WKY). The operating-point AP (111.3±4.4 vs. 145.9±5.2 mmHg, P<0.001) and SNA (90.8±3.2 vs. 125.1±6.9% in WKY, P<0.001) were shifted towards a higher level in SHR. The shift of the neural arc towards a higher SNA range indicated a predominant contribution to baroreflex resetting in SHR. Notwithstanding the resetting, the carotid sinus baroreflex in SHR preserved an ability to reduce AP if activated with a high enough pressure.

  14. Fate of tritiated 6-fluorodopamine in rats: A false neurotransmitter for positron emission tomographic imaging of sympathetic innervation and function

    SciTech Connect

    Chang, P.C.; Szemeredi, K.; Grossman, E.; Kopin, I.J.; Goldstein, D.S. )

    1990-11-01

    In evaluating positron-emitting analogs of dopamine (DA) as imaging agents for visualizing tissue sympathetic innervation and function, we assessed the metabolic fate of systemically injected ({sup 3}H)-6-fluorodopamine (({sup 3}H)-6F-DA) in plasma, in sympathetically innervated tissues (left ventricle, spleen and salivary glands) and in excretory organs (liver and kidney) of rats. By 5 min after intravenous bolus injection of a physiologically inactive amount (450 ng, 10 microCi) of ({sup 3}H)-6F-DA, {sup 3}H was concentrated in all the organs compared with that in blood or plasma. In the sympathetically innervated organs, most of the radioactivity was in ({sup 3}H)-6F-DA and ({sup 3}H)-6-fluoronorepinephrine (( {sup 3}H)-6F-NE), whereas in the blood, plasma and excretory organs most of the radioactivity was in noncatechol compounds such as O-methylated and conjugated metabolites. In sympathetically innervated organs, tissue/blood ratios exceeded 1.0 at all time points between 5 and 120 min after injection of ({sup 3}H)-6F-DA and increased progressively (from 8 to 60 in myocardium), whereas the tissue/blood ratios in the kidney and liver increased by less than 2-fold during this interval. In all the studied tissues, the proportion of total tissue {sup 3}H that was due to ({sup 3}H)F-NE increased progressively while that due to ({sup 3}H)F-DA declined, consistent with conversion of ({sup 3}H)F-DA to ({sup 3}H)F-NE in vesicles in sympathetic nerve endings.

  15. Mechanical hypersensitivity, sympathetic sprouting, and glial activation are attenuated by local injection of corticosteroid near the lumbar ganglion in a rat model of neuropathic pain.

    PubMed

    Li, Jing-Yi; Xie, Wenrui; Strong, Judith A; Guo, Qu-Lian; Zhang, Jun-Ming

    2011-01-01

    Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in pathologic pain states. Systemic administration of a common anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, spontaneous bursting activity, and cytokine and nerve growth factor production in the DRG. We hypothesized that systemic TA effects are primarily due to local effects on the DRG. Male Sprague-Dawley rats were divided into 4 groups: SNL (tight ligation and transection of spinal nerves) and normal with and without a single dose of TA injectable suspension slowly injected onto the surface of DRG and surrounding region at the time of SNL or sham surgery. Mechanical threshold was tested on postoperative days 1, 3, 5, and 7. Immunohistochemical staining examined tyrosine hydroxylase and glial fibrillary acidic protein in DRG and CD11B antibody (OX-42) in spinal cord. Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation in the DRG and microglia activation in the spinal cord after SNL. A single injection of corticosteroid in the vicinity of the axotomized DRG can mimic many effects of systemic TA, mitigating behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rationale for the use of localized steroid injections clinically and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model, commonly classified as neuropathic pain model.

  16. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat

    PubMed Central

    Marshall, Janice M.

    1982-01-01

    1. Direct observations have been made on the responses of individual vessels of the microcirculation of rat spinotrapezius muscle to stimulation of the sympathetic paravascular nerve fibres and to topically applied catecholamines. 2. All arteries and arterioles were constricted by sympathetic stimulation, the maximum response occurring at a stimulus frequency of 8-10 Hz. Primary and secondary arterioles (13-50 μm internal diameter) showed the greatest percentage change in diameter and remained constricted throughout the 1 min stimulation period whilst terminal arterioles (7-13 μm internal diameter) constricted initially but then returned towards their control diameter before the stimulus ceased. 3. By contrast the venules and veins showed no response to sympathetic stimulation. 4. In accord with these observations, fluorescence histochemical studies revealed a network of noradrenergic nerve fibres on all arterial vessels but showed no innervation of any venous vessels. 5. Topically applied noradrenaline or adrenaline (10-10-10-8 g/ml.) dilated the majority of arteries and arterioles while higher concentrations of either agent produced dose-dependent constrictor responses. In addition, many venules dilated in response to adrenaline (10-9 g/ml.) while others constricted, but concentrations of either noradrenaline or adrenaline greater than 10-8 g/ml. produced dose-dependent constriction of all venules and veins. 6. The behaviour of the more proximal and more distal arterioles during sympathetic stimulation is in accord respectively with the changes in muscle vascular resistance and in capillary surface area recorded in previous studies during sympathetic stimulation. 7. The observation that venous vessels are not influenced by sympathetic nerve fibres contrasts with the established view that venous vessels of skeletal muscle are strongly constricted during sympathetic stimulation. However, reappraisal of the evidence used to support this view indicates that such

  17. Changes in baroreflex control of renal sympathetic nerve activity in high-fat-fed rats as a predictor of hypertension.

    PubMed

    Fardin, Núbia M; Oyama, Lila M; Campos, Ruy R

    2012-08-01

    There is evidence that obesity is associated with increased sympathetic activity and hypertension. However, the mechanisms responsible for these changes are not fully understood. Therefore, the aim of the present study was to evaluate the cardiovascular function and the baroreceptor reflex control of renal sympathetic nerve activity (rSNA) in rats exposed to a high-fat diet over different periods (10 and 20 weeks) compared to control rats. Serum leptin levels were assessed for all time points. Male Wistar rats weighing 150-180 g were used. Four groups of rats were studied: control 10 weeks (Ct10), obese 10 weeks (Ob10), control 20 weeks (Ct20), and obese 20 weeks (Ob20). Blood pressure (BP) and rSNA were recorded in urethane-anesthetized rats (1.4 g/kg, intravenous).The sensitivity of rSNA responses to baroreceptor reflex was assessed by changes in BP induced by increasing doses of phenylephrine or sodium nitroprusside. Significant and progressive increases in serum leptin levels were found in the obese rats, but not in the control rats. No changes in basal BP or rSNA were found in the Ob10 and Ob20 groups; however, a significant impairment in the baroreceptor sensitivity was observed in the Ob20 group for phenylephrine (slope Ob20: -0.78 ± 0.12 vs. Ct20: -1.00 ± 0.08 potential per second (pps)/mm Hg, P < 0.05) and sodium nitroprusside (slope Ob20: -0.82 ± 0.09 vs. 1.13 ± 0.13 pps/mm Hg, P < 0.05). The results suggest that the baroreceptor dysfunction that controls the rSNA is an initial change in the obesity induced in high-fat-fed rats, which might be a predictor of sympathoexcitation and hypertension associated to obesity.

  18. Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats.

    PubMed

    Yokotani, Keiko; Okada, Shoshiro; Nakamura, Kumiko; Yamaguchi-Shima, Naoko; Shimizu, Takahiro; Arai, Junichi; Wakiguchi, Hiroshi; Yokotani, Kunihiko

    2005-04-04

    Sympathetic nerves release noradrenaline, whereas adrenal medullary chromaffin cells secrete noradrenaline and adrenaline. Therefore, plasma noradrenaline reflects the secretion from adrenal medulla in addition to the release from sympathetic nerves, however the exact mechanisms of adrenal noradrenaline secretion remain to be elucidated. The present study was designated to characterize the source of plasma noradrenaline induced by intracerebroventricularly (i.c.v.) administered bombesin and prostaglandin E2 in urethane-anesthetized rats. Bombesin (1.0 nmol/animal, i.c.v.) elevated plasma noradrenaline and adrenaline, while prostaglandin E2 (0.3 nmol/animal, i.c.v.) elevated only plasma noradrenaline. The bombesin-induced elevations of both catecholamines were attenuated by pretreatments with furegrelate (an inhibitor of thromboxane A2 synthase) [250 and 500 microg (0.9 and 1.8 micromol)/animal, i.c.v.)] and [(+)-S-145] [(+)-(1R,2R,3S,4S)-(5Z)-7-(3-[4-3H]-phenylsulphonyl-aminobicyclo[2.2.1]hept-2-yl)hept-5-enoic acid sodium salt] (an antagonist of prostanoid TP receptors) [100 and 250 microg (250 and 625 nmol)/animal)], and abolished by acute bilateral adrenalectomy. On the other hand, the prostaglandin E2-induced elevation of plasma noradrenaline was not influenced by acute bilateral adrenalectomy. These results suggest that adrenal noradrenaline secretion and sympathetic noradrenaline release are mediated by differential central mechanisms; brain prostanoid TP receptors activated by bombesin are involved in the adrenal noradrenaline secretion, while brain prostanoid EP (probably EP3) receptors activated by prostaglandin E2 are involved in the sympathetic noradrenaline release in rats. Brain prostanoid TP receptors activated by bombesin are also involved in the adrenal adrenaline secretion.

  19. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    PubMed

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF.NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  20. Noradrenaline release from rat sympathetic neurones triggered by activation of B2 bradykinin receptors.

    PubMed

    Boehm, S; Huck, S

    1997-10-01

    1. The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion. 2. Bradykinin (100 nmol l[-1] applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application and then declined towards the baseline, despite the continuing presence of the peptide. ATP (100 micromol l[-1]) and nicotine (10 micromol l[-1]) caused elevations in 3H outflow with similar kinetics, whereas outflow remained elevated during a 10 min period of electrical field stimulation (0.5 ms, 50 mA, 50 V cm[-1], 1.0 Hz). 3. When bradykinin was applied for periods of 2 min, the evoked 3H overflow was half-maximal at 12 nmol l(-1) and reached a maximum of 2.3% of cellular radioactivity. The preferential B1 receptor agonist des-Arg9-bradykinin failed to alter 3H outflow. The B2 receptor antagonists, [D-Phe7]-bradykinin (1 micromol l[-1]) and Hoe 140 (10 nmol l[-1]), per se did not alter 3H outflow, but shifted the concentration-response curve for bradykinin-evoked 3H overflow to the right by a factor of 7.9 and 4.3, respectively. 4. Bradykinin-induced overflow was abolished in the absence of extracellular Ca2+ and in the presence of either 1 micromol l(-1) tetrodotoxin or 300 micromol l(-1) Cd2+, as was electrically-induced overflow. Activation of alpha2-adrenoceptors by 1 micromol l(-1) UK 14,304 reduced both bradykinin- and electrically-triggered overflow. The Ca2+-ATPase inhibitor thapsigargin (0.3 micromol l[-1]) failed to alter either type of stimulated overflow. Caffeine (10 mmol l[-1]) enhanced bradykinin-induced overflow, but reduced overflow triggered by electrical field stimulation. 5. Inclusion of Ba2+ (0.1 to 1 mmol l[-1]) in the superfusion medium enhanced

  1. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure.

    PubMed

    Felder, Robert B

    2010-01-01

    Appreciation for the role of aldosterone and mineralocorticoid receptors in cardiovascular disease is accelerating rapidly. Recent experimental work has unveiled a strong relationship between brain mineralocorticoid receptors and sympathetic drive, an important determinant of outcome in heart failure and hypertension. Two putative mechanisms are explored in this manuscript. First, brain mineralocorticoid receptors may influence sympathetic discharge by regulating the release of pro-inflammatory cytokines into the circulation. Blood-borne pro-inflammatory cytokines act upon receptors in the microvasculature of the brain to induce cyclooxygenase-2 activity and the production of prostaglandin E(2), which penetrates the blood-brain barrier to activate the sympathetic nervous system. Second, brain mineralocorticoid receptors may influence sympathetic drive by upregulating the activity of the brain renin-angiotensin system, resulting in NAD(P)H oxidase-dependent superoxide production. A potential role for superoxide-dependent mitogen-activated protein kinase signalling pathways in the regulation of sympathetic nerve activity is also considered. Other potential downstream signalling mechanisms contributing to mineralocorticoid receptor-mediated sympathetic excitation are under investigation.

  2. Antinociceptive effect of linear polarized 0.6 to 1.6 microm irradiation of lumbar sympathetic ganglia in chronic constriction injury rats.

    PubMed

    Muneshige, Hiroshi; Toda, Katsuhiro; Ma, Dianli; Kimura, Hiroaki; Asou, Tomohiro; Ikuta, Yoshikazu

    2006-01-01

    Linear polarized near-infrared light created with linear polarized near-infrared light therapy equipment (Super Lizer HA-550, Tokyo Iken Co, Ltd, Tokyo, Japan) has been used for the treatment of various painful disorders in Japan. Irradiation near the stellate ganglion with a Super Lizer (ISGL) is an especially notable therapeutic method used with stellate ganglion block (SGB) or substitutes for SGB. ISGL is a safe, simple, well-tolerated, and effective treatment. We examined the effects of irradiation with a Super Lizer applied to an area near the lumbar sympathetic ganglia on the ligated side in a chronic constriction injury (CCI) model, which is believed to be an animal model of complex regional pain syndrome (CRPS). Rats showing thermal hyperalgesia in a radiant heat test 1 wk postoperatively were used in Experiments 1 and 2: (1) Thermal hyperalgesia of irradiation group (n = 11) was less than that of the control or nonirradiation (n = 11) group at 1, 3, and 8 h after irradiation; however, the effect disappeared 12 h after irradiation. (2) Daily irradiation (n = 16) and 1 wk (n = 14) from 7 days after nerve ligation significantly shortened the interval from thermal hyperalgesia until recovery. Rats showing mechanical hyperalgesia in the von Frey hair test 1 wk postoperatively were used in Experiment 3: 1 wk irradiation beginning 7 days after nerve ligation (n = 9) did not promote the recovery from mechanical hyperalgesia. We speculate that repeated ISGL may be more effective than a single ISGL in alleviating pain in CRPS patients. We cannot explain the discrepancy between the results obtained in Experiments 2 and 3. We believe the results of this study are relevant to the effect of ISGL for patients with upper-limb CRPS: irradiation near the lumbar sympathetic ganglia of the rat is effective for thermal but not mechanical pain in CCI.

  3. The Effects of Simulated Microgravity and of Endurance Training on Sympathetic Neurotransmission in Rat Cutaneous Small Arteries

    NASA Astrophysics Data System (ADS)

    Vinogradova, O. L.; Kalentchuk, V. U.; Andreev-Andrievskii, A. A.; Borzykh, A. A.; Mochalov, S. V.; Buravkov, S. V.; Borovik, A. S.; Sharova, A. P.; Tarasova, O. S.

    2008-06-01

    We investigated neuroeffector mechanisms in cutaneous small arteries of rats after 2-wk tail suspension (TS) or 8-wk endurance training (ET). Contractile responses of saphenous artery were studied in vitro and the periarterial nerve plexus was stained with glyoxylic acid. In TS rats pronounced decrease of neurogenic contraction was observed that correlated with smaller density of periarterial nerve plexus. However, TS increased smooth muscle sensitivity to noradrenaline and serotonin. In ET rats neurogenic response was also diminished, but the sensitivity to the agonists was not changed. ET had no effect on nerve density, but reduced intensity of their fluorescence. Therefore, both TS and ET depress sympathetic neurotransmission in cutaneous small arteries, but through different mechanisms.

  4. Hypothalamic CRF and Norepinephrine Mediate Sympathetic and Cardiovascular Responses to Acute Intracarotid Injection of TNF-α in the Rat

    PubMed Central

    Zhang, Zhi-Hua; Felder, Robert B.

    2009-01-01

    Systemic administration of tumour necrosis factor - alpha (TNF-α) induces the release of norepinephrine (NE) in the paraventricular nucleus (PVN) of hypothalamus and an increase in expression of corticotrophin-releasing-factor (CRF) and CRF type 1 receptors. We explored the hypothesis that CRF and NE in PVN mediate the cardiovascular and sympathetic responses to acute systemic administration of TNF-α. In anaesthetised rats, the increases in arterial pressure and heart rate induced by intracarotid artery injection of TNF-α were attenuated by intracerebroventricular (ICV) injection of either the α1-adrenergic antagonist prazosin or the CRF antagonist α-helical CRF. Prazosin blocked the TNF-α-induced increase in renal sympathetic nerve activity (RSNA), while α-helical CRF substantially reduced the RSNA response. Conversely, CRF and the α1-adrenergic agonist phenylephrine (PE), administered ICV, both elicited increases in PVN neuronal activity, RSNA, arterial pressure and heart rate. Microinjection of CRF and PE directly into PVN evoked smaller responses. These results are consistent with the hypothesis that NE and CRF in the PVN mediate the cardiovascular and sympathetic responses to acute systemic administration of TNF-α. PMID:18777604

  5. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats

    PubMed Central

    Thang, Loc V.; Demel, Stacie L.; Crawford, Robert; Kaminski, Norbert E.; Swain, Greg M.; Van Rooijen, Nico

    2015-01-01

    We tested the hypothesis that vascular macrophage infiltration and O2− release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3–5, 10–13, and 18–21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22phox were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2− was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18–21. O2− and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22phox were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2− while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2−, which disrupts α2AR function, causing enhanced NE release from sympathetic nerves. PMID:26320034

  6. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    PubMed

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. Copyright © 2016 the American Physiological Society.

  7. Morphometric and autoradiographic analysis of protein biosynthesis and transcription in sympathetic neurons of normal and partially desympathized rats

    SciTech Connect

    Chuchkova, N.N.; Morozov, I.A.; Yarygin, V.N.

    1986-06-01

    The authors undertake a differential morphometric analysis of the ultrastructural components for the protein-synthesizing apparatus: the rough endoplasmic reticulum and the ribosomes, polysomes, and monoribosomes in the cytoplasm of sympathetic nerve cells, connected with it, in rats. Tritium-UTP was applied to sections through a ganglion 8 micro thick and fixed in alcohol and acetone. Autoradiographhic analysis indicated differences in the level of template activity of the chromatin in the control and desympathized animals aged 6 months. The increase in the intensity of transcription was most marked for nucleolar chromatin.

  8. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    PubMed

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc.

  9. Effect of centrally administered endothelin agonists on systemic and regional blood circulation in the rat: role of sympathetic nervous system.

    PubMed

    Gulati, A; Kumar, A; Morrison, S; Shahani, B T

    1997-08-01

    The aims of the present study were to determine (1) the hypotensive and regional circulatory effects of centrally administered endothelin (ET) ETA and ETB agonists, and (2) the role of the sympathetic nervous system in the mediation of hypotensive effects due to centrally administered ET-1. The systemic haemodynamics and regional blood circulation in urethane anaesthetized rats following intracerebroventricular (i.c.v.) administration of ET-1, ET-2, SRT6b, ET-3 and SRT6c (10, 30 and 90 ng) were determined by a radioactive microsphere technique. The effect of centrally administered ET-1 on sympathetic nerve activity was also analysed. Systemic haemodynamics and regional blood circulation were determined before (baseline) and 30 min after administration of ET agonists. Cumulative administration of three doses of saline (5 microliters, i.c.v. at 30 min intervals) did not produce any significant cardiovascular effects. ET-1, ET-2 and SRT6b produced a decrease in blood pressure (51%, 47% and 41%, respectively) along with a decrease in cardiac output (58%, 60% and 45%, respectively) and stroke volume. Heart rate and total peripheral resistance were not affected. ET-1, ET-2 and SRT6b also produced a significant reduction in blood flow to the brain, kidneys, heart, portal, mesentery and pancreas, gastrointestinal tract (GIT) and musculoskeletal system. The effect of ET-2 on the cardiovascular system was less intense in comparison with ET-1 and SRT6b. Centrally administered specific ETB receptor agonists ET-3 and SRT6c did not produce any change in systemic haemodynamics and regional blood flow. Centrally administered ET-1 (90 ng) produced a significant decrease (61%) in sympathetic nerve activity 30 min after drug administration, along with a fall in blood pressure. It is concluded that centrally administered ETA agonists produce significant cardiovascular effects mediating through the sympathetic nervous system.

  10. Increase of angiotensin-converting enzyme activity and peripheral sympathetic dysfunction could contribute to hypertension development in streptozotocin-induced diabetic rats.

    PubMed

    Musial, Diego C; da Silva Júnior, Edilson D; da Silva, Regiane M; Miranda-Ferreira, Regiane; Lima-Landman, M Teresa R; Jurkiewicz, Aron; García, Antonio G; Jurkiewicz, Neide H

    2013-11-01

    Diabetes augments the risk of hypertension. Although several factors have been implicated in the development of such hypertensive state, we designed this study to investigate blood pressure development, the activity of angiotensin-converting enzyme (ACE) in blood as well as sympathetic neurotransmission in the vas deferens of diabetic rats. We used streptozotocin (STZ)-induced diabetic rats (60 mg/kg) in order to evaluate the systolic blood pressure (SBP), ACE activity and peripheral sympathetic neurotransmission. We observed the following changes of parameters: increase of SBP, decrease of heart rate, augmentation of plasma ACE activity, enhancement of phasic and tonic vas deferens contractions elicited by electrical stimulation at 5 Hz, increase of maximal response to noradrenaline (NA) and decrease of adenosine triphosphate (ATP)-elicited contraction of vasa deferentia. The results reveal that in the development of hypertension in diabetic rats, augmentation of circulating ACE activity precedes the sympathetic dysfunction. Additionally, it seems that the purinergic and noradrenergic neurotransmission is compromised.

  11. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone.

    PubMed

    Shi, Zhigang; Cassaglia, Priscila A; Gotthardt, Laura C; Brooks, Virginia L

    2015-12-01

    Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus. © 2015 American Heart Association, Inc.

  12. Active and passive membrane properties of rat sympathetic preganglionic neurones innervating the adrenal medulla

    PubMed Central

    Wilson, Jennifer M M; Coderre, Elaine; Renaud, Leo P; Spanswick, David

    2002-01-01

    The intravascular release of adrenal catecholamines is a fundamental homeostatic process mediated via thoracolumbar spinal sympathetic preganglionic neurones (AD-SPN). To understand mechanisms regulating their excitability, whole-cell patch-clamp recordings were obtained from 54 retrogradely labelled neonatal rat AD-SPN. Passive membrane properties included a mean resting membrane potential, input resistance and time constant of -62 ± 6 mV, 410 ± 241 MΩ and 104 ± 53 ms, respectively. AD-SPN were homogeneous with respect to their active membrane properties. These active conductances included transient outward rectification, observed as a delayed return to rest at the offset of the membrane response to hyperpolarising current pulses, with two components: a fast 4-AP-sensitive component (A-type conductance), contributing to the after-hyperpolarisation (AHP) and spike repolarisation; a slower prolonged Ba2+-sensitive component (D-like conductance). All AD-SPN expressed a Ba2+-sensitive instantaneous inwardly rectifying conductance activated at membrane potentials more negative than around -80 mV. A potassium-mediated, voltage-dependent sustained outward rectification activated at membrane potentials between -35 and -15 mV featured an atypical pharmacology with a component blocked by quinine, reduced by low extracellular pH and arachidonic acid, but lacking sensitivity to Ba2+, TEA and intracellular Cs+. This quinine-sensitive outward rectification contributes to spike repolarisation. Following block of potassium conductances by Cs+ loading, AD-SPN revealed the capability for autorhythmicity and burst firing, mediated by a T-type Ca2+ conductance. These data suggest the output capability is dynamic and diverse, and that the range of intrinsic membrane conductances expressed endow AD-SPN with the ability to generate differential and complex patterns of activity. The diversity of intrinsic membrane properties expressed by AD-SPN may be key determinants of

  13. Effects of dual endothelin receptor blockade on sympathetic activation and arrhythmogenesis during acute myocardial infarction in rats.

    PubMed

    Kolettis, Theofilos M; Baltogiannis, Giannis G; Tsalikakis, Dimitrios G; Tzallas, Alexandros T; Agelaki, Maria G; Fotopoulos, Andreas; Fotiadis, Dimitrios I; Kyriakides, Zenon S

    2008-02-02

    The effects of dual (ETA and ETB) endothelin receptor blockade on ventricular arrhythmogenesis during acute myocardial infarction are not well defined. We randomly allocated Wistar rats to bosentan (100 mg/kg daily, n=24), a dual endothelin receptor antagonist, or vehicle (n=23). After 7 days of treatment, myocardial infarction was induced by permanent coronary ligation. Ventricular tachyarrhythmias were evaluated for 24 h following ligation, using a miniature telemetry electrocardiogram recorder. Action potential duration was measured from monophasic epicardial recordings and sympathetic activation was assessed by heart rate variability and catecholamine serum level measurements. Compared to controls (1012+/-185 s), bosentan (59+/-24 s) markedly decreased (P<0.00001) the total duration of ventricular tachyarrhythmias during the delayed (1-24 h) phase post-ligation, with a modest effect during the early (0-1 h) phase (132+/-38 s, versus 43+/-18 s, respectively, P=0.053). Treatment did not affect infarct size or total mortality. Action potential duration at 90% repolarization prolonged in controls (from 93.1+/-4.7 ms to 117.6+/-6.9 ms), displaying increased temporal dispersion (from 4.14+/-0.45 ms to 10.42+/-2.51 ms, both P<0.001), but was preserved in treated animals. Bosentan decreased norepinephrine, but increased epinephrine levels 24 h post-ligation. Low frequency spectra of heart rate variability, an index of net sympathetic tone, were lower in bosentan-treated rats. Dual endothelin-1 receptor blockade decreases ventricular tachyarrhythmias during myocardial infarction without reperfusion, by preventing repolarization inhomogeneity. Diverse treatment effects on sympathetic activation may ameliorate the antiarrhythmic action.

  14. Prenatal hypoxia leads to increased muscle sympathetic nerve activity, sympathetic hyperinnervation, premature blunting of neuropeptide Y signaling, and hypertension in adult life.

    PubMed

    Rook, William; Johnson, Christopher D; Coney, Andrew M; Marshall, Janice M

    2014-12-01

    Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1-5 and 6-10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mm Hg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease. © 2014 American Heart Association, Inc.

  15. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension. PMID:27698757

  16. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat.

    PubMed

    Schreihofer, A M; Stornetta, R L; Guyenet, P G

    2000-11-15

    1. In this study we examined whether the rostral ventrolateral medulla (RVLM) maintains resting sympathetic vasomotor tone and activates sympathetic nerve activity (SNA) after the depletion of bulbospinal C1 adrenergic neurones. 2. Bulbospinal C1 cells were destroyed ( approximately 84% loss) by bilateral microinjections (spinal segments T2-T3) of an anti-dopamine-beta-hydroxylase antibody conjugated to the ribosomal toxin saporin (anti-DH-SAP). 3. Extracellular recording and juxtacellular labelling of bulbospinal barosensitive neurones in the RVLM revealed that treatment with anti-DH-SAP spared the lightly myelinated neurones with no tyrosine hydroxylase immunoreactivity. 4. In rats treated with anti-DH-SAP, inhibition of RVLM neurones by bilateral microinjection of muscimol eliminated splanchnic SNA and produced the same degree of hypotension as in control rats. 5. Following treatment with anti-DH-SAP the sympathoexcitatory (splanchnic nerve) and pressor responses to electrical stimulation of the RVLM were reduced. 6. Treatment with anti-DH-SAP also eliminated the majority of A5 noradrenergic neurones. However, rats with selective lesion of A5 cells by microinjection of 6-hydroxydopamine into the pons showed no deficits to stimulation of the RVLM. 7. In summary, the loss of 84% of bulbospinal adrenergic neurones does not alter the ability of RVLM to maintain SNA and arterial pressure at rest in anaesthetized rats, but this loss reduces the sympathoexcitatory and pressor responses evoked by RVLM stimulation. The data suggest sympathoexcitatory roles for both the C1 cells and non-C1 cells of the RVLM and further suggest the C1 cells are critical for the full expression of sympathoexcitatory responses generated by the RVLM.

  17. Prostaglandin modulation of Ca2+ channels in rat sympathetic neurones is mediated by guanine nucleotide binding proteins.

    PubMed Central

    Ikeda, S R

    1992-01-01

    1. The effects of prostaglandins on whole-cell Ca2+ currents of acutely isolated and short-term cultured adult rat superior cervical ganglion neurones were investigated using the patch-clamp technique. 2. Prostaglandin E2 (PGE2) produced a rapid, reversible and concentration-dependent reduction of the sympathetic neurone Ca2+ current. The effects of PGE2 were both voltage and time dependent. The relationship between Ca2+ current inhibition and test potential was 'bell' shaped with maximal inhibition occurring near the potential where the Ca2+ current amplitude was maximal (ca + 10 mV). In the presence of PGE2, the Ca2+ current rising phase was slower and biphasic at potentials between 0 and +40 mV. 3. Prolonged (> 2 min) application of 1 microM PGE2 resulted in a desensitization of the response. Similarly, repeated short (ca 1 min) applications of 1 microM PGE2 resulted in a progressive tachyphylaxis of the response. 4. A concentration-response curve for PGE2 was well described by a single-site binding isotherm. The concentration producing half-maximal block (IC50) and the maximal attainable reduction of the Ca2+ current were 7.8 nM and 48%, respectively. 5. When compared at a concentration of 1 microM, PGF2 alpha was less potent (33% inhibition) than PGE2 but otherwise produced similar effects. In contrast, 1 microM PGD2 had negligible effects. 6. Activation curves, as derived from tail current amplitudes, were described by the sum of two Boltzmann functions in both the presence and absence of PGE2. In the presence of PGE2, the activation curve was shifted toward more depolarized potentials. Most of the shift could be accounted for by a decrease in the fractional amplitude of the current component activated at hyperpolarized potentials along with a concomitant increase in the component activated at depolarized potentials. The deactivation time constant (0.33 ms), measured at -40 mV, was not altered by PGE2. 7. The majority of the Ca2+ current inhibition produced

  18. Aerobic Exercise Inhibits Sympathetic Nerve Sprouting and Restores β-Adrenergic Receptor Balance in Rats with Myocardial Infarction

    PubMed Central

    Chen, Ting; Cai, Meng-Xin; Li, You-You; He, Zhi-Xiong; Shi, Xiu-Chao; Song, Wei; Wang, You-Hua; Xi, Yue; Kang, Yu-Ming; Tian, Zhen-Jun

    2014-01-01

    Background Cardiac sympathetic nerve sprouting and the dysregulation of β-adrenergic receptor (β-AR) play a critical role in the deterioration of cardiac function after myocardial infarction (MI). Growing evidence indicates that exercise provides protection against MI. The aims of this study were to investigate whether aerobic exercise following MI could inhibit sympathetic nerve sprouting and restore the balance of β3-AR/β1-AR. Methods Male Sprague-Dawley rats were divided into three groups: sham-operated control group (SC), MI group (MI), and MI with aerobic exercise group (ME). The rats in ME group were assigned to 8 weeks of exercise protocol (16 m/min, 50 min/d, 5 d/wk). The expression of nerve growth factor (NGF), the sympathetic nerve marker-tyrosine hydroxylase (TH), the nerve sprouting marker-growth associated protein 43 (GAP43), and β1- and β2-AR expression in the peri-infarct area of the left ventricle (LV) were measured by Western blot and immunohistochemistry, while β3-AR expression was determined by Western blot and immunofluorescence. Endothelial nitric oxide synthase (NOS2), phospho-NOS2 (p-NOS2), and neuronal nitric oxide synthase (NOS1) were measured by Western blot. Results MI increased LV end-diastolic pressure (LVEDP), and decreased LV systolic pressure (LVSP). Compared with the MI group, aerobic exercise significantly decreased LVEDP and increased LVSP. The protein expression of TH, GAP43 and NGF was significantly increased after MI, which was normalized by exercise. Compared with the SC group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were elevated in the MI group, and the protein expression of β3-AR and NOS1 increased after MI. Compared with the MI group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were normalized in the ME group, while the protein expression of β3-AR and NOS1 significantly increased, and NOS2 was activated by exercise. Conclusions Aerobic exercise inhibits cardiac sympathetic nerve sprouting, restores β3-AR

  19. Increased osmolality of conscious water-deprived rats supports arterial pressure and sympathetic activity via a brain action.

    PubMed

    Brooks, Virginia L; Qi, Yue; O'Donaughy, Theresa L

    2005-05-01

    To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by approximately 2%, decreased MAP by 9+/-1 mmHg and LSNA to 86+/-7% of control; heart increased by 25+/-8 beats per minute (bpm) (all P<0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.

  20. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    PubMed

    García, Ana Paula; Palou, Mariona; Sánchez, Juana; Priego, Teresa; Palou, Andreu; Picó, Catalina

    2011-02-18

    Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively) were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy) (CR) dams. Body weight (BW), the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry) of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+) and NPY(+), suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+) and NPY(+). Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  1. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo

    PubMed Central

    Springer, Mitchell G; Kullmann, Paul H M; Horn, John P

    2015-01-01

    Abstract The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3–10 nS converted cells from classes 1 and 2 to class 3 dynamics with current–voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry. PMID:25398531

  2. Gastrointestinal Intervention Ameliorates High Blood Pressure Through Antagonizing Overdrive of the Sympathetic Nerve in Hypertensive Patients and Rats

    PubMed Central

    Zhang, Hexuan; Pu, Yunfei; Chen, Jing; Tong, Weidong; Cui, Yuanting; Sun, Fang; Zheng, Zhou; Li, Qiang; Yang, Tao; Meng, Changyuan; Lu, Zongshi; Li, Li; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2014-01-01

    Background We investigated the hypothesis that the favorable effects of gastrointestinal (GI) intervention on hypertension (HTN) and cardiovascular (CV) disturbances are mediated by antagonizing overdrive of the sympathetic nervous system (SNS). Methods and Results Hypertensive patients with metabolic disturbances underwent laparoscopic Roux‐en‐Y gastric bypass surgery, and spontaneously hypertensive rats (SHRs) underwent RYGB or sham surgery. Blood pressure (BP), heart rate (HR), endothelium‐dependent flow‐mediated dilation, and anthropometric as well as laboratory parameters were measured at baseline and during follow‐up. Changes of BP and HR in response to cold stress, renal sympathetic nervous activity (RSNA), vasoconstriction induced by electrical field stimulation, microinjection of nucleus of the solitary tract (NTS), and CV function and structure were examined in SHRs with or without surgery. Compared with baseline, BP and HR were significantly reduced in both hypertensive patients with type 2 diabetes and rats. Impaired endothelial‐dependent vasodilatation and metabolic disturbances in hypertensive patients were also ameliorated after surgery. CV disturbances were reversed by surgery in SHRs. Under acute cold exposure, the variations in BP and HR were smaller in surgically treated SHRs, compared to sham SHRs. RSNA and vasoconstriction induced by perivascular nerve stimulation as well as NTS‐mediated changes of BP were decreased in surgically treated SHRs, compared to sham SHR. Weight loss did not affect BP and RSNA in sham SHRs. Conclusions GI intervention ameliorates HTN in both hypertensive patients and rats by inhibiting overdrive of the SNS. Therefore, targeting gastrointestine could be a novel strategy to treat HTN with metabolic disturbances. PMID:25240055

  3. Endogenous ANG II supports lumbar sympathetic activity in conscious sodium-deprived rats: role of area postrema.

    PubMed

    Xu, L; Collister, J P; Osborn, J W; Brooks, V L

    1998-07-01

    This study tests the hypothesis that the area postrema (AP) is necessary for endogenous ANG II to chronically maintain lumbar sympathetic nerve activity (LSNA) and heart rate (HR) in conscious sodium-deprived rats. The effect of the ANG II type 1-receptor antagonist, losartan, on LSNA and HR was determined in rats that were either AP lesioned (APX) or sham lesioned. The sham rats were divided into groups, with (SFR) or without (SAL) food restriction, to control for the decreased food intake of APX rats. Before losartan, basal mean arterial pressure (MAP), HR, and baroreflex control of LSNA and HR were similar between groups, with the exception of lower maximal reflex LSNA and higher maximal gain of the HR-MAP curve in APX rats. In all groups, losartan similarly shifted (P < 0.01) the LSNA-MAP curve to the left without altering maximal gain. Losartan also decreased (P < 0.05) minimal LSNA in all groups, and suppressed (P < 0.01) maximal LSNA (% of control) in SFR (240 +/- 13 to 205 +/- 15) and SAL (231 +/- 21 to 197 +/- 26) but not APX (193 +/- 10 to 185 +/- 8) rats. In general, losartan similarly shifted the HR-MAP curve to a lower MAP in all groups. The results suggest that the AP is not necessary for endogenous ANG II to chronically support LSNA and HR at basal and elevated MAP levels in sodium-deprived rats. However, the AP is required for endogenous ANG II to increase maximal reflex LSNA at low MAP levels.

  4. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    SciTech Connect

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  5. Inhibitory H3 receptors on sympathetic nerves of the pithed rat: activation by endogenous histamine and operation in spontaneously hypertensive rats.

    PubMed

    Godlewski, G; Malinowska, B; Buczko, W; Schlicker, E

    1997-02-01

    Our previous results demonstrate the occurrence of presynaptic inhibitory histamine H3 receptors on sympathetic neurons innervating resistance vessels of the pithed rat. The present study, in which new H3 receptor ligands with increased potency and selectivity (imetit, clobenpropit) were used, was designed to further explore the role of H3 receptors in the regulation of the rat cardiovascular system. In particular we were interested whether these receptors may be activated by endogenous histamine and whether they are detectable in an experimental model of hypertension. All experiments were performed on pithed and vagotomized rats treated with rauwolscine 1 mumol/kg. In normotensive Wistar rats the electrical (1 Hz, 1 ms, 50 V for 20 s) stimulation of the preganglionic sympathetic nerve fibres increased diastolic blood pressure by about 35 mmHg. Two H3 receptor agonists, R-(-)-alpha-methylhistamine and imetit, inhibited the electrically induced increase in diastolic blood pressure in a dose-dependent manner. The maximal effect (about 25%) was obtained for R-(-)-alpha-methylhistamine at about 10 mumol/kg and for imetit at about 1 mumol/kg. Two H3 receptor antagonists, thioperamide 1 mumol/kg and clobenpropit 0.1 mumol/kg, attenuated the inhibitory effect of imetit. The neurogenic vasopressor response was increased by about 15% by thioperamide 1 mumol/kg and clobenpropit 0.1 mumol/kg and decreased by 25% by the histamine methyltransferase inhibitor metoprine 37 mumol/kg. R-(-)-alpha-Methylhistamine, imetit, thioperamide, clobenpropit and metoprine did not affect the vasopressor response to exogenously added noradrenaline 0.01 mumol/kg (which increased diastolic blood pressure by about 40 mmHg). Metoprine had only a very low affinity for H3 binding sites (labelled by 3H-N alpha-methylhistamine; pKi 4.46). In pithed Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats, electrical (1 Hz, 1 ms, 50 V for 10 s) stimulation increased diastolic blood pressure by 28

  6. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats

    PubMed Central

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T.; do Carmo, Jussara M.; Zhang, Howei; Smith, Andrew D.; Bui, Elizabeth; Thomas, R. Lucas; Moulana, Mohadetheh; Hall, John E.; Granger, Joey P.

    2015-01-01

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. PMID:25695289

  7. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats.

    PubMed

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T; do Carmo, Jussara M; Zhang, Howei; Smith, Andrew D; Bui, Elizabeth; Thomas, R Lucas; Moulana, Mohadetheh; Hall, John E; Granger, Joey P; Reckelhoff, Jane F

    2015-04-15

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. Copyright © 2015 the American Physiological Society.

  8. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels.

    PubMed Central

    Ogawa, S; Barnett, J V; Sen, L; Galper, J B; Smith, T W; Marsh, J D

    1992-01-01

    To test the hypothesis that direct contact between sympathetic neurons and myocytes regulates expression and function of cardiac Ca channels, we prepared cultures of neonatal rat ventricular myocytes with and without sympathetic ganglia. Contractile properties of myocytes were assessed by an optical-video system. Contractility-pCa curves showed a 60% greater increase in contractility for innervated myocytes compared with control cells at 6.3 mM [Ca]0 (n = 8, P less than 0.05). Cells grown in medium conditioned by growth of ganglia and myocytes were indistinguishable physiologically from control cells. [Bay K 8644]-contractility curves revealed a 60 +/- 10% enhancement of the contractility response at 10(-6) M for innervated cells compared with control cells. The increased response to Bay K 8644 was not blocked by alpha- or beta-adrenergic antagonists. Moreover, increased efficacy of Bay K 8644 was maintained for at least 24 h after denervation produced by removal of ganglia from the culture. Dihydropyridine binding sites were assessed with the L channel-specific radioligand 3[H]PN200-110. PN200-110 binding sites were increased by innervation (51 +/- 5 to 108 +/- 20 fmol/mg protein, P less than 0.01), with no change in KD. Peak current-voltage curves were determined by whole-cell voltage clamp techniques for myocytes contacted by a neuron, control myocytes, and myocytes grown in conditioned medium. Current density of L-type Ca channels was significantly higher in innervated myocytes (10.5 +/- 0.4 pA/pF, n = 5) than in control myocytes (5.9 +/- 0.3 pA/pF, n = 8, P less than 0.01) or myocytes grown in conditioned medium (6.2 +/- 0.2 pA/pF, n = 10, P less than 0.01). Thus, physical contact between a sympathetic neuron and previously uninnervated neonatal rat ventricular myocytes increases expression of functional L-type calcium channels as judged by contractile responses to Ca0 and Bay K 8644, as well as by electrophysiological and radioligand binding properties

  9. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-12

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  10. Effects of Inhaled Citronella Oil and Related Compounds on Rat Body Weight and Brown Adipose Tissue Sympathetic Nerve

    PubMed Central

    Batubara, Irmanida; Suparto, Irma H.; Sa’diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-01-01

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: “Sereh Wangi” on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations. PMID:25774603

  11. Intrathecal Intermittent Orexin-A Causes Sympathetic Long-Term Facilitation and Sensitizes the Peripheral Chemoreceptor Response to Hypoxia in Rats

    PubMed Central

    Kim, Seung Jae; Farnham, Melissa M. J.

    2016-01-01

    Intermittent hypoxia causes a persistent increase in sympathetic nerve activity (SNA), which progresses to hypertension in conditions such as obstructive sleep apnea. Orexins (A and B) are hypothalamic neurotransmitters with arousal-promoting and sympathoexcitatory effects. We investigated whether the sustained elevation of SNA, termed sympathetic long-term facilitation, after acute intermittent hypoxia (AIH) is caused by endogenous orexin acting on spinal sympathetic preganglionic neurons. The role of orexin in the increased SNA response to AIH was investigated in urethane-anesthetized, vagotomized, and artificially ventilated Sprague-Dawley rats (n = 58). A spinally infused subthreshold dose of orexin-A (intermittent; 10 pmol × 10) produced long-term enhancement in SNA (41.4% ± 6.9%) from baseline. This phenomenon was not produced by the same dose of orexin-A administered as a bolus intrathecal infusion (100 pmol; 7.3% ± 2.3%). The dual orexin receptor blocker, Almorexant, attenuated the effect of sympathetic long-term facilitation generated by intermittent orexin-A (20.7% ± 4.5% for Almorexant at 30 mg∙kg−1 and 18.5% ± 1.2% for 75 mg∙kg−1), but not in AIH. The peripheral chemoreflex sympathoexcitatory response to hypoxia was greatly enhanced by intermittent orexin-A and AIH. In both cases, the sympathetic chemoreflex sensitization was reduced by Almorexant. Taken together, spinally acting orexin-A is mechanistically sufficient to evoke sympathetic long-term facilitation. However, AIH-induced sympathetic long-term facilitation appears to rely on mechanisms that are independent of orexin neurotransmission. Our findings further reveal that the activation of spinal orexin receptors is critical to enhance peripheral chemoreceptor responses to hypoxia after AIH. PMID:27384072

  12. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs.

    PubMed

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-08-04

    BACKGROUND The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. MATERIAL AND METHODS MI and RSD were induced in Sprague-Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. RESULTS In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. CONCLUSIONS The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21.

  13. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    PubMed

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.

  14. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    SciTech Connect

    DiCicco-Bloom, E.; Black, I.B. )

    1988-06-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating ({sup 3}H)thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of ({sup 3}H)thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain.

  15. Acute inhibition of the hypothalamic paraventricular nucleus decreases renal sympathetic nerve activity and arterial blood pressure in water-deprived rats.

    PubMed

    Stocker, Sean D; Keith, Kimberly J; Toney, Glenn M

    2004-04-01

    The present study was performed to determine whether sympathetic outflow and arterial blood pressure in water-deprived rats are dependent on the ongoing neuronal activity of the hypothalamic paraventricular nucleus (PVN). Renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate were recorded in urethane-alpha-chloralose-anesthetized rats that were deprived of water but not food for 48 h before experiments. Acute inhibition of the PVN by bilateral microinjection of the GABA(A) agonist muscimol (100 pmol/side) significantly decreased RSNA in water-deprived rats (-26.7 +/- 4.7%, n = 7) but was without effect in control rats (1.3 +/- 6.3%, n = 7). Similarly, injection of muscimol produced a greater decrease in MAP in water-deprived rats than in control rats (-46 +/- 3 vs. -16 +/- 3 mmHg, respectively), although baseline MAP was not different between groups (105 +/- 4 vs. 107 +/- 4 mmHg, respectively). Neither bilateral microinjection of isotonic saline vehicle (100 nl/side) into the PVN nor muscimol (100 pmol/side) outside the PVN altered RSNA or MAP in either group. In addition, ganglionic blockade with hexamethonium (30 mg/kg i.v.) significantly decreased MAP in both groups; however, the decrease in MAP was significantly greater in water-deprived rats than in control rats (62 +/- 2 vs. 48 +/- 2 mmHg, respectively). Collectively, these findings suggest that sympathetic outflow contributes more to the maintenance of blood pressure in the water-deprived rat, and this depends, at least partly, on the ongoing activity of PVN neurons.

  16. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats

    PubMed Central

    Cassaglia, Priscila A; Hermes, Sam M; Aicher, Sue A; Brooks, Virginia L

    2011-01-01

    Abstract Although the central effects of insulin to activate the sympathetic nervous system and enhance baroreflex gain are well known, the specific brain site(s) at which insulin acts has not been identified. We tested the hypotheses that (1) the paraventricular nucleus of the hypothalamus (PVN) and the arcuate nucleus (ArcN) are necessary brain sites and (2) insulin initiates its effects directly in the PVN and/or the ArcN. In α-chloralose anaesthetised female Sprague–Dawley rats, mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) were recorded continuously, and baroreflex gain of HR and LSNA were measured before and during a hyperinsulinaemic–euglycaemic clamp. After 60 min, intravenous infusion of insulin (15 mU kg−1 min−1), but not saline, significantly increased (P < 0.05) basal LSNA (to 228 ± 28% control) and gain of baroreflex control of LSNA (from 3.8 ± 1.1 to 7.4 ± 2.4% control mmHg−1). These effects were reversed (P < 0.05) by local inhibition (bilateral microinjection of musimol) of the PVN (LSNA to 124 ± 8.8% control; LSNA gain to 3.9 ± 1.7% control mmHg−1) or of the ArcN (LSNA in % control: from 100 ± 0 to 198 ± 24 (insulin), then 133 ± 23 (muscimol) LSNA gain in % control mmHg−1: from 3.9 ± 0.3 to 8.9 ± 0.9 (insulin), then 5.1 ± 0.5 (muscimol)). While insulin receptor immunoreactivity was identified in neurons in pre-autonomic PVN subnuclei, microinjection of insulin (0.6, 6 and 60 nU) into the PVN failed to alter LSNA or LSNA gain. However, ArcN insulin increased (P < 0.05) basal LSNA (in % control to 162 ± 19, 0.6 nU; 193 ± 19, 6 nU; and 205 ± 28, 60 nU) and LSNA baroreflex gain (in % control mmHg−1 from 4.3 ± 1.2 to 6.9 ± 1.0, 0.6 nU; 7.7 ± 1.2, 6 nU; and 7.8 ± 1.3, 60 nU). None of the treatments altered MAP, HR, or baroreflex control of HR. Our findings identify the ArcN as the site at which insulin acts to activate the sympathetic nervous system and increase baroreflex

  17. Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo

    PubMed Central

    Thompson, Stephen W N; Majithia, Anooj A

    1998-01-01

    The role of the cytokine leukemia inhibitory factor (LIF) in axotomy-induced sprouting of postganglionic sympathetic fibres into the dorsal root ganglia was examined in the adult rat.Immunocytochemistry was used to study the distribution and density of tyrosine hydroxylase-immunoreactive (TH-IR) fibres within the lumbar dorsal root ganglia and lumbar spinal nerves 14 days following continuous intrathecal infusion of LIF (0.33 mg ml−1), or 14 days following unilateral peripheral nerve axotomy.In LIF-treated animals, numerous pericellular TH-IR basket-like structures were observed surrounding sensory neurones, which were absent from controls.The number of TH-IR fibres within the L3, L4 and L5 spinal nerves was significantly higher in LIF-treated animals than in control or saline-treated animals (P < 0.01, Student's t test).Unilateral ligation of the L4 spinal nerve or unilateral sciatic nerve ligation was also associated with the formation of TH-IR baskets around sensory neurones and a significant increase in the number of TH-IR fibres within the lumbar spinal nerves (P < 0.01, Student's t test).The percentage of neurones surrounded by TH-IR baskets within the L3 and L4 dorsal root ganglia following sciatic axotomy was significantly reduced in animals treated continuously for 2 weeks with a monoclonal antibody against the LIF receptor motif, gp130 (0.833 mg ml−1) (P < 0.05, Mann-Whitney U test). Antibody treatment did not reduce the axotomy-induced increase in TH-IR fibres within lumbar spinal nerves.These results demonstrate that exogenous application of the axotomy-associated cytokine LIF is associated with sprouting of uninjured postganglionic sympathetic neurones around sensory neurones within the dorsal root ganglion. It is likely that increased LIF expression following peripheral axotomy plays an important role in the novel sympathetic sprouting observed within sensory ganglia following peripheral nerve injury. PMID:9503339

  18. Relaxin increases sympathetic nerve activity and activates spinally projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats.

    PubMed

    Coldren, K Max; Brown, Randall; Hasser, Eileen M; Heesch, Cheryl M

    2015-12-15

    Pregnancy is characterized by increased blood volume and baseline sympathetic nerve activity (SNA), vasodilation, and tachycardia. Relaxin (RLX), an ovarian hormone elevated in pregnancy, activates forebrain sites involved in control of blood volume and SNA through ANG II-dependent mechanisms and contributes to adaptations during pregnancy. In anesthetized, arterial baroreceptor-denervated nonpregnant (NP) rats, RLX microinjected into the subfornical organ (SFO; 0.77 pmol in 50 nl) produced sustained increases in lumbar SNA (8 ± 3%) and mean arterial pressure (MAP; 26 ± 4 mmHg). Low-dose intracarotid artery infusion of RLX (155 pmol·ml(-1)·h(-1); 1.5 h) had minor transient effects on AP and activated neurons [increased Fos-immunoreactivity (IR)] in the SFO and in spinally projecting (19 ± 2%) and arginine-vasopressin (AVP)-IR (21 ± 5%) cells in the paraventricular nucleus of the hypothalamus of NP, but not pregnant (P), rats. However, mRNA for RLX and ANG II type 1a receptors in the SFO was preserved in pregnancy. RLX receptor-IR is present in the region of the SFO in NP and P rats and is localized in astrocytes, the major source of angiotensinogen in the SFO. These data provide an anatomical substrate for a role of RLX in the resetting of AVP secretion and increased baseline SNA in pregnancy. Since RLX and ANG II receptor expression was preserved in the SFO of P rats, we speculate that the lack of response to exogenous RLX may be due to maximal activation by elevated endogenous levels of RLX in near-term pregnancy. Copyright © 2015 the American Physiological Society.

  19. Relaxin increases sympathetic nerve activity and activates spinally projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats

    PubMed Central

    Coldren, K. Max; Brown, Randall; Hasser, Eileen M.

    2015-01-01

    Pregnancy is characterized by increased blood volume and baseline sympathetic nerve activity (SNA), vasodilation, and tachycardia. Relaxin (RLX), an ovarian hormone elevated in pregnancy, activates forebrain sites involved in control of blood volume and SNA through ANG II-dependent mechanisms and contributes to adaptations during pregnancy. In anesthetized, arterial baroreceptor-denervated nonpregnant (NP) rats, RLX microinjected into the subfornical organ (SFO; 0.77 pmol in 50 nl) produced sustained increases in lumbar SNA (8 ± 3%) and mean arterial pressure (MAP; 26 ± 4 mmHg). Low-dose intracarotid artery infusion of RLX (155 pmol·ml−1·h−1; 1.5 h) had minor transient effects on AP and activated neurons [increased Fos-immunoreactivity (IR)] in the SFO and in spinally projecting (19 ± 2%) and arginine-vasopressin (AVP)-IR (21 ± 5%) cells in the paraventricular nucleus of the hypothalamus of NP, but not pregnant (P), rats. However, mRNA for RLX and ANG II type 1a receptors in the SFO was preserved in pregnancy. RLX receptor-IR is present in the region of the SFO in NP and P rats and is localized in astrocytes, the major source of angiotensinogen in the SFO. These data provide an anatomical substrate for a role of RLX in the resetting of AVP secretion and increased baseline SNA in pregnancy. Since RLX and ANG II receptor expression was preserved in the SFO of P rats, we speculate that the lack of response to exogenous RLX may be due to maximal activation by elevated endogenous levels of RLX in near-term pregnancy. PMID:26400184

  20. Is osmolality a long-term regulator of renal sympathetic nerve activity in conscious water-deprived rats?

    PubMed

    Scrogin, Karie E; McKeogh, Donogh F; Brooks, Virginia L

    2002-02-01

    Acute increases in osmolality suppress renal sympathetic nerve activity (RSNA). However, it is not known whether prolonged physiological increases in plasma osmolality chronically inhibit RSNA. To address this hypothesis, mean arterial blood pressure (MAP), heart rate (HR), and RSNA were measured during acute normalization of plasma osmolality in conscious rats made hyperosmotic by 48 h of water deprivation. Water deprivation significantly elevated MAP (120 +/- 1 vs. 114 +/- 3 mmHg, P < 0.05) and plasma osmolality (306 +/- 1 vs. 293 +/- 1 mosmol/kgH2O, P < 0.01). When plasma osmolality was subsequently lowered to normal (-17 +/- 1 mosmol/kgH2O) with a 2-h (0.12 ml/min) infusion of 5% dextrose in water (5DW), MAP decreased (-11 +/- 1 mmHg), and RSNA increased (25 +/- 10% baseline). To assess the role of circulating vasopressin in these changes, rats were pretreated with a V1-vasopressin receptor antagonist before infusion of 5DW. The antagonist lowered MAP (-4 +/- 1 mmHg) and raised RSNA (31 +/- 3% baseline) and HR (25 +/- 5 beats/min) in water-deprived rats (all changes P < 0.05). However, V1-vasopressin receptor blockade did not increase RSNA or HR independently of baroreflex responses to decreases in arterial pressure. After V1 blockade, infusion of 5DW lowered blood pressure (-8 +/- 1 mmHg) but did not further affect HR or RSNA. An isotonic saline infusion that produced the same volume expansion as 5DW lowered MAP (-5 +/- 2 mmHg) and HR (-68 +/- 2 beats/min) but had no effect on osmolality or RSNA in water-deprived rats. Finally, 5DW infusion had negligible effects in water-replete animals. In conclusion, these results fail to support the hypothesis that sustained increases in plasma osmolality, either directly or via increased vasopressin, tonically suppress RSNA.

  1. Effect of hypothermia on baroreflex control of heart rate and renal sympathetic nerve activity in anaesthetized rats

    PubMed Central

    Sabharwal, R; Coote, J H; Johns, E J; Egginton, S

    2004-01-01

    The present study investigated the effect of acute hypothermia on baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) by generating baroreflex logistic function curves, using bolus doses of phenylephrine and sodium nitroprusside, in anaesthetized male Wistar rats at a core temperature (Tb) of 37°C, during acute severe hypothermia at Tb= 25°C and on rewarming to 37°C. Comparisons were made between rats without (euthermic, n = 6) and with (acclimated, n = 7) prior exposure to lower ambient temperatures and shorter photoperiod, simulating adaptation to winter conditions. In both groups of rats, acute hypothermia to Tb= 25°C shifted the baroreflex-RSNA curve slightly leftwards and downwards with decreases in the setpoint pressure and maximal gain, whereas it markedly impaired the baroreflex-HR curve characterized by decreases in response range by ∼90% (P < 0.001), minimum response by ∼10% (P < 0.05) and maximum gain by ∼95% (P < 0.001), from that at Tb= 37°C. All parameters were restored to precooling levels on rewarming. Electrical stimulation of cardiac vagal efferents induced a voltage-related bradycardia, the magnitude of which was partially reduced during acute hypothermia, and there was a significant prolongation of the electrocardiogram intervals indicating a delay in cardiac conduction. Mild suppression of baroreflex control of RSNA could contribute to hypothermic hypotension and may primarily reflect an effect of Tb on central drive. The marked attenuation of the baroreflex control of HR during hypothermia was likely to be due to an impairment of both the central and peripheral components of the reflex arc. Baroreflex control of RSNA and HR was similar between both groups of rats, which implied that the control was non-adaptive on chronic cold exposure. PMID:14978202

  2. Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: focus on serotonergic and sympathetic nervous systems modulation.

    PubMed

    Baptista, S; Piloto, N; Reis, F; Teixeira-de-Lemos, E; Garrido, A P; Dias, A; Lourenço, M; Palmeiro, A; Ferrer-Antunes, C; Teixeira, F

    2008-12-01

    Physical exercise may improve the metabolic and haemodynamic responses, but the beneficial effects seem to depend on intensity, duration and muscular mass recruitment, which may vary between different types of protocols. This study was performed to evaluate the effects of two distinct moderate/long-term aerobic training protocols in the normal Wistar rat, the treadmill running and the swimming, on several important parameters related to cardiovascular (CV) physiological adaptations, namely: lipid profile, haemorheological measures, lipid peroxidation, peripheral serotonergic system (SS) modulation and sympathetic nervous system (SNS) activation. In both groups under training an HDL-c increment versus the sedentary control was demonstrated. There was a noticeable increase in ADP-induced platelet aggregation in the exercised rats, together with higher PDW and MPV values. The RBC patterns were altered in both groups under training; in the swimming one, however, significantly higher RBC and HCT and lower MCH and MCHC values were found, suggesting renovation of the RBCs. Plasma and platelet SS measures were generally higher in both groups under training, being noticeably relevant the 5-HT and 5-HIAA increment in the treadmill. In opposition, concerning the plasma and platelet NE and E concentrations, the rise was remarkably higher in the rats under a swimming protocol. In conclusion, this study demonstrates that, despite the similar beneficial effects on lipid profile, different aerobic exercise protocols may produce distinct CV physiological adaptations. Therefore, treadmill running was more influent than swimming concerning peripheral SS modulation while swimming was more important on SNS activation, thus recommending a judicious choice of the protocol to be tested in works which make use of rat models of exercise to study physiological or pathophysiological conditions.

  3. Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat.

    PubMed

    Katafuchi, T; Take, S; Hori, T

    1993-06-01

    1. We previously demonstrated that a central injection of interferon-alpha in rats induced a suppression of cytotoxicity of splenic natural killer cells which depended upon intact splenic sympathetic innervation, suggesting the important role of the splenic nerve in immunosuppression. To further study the mechanisms of this phenomenon, we investigated: (1) the effects of a central injection of recombinant human interferon-alpha on the electrical activity of the splenic nerve, and (2) the responses of splenic natural killer cytotoxicity on the electrical stimulation of the splenic nerve in urethane with alpha-chloralose anaesthetized rats. 2. An injection of recombinant human interferon-alpha (1.5 x 10(3) and 6.0 x 10(3) units (u) per rat) into the third cerebral ventricle produced a sustained and long lasting (at least for more than 60 min) increase in the electrical activity of splenic sympathetic nerve filaments in a dose-dependent manner. Following an intra-third-ventricular injection of recombinant human interferon-alpha at a dose of 6.0 x 10(3) u, the efferent discharges were elevated 2-6 times that of the pre-injection level with a mean onset latency of 12 min (8-16 min). No changes in the arterial blood pressure and body temperature were observed after injections of recombinant human interferon-alpha. 3. The excitation of the nerve activity induced by intra-ventricular recombinant human interferon-alpha was reversibly suppressed by an intravenous injection of an opioid antagonist, naloxone (1 mg/kg in 0.1 ml saline), whereas the injection of naloxone alone did not affect either the baseline level of the nerve activity or the systemic blood pressure. 4. The cytotoxicity of natural killer cells in the spleen measured by a standard chromium release assay was reduced 20 min after the laparotomy alone in anaesthetized rats. The reduced natural killer activity then recovered significantly when the splenic nerve was cut immediately after the laparotomy. When the

  4. HCN hyperpolarization-activated cation channels strengthen virtual nicotinic EPSPs and thereby elevate synaptic amplification in rat sympathetic neurons

    PubMed Central

    Kullmann, Paul H. M.; Sikora, Kristine M.; Clark, K. Lyles; Arduini, Irene; Springer, Mitchell G.

    2016-01-01

    The influence of hyperpolarization-activated cation current (h-current; Ih) upon synaptic integration in paravertebral sympathetic neurons was studied together with expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) subunit isoforms. All four HCN subunits were detected in homogenates of the rat superior cervical ganglion (SCG) using the PCR to amplify reverse-transcribed messenger RNAs (RT-PCR) and using quantitative PCR. Voltage clamp recordings from dissociated SCG neurons at 35°C detected Ih in all cells, with a maximum hyperpolarization-activated cation conductance of 1.2 ± 0.1 nS, half-maximal activation at −87.6 mV, and reversal potential of −31.6 mV. Interaction between Ih and synaptic potentials was tested with virtual fast nicotinic excitatory postsynaptic potentials (EPSPs) created with dynamic clamp. The blocking of Ih with 15 μM ZD7288 hyperpolarized cells by 4.7 mV and increased the virtual synaptic conductance required to stimulate an action potential from 7.0 ± 0.9 nS to 12.1 ± 0.9 nS. In response to stimulation with 40 s long trains of virtual EPSPs, ZD7288 reduced postsynaptic firing from 2.2 to 1.7 Hz and the associated synaptic amplification from 2.2 ± 0.1 to 1.7 ± 0.2. Cyclic nucleotide binding to HCN channels was simulated by blocking native Ih with ZD7288, followed by reconstitution with virtual Ih using a dynamic clamp model of the voltage clamp data. Over a 30-mV range, shifting the half-activation voltage for Ih in 10 mV depolarizing increments always increased synaptic gain. These results indicate that Ih, in sympathetic neurons, can strengthen nicotinic EPSPs and increase synaptic amplification, while also working as a substrate for cyclic nucleotide-dependent modulation. PMID:27146984

  5. Modulation of Calcitonin, Parathyroid Hormone, and Thyroid Hormone Secretion by Electrical Stimulation of Sympathetic and Parasympathetic Nerves in Anesthetized Rats.

    PubMed

    Hotta, Harumi; Onda, Akiko; Suzuki, Harue; Milliken, Philip; Sridhar, Arun

    2017-01-01

    The thyroid and parathyroid glands are dually innervated by sympathetic (cervical sympathetic trunk [CST]) and parasympathetic (superior laryngeal nerve [SLN]) nerve fibers. We examined the effects of electrical stimulation of efferent or afferent nerve fibers innervating the thyroid and parathyroid glands on the secretion of immunoreactive calcitonin (iCT), parathyroid hormone (iPTH), 3,3',5-triiodothyronine (iT3), and thyroxine (iT4) from the thyroid and parathyroid glands. In anesthetized and artificially ventilated rats, thyroid venous blood was collected. The rate of hormone secretion from the glands was calculated from plasma hormone levels, measured by ELISA, and the flow rate of thyroid venous plasma. SLNs or CSTs were stimulated bilaterally with rectangular pulses with a 0.5-ms width. To define the role of unmyelinated nerve fibers (typically efferent), the cut peripheral segments were stimulated at various frequencies (up to 40 Hz) with a supramaximal intensity to excite all nerve fibers. The secretion of iCT, iT3, and iT4 increased during SLN stimulation and decreased during CST stimulation. iPTH secretion increased during CST stimulation, but was not affected by SLN stimulation. To examine the effects of selective stimulation of myelinated nerve fibers (typically afferent) in the SLN, intact SLNs were stimulated with a subthreshold intensity for unmyelinated nerve fibers. iCT, iT3, and iT4 secretion increased during stimulation of intact SLNs at 40 Hz. These results suggest that excitation of myelinated afferents induced by low intensity and high frequency stimulation of intact SLNs promotes secretion of CT and thyroid hormones from the thyroid gland, potentially via reflex activation of parasympathetic efferent nerve fibers in the SLN.

  6. Modulation of Calcitonin, Parathyroid Hormone, and Thyroid Hormone Secretion by Electrical Stimulation of Sympathetic and Parasympathetic Nerves in Anesthetized Rats

    PubMed Central

    Hotta, Harumi; Onda, Akiko; Suzuki, Harue; Milliken, Philip; Sridhar, Arun

    2017-01-01

    The thyroid and parathyroid glands are dually innervated by sympathetic (cervical sympathetic trunk [CST]) and parasympathetic (superior laryngeal nerve [SLN]) nerve fibers. We examined the effects of electrical stimulation of efferent or afferent nerve fibers innervating the thyroid and parathyroid glands on the secretion of immunoreactive calcitonin (iCT), parathyroid hormone (iPTH), 3,3′,5-triiodothyronine (iT3), and thyroxine (iT4) from the thyroid and parathyroid glands. In anesthetized and artificially ventilated rats, thyroid venous blood was collected. The rate of hormone secretion from the glands was calculated from plasma hormone levels, measured by ELISA, and the flow rate of thyroid venous plasma. SLNs or CSTs were stimulated bilaterally with rectangular pulses with a 0.5-ms width. To define the role of unmyelinated nerve fibers (typically efferent), the cut peripheral segments were stimulated at various frequencies (up to 40 Hz) with a supramaximal intensity to excite all nerve fibers. The secretion of iCT, iT3, and iT4 increased during SLN stimulation and decreased during CST stimulation. iPTH secretion increased during CST stimulation, but was not affected by SLN stimulation. To examine the effects of selective stimulation of myelinated nerve fibers (typically afferent) in the SLN, intact SLNs were stimulated with a subthreshold intensity for unmyelinated nerve fibers. iCT, iT3, and iT4 secretion increased during stimulation of intact SLNs at 40 Hz. These results suggest that excitation of myelinated afferents induced by low intensity and high frequency stimulation of intact SLNs promotes secretion of CT and thyroid hormones from the thyroid gland, potentially via reflex activation of parasympathetic efferent nerve fibers in the SLN. PMID:28713236

  7. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus.

    PubMed

    Xia, J-D; Chen, J; Sun, H-J; Zhou, L-H; Zhu, G-Q; Chen, Y; Dai, Y-T

    2017-01-01

    Ejaculation is mediated by a spinal generator, which integrates inputs related to the sexual activity and coordinates sympathetic, parasympathetic, and motor outflow. Previous clinical studies indicate that primary premature ejaculation is related to the hyperactivity of the sympathetic nervous system. In this study, we explored the roles of N-methyl-D-aspartic acid (NMDA) receptors in paraventricular nucleus of the hypothalamus (PVN) on ejaculatory responses and its potential mechanism in the rats. We found that microinjection of 0.20 nmol NMDA into the PVN reduced the latency of intromission and facilitated ejaculation during copulation. Moreover, delayed ejaculation and intromission were observed after the rats were microinjected with NMDA receptor antagonist D (-)-2-Amino-5-phosphonopentanoic acid (AP-5). However, we discovered that microinjection of NMDA into PVN significantly increased baseline lumbar splanchnic nerve activity (LSNA), and the NMDA dose was positively correlated with the increased LSNA (r = 0.875, p = 0.04). Meanwhile, the plasma norepinephrine level in rats injected with NMDA was much higher than that in rats injected with saline (1453.4 ± 136.4 pg/mL vs. 492.3 ± 36.8 pg/mL, p < 0.01). Additionally, AP-5 reduced the baseline LSNA and abrogated the enhancing activity of NMDA in LSNA. Thus, we propose that NMDA receptors in PVN may facilitate ejaculation through enhancing the activity of sympathetic system.

  8. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts.

    PubMed

    DiCicco-Bloom, E; Black, I B

    1988-06-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. We have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase [L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [3H]thymidine into their nuclei. We used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [3H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis, revealing a 4-fold insulin stimulation with an ED50 of 100 ng/ml. Insulin-like growth factor I was 100-fold more potent than insulin, whereas insulin-like growth factor II was less potent, suggesting that insulin growth factor type I receptors mediated the mitogenic responses. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. Our observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain.

  9. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats.

    PubMed

    Koganezawa, Tadachika; Paton, Julian F R

    2014-11-01

    Brainstem hypoperfusion is a major excitant of sympathetic activity triggering hypertension, but the exact mechanisms involved remain incompletely understood. A major source of excitatory drive to preganglionic sympathetic neurons originates from the ongoing activity of premotor neurons in the rostral ventrolateral medulla (RVLM sympathetic premotor neurons). The chemosensitivity profile of physiologically characterized RVLM sympathetic premotor neurons during hypoxia and hypercapnia remains unclear. We examined whether physiologically characterized RVLM sympathetic premotor neurons can sense brainstem ischaemia intrinsically. We addressed this issue in a unique in situ arterially perfused preparation before and after a complete blockade of fast excitatory and inhibitory synaptic transmission. During hypercapnic hypoxia, respiratory modulation of RVLM sympathetic premotor neurons was lost, but tonic firing of most RVLM sympathetic premotor neurons was elevated. After blockade of fast excitatory and inhibitory synaptic transmission, RVLM sympathetic premotor neurons continued to fire and exhibited an excitatory firing response to hypoxia but not hypercapnia. This study suggests that RVLM sympathetic premotor neurons can sustain high levels of neuronal discharge when oxygen is scarce. The intrinsic ability of RVLM sympathetic premotor neurons to maintain responsivity to brainstem hypoxia is an important mechanism ensuring adequate arterial pressure, essential for maintaining cerebral perfusion in the face of depressed ventilation and/or high cerebral vascular resistance.

  10. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones.

    PubMed Central

    Brown, D. A.; Constanti, A.

    1980-01-01

    1 Responses of single neurones in isolated superior cervical ganglia of the rat to muscarinic agonists were recorded with intracellular microelectrodes. 2 (+/-)-Muscarine (1 to 10 microM) and methylfurmethide (1 to 3 microM) produced reversible membrane depolarizations (less than or equal to 15 mV) accompanied by a fall in input conductance and an increased tendency toward repetitive spike discharges. The spike configuration was unchanged. 3 Analysis of steady-state current/voltage curves revealed the most consistent muscarinic effect to be a large reduction (approximately 50% at 10 microM muscarine) in input slope conductance around rest potential. This conductance decrease diminished as the membrane was hyperpolarized, and the normal increase in slope conductance with membrane depolarization was depressed. The current/voltage curves in the between -65 and -88 mV (i.e. 9 to 28 mV hyperpolarized to rest potential). 4 Divalent cations (10 mM [Ca2+] or [Mg2+]) showed a small muscarine-like effect on the current/voltage and slope conductance/voltage curves, but did not affect the action of muscarine itself. 5 Tetraethylammonium (TEA, 5 mM) also had a small muscarine-like effect, and depressed or reversed the action of muscarine. However, TEA differed from muscarine in blocking orthodromic transmission and prolonging direct spike repolarization. 6 It is concluded that the primary effect of muscarinic agonists is to alter the rectifying properties of the cell within the potential range -80 to -40 mV. PMID:7470731

  11. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats.

    PubMed

    Rahman, Asadur; Fujisawa, Yoshihide; Nakano, Daisuke; Hitomi, Hirofumi; Nishiyama, Akira

    2017-01-07

    Metabolic syndrome is often associated with disruption of circadian rhythm of systemic hemodynamics and cardiovascular disease. Experiments were conducted to investigate the effects of luseogliflozin, a selective SGLT2 inhibitor, on circadian rhythm of sympathetic nervous function and locomotor activity (LA) in metabolic syndrome rats. The difference in the low frequency component of systolic blood pressure between the dark and light period significantly increased in the luseogliflozin-treated SHRcp. LA also increased in the dark period compared with the light period following luseogliflozin treatment. These data suggest that circadian rhythm of sympathetic nervous function and LA is improved by luseogliflozin in metabolic syndrome rats, which may contribute to SGLT2 inhibitor-induced improvement of cardiovascular outcomes. This article is protected by copyright. All rights reserved.

  12. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction.

    PubMed

    Yu, Yang; Wei, Shun-Guang; Zhang, Zhi-Hua; Weiss, Robert M; Felder, Robert B

    2016-03-15

    Brain MAPK signaling pathways are activated in heart failure (HF) induced by myocardial infarction and contribute to augmented sympathetic nerve activity. We tested whether decreasing ERK1/2 (also known as p44/42 MAPK) signaling in the hypothalamic paraventricular nucleus (PVN), a forebrain source of presympathetic neurons, would reduce the upregulation of sympathoexcitatory mediators in the PVN and augmented sympathetic nerve activity in rats with HF. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce HF, with left ventricular dysfunction confirmed by echocardiography. One week after coronary artery ligation or sham operation, small interfering (si)RNAs targeting ERK1/2 or a nontargeting control siRNA was microinjected bilaterally into the PVN. Experiments were conducted 5-7 days later. Confocal images revealed reduced phosphorylated ERK1/2 immunofluorescence in the PVN of HF rats treated with ERK1/2 siRNAs compared with HF rats treated with control siRNA. Western blot analysis confirmed significant reductions in both total and phosphorylated ERK1/2 in the PVN of HF rats treated with ERK1/2 siRNAs along with reduced expression of renin-angiotensin system components and inflammatory mediators. HF rats treated with ERK1/2 siRNAs also had reduced PVN neuronal excitation (fewer Fos-related antigen-like-immunoreactive neurons), lower plasma norepinephrine levels, and improved peripheral manifestations of HF compared with HF rats treated with control siRNAs. These results demonstrate that ERK1/2 signaling in the PVN plays a pivotal role in mediating sympathetic drive in HF induced by myocardial infarction and may be a novel target for therapeutic intervention. Copyright © 2016 the American Physiological Society.

  13. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction

    PubMed Central

    Yu, Yang; Wei, Shun-Guang; Zhang, Zhi-Hua; Weiss, Robert M.

    2016-01-01

    Brain MAPK signaling pathways are activated in heart failure (HF) induced by myocardial infarction and contribute to augmented sympathetic nerve activity. We tested whether decreasing ERK1/2 (also known as p44/42 MAPK) signaling in the hypothalamic paraventricular nucleus (PVN), a forebrain source of presympathetic neurons, would reduce the upregulation of sympathoexcitatory mediators in the PVN and augmented sympathetic nerve activity in rats with HF. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce HF, with left ventricular dysfunction confirmed by echocardiography. One week after coronary artery ligation or sham operation, small interfering (si)RNAs targeting ERK1/2 or a nontargeting control siRNA was microinjected bilaterally into the PVN. Experiments were conducted 5–7 days later. Confocal images revealed reduced phosphorylated ERK1/2 immunofluorescence in the PVN of HF rats treated with ERK1/2 siRNAs compared with HF rats treated with control siRNA. Western blot analysis confirmed significant reductions in both total and phosphorylated ERK1/2 in the PVN of HF rats treated with ERK1/2 siRNAs along with reduced expression of renin-angiotensin system components and inflammatory mediators. HF rats treated with ERK1/2 siRNAs also had reduced PVN neuronal excitation (fewer Fos-related antigen-like-immunoreactive neurons), lower plasma norepinephrine levels, and improved peripheral manifestations of HF compared with HF rats treated with control siRNAs. These results demonstrate that ERK1/2 signaling in the PVN plays a pivotal role in mediating sympathetic drive in HF induced by myocardial infarction and may be a novel target for therapeutic intervention. PMID:26801309

  14. Adrenal adrenaline- and noradrenaline-containing cells and celiac sympathetic ganglia are differentially controlled by centrally administered corticotropin-releasing factor and arginine-vasopressin in rats.

    PubMed

    Yamaguchi-Shima, Naoko; Okada, Shoshiro; Shimizu, Takahiro; Usui, Daisuke; Nakamura, Kumiko; Lu, Lianyi; Yokotani, Kunihiko

    2007-06-14

    The adrenal glands and sympathetic celiac ganglia are innervated mainly by the greater splanchnic nerves, which contain preganglionic sympathetic nerves that originated from the thoracic spinal cord. The adrenal medulla has two separate populations of chromaffin cells, adrenaline-containing cells (A-cells) and noradrenaline-containing cells (NA-cells), which have been shown to be differentially innervated by separate groups of the preganglionic sympathetic neurons. The present study was designed to characterize the centrally activating mechanisms of the adrenal A-cells, NA-cells and celiac sympathetic ganglia with expression of cFos (a marker for neural excitation), in regard to the brain prostanoids, in anesthetized rats. Intracerebroventricularly (i.c.v.) administered corticotropin-releasing factor (CRF) induced cFos expression in the adrenal A-cells, but not NA-cells, and celiac ganglia. On the other hand, i.c.v. administered arginine-vasopressin (AVP) resulted in cFos induction in both A-cells and NA-cells in the adrenal medulla, but not in the celiac ganglia. Intracerebroventricular pretreatment with indomethacin (an inhibitor of cyclooxygenase) abolished the CRF- and AVP-induced cFos expression in all regions described above. On the other hand, intracerebroventricular pretreatment with furegrelate (an inhibitor of thromboxane A2 synthase) abolished the CRF-induced cFos expression in the adrenal A-cells, but not in the celiac ganglia, and also abolished the AVP-induced cFos expression in both A-cells and NA-cells in the adrenal medulla. These results suggest that centrally administered CRF activates adrenal A-cells and celiac sympathetic ganglia by brain thromboxane A2-mediated and other prostanoid than thromboxane A2 (probably prostaglandin E2)-mediated mechanisms, respectively. On the other hand, centrally administered AVP activates adrenal A-cells and NA-cells by brain thromboxane A2-mediated mechanisms in rats.

  15. [The influence of lumbar sympathetic ganglion radiofrequency thermocoagulation on the activation of microglia in rats with diabetic neuropathic pain].

    PubMed

    Zhang, J H; Yang, C X; Zhong, J Y; Zhang, L; Xiong, Q M; Wang, J; Wang, H B

    2016-06-28

    To observe the influence of lumbar sympathetic ganglion radiofrequency thermocoagulation on the activation of spinal microglia in rats with diabetic neuropathic pain (DNP). Thirty-six painful diabetic Sprague-Dawley rats induced by 60 mg/kg streptozotocin (STZ) intraperitoneal injection were randomly divided into diabetic neuropathic pain group (group DNP, n=12), Sham operation group (group Sham, n=12) and radiofrequency thermocoagulation group (group R, n=12). Meanwhile another 12 age-matched rats were allocated as normal control group (group N), rats in group N received intraperitoneal injection of equal volume of normal saline. Twenty-eight days after STZ injection, rats in group R received L3 lumbar sympathetic ganglia radiofrequency thermocoagulation on the left side under X-ray guideline after anesthesia with damage time 60 s and damage temperature 60 ℃. Rats in group Sham received puncture positioning, but not thermocoagulation therapy. The mechanical paw withdrawal threshold (PWT) were performed before STZ injection, 7, 14, 21, 28 days after STZ injection and 1, 3, 5, 7, 14 days after radiofrequency thermocoagulation, respectively. Blood glucose were performed before STZ injection, 3, 28 days after STZ injection and 1, 14days after radiofrequency thermocoagulation. After the final behavioral testing, L3-L5 spinal cord tissues were removed to exam the expression of microglia marker OX42 by Western blotting and immunofluorescence technique, and the changes in the expression of inflammation factor IL-1β, IL-6, TNF-α were detected by ELISA technique. Compared with group N, after 14, 21, 28 days of STZ injection and 1, 3, 5, 7, 14 days of radiofrequency thermocoagulation, the PWT of group DNP and group Sham decreased significantly (P<0.05); Before radiofrequency thermocoagulation, the PWT of rats in group DNP was (3.84±0.83) g, the PWT of rats in group R was (4.45±0.88) g, there was no statistically significant difference between group DNP and group R (t=1

  16. Use-dependent loss of active sympathetic neurogenic vasodilation after nitric oxide synthase inhibition in conscious rats. Evidence for the presence of preformed stores of nitric oxide-containing factors

    NASA Technical Reports Server (NTRS)

    Davisson, R. L.; Shaffer, R. A.; Johnson, A. K.; Lewis, S. J.

    1996-01-01

    In this study, we examined whether air-jet stress-induced active sympathetic hindlimb vasodilation in conscious rats involves the release of preformed stores of nitric oxide-containing factors. We determined the effects of repeated episodes of air-jet stress (six episodes given 5 minutes apart) on mean arterial pressure and vascular resistances in the mesenteric bed and intact and sympathetically denervated hindlimb beds of conscious rats treated with saline or the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 25 mumol/kg IV). In saline-treated rats, air-jet stress produced alerting behavior, minor changes in blood pressure, pronounced mesenteric vaso-constriction, and immediate and marked vasodilation in the sympathetically intact hindlimb but a minor vasodilation in the sympathetically denervated hindlimb. Each air-jet stress produced virtually identical responses. In L-NAME-treated rats, the first air-jet stress produced vasodilator responses in the sympathetically intact and sympathetically denervated hindlimbs that were similar to those in the saline-treated rats. However, each subsequent air-jet stress produced progressively smaller vasodilator responses in the sympathetically intact but not the sympathetically denervated hindlimb. There was no loss of air-jet stress-induced alerting behavior or mesenteric vasoconstriction, suggesting that L-NAME did not interfere with the central processing of the air-jet or the resultant changes in autonomic nerve activity. The progressive diminution of air-jet stress-induced vasodilation in the intact hindlimb of L-NAME-treated rats may be due to the use-dependent depletion of preformed stores of nitric oxide-containing factors that cannot be replenished in the absence of nitric oxide synthesis.

  17. Use-dependent loss of active sympathetic neurogenic vasodilation after nitric oxide synthase inhibition in conscious rats. Evidence for the presence of preformed stores of nitric oxide-containing factors

    NASA Technical Reports Server (NTRS)

    Davisson, R. L.; Shaffer, R. A.; Johnson, A. K.; Lewis, S. J.

    1996-01-01

    In this study, we examined whether air-jet stress-induced active sympathetic hindlimb vasodilation in conscious rats involves the release of preformed stores of nitric oxide-containing factors. We determined the effects of repeated episodes of air-jet stress (six episodes given 5 minutes apart) on mean arterial pressure and vascular resistances in the mesenteric bed and intact and sympathetically denervated hindlimb beds of conscious rats treated with saline or the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 25 mumol/kg IV). In saline-treated rats, air-jet stress produced alerting behavior, minor changes in blood pressure, pronounced mesenteric vaso-constriction, and immediate and marked vasodilation in the sympathetically intact hindlimb but a minor vasodilation in the sympathetically denervated hindlimb. Each air-jet stress produced virtually identical responses. In L-NAME-treated rats, the first air-jet stress produced vasodilator responses in the sympathetically intact and sympathetically denervated hindlimbs that were similar to those in the saline-treated rats. However, each subsequent air-jet stress produced progressively smaller vasodilator responses in the sympathetically intact but not the sympathetically denervated hindlimb. There was no loss of air-jet stress-induced alerting behavior or mesenteric vasoconstriction, suggesting that L-NAME did not interfere with the central processing of the air-jet or the resultant changes in autonomic nerve activity. The progressive diminution of air-jet stress-induced vasodilation in the intact hindlimb of L-NAME-treated rats may be due to the use-dependent depletion of preformed stores of nitric oxide-containing factors that cannot be replenished in the absence of nitric oxide synthesis.

  18. Noxious Colorectal Distention in Spinalized Rats Reduces Pseudorabies Virus Labeling of Sympathetic Neurons

    PubMed Central

    Duale, Hanad; Lyttle, Travis S.; Smith, Bret N.

    2010-01-01

    Abstract The retrograde transsynaptic tracer pseudorabies virus (PRV) has been widely used as a marker for synaptic connectivity in the spinal cord. Notably, the PRV-152 construct expresses enhanced green fluorescent protein (EGFP). We recently reported a significant attenuation of PRV-152 labeling of the intermediolateral cell column (IML) and celiac ganglia after complete T4 spinal cord transection versus sham injury in rats at 96 h after PRV-152 inoculation of the left kidney. Here we found a significant increase in noxious colorectal distention (CRD)-evoked c-Fos expression in spinal cords of injured versus sham rats without PRV infection. In order to assess whether enhancing neuronal activity in spinalized rats might increase PRV-152 labeling, we subjected awake spinalized rats to 1.5 h of intermittent noxious CRD either: (1) just prior to inoculation, or (2) 96 h after inoculation (n = 3/group). Equal numbers of spinalized rats in both groups received PRV-152 inoculations without CRD (non-stimulated; n = 3/group). At 96 h post-inoculation fixed spinal cords and left celiac ganglionic tissues were assessed for the distribution and quantification of EGFP-labeled cells. The injured cohort that received CRD just prior to PRV injection showed a significant reduction in EGFP-labeled cells in both the IML and left celiac ganglion compared to non-stimulated injured rats. In contrast, the injured cohort that received CRD 96 h after PRV-152 inoculation showed no differences in EGFP-labeled cell numbers in the IML or celiac ganglia versus non-stimulated injured rats. Interestingly, microglia near c-Fos-positive cells after acute CRD appeared more reactive compared to non-stimulated spinalized rats, and activated microglial cells markedly reduce viral transduction and progression following PRV inoculation of the CNS. Hence our results imply that increased CRD-induced c-Fos expression in the injured paradigm, prior to but not after PRV injection, further

  19. The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue of the rat.

    PubMed

    Walgren, M C; Young, J B; Kaufman, L N; Landsberg, L

    1987-06-01

    The present studies were undertaken to determine the effect of various carbohydrates on sympathetic nervous system (SNS) activity. Tritiated-norepinephrine (3H-NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of rats fed either chow or chow plus 50% caloric supplements of fructose, sucrose, dextrose, or corn starch. Additional studies were performed to examine whether absorption of carbohydrate plays a role in the SNS response, and to determine whether sweet taste in the form of artificial sweeteners may influence SNS activity. After five to ten days on the respective diets, 3H-NE turnover was increased to a similar extent by all carbohydrates tested (from 38% to 160% greater than controls in different studies). Addition of acarbose (which impairs sucrose absorption) to a sucrose-supplemented diet abolished the SNS stimulatory response, whereas cholestyramine (a drug that blocks fat absorption) had no effect. Finally, the addition of saccharin or aspartame to a chow diet failed to alter SNS activity. Thus, caloric supplementation with several carbohydrates, in addition to sucrose, stimulates both cardiac and IBAT SNS activity, absorption of carbohydrate is required for this effect, and noncaloric sugar substitutes do not alter SNS function.

  20. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations

    PubMed Central

    Sastre, Esther; Caracuel, Laura; Prieto, Isabel; Llévenes, Pablo; Aller, M. Ángeles; Arias, Jaime; Balfagón, Gloria; Blanco-Rivero, Javier

    2016-01-01

    We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis. PMID:27484028

  1. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations.

    PubMed

    Sastre, Esther; Caracuel, Laura; Prieto, Isabel; Llévenes, Pablo; Aller, M Ángeles; Arias, Jaime; Balfagón, Gloria; Blanco-Rivero, Javier

    2016-08-03

    We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis.

  2. Chronic emotional stress exposure increases infarct size in rats: the role of oxidative and nitrosative damage in response to sympathetic hyperactivity.

    PubMed

    Mercanoglu, G; Safran, N; Uzun, H; Eroglu, L

    2008-12-01

    We investigated the level of sympathetic hyperactivity in response to stress exposure in an acute myocardial infarction (AMI) model and the contribution of oxidative and nitrosative damage to this phenomenon. Stress was induced by 20-day administration of different emotional stress factors: daylight/darkness exposure, overcrowding, isolation, new hierarchy, tilting the cage and restriction of water or food. AMI was induced surgically. Heart rate (HR) and heart rate variability (HRV) measurements were done before and after AMI. Oxidant parameters were measured in heart tissue and cortisol levels were measured in plasma specimens. Compared with the nonstressed group, stress-exposed rats showed sympathetic hyperactivity characterized by increased HR together with decreased HRV. In the stressed group serum corticosterone levels were high both before and after AMI. Mean infarct size in the stressed group was significantly larger (44.6+/-3.23% and 53.1+/-4.52%, respectively; P<0.05). Increased tissue malondialdehyde (MDA) levels (0.63+/-0.59 and 1.60+/-0.31 nmol/mg protein, respectively; P<0.05) and decreased superoxide dismutase (SOD) activity and glutathione (GSH) content were seen in stress-exposed rats. Likewise, heart peroxynitrite levels were also high in stress-exposed rats (141.8+/-18 nmol/g tissue vs. 164.2+/-21 nmol/g tissue). Chronic emotional stress is a deteriorating factor for the induction and prognosis of MI. Exaggerated sympathetic activity may be the major contributing factor. Oxidative and nitrosative damage in response to this sympathetic hyperactivity is the key mechanism.

  3. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Zhang, Jun-Ming

    2015-01-01

    In the spinal nerve ligation model of neuropathic pain, as in other pain models, abnormal spontaneous activity of myelinated sensory neurons occurs early and is essential for establishing pain behaviors and other pathologies. Sympathetic sprouting into the dorsal root ganglion (DRG) is observed after spinal nerve ligation, and sympathectomy reduces pain behavior. Sprouting and spontaneous activity may be mutually reinforcing: blocking neuronal activity reduces sympathetic sprouting, and sympathetic spouts functionally increase spontaneous activity in vitro. However, most studies in this field have used nonspecific methods to block spontaneous activity, methods that also block evoked and normal activity. In this study, we injected small inhibitory RNA directed against the NaV1.6 sodium channel isoform into the DRG before spinal nerve ligation. This isoform can mediate high frequency repetitive firing, like that seen in spontaneously active neurons. Local knockdown of NaV1.6 markedly reduced mechanical pain behaviors induced by spinal nerve ligation, reduced sympathetic sprouting into the ligated sensory ganglion, and blocked abnormal spontaneous activity and other measures of hyperexcitability in myelinated neurons in the ligated sensory ganglion. Immunohistochemical experiments showed that sympathetic sprouting preferentially targeted NaV1.6-positive neurons. Under these experimental conditions, NaV1.6 knockdown did not prevent or strongly alter single evoked action potentials, unlike previous less specific methods used to block spontaneous activity. NaV1.6 knockdown also reduced pain behaviors in another pain model, chronic constriction of the sciatic nerve, provided the model was modified so that the lesion site was relatively close to the siRNA-injected lumbar DRGs. The results highlight the relative importance of abnormal spontaneous activity in establishing both pain behaviors and sympathetic sprouting, and suggest that the NaV1.6 isoform may have value as a

  4. Sympathetic activation by sildenafil.

    PubMed

    Phillips, B G; Kato, M; Pesek, C A; Winnicki, M; Narkiewicz, K; Davison, D; Somers, V K

    2000-12-19

    Sildenafil citrate is an effective and widely prescribed therapy for erectile dysfunction. Little is known about the effects of sildenafil on neural control of the circulation or about the effects of sildenafil on neurocirculatory stress responses. We studied 14 normal volunteers (age 32+/-7 years) who were randomized in a double-blind crossover fashion to receive a single oral dose of sildenafil 100 mg or placebo on 2 separate study days. Blood pressure, heart rate, forearm vascular resistance, muscle sympathetic nerve activity, and plasma catecholamines were measured at baseline and at 30 and 60 minutes after sildenafil and after placebo administration. The effects of sildenafil and placebo on neural and circulatory responses to stressful stimuli (sustained handgrip, maximal forearm ischemia, mental stress, and the cold pressor test) were also evaluated. Blood pressure, heart rate, and forearm vascular resistance after sildenafil and placebo were similar. However, muscle sympathetic nerve activity increased strikingly after sildenafil (by 141+/-26%, mean+/-SEM) compared with placebo (3+/-8%) (P=0.006); plasma norepinephrine levels also increased by 31+/-5% after sildenafil administration (P=0.004). Sympathetic nerve traffic during mental, physical, and cold stresses was 2- to 8-fold higher after sildenafil than with placebo (P<0.05). Sildenafil causes a marked increase in sympathetic activation, evident both at rest and during stressful stimuli. Sympathetic activation by sildenafil may have implications for understanding cardiovascular events associated with sildenafil use.

  5. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System.

    PubMed

    Rakhshan, Kamran; Imani, Alireza; Faghihi, Mahdieh; Nabavizadeh, Fatemeh; Golnazari, Masoumeh; Karimian, SeyedMorteza

    2015-08-01

    Exposure to stress leads to physiological changes called "stress response" which are the result of the changes in the adrenomedullary hormone system, hypothalamus-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) activity. In the present study, the effects of chronic physical and psychological stress and also the role of sympathetic system effects in stress on ischemia/reperfusion (I/R) injuries have been studied in isolated rat heart. Rat heart was isolated and subjected to 30 min regional ischemia and 120 min reperfusion. The daily stress was induced for one week prior to I/R induction. Sympathectomy was done chemically by injection of hydroxyl-dopamine prior to stress induction. There were no significant changes in heart rate and Coronary Flow between groups. Left ventricular developed pressure (LVDP) and rate product pressure (RPP) in both physical and psychological stress groups decreased significantly compared to those in control group (P<0.05), but there was no significant difference between physical and psychological stress groups. Infarct size significantly increased in both physical and psychological stress groups and control group(P<0.05. Sympathectomy before induction of stress led to the elimination of the deleterious effects of stress as compared with stress groups (P<0.05). These results show that induction of chronic physical and psychological stress prior to ischemia/reperfusion causes enhancement of myocardial injuries and it seems that increased sympathetic activity in response to stress is responsible for these adverse effects of stress on ischemic/reperfused heart.

  6. Sympathetic premotor neurones project to and are influenced by neurones in the contralateral rostral ventrolateral medulla of the rat in vivo.

    PubMed

    McMullan, Simon; Pilowsky, Paul M

    2012-02-23

    The tonic activity of bulbospinal neurones in the rostral ventrolateral medulla (RVLM) is thought to underlie basal sympathetic nerve activity. A key research objective is to delineate the mechanisms that contribute to the firing of these neurones. In the current study we investigate the hypothesis that inputs arising in the contralateral RVLM converge on barosensitive bulbospinal neurones and contribute to their discharge pattern. Extracellular recordings were made from 24 barosensitive bulbospinal neurones in urethane anaesthetised, vagotomised and artificially ventilated rats during activation (glutamate or D,L-homocysteic acid microinjection, 50 nl, 50mM, or monopolar electrical stimulation) or inhibition (microinjection of GABA receptor agonists muscimol or isoguvacine, 50 nl, 10mM) of the contralateral RVLM. Chemical RVLM activation strongly increased (10/17) or inhibited (6/17) the spontaneous activity of neurones recorded in the contralateral RVLM. Electrical RVLM stimulation evoked a combination of short latency (median 6 ms) inhibitory and longer latency (median 9.1 ms, P<0.01) excitatory orthodromic responses in contralateral sympathetic premotor neurones and in some cases evoked antidromic action potentials that collided with spontaneous spikes. RVLM inhibition increased the discharge rate of sympathetic premotor neurones in the contralateral brainstem by 21 ± 13% (P<0.05) and reduced the variability of unit firing by 37 ± 12% (n=5, p<0.05). These findings indicate that sympathetic premotor neurones receive inhibitory and excitatory input from the contralateral RVLM, that inhibitory inputs predominate under baseline conditions, and that a population of sympathetic premotor neurones project to the contralateral RVLM in addition to their spinal targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Sympathetic innervation of the upper and lower regions of the uterus and cervix in the rat have different origins and routes.

    PubMed

    Houdeau, E; Rousseau, A; Meusnier, C; Prud'Homme, M J; Rousseau, J P

    1998-09-28

    The origins and routes of the postganglionic sympathetic nerve supply to the upper and lower uterus and to the cervix were investigated in the rat by using denervation procedures combined with immunohistochemistry and retrograde tracing. The sympathetic nerve fibers of the upper part of the uterus arise from the ovarian plexus nerve. They mainly originate (90%) from neurons of the suprarenal ganglia (SRG) and of the T10 to L3 ganglia of the paravertebral sympathetic chain. Fluoro-Gold injections into different regions of the upper uterus showed that the SRG neurons mainly provide innervation to the tubal extremity (52%) rather than to the uterine portion below this area (26%). Very few neurons of the celiac ganglion or the aorticorenal ganglia participated in this innervation. Most of the sympathetic innervation of the lower uterus and the cervix (90%) originates from neurons of the paravertebral ganglia T13 to S2, principally at the L2-L4 levels. By using immunocytochemistry, we show that very few tyrosine hydroxylase-positive neurons of the pelvic plexus project to these areas, where they represent only 3% of the sympathetic nerve supply. Again, very few neurons of the inferior mesenteric ganglion (IMG) supply the lower uterus and the cervix. The comparison between retrograde tracing experiments in intact animals and after the removal of the IMG shows that very few sympathetic postganglionic axons from the paravertebral chain pass through the IMG to reach the lower uterus and the cervix. In contrast, these axons mainly project to splanchnic nerves bypassing the IMG to connect with the hypogastric nerves. In addition, some axons supplying the lower uterus follow the superior vesical arteries and then reach the organ. Taken together, these results show that the upper region of the uterus receives a sympathetic innervation that is different in origin and route from that of the lower uterus and the cervix. Such a marked region-specific innervation suggests that nerve

  8. Targeted P2X7 R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction.

    PubMed

    Gao, Hongmei; Yin, Jie; Shi, Yugen; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Li, Xinran; Li, Yongkang; Wang, Yu; Yan, Suhua

    2017-04-01

    Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X7 R is a key immune mediator, its role has yet to be explored. We investigated whether P2X7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X7 R was activated in the infarcted tissue at an early stage. The administration of P2X7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. The administration of P2X7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation. © 2016 John Wiley & Sons Ltd.

  9. Predominant role of the dopamine D3 receptor subtype for mediating the quinpirole-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Ruiz-Salinas, Inna; González-Hernández, Abimael; Manrique-Maldonado, Guadalupe; Marichal-Cancino, Bruno A; Altamirano-Espinoza, Alain H; Villalón, Carlos M

    2013-05-01

    We have recently reported that quinpirole (a D2-like receptor agonist) inhibits the vasopressor sympathetic outflow in pithed rats via sympatho-inhibitory D2-like receptors. Since D2-like receptors consist of D2, D3 and D4 receptor subtypes, this study investigated whether these subtypes are involved in the above quinpirole-induced sympatho-inhibition by using antagonists of these receptor subtypes. One hundred fifty-six male Wistar rats were pithed and prepared for preganglionic spinal (T7-T9) stimulation of the vasopressor sympathetic outflow. This approach resulted in frequency-dependent vasopressor responses which were analysed before and during i.v. continuous infusions of either saline (0.02 ml/min) or quinpirole (1 μg/kg.min) in animals receiving i.v. bolus injections of vehicle [saline or dimethyl sulfoxide (DMSO)] or the antagonists L-741,626 (D2), nafadotride or SB-277011-A (both D3) as well as L-745,870 (D4). Quinpirole inhibited the sympathetically-induced vasopressor responses. This sympatho-inhibition was (a) unaltered after 1 ml/kg saline, DMSO or 100 and 300 μg/kg L-741,626; (b) markedly blocked and abolished by, respectively, 30 and 100 μg/kg nafadotride or 100 and 300 μg/kg SB-277011-A and (c) slightly blocked after 30 and 100 μg/kg L-745,870, but 300 μg/kg L-745,870 produced no blockade whatsoever. Except for 300 μg/kg L-741,626 or 300 μg/kg L-745,870, the doses of the above compounds failed to modify per se the sympathetic vasopressor responses. The inhibition of the vasopressor sympathetic outflow induced by 1 μg/kg.min quinpirole in pithed rats is predominantly mediated by dopamine D3 and, to a lesser extent, by D4 receptor subtypes, with no evidence for the involvement of the D2 subtype.

  10. Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons.

    PubMed

    Kar, Amar N; MacGibeny, Margaret A; Gervasi, Noreen M; Gioio, Anthony E; Kaplan, Barry B

    2013-04-24

    Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.

  11. Voltage-Independent Inhibition of the Tetrodotoxin-Sensitive Sodium Currents by Oxotremorine and Angiotensin II in Rat Sympathetic Neurons.

    PubMed

    Puente, Erika I; De la Cruz, Lizbeth; Arenas, Isabel; Elias-Viñas, David; Garcia, David E

    2016-04-01

    Tetrodotoxin-sensitive Na(+) currents have been extensively studied because they play a major role in neuronal firing and bursting. In this study, we showed that voltage-dependent Na(+) currents are regulated in a slow manner by oxotremorine (oxo-M) and angiotensin II in rat sympathetic neurons. We found that these currents can be readily inhibited through a signaling pathway mediated by G proteins and phospholipase C (PLC) β1. This inhibition is slowly established, pertussis toxin-insensitive, partially reversed within tens of seconds after oxo-M washout, and not relieved by a strong depolarization, suggesting a voltage-insensitive mechanism of inhibition. Specificity of the M1 receptor was tested by the MT-7 toxin. Activation and inactivation curves showed no shift in the voltage dependency under the inhibition by oxo-M. This inhibition is blocked by a PLC inhibitor (U73122, 1-(6-{[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione), and recovery from inhibition is prevented by wortmannin, a PI3/4 kinase inhibitor. Hence, the pathway involves Gq/11 and is mediated by a diffusible second messenger. Oxo-M inhibition is occluded by screening phosphatidylinositol 4,5-bisphosphate (PIP2)-negative charges with poly-l-lysine and prevented by intracellular dialysis with a PIP2 analog. In addition, bisindolylmaleimide I, a specific ATP-competitive protein kinase C (PKC) inhibitor, rules out that this inhibition may be mediated by this protein kinase. Furthermore, oxo-M-induced suppression of Na(+) currents remains unchanged when neurons are treated with calphostin C, a PKC inhibitor that targets the diacylglycerol-binding site of the kinase. These results support a general mechanism of Na(+) current inhibition that is widely present in excitable cells through modulation of ion channels by specific G protein-coupled receptors. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Neurochemical evidence for a neuronal GABAergic system in the rat sympathetic superior cervical ganglion.

    PubMed

    González Burgos, G; Rosenstein, R E; Cardinali, D P

    1992-01-01

    Some characteristics of gamma aminobutyric acid (GABA) uptake and release in rat superior cervical ganglion (SCG) were investigated. Kinetic analysis of GABA uptake indicated the existence of both high affinity (Km = 18.6 microM) and low affinity (Km = 485 microM) uptake systems. 3H-GABA influx was decreased by inhibitors of glial (beta-alanine), neuronal (2,4-diaminobutyric acid, DABA), or glial and neuronal GABA uptake (nipecotic acid). 3H-GABA efflux was elicited by K+ depolarization in a dose-dependent manner, an effect unaltered by severing the preganglionic nerve fibers. Superfusion of SCG explants with DABA or beta-alanine resulted in increased 3H-GABA efflux from tissue, an effect amplified by the absence of calcium in the superfusion medium. 3H-GABA loading in the presence of DABA, but not in the presence of beta-alanine, resulted in abolition of K(+)-elicited 3H release. At 20 mM, but not at 50 mM K+, the release of 3H-GABA was inhibited by replacing Ca2+ by Mg2+ and by adding EGTA, or by incubating SCG in the presence of the Ca(2+)-channel blocker verapamil. Veratrine evoked GABA release in Ca(2+)-independent manner. None of several putative SCG autacoids or agonists (nicotine, muscarine, norepinephrine, dopamine, serotonin, baclofen, muscimol) significantly modified GABA release.

  13. Activity of the sympathetic-adrenomedullary system in rats after space flight on the COSMOS biosatellites

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.

    The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.

  14. Role of cuneiform nucleus in regulation of sympathetic vasomotor tone in rats.

    PubMed

    Shafei, Mohammad Naser; Nasimi, Ali; Alaei, Hojatallah; Pourshanazari, Ali Asghar; Hosseini, Mahmoud

    2012-06-01

    The cuneiform nucleus (CnF) is a sympathoexcitatory area involved in the central cardiovascular regulation. Its role in the maintaining vasomotor tone has, however, not yet been clarified. In the present study the effects of cobalt chloride (CoCl(2)) a nonselective synapse blocker and NMDA and non-NMDA glutamate receptors on resting mean arterial blood pressure and heart rate of CnF have been evaluated. CoCl(2), AP5 (an NMDA receptor antagonist) and CNQX (an AMPA/kinase receptor antagonist) (100nl) were microinjected into the CnF of anesthetized rats. The blood pressure and heart rate were recorded throughout the experiment. The responses of blood pressure and heart rate were compared with the pre-injection (paired t-test) and control (independent t-test) values. Microinjection of CoCl(2), AP5 and CNQX did not change the basal blood pressure and heart rate. In conclusion, our present study indicates that the CnF is not important in the regulation of cardiovascular tone. Copyright © 2011. Published by Elsevier Ireland Ltd.

  15. Involvement of presynaptic voltage-dependent Kv3 channel in endothelin-1-induced inhibition of noradrenaline release from rat gastric sympathetic nerves.

    PubMed

    Nakamura, Kumiko; Shimizu, Takahiro; Tanaka, Kenjiro; Taniuchi, Keisuke; Yokotani, Kunihiko

    2012-11-05

    We previously reported that two types of K(+) channels, the BK type Ca(2+)-activated K(+) channel coupled with phospholipase C (PLC) and the voltage-dependent K(+) channel (Kv channel), are, respectively, involved in the prostanoid TP receptor- and muscarinic M(2) receptor-mediated inhibition of noradrenaline (NA) release from rat gastric sympathetic nerves. In the present study, therefore, we examined whether these K(+) channels are involved in endothelin-1-induced inhibition of NA release, using an isolated, vascularly perfused rat stomach. The gastric sympathetic postganglionic nerves around the left gastric artery were electrically stimulated twice at 2.5 Hz for 1 min, and endothelin-1 was added during the second stimulation. Endothelin-1 (1, 2 and 10 nM) dose-dependently inhibited gastric NA release. Endothelin-1 (2 nM)-induced inhibition of NA release was neither attenuated by PLC inhibitors [U-73122 (3 μM) and ET-18-OCH(3) (3 μM)] nor by Ca(2+)-activated K(+) channel blockers [charybdotoxin (0.1 μM) (a blocker of BK type K(+) channel) and apamin (0.3 μM) (a blocker of SK type K(+) channel)]. The endothelin-1-induced inhibitory response was also not attenuated by α-dendrotoxin (0.1 μM) (a selective inhibitor of Kv1 channel), but abolished by 4-aminopyridine (20 μM) (a selectively inhibitory dose for Kv3 channel). These results suggest the involvement of a voltage-dependent Kv3 channel in the endothelin-1-induced inhibition of NA release from the gastric sympathetic nerves in rats.

  16. Pontomedullary transection attenuates central respiratory modulation of sympathetic discharge, heart rate and the baroreceptor reflex in the in situ rat preparation.

    PubMed

    Baekey, David M; Dick, Thomas E; Paton, Julian F R

    2008-07-01

    Previous studies have indicated a major role for the pons in the genesis of the respiratory pattern. The respiratory rhythm is coupled to the cardiovascular system to ensure optimal matching of minute ventilation and cardiac output. Since much of this coupling results from cross-talk between brainstem circuits, we have assessed the role of the pons in both the co-ordination of respiratory and cardiovascular efferent activities and the baroreceptor reflex efficacy. Using the arterially perfused in situ rat preparation, we recorded neural activities from the left phrenic nerve, central end of the vagus nerve, thoracic sympathetic chain (T8-T10) and heart rate. Respiratory sinus arrhythmia, respiratory modulation of sympathetic nerve activity (and Traube-Hering waves in arterial pressure) and postinspiratory discharges recorded from vagal efferents were eliminated after pontine transection. We also found that although the sympathetic arterial baroreflex remained intact, respiratory gating of the baroreceptor reflex (i.e. both bradycardia and sympathoinhibition) was abolished after pontine removal. We propose that neural activity of the pons is essential for physiological coupling of centrally generated respiratory and cardiovascular efferent activities.

  17. The role of dopamine D2, but not D3 or D4, receptor subtypes, in quinpirole-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats

    PubMed Central

    Altamirano-Espinoza, A H; González-Hernández, A; Manrique-Maldonado, G; Marichal-Cancino, B A; Ruiz-Salinas, I; Villalón, C M

    2013-01-01

    Background and Purpose Quinpirole (a dopamine D2-like receptor agonist) inhibits the cardioaccelerator sympathetic outflow in pithed rats by sympathoinhibitory D2-like receptors. The present study was designed to identify pharmacologically the specific D2-like receptor subtypes (i.e. D2, D3 and D4) involved in this sympathoinhibition by quinpirole. Experimental Approach One hundred fourteen male Wistar rats were pithed, artificially ventilated with room air and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n = 102) or i.v. bolus injections of exogenous noradrenaline (n = 12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively, as previously reported by our group. Key Results I.v. continuous infusions of quinpirole (0.1–10 μg kg−1 min−1), but not of saline (0.02 mL min−1), dose-dependently inhibited the sympathetically induced tachycardic responses. Moreover, the cardiac sympathoinhibition induced by 3 μg kg−1 min−1 quinpirole (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unchanged after i.v. injections of the antagonists SB-277011-A (D3; 100–300 μg kg−1) or L-745,870 (D4; 30–100 μg kg−1); and (ii) markedly blocked and abolished by, respectively, 100 and 300 μg kg−1 of the D2 preferring receptor subtype antagonist L-741,626. These doses of antagonists, which did not affect per se the sympathetically induced tachycardic responses, were high enough to completely block their respective receptors. Conclusions and Implications The cardiac sympathoinhibition induced by 3 μg kg−1 min−1 quinpirole involves the dopamine D2 receptor subtype, with no evidence for the involvement of the D3 or D4 subtypes. This provides new evidence for understanding the modulation of the cardioaccelerator sympathetic outflow. PMID:24032529

  18. Two components of muscarine-sensitive membrane current in rat sympathetic neurones.

    PubMed Central

    Brown, D A; Selyanko, A A

    1985-01-01

    Membrane currents induced by muscarine (Imus) were recorded in voltage-clamped neurones in isolated rat superior cervical ganglia. Two components of Imus were regularly recorded: an inward current resulting from inhibition of the outward K+ current, IM; and an outward current attributable to the reduction of a steady inward current. The presence of these two components caused a 'cross-over' in the current-voltage curves at -50 +/- 3 mV in neurones impaled with KCl-filled micro-electrodes or at -63 +/- 4 mV in neurones impaled with K-acetate-filled electrodes. Both components of Imus were prevented by atropine. Both persisted in Krebs solution containing tetrodotoxin (1 microM), Cd2+ (200 microM) or 0 Ca2+. When IM was inhibited by external Ba2+ or internal Cs+ only the outward component of Imus could be detected. This component reversed at +3 +/- 2 mV in cells impaled with CsCl-filled electrodes or at -20 +/- 3 mV in cells impaled with Cs-acetate-filled electrodes. The reversal potentials agreed with those for the currents induced by gamma-aminobutyric acid (+4 +/- 2 mV and -16 +/- 3 mV with CsCl and Cs acetate electrodes respectively). Replacement of external NaCl with Na acetate (so reducing external Cl- concentration ( [Cl-]o) from 155 to 22 mM) shifted the reversal potential for Imus by +25 and +14.5 mV in two cells impaled with CsCl-filled electrodes. A tenfold reduction of external [Na+] (by glucosamine replacement) did not significantly alter the reversal potential for Imus in KCl or CsCl-impaled cells. Under conditions where IM is already inhibited, the residual outward component of Imus can lead to hyperpolarization and inhibition of neuronal activity in unclamped cells. We conclude that both inward and outward components of Imus result from direct activation of muscarinic receptors on the ganglion cells. The inward component results from IM inhibition. We suggest that the outward component results from inhibition of another, voltage-independent current IX

  19. Electrophysiological responses in the rat tail artery during reinnervation following lesions of the sympathetic supply.

    PubMed Central

    Jobling, P; McLachlan, E M; Jänig, W; Anderson, C R

    1992-01-01

    1. Responses to perivascular stimuli have been recorded with intracellular microelectrodes from the smooth muscle of isolated segments of the main caudal artery of rats at various times between 7 and 128 days after all four collector nerve trunks had been lesioned near the base of the tail at 21 days of age. 2. In proximal segments (< 40 mm distal to the lesions), excitatory junction potentials (EJPs) and neurogenic alpha-depolarizations (NADs) evoked by stimuli presented via a proximally located suction electrode were similar to those in the same segments of unoperated control animals of the same age. Supramaximal EJPs in these segments decreased in amplitude with age. 3. Stimuli just supramaximal for EJPs in innervated preparations failed to evoke responses in segments farther than 30-40 mm distal to the lesions at any time after the nerves had been cut and 1 cm excised. Higher voltages evoked slow depolarizing potentials (SDPs) which were of longer time course than EJPs. Similar responses occurred in segments over 60 mm distal to the lesions at 20-50 days after the nerves had been frozen, and in all segments sampled over 100 mm distal to nerve lesions. 4. Spontaneous transient depolarizations (STDs) were recorded at all depths of the media in denervated segments. These occurred at frequencies similar to those of spontaneous events (including attenuated spontaneous EJPs) in innervated segments. 5. The earliest signs of reinnervation (24-42 days after freeze lesions) consisted of very small amplitude EJPs of normal time course which facilitated markedly during a short train of stimuli (5-10 Hz); these were followed by NADs which were large relative to the amplitudes of the EJPs. Less commonly, small focal EJPs of brief time course (resembling spontaneous EJPs in superficial cells of innervated arteries) were evoked in very restricted regions of the vessel wall. 6. At later times (57-128 days postoperative), six of eight segments located 40-70 mm distal to freeze

  20. Role for NGF in augmented sympathetic nerve response to activation of mechanically and metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Lu, Jian; Xing, Jihong; Li, Jianhua

    2012-10-15

    Arterial blood pressure and heart rate responses to static contraction of the hindlimb muscles are greater in rats whose femoral arteries were previously ligated than in control rats. Also, the prior findings demonstrate that nerve growth factor (NGF) is increased in sensory neurons-dorsal root ganglion (DRG) neurons of occluded rats. However, the role for endogenous NGF in engagement of the augmented sympathetic and pressor responses to stimulation of mechanically and/or metabolically sensitive muscle afferent nerves during static contraction after femoral artery ligation has not been specifically determined. In the present study, both afferent nerves and either of them were activated by muscle contraction, passive tendon stretch, and arterial injection of lactic acid into the hindlimb muscles. Data showed that femoral occlusion-augmented blood pressure response to contraction was significantly attenuated by a prior administration of the NGF antibody (NGF-Ab) into the hindlimb muscles. The effects of NGF neutralization were not seen when the sympathetic nerve and pressor responses were evoked by stimulation of mechanically sensitive muscle afferent nerves with tendon stretch in occluded rats. In addition, chemically sensitive muscle afferent nerves were stimulated by lactic acid injected into arterial blood supply of the hindlimb muscles after the prior NGF-Ab, demonstrating that the reflex muscle responses to lactic acid were significantly attenuated. The results of this study further showed that NGF-Ab attenuated an increase in acid-sensing ion channel subtype 3 (ASIC3) of DRG in occluded rats. Moreover, immunohistochemistry was employed to examine the number of C-fiber and A-fiber DRG neurons. The data showed that distribution of DRG neurons with different thin fiber phenotypes was not notably altered when NGF was infused into the hindlimb muscles. However, NGF increased expression of ASIC3 in DRG neurons with C-fiber but not A-fiber. Overall, these data

  1. Blockade of Rostral Ventrolateral Medulla (RVLM) Bombesin Receptor Type 1 Decreases Blood Pressure and Sympathetic Activity in Anesthetized Spontaneously Hypertensive Rats

    PubMed Central

    Pinto, Izabella S.; Mourão, Aline A.; da Silva, Elaine F.; Camargo, Amanda S.; Marques, Stefanne M.; Gomes, Karina P.; Fajemiroye, James O.; da Silva Reis, Angela A.; Rebelo, Ana C. S.; Ferreira-Neto, Marcos L.; Rosa, Daniel A.; Freiria-Oliveira, André H.; Castro, Carlos H.; Colombari, Eduardo; Colugnati, Diego B.; Pedrino, Gustavo R.

    2016-01-01

    Intrathecal injection of bombesin (BBS) promoted hypertensive and sympathoexcitatory effects in normotensive (NT) rats. However, the involvement of rostral ventrolateral medulla (RVLM) in these responses is still unclear. In the present study, we investigated: (1) the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR); (2) the contribution of RVLM BBS type 1 receptors (BB1) to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v.) were instrumented to record mean arterial pressure (MAP), diaphragm (DIA) motor, and renal sympathetic nerve activity (RSNA). In NT rats and SHR, BBS (0.3 mM) nanoinjected into RVLM increased MAP (33.9 ± 6.6 and 37.1 ± 4.5 mmHg, respectively; p < 0.05) and RSNA (97.8 ± 12.9 and 84.5 ± 18.1%, respectively; p < 0.05). In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7%; p < 0.05). BB1 receptors antagonist (BIM-23127; 3 mM) reduced MAP (–19.9 ± 4.4 mmHg; p < 0.05) and RSNA (−17.7 ± 3.8%; p < 0.05) in SHR, but not in NT rats (−2.5 ± 2.8 mmHg; −2.7 ± 5.6%, respectively). These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR. PMID:27313544

  2. Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats.

    PubMed

    Marina, Nephtali; Tang, Feige; Figueiredo, Melina; Mastitskaya, Svetlana; Kasimov, Vitaliy; Mohamed-Ali, Vidya; Roloff, Eva; Teschemacher, Anja G; Gourine, Alexander V; Kasparov, Sergey

    2013-01-01

    Heart failure may lead to hypoperfusion and hypooxygenation of tissues and this is often exacerbated by central and obstructive sleep apnoeas associated with recurrent episodes of systemic hypoxia which triggers release of ATP within the CNS circuits controlling sympathetic outflow. Using in vitro and in vivo models we tested two hypotheses: (1) activated brainstem astroglia release ATP and via release of ATP activate sympathoexcitatory neurones of the rostral ventrolateral medulla (RVLM); and (2) ATP actions in the RVLM contribute to sympathoexcitation, progression of left ventricular (LV) remodelling and development heart failure secondary to myocardial infarction. In vitro, optogenetic activation of RVLM astrocytes transduced to express light-sensitive channelrhodopsin-2 activated sympathoexcitatory RVLM neurones in ATP-dependent manner. In anaesthetised rats in vivo, similar optogenetic activation of RVLM astrocytes increased sympathetic renal nerve activity, arterial blood pressure and heart rate. To interfere with ATP-mediated signalling by promoting its extracellular breakdown, we developed a lentiviral vector to express an ectonucleotidase--transmembrane prostatic acid phosphatase (TMPAP) on the cellular membranes. In rats with myocardial infarction-induced heart failure, expression of TMPAP bilaterally in the RVLM led to lower plasma noradrenaline concentration, maintained left ventricular end diastolic pressure, attenuated decline in dP/dT (max) and shifted the LV pressure-volume relationship curve to the left. These results show that activated RVLM astrocytes are capable of increasing sympathetic activity via release of ATP while facilitated breakdown of ATP in the RVLM attenuates the progression of LV remodelling and heart failure secondary to myocardial infarction.

  3. Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats.

    PubMed

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiology of hypertension. This study determined whether ER stress occurs in subfornical organ and hypothalamic paraventricular nucleus in heart failure (HF) and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (glucose-regulated protein 78, activating transcription factor 6, activating transcription factor 4, X-box binding protein 1, P58(IPK), and C/EBP homologous protein) in subfornical organ and paraventricular nucleus, which were attenuated by a 4-week intracerebroventricular infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580), or c-Jun N-terminal kinase (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and nuclear factor-κB p65, and a lower mRNA level of IκB-α, in subfornical organ and paraventricular nucleus, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF rats than in SHAM rats but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week intracerebroventricular infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the subfornical organ and paraventricular nucleus of rats with ischemia-induced HF and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF. © 2015 American Heart Association, Inc.

  4. Plasticity in rat uterine sympathetic nerves: the role of TrkA and p75 nerve growth factor receptors

    PubMed Central

    Richeri, Analía; Bianchimano, Paola; Mármol, Nelson M; Viettro, Lorena; Cowen, Timothy; Brauer, M Mónica

    2005-01-01

    Uterine sympathetic innervation undergoes profound remodelling in response to physiological and experimental changes in the circulating levels of sex hormones. It is not known, however, whether this plasticity results from changes in the innervating neurons, the neuritogenic properties of the target tissue or both. Using densitometric immunohistochemistry, we analysed the effects of prepubertal chronic oestrogen treatment (three subcutaneous injections of 20 µg of β-oestradiol 17-cypionate on days 25, 27 and 29 after birth), natural peripubertal transition and late pregnancy (19–20 days post coitum) on the levels of TrkA and p75 nerve growth factor receptors in uterine-projecting sympathetic neurons of the thoraco-lumbar paravertebral sympathetic chain (T7–L2) identified using the retrograde tracer Fluorogold. For comparative purposes, levels of TrkA and p75 were assessed in the superior cervical ganglion (SCG) following prepubertal chronic oestrogen treatment. These studies showed that the vast majority of uterine-projecting neurons expressed both TrkA and p75. Both prepubertal chronic oestrogen treatment and the peripubertal transition increased the ratio p75 to TrkA in uterine-projecting neurons, whereas pregnancy elicited the opposite effect. Prepubertal chronic oestrogen treatment had no effects on levels of TrkA or p75 in sympathetic neurons of the SCG. Taken together, our data suggest that neurotrophin receptor-mediated events may contribute to regulate sex hormone-induced plasticity in uterine sympathetic nerves, and are in line with the idea that, in vivo, plasticity in uterine nerves involves changes in both the target and the innervating neurons. PMID:16050899

  5. Inhibition of brain mitogen-activated protein kinase signaling reduces central endoplasmic reticulum stress and inflammation and sympathetic nerve activity in heart failure rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M.; Felder, Robert B.

    2015-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiological mechanisms in hypertension. The present study determined whether ER stress occurs in subfornical organ (SFO) and hypothalamic paraventricular nucleus (PVN) in heart failure (HF), and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (GRP78, ATF6, ATF4, XBP-1, P58IPK and CHOP) in SFO and PVN, which were attenuated by a 4-week intracerebroventricular (ICV) infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580) or JNK (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2 and NF-κB p65 and lower mRNA level of IκB-α in SFO and PVN, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF than SHAM rats, but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week ICV infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the SFO and PVN of rats with ischemia-induced HF, and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF. PMID:26573710

  6. Presynaptic BK type Ca(2+)-activated K(+) channels are involved in prostanoid TP receptor-mediated inhibition of noradrenaline release from the rat gastric sympathetic nerves.

    PubMed

    Nakamura, Kumiko; Yokotani, Kunihiko

    2010-03-10

    Previously, we reported that prostanoid TP receptor mediates the inhibition of electrically evoked noradrenaline release from gastric sympathetic nerves in rats. Prostanoid TP receptor has been shown to activate phospholipase C (PLC), which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-triphosphate (IP(3)) and diacylglycerol; IP(3) triggers the release of Ca(2+) from intracellular stores and diacylglycerol activates protein kinase C. In the present study, therefore, we examined whether these PLC-mediated mechanisms are involved in the TP receptor-mediated inhibition of gastric noradrenaline release using an isolated, vascularly perfused rat stomach. U-46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy PGF(2alpha)) (a prostanoid TP receptor agonist)-induced inhibition of noradrenaline release from the stomach was reduced by U-73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]-amino]hexyl]-1H-pyrrole-2,5-dine] (a PLC inhibitor) and ET-18-OCH(3) (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine) (a phosphatidylinositol-specific PLC inhibitor), respectively. 2-APB (2-aminoethyldiphenyl borate) (a putative IP(3) receptor antagonist) also abolished the U-46619-induced inhibition of noradrenaline release, but Ro 31-8220 [2-{1-[3-(amidinothio)propyl]-1H-indol-3-yl}-3-(1-methylindol-3-yl)-maleimide] (a protein kinase C inhibitor) had no effect. Furthermore, a small dose of tetraethylammonium and charybdotoxin [blockers of BK type Ca(2+)-activated K(+) channel] abolished the U-46619-induced inhibition, but apamin (a blocker of SK-type Ca(2+)-activated K(+) channel) had no effect. These results suggest that BK type Ca(2+)-activated K(+) channels are involved in prostanoid TP receptor-mediated inhibition of electrically evoked noradrenaline release from the gastric sympathetic nerve terminals in rats.

  7. Presynaptic modulation by L-glutamate and GABA of sympathetic co-transmission in rat isolated vas deferens.

    PubMed

    Kwan, Y W; Ngan, M P; Tsang, K Y; Lee, H M; Chu, L A

    1996-06-01

    1. The modulatory effects of L-glutamate and its structural analogues, and of gamma-aminobutyric acid (GABA), on sympathetic co-transmission were studied in the rat isolated vas deferens exposed to electrical field stimulation (EFS). 2. Application of exogenous L-glutamate caused a concentration-dependent (1 microM-3 mM) inhibition of the rapid twitch component of the biphasic EFS contraction. However, L-glutamate (1 microM-3 mM) had a minimal effect on the phasic contraction induced by exogenous adenosine 5'-triphosphate (ATP, 150 microM) and noradrenaline (50 microM). Unlike L-glutamate, D-glutamate had no effect on the EFS contraction. 3. The L-glutamate-induced inhibition of the EFS contractions was significantly attenuated by the glutamate decarboxylase (GAD) inhibitor 3-mercapto-propionic acid (150 microM) and was abolished in the presence of the GABA transaminase (GABA-T) inhibitor, 2-aminoethyl hydrogen sulphate (500 microM). 4. The L-glutamate-induced inhibition of the electrically evoked contraction was not affected by the adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)(30 nM), reactive blue 2 (30 microM) or the GABAA receptor antagonist bicuculline (50 microM). However, the GABAB receptor antagonist 2-hydroxysaclofen (50 microM) significantly inhibited the L-glutamate effect. 5. Similar to L-glutamate, GABA also caused a concentration-dependent (0.1-100 microM) inhibition of the EFS contractions. This GABA-induced inhibition was not affected by either the GABAA receptor antagonist bicuculline (50 microM) or reactive blue 2 (30 microM). However, a significant attenuation of the GABA-mediated effect was recorded with the GABAB receptor antagonist 2-hydroxysaclofen (50 microM). Contractions of the vas deferens induced by exogenous ATP and noradrenaline were not affected by GABA (0.1-100 microM). 6. The L-glutamate analogues, N-methyl-D-aspartate (NMDA) (1 microM-1 mM) and quisqualate (Quis 0.1 microM-0.3 mM) had no effect

  8. Vasopressin and sympathetic system mediate the cardiovascular effects of the angiotensin II in the bed nucleus of the stria terminalis in rat.

    PubMed

    Nasimi, Ali; Kafami, Marzieh

    2016-07-01

    The bed nucleus of the stria terminalis (BST) is involved in cardiovascular regulation. The angiotensin II (Ang II) receptor (AT1), and angiotensinogen were found in the BST. In our previous study we found that microinjection of Ang II into the BST produced a pressor response. This study was performed to find the mechanisms mediating this response in anesthetized rats. Ang II was microinjected into the BST and the cardiovascular responses were re-tested after systemic injection of a blocker of autonomic or vasopressin V1 receptor. The ganglionic nicotinic receptor blocker, hexamethonium dichloride, attenuated the pressor response to Ang II, indicating that the cardiovascular sympathetic system is involved in the pressor effect of Ang II. A selective vasopressin V1 receptor antagonist greatly attenuated the pressor effect of Ang II, indicating that the Ang II increases the arterial pressure via stimulation of vasopressin release as well. In conclusion, in the BST, Ang II as a neurotransmitter increases blood pressure by exciting cardiovascular sympathetic system and directly or indirectly causing vasopressin to release into bloodstream by VPN. This is an interesting new finding that not only circulating Ang II but also brain Ang II makes vasopressin release. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  9. Heterogeneous blood flow distribution within single skeletal muscles in the rabbit: role of vasomotion, sympathetic nerve activity and effect of vasodilation.

    PubMed

    Iversen, P O; Nicolaysen, G

    1989-09-01

    A major heterogeneous distribution of blood flow has been described on a non-microvascular level within single skeletal muscles at rest and during exercise hyperaemia both in the dog and in the rabbit. The heterogeneity in blood flow distribution could be composed of both a steady-state region-to-region variability (spatial) and a time-dependent variability (temporal) in blood flow to each region. In the present study we estimated their relative contributions to the variations in blood flow within the muscles. Furthermore, we determined whether sympathetic nerve activity contributed to and whether pharmacologically induced vasodilation affected the heterogeneous blood flow pattern. Regional blood flow measurements were based on microsphere infusions into anaesthetized rabbits. Blood flow was determined under both resting conditions and during exercise hyperaemia in regions weighing 0.25 g each within hind leg muscles. The coefficient of variation for the spatial variability was twice that of the temporal one: 0.32 and 0.16 (mean) respectively. Neither stimulation of the sympathetic nerves, sympathectomy nor vasodilation affected the heterogeneity in blood flow. When exercise hyperaemia was induced, blood flow increased in all regions so that a positive (P less than 0.05) correlation was present between resting and exercising blood flow values in the individual regions. Although regional variation in vascularization could explain the observations during exercise hyperaemia, we have at present no fully satisfying explanation for the observed regional heterogeneity in blood flow.

  10. Are sodium-dependent V1 receptors and sympathetic nerve activations involved in regulation of blood pressure in borderline-hypertensive Hiroshima rats?

    PubMed

    Teranishi, Yasuhiro; Kumazaki, Tsutomu; Miho, Narimasa; Sugino, Hiroshi; Tsuru, Hiromichi

    2002-09-01

    Sympathetic nerve activity (SNA) was estimated by the magnitude of depressor response after ganglionic blockade with hexamethonium bromide (C6; 25 mg/kg weight). The depressor effects of C6 were significantly less in borderline-hypertensive Hiroshima rats (BHR) than in deoxycorticosterone acetate (DOCA)-salt hypertensive rats (DOCA rats) or in spontaneously hypertensive rats (SHR), but they were not different in BHR and normotensive control Wistar rats (NCR). After sympatho-inhibition, the depressor effects of a selective vasopressin V1 receptor antagonist (V1A; 10 microg/kg: [d(CH2)5(1), O-Me-Tyr2, Arg8]-vasopressin) were significantly greater in BHR than in DOCA rats, SHR or NCR. In a previous study, we reported that the depressor effects of C6 were significantly less in BHR than in SHR, but after sympatho-inhibition, the depressor effects of V1A were significantly greater in BHR than in SHR (Hypertens Res 2002; 25: 241-248). After high-salt diet loading in the present study (8% salt-containing diet for 10 weeks), the magnitudes of increase in mean arterial pressure in BHR and NCR were almost the same. There was almost no difference in the depressor effects of V1A after sympatho-inhibition between BHR with high-salt intake and BHR without high-salt intake. The depressor effects of an angiotensin-converting enzyme inhibitor, captopril (1 mg/kg), were almost the same between BHR and NCR both before and after sympatho-inhibition. However, these effects were completely inhibited after the high-salt diet. The results show that SNA was within the normal range in BHR and that no further accelerated responsiveness of endogenous vasopressin was observed in BHR after high-salt intake.

  11. Presynaptic histamine H2 receptors modulate the sympathetic nerve transmission in the isolated rat vas deferens; no role for H3-receptors.

    PubMed

    Poli, E; Todorov, S; Pozzoli, C; Bertaccini, G

    1994-10-01

    The modulatory activity mediated by histamine receptors on the sympathetic nerve transmission was investigated in the rat vas deferens. Agonists and antagonists acting at the different histamine receptor subtypes (H1, H2 and H3) were tested on electrically-driven preparations in vitro. Low-frequency stimulation (0.1 Hz) evoked muscle contractions almost completely-sustained by ATP release, while at high-frequency stimulation (5-10 Hz) norepinephrine was mainly involved. The H1 receptor agonists, pyridilethylamine and 2-(2 aminoethyl)thiazole, enhanced the electrically evoked twitch responses, but not contractions induced by exogenously-applied norepinephrine and ATP. These effects were prevented by the H1-blocking drugs, mepyramine and phenyramine, but only at high concentrations (10 mumol/l). All these H1-antagonists strongly enhanced muscle response to electrical stimulation. The H2 receptor agonists, dimaprit, amthamine and impromidine, reduced the contractions evoked by field stimulation, but not by exogenously applied norepinephrine and ATP, the effect being antagonised by H2-blocking drugs, ranitidine and famotidine. The H3 receptor agonist, R(alpha)-methylhistamine, reduced the electrically evoked muscle contractions, the effect being not modified by the selective H3-blocking drug, thioperamide, but prevented by famotidine. These data suggest that rat vas deferens contains presynaptic histamine H2 receptors, able to mediate inhibitory effects on the sympathetic transmission, while histamine H3 receptors are apparently not involved. On the contrary, the role of H1 is still unclear, since both agonists and antagonists may have the same effects.

  12. Source and origin of nerve fibres immunoreactive for substance P and calcitonin gene-related peptide in the normal and chronically denervated superior cervical sympathetic ganglion of the rat.

    PubMed

    Zaidi, Z F; Matthews, M R

    2013-01-01

    Immunohistochemical studies of sympathetic ganglia have indicated that the normal rat superior cervical ganglion contains both SP-IR and CGRP-IR fibres, and CGRP- and SP-immunoreactivity coexist in some fibres. In rat sympathetic ganglia decentralization by preganglionic denervation leads to intraganglionic increase of peptidergic fibres immunoreactive (IR) for substance P (SP) and calcitonin gene-related peptide. We explored the sources of SP- and CGRP-IR fibres in normal and in chronically decentralized rat SCGs. The distribution of immunoreactivities for CGRP and SP was determined in SCGs of normal rats and of rats following preganglionic denervation followed by sensory denervation. Ganglia were studied after short-term (2-5 days) sensory denervation, and long-term (7-16 months) sympathetic denervation followed by short-term (2 days) sensory denervation. To explore for the production of SP and CGRP by intrinsic neurones within the ganglion, normal and chronically decentralized SCGs were examined following pretreatment by local in vivo application of colchicine. Normal and chronically decentralized ganglia were also injected with fluorescent tracer Fluorogold for retrograde tracing of extrinsic fibres back to their neurones of origin. The observations suggest that in normal SCG in the rat the SP-IR and CGRP-IR nerve fibres are derived via direct links from vagus and glossopharyngeal nerves and the cervical plexus, or from nerve fibres running along the cervical sympathetic trunk, and the external carotid and the internal carotid nerves. Sensory nerve inputs to the rat SCG following decentralization may contribute to the low levels of ganglionic activation observable in the autonomic failure of multiple system atrophy in man.

  13. Clinical signs and symptoms of acute reflex sympathetic dystrophy in one hindlimb of the rat, induced by infusion of a free-radical donor.

    PubMed

    van der Laan, L; Kapitein, P; Verhofstad, A; Hendriks, T; Goris, R J

    1998-06-01

    The acute phase of reflex sympathetic dystrophy (RSD) is characterized by the classical signs and symptoms of inflammation (rubor, calor, dolor, tumor and impaired function). As free radicals are involved in acute inflammation, we studied the effects of free radicals in an animal model, especially as to signs and symptoms found in acute RSD. Awake rats were given continuous intra-arterial infusion (1 ml/h) in the left hindlimb, with saline (n = 6) or the free-radical donor tert-butylhydroperoxide (tert-BuOOH, 25 mM, n = 6). During a 24-h infusion period the skin temperature, volume, skin color, function and pain reactions of the paws were observed. After 24 h the rats were killed and both gastrocnemius muscles were histologically analyzed. Infusion with tert-BuOOH induced in the left paw an increased skin temperature, increased volume, redness of the plantar skin, impaired function and increased pain sensation, while these acute RSD signs and symptoms were absent in the saline infused animals. The alterations in pain sensation (spontaneous, mechanical and thermal pain) were similar to findings in the neuropathic animal model. The gastrocnemius muscles of the saline infused rats and the contralateral gastrocnemius muscle of the tert-BuOOH infused rats showed no histological tissue damage. In the left gastrocnemius muscle free-radical-related damage was visible. Induction of free-radical formation in one hindlimb of awake rats mimics the acute signs and symptoms of acute RSD, with alterations in pain sensation as found in the classical neuropathic animal model of RSD, as well as in acute RSD patients.

  14. Impact of lung inflation cycle frequency on rat muscle and skin sympathetic activity recorded using suction electrodes

    PubMed Central

    Huang, Chunhua; Marina, Nephtali; Gilbey, Michael P.

    2009-01-01

    Microneurography has been used in humans to study sympathetic activity supplying targets within skeletal muscle and skin. Comparable animal studies are relatively few, probably due to the technical demands of traditional fibre picking techniques. Here we apply a simple suction electrode technique to record cutaneous (CVC) and muscle (MVC) vasoconstrictor activities and describe and investigate the basis of the frequency dependence of lung inflation related modulation. Hindlimb MVC and CVC activities were recorded concurrently. The magnitude of MVC and CVC activities at the lung inflation cycle frequency was significantly less at 2.0 Hz than at lung inflation cycle frequencies ≤ 1.0 Hz. As lung inflation cycle frequency was increased the coherence between lung inflation cycle or BP and MVC or CVC waveforms decreased. Consistent with the hypothesis that much of the coherence between lung inflation cycle and nerve activity waveforms is secondary to oscillating baroreceptor activity attributable to BP waves, partialization with the BP waveform significantly decreased the coherence between lung inflation cycle and nerve waveforms, and there was an absence of coherence between these waveforms following sinus and aortic denervation. Our data extend findings from other laboratories and establish the value of a suction electrode technique for recording MVC and CVC activities. Furthermore, our observations describe the rates of positive pressure ventilation that avoid strong and regular gating of sympathetic activity. PMID:19457723

  15. Angiotensin II in the paraventricular nucleus stimulates sympathetic outflow to the cardiovascular system and make vasopressin release in rat.

    PubMed

    Khanmoradi, Mehrangiz; Nasimi, Ali

    2016-10-06

    The hypothalamic paraventricular nucleus (PVN) plays essential roles in neuroendocrine and autonomic functions, including cardiovascular regulation. It was shown that microinjection of angiotensin II (AngII) into the PVN produced a pressor response. In this study, we explored the probable mechanisms of this pressor response. AngII was microinjected into the PVN and cardiovascular responses were recorded. Then, the responses were re-tested after systemic injection of a ganglionic blocker, Hexamethonium, or a vasopressin V1 receptor blocker. Hexamethonium pretreatment (i.v.) greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that the sympathetic system is involved in the cardiovascular effect of AngII in the PVN. Systemic pretreatment (i.v.) with V1 antagonist greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that vasopressin release is involved in the cardiovascular effect of AngII in the PVN. Overall, we found that AngII microinjected into the PVN produced a pressor response mediated by the sympathetic system and vasopressin release, indicating that other than circulating AngII, endogenous AngII of the PVN increases the vasopressin release from the PVN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Characterization of prejunctional 5-HT1 receptors that mediate the inhibition of pressor effects elicited by sympathetic stimulation in the pithed rat

    PubMed Central

    Morán, A; Fernández, M M; Velasco, C; Martín, M L; San Román, L

    1998-01-01

    A study was made of the effects of 5-carboxamidotryptamine (5-CT) on pressor responses induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Sympathetic stimulation (0.1, 0.5, 1 and 5 Hz) resulted in frequency-dependent increases in blood pressure. Intravenous infusion of 5-CT at doses of 0.01, 0.1 and 1 μg kg−1 min−1 reduced the pressor effects obtained by electrical stimulation. The inhibitory effect of 5-CT was significantly more pronounced at lower frequencies of stimulation. In the present study we characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-CT.The inhibition induced by 0.01 μg kg−1 min−1 of 5-CT on sympathetically-induced pressor responses was partially blocked after i.v. treatment with methiothepin (10  μg kg−1), WAY-100,635 (100 μg kg−1) or GR127935T (250 μg kg−1), but was not affected by cyanopindolol (100 μg kg−1).The selective 5-HT1A receptor agonist 8-OH-DPAT and the selective 5-HT1B/1D receptor agonists sumatriptan and L-694,247 inhibited the pressor response, whereas the 5-HT1B receptor agonists CGS-12066B and CP-93,129 and the 5-HT2C receptor agonist m-CPP did not modify the pressor symapthetic responses.The selective 5-HT1A receptor antagonist WAY-100,635 (100 μg kg−1) blocked the inhibition induced by 8-OH-DPAT and the selective 5-HT1B/1D receptor antagonist GR127935T (250 μg kg−1) abolished the inhibition induced either by L-694,247 or sumatriptan.None of the 5-HT receptor agonists used in our experiments modified the pressor responses induced by exogenous noradrenaline (NA).These results suggest that the presynaptic inhibitory action of 5-CT on the electrically-induced pressor response is mediated by both r-5-HT1D and 5-HT1A receptors. PMID:9559906

  17. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats.

    PubMed

    Tanida, Mamoru; Yamano, Toshihiko; Maeda, Keiko; Okumura, Nobuaki; Fukushima, Yoichi; Nagai, Katsuya

    2005-12-02

    Previously, it was shown that milk fermented with lactic acid bacteria lowers blood pressure, suggesting that metabolites or components of the bacteria have hypotensive action. To examine whether one of lactobacilli, Lactobacillus johnsonii La1 (LJLa1), a probiotic strain adhesive onto intestinal epithelial cells, or its metabolite has hypotensive action, and if so the mechanism of action, we determined the effects of intraduodenal injection of LJLa1 on blood pressure (BP) and the activity of autonomic nerves in urethane-anesthetized rats. Intraduodenal injection of LJLa1 reduced renal sympathetic nerve activity (RSNA) and BP and enhanced gastric vagal nerve activity (GVNA). Pre-treatment with thioperamide, a histaminergic H3-receptor antagonist, eliminated the effects of LJLa1 on RSNA, GVNA, and BP. Furthermore, bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN), the master circadian oscillator, abolished the suppression of RSNA and BP and the elevation of GVNA caused by LJLa1. These findings suggest that LJLa1 or its metabolites might lower BP by changing autonomic neurotransmission via the central histaminergic nerves and the suprachiasmatic nucleus in rats.

  18. On-line electrochemical monitoring of the local noradrenaline release evoked by electrical stimulation of the sympathetic nerves in isolated rat tail artery.

    PubMed

    Mermet, C; Gonon, F G; Stjärne, L

    1990-11-01

    A treated carbon fibre electrode was used to measure by differential normal pulse voltammetry or differential pulse amperometry the release of noradrenaline from the sympathetic nerve terminals innervating the smooth muscle in rat tail artery. On calibration in vitro with exogenous noradrenaline in phosphate-buffered saline solution the electrode recorded an oxidation current at +0.1 V, the oxidation potential of noradrenaline. This signal was proportional to the noradrenaline concentration in the solution. When the electrode was apposed to the wall of the artery there was no oxidation current at +0.1 V under resting conditions, but electrical nerve stimulation for 1-100 s at 1-10 Hz induced a current with a peak at this potential. This signal was suppressed by tetrodotoxin, guanethidine or cadmium, or by omission of calcium; it was strongly enhanced by tetraethylammonium and potentiated by the noradrenaline uptake blockers desipramine or cocaine. The results indicate that the carbon fibre electrode method described here may be used to monitor on-line the nerve stimulation-induced increase in the local noradrenaline concentration at the surface of the muscle layer in a blood vessel such as the rat tail artery.

  19. Multi- and single-fibre mesenteric and renal sympathetic responses to chemical stimulation of intestinal receptors in cats.

    PubMed Central

    Stein, R D; Weaver, L C

    1988-01-01

    1. In cats anaesthetized with alpha-chloralose and artificially respired, stimulation of intestinal receptors with bradykinin caused greater reflex excitation of mesenteric than of renal efferent multifibre nerve activity and significant pressor responses. 2. Activity of all nerve bundles used in this study was inhibited by stimulation of pressoreceptors. Increases in systemic arterial pressure caused inhibition of activity of renal nerves which was significantly greater than that of mesenteric nerves. 3. Spinal transection caused significant decreases in tonic renal nerve activity without altering the ongoing discharge rate of mesenteric nerves. Stimulation of intestinal receptors in spinal cats still caused significant increases is discharge of mesenteric and renal nerves, indicating that this reflex contains a spinal component. 4. Recordings of activity of individual fibres within mesenteric (21) and renal (23) nerves provided information regarding the basis for the multifibre responses to stimulation of intestinal receptors. The same proportion of fibres from both nerves was excited, but the increase in activity of mesenteric fibres was significantly greater than that of renal fibres. 5. Mesenteric fibres could be classified into two groups, based on their sensitivity to pressoreceptor influences. Fibres that exhibited pressoreceptor-independent discharge had the greatest responses to stimulation of intestinal receptors. 6. Following spinal transection the majority of mesenteric fibres continued to fire, whereas most renal fibres became quiescent. 7. The non-uniform pattern of neuronal excitation to chemical stimulation of intestinal receptors was manifest after spinal transection, demonstrating that exclusively spinal pathways can mediate this differential response pattern. 8. These results support the hypothesis that viscero-sympathetic reflexes may be organized to cause preferential excitation of neural activity directed to the organ from which the reflex

  20. Do sympathetic nerves release noradrenaline in "quanta"?

    PubMed

    Stjärne, L

    2000-07-03

    The discovery of excitatory junction potentials (EJPs) in guinea-pig vas deferens by Burnstock and Holman (1960) showed for the first time that a sympathetic transmitter, now known to be ATP, is secreted in "quanta". As it was assumed at the time that EJPS are triggered by noradrenaline, this discovery led to attempts to use the fractional overflow of noradrenaline from sympathetically innervated tissues to assess, indirectly, the number of noradrenaline molecules in the average "quantum". The basic finding was that each pulse released 1/50000 of the tissue content of noradrenaline, when reuptake was blocked and prejunctional alpha(2)-adrenoceptors were intact. This provided the constraints, two extreme alternatives: (i) each pulse releases 0.2-3% of the content of a vesicle from all varicosities, or (ii) each pulse releases the whole content of a vesicle from 0.2 to 3% of the varicosities. New techniques have made it possible to address questions about the release probability in individual sites, or the "quantal" size, more directly. Results by optical (comparison of the labelling of SV2 and synaptotagmin, proteins in the membrane of transmitter vesicles), electrophysiological (excitatory junction currents, EJCs, at single visualized varicosities) and amperometric (the noradrenaline oxidation current at a carbon fibre electrode) methods reveal that transmitter exocytosis in varicosities is intermittent. The EJC and noradrenaline oxidation current responses (in rat arteries) to a train of single pulses were observed to be similar in intermittency and amplitude fluctuation. This suggests that they are caused by exocytosis of single or very few "quanta" of ATP and noradrenaline, respectively, equal to the contents of single vesicles, from a small population of release sites. These findings support, but do not conclusively prove the validity of the "intermittent" model of noradrenaline release. The question if noradrenaline is always secreted in packets of preset size

  1. Leptin intake in suckling rats restores altered T3 levels and markers of adipose tissue sympathetic drive and function caused by gestational calorie restriction.

    PubMed

    Konieczna, J; Palou, M; Sánchez, J; Picó, C; Palou, A

    2015-06-01

    Maternal calorie restriction during gestation in rats has been associated with altered white adipose tissue (WAT) sympathetic innervation and function in offspring. Here, we aimed to investigate whether supplementation with oral leptin (a breast milk component) throughout the lactation period may revert the aforementioned adverse programming effects. Three groups of male and female rats were studied at the postnatal day 25: the offspring of control dams, the offspring of 20% calorie-restricted dams during pregnancy (CR) and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Tyrosine hydroxylase (TH) levels and its immunoreactive area, and mRNA expression levels of lipid metabolism-related genes and of deiodinase iodothyronine type II (Dio2) were determined in WAT. Triiodothyronine (T3) levels were determined in the blood. In CR males, leptin treatment restored the decreased TH levels and its immunoreactive area in WAT, and partially normalized expression levels of genes related to lipolysis and fatty acid oxidation (adipose triglyceride lipase, hormone-sensitive lipase, carnitine palmitoyltransferase 1b and peroxisome proliferator-activated receptor gamma coactivator 1-alpha). Leptin treatment also reverted the decreased T3 plasma levels and WAT lipoprotein lipase mRNA levels occurring in CR males and females, and the decreased Dio2 mRNA levels in CR females. Leptin supplementation throughout the lactation period reverts the malprogrammed effects on WAT structure and function induced by undernutrition during pregnancy. These findings support the relevance of the intake of leptin during lactation, bearing clear characteristics of essential nutrient, and provide a strategy to treat and/or prevent the programmed trend to obesity acquired by inadequate fetal nutrition.

  2. Possible involvement of brain prostaglandin E2 and prostanoid EP3 receptors in prostaglandin E2 glycerol ester-induced activation of central sympathetic outflow in the rat.

    PubMed

    Shimizu, Takahiro; Tanaka, Kenjiro; Nakamura, Kumiko; Taniuchi, Keisuke; Yawata, Toshio; Higashi, Youichirou; Ueba, Tetsuya; Dimitriadis, Fotios; Shimizu, Shogo; Yokotani, Kunihiko; Saito, Motoaki

    2014-07-01

    We recently reported that intracerebroventricularly administered 2-arachidonoylglycerol elevated plasma noradrenaline and adrenaline by brain monoacylglycerol lipase- (MGL) and cyclooxygenase-mediated mechanisms in the rat. These results suggest that 2-arachidonoylglycerol is hydrolyzed by MGL to free arachidonic acid, which is further metabolized to prostaglandins (PGs) by cyclooxygenase in the brain, thereby elevating plasma noradrenaline and adrenaline. On the other hand, 2-arachidonoylglycerol can be also metabolized by cyclooxygenase to PG glycerol esters (PG-Gs), which seems to be hydrolyzed by MGL to free PGs. Here, we examined the involvement of brain PG-Gs in the elevation of plasma noradrenaline and adrenaline regarding PGE2-G and prostanoid EP receptors using anesthetized male Wistar rats. Intracerebroventricularly administered PGE2-G (1.5 and 3 nmol/animal) dose-dependently elevated plasma noradrenaline but not adrenaline. PGE2-G also elevated systolic, mean and diastolic blood pressure and heart rate. The PGE2-G-induced elevation of plasma noradrenaline was attenuated by JZL184 (MGL inhibitor). Intracerebroventricularly administered PGE2 (0.3 and 1.5 nmol/animal) and sulprostone (0.1 and 0.3 nmol/animal) (EP1/EP3 agonist) also elevated plasma noradrenaline but not adrenaline in a dose-dependent manner. The sulprostone-induced elevation was attenuated by L-798,106 (EP3 antagonist), but not by SC-51322 (EP1 antagonist). L-798,106 also attenuated the PGE2-G- and PGE2-induced elevation of plasma noradrenaline, while PF-04418948 (EP2 antagonist) and L-161,982 (EP4 antagonist) had no effect on the PGE2-G-induced response. These results suggest a possibility that brain PGE2-G produced from 2-arachidonoylglycerol can be hydrolyzed to free PGE2, thereby activating central sympathetic outflow by brain prostanoid EP3 receptor-mediated mechanisms in the rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Specific role of α2A - and α2B -, but not α2C -, adrenoceptor subtypes in the inhibition of the vasopressor sympathetic out-flow in diabetic pithed rats.

    PubMed

    Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2015-07-01

    Several lines of evidence have shown an association of diabetes with a catecholamines' aberrant homeostasis involving a drastic change in the expression of adrenoceptors. This homeostatic alteration includes, among other things, atypical actions of α2 -adrenoceptor agonists within central and peripheral α2 -adrenoceptors (e.g. profound antinociceptive effects in diabetic subjects). Hence, this study investigated the pharmacological profile of the α2 -adrenoceptor subtypes that inhibit the vasopressor sympathetic out-flow in streptozotocin-pre-treated (diabetic) pithed rats. For this purpose, B-HT 933 (up to 30 μg/kg min) was used as a selective α2 -adrenoceptor agonist and rauwolscine as a non-selective α2A/2B/2C -adrenoceptor antagonist; in addition, BRL 44408, imiloxan and JP-1302 were used as subtype-selective α2A -, α2B - and α2C -adrenoceptor antagonists, respectively (all given i.v.). I.v. continuous infusions of B-HT 933 inhibited the vasopressor responses induced by electrical sympathetic stimulation without affecting those by i.v. bolus injections of noradrenaline in both normoglycaemic and diabetic rats. Interestingly, the ED50 for B-HT 933 in diabetic rats (25 μg/kg min) was almost 1-log unit greater than that in normoglycaemic rats (3 μg/kg.min). Moreover, the sympatho-inhibition induced by 10 μg/kg min B-HT 933 in diabetic rats was (i) abolished by 300 μg/kg rauwolscine or 100 and 300 μg/kg BRL 44408; (ii) partially blocked by 1000 μg/kg imiloxan; and (iii) unchanged by 1000 μg/kg JP-1302. Our findings, taken together, suggest that B-HT 933 has a less potent inhibitory effect on the sympathetic vasopressor responses in diabetic (compared to normoglycaemic) rats and that can probably be ascribed to a down-regulation of α2C -adrenoceptors.

  4. Insulin increases sympathetic nerve activity in part by suppression of tonic inhibitory neuropeptide Y inputs into the paraventricular nucleus in female rats.

    PubMed

    Cassaglia, Priscila A; Shi, Zhigang; Brooks, Virginia L

    2016-07-01

    Following binding to receptors in the arcuate nucleus (ArcN), insulin increases sympathetic nerve activity (SNA) and baroreflex control of SNA via a pathway that includes the paraventricular nucleus of the hypothalamus (PVN). Previous studies in males indicate that the sympathoexcitatory response is mediated by α-melanocyte stimulating hormone (α-MSH), which binds to PVN melanocortin type 3/4 receptors (MC3/4R). The present study was conducted in α-chloralose-anesthetized female rats to test the hypothesis that suppression of inhibitory neuropeptide Y (NPY) inputs to the PVN is also involved. In support of this, blockade of PVN NPY Y1 receptors with BIBO 3304 (NPY1x), ArcN insulin nanoinjections, and PVN NPY1x followed by ArcN insulin each increased lumbar SNA (LSNA) and its baroreflex regulation similarly. Moreover, prior PVN injections of NPY blocked the sympathoexcitatory effects of ArcN insulin. Finally, PVN nanoinjections of the MC3/4R inhibitor SHU9119 prevented both the acute (15 min) and longer, more slowly developing (60 min), increases in LSNA in response to ArcN insulin. In conclusion, in females, ArcN insulin increases LSNA, in part, by suppressing tonic PVN NPY inhibition, which unmasks excitatory α-MSH drive of LSNA. Moreover, the steadily increasing rise in LSNA induced by ArcN insulin is also dependent on PVN MC3/4R. Copyright © 2016 the American Physiological Society.

  5. Gβ₂ mimics activation kinetic slowing of CaV2.2 channels by noradrenaline in rat sympathetic neurons.

    PubMed

    Hernández-Castellanos, Juan M; Vivas, Oscar; Garduño, Julieta; De la Cruz, Lizbeth; Arenas, Isabel; Elías-Viñas, David; Mackie, Ken; García, David E

    2014-02-28

    Several neurotransmitters and hormones acting through G protein-coupled receptors elicit a voltage-dependent regulation of CaV2.2 channels, having profound effects on cell function and the organism. It has been hypothesized that protein-protein interactions define specificity in signal transduction. Yet it is unknown how the molecular interactions in an intracellular signaling cascade determine the specificity of the voltage-dependent regulation induced by a specific neurotransmitter. It has been suspected that specific effector regions on the Gβ subunits of the G proteins are responsible for voltage-dependent regulation. The present study examines whether a neurotransmitter's specificity can be revealed by simple ion-current kinetic analysis likely resulting from interactions between Gβ subunits and the channel-molecule. Noradrenaline is a neurotransmitter that induces voltage-dependent regulation. By using biochemical and patch-clamp methods in rat sympathetic neurons we examined calcium current modulation induced by each of the five Gβ subunits and found that Gβ2 mimics activation kinetic slowing of CaV2.2 channels by noradrenaline. Furthermore, overexpression of the Gβ2 isoform reproduces the effect of noradrenaline in the willing-reluctant model. These results advance our understanding on the mechanisms by which signals conveying from a variety of membrane receptors are able to display precise homeostatic responses.

  6. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  7. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  8. Sympathetic innervation promotes vascular smooth muscle differentiation.

    PubMed

    Damon, Deborah H

    2005-06-01

    The sympathetic nervous system (SNS) is an important modulator of vascular smooth muscle (VSM) growth and function. Several lines of evidence suggest that the SNS also promotes VSM differentiation. The present study tests this hypothesis. Expression of smooth muscle myosin (SM2) and alpha-actin were assessed by Western analysis as indexes of VSM differentiation. SM2 expression (normalized to alpha-actin) in adult innervated rat femoral and tail arteries was 479 +/- 115% of that in noninnervated carotid arteries. Expression of alpha-actin (normalized to GAPDH or total protein) in 30-day-innervated rat femoral arteries was greater than in corresponding noninnervated femoral arteries from guanethidine-sympathectomized rats. SM2 expression (normalized to alpha-actin) in neonatal femoral arteries grown in vitro for 7 days in the presence of sympathetic ganglia was greater than SM2 expression in corresponding arteries grown in the absence of sympathetic ganglia. In VSM-endothelial cell cultures grown in the presence of dissociated sympathetic neurons, alpha-actin (normalized to GAPDH) was 300 +/- 66% of that in corresponding cultures grown in the absence of neurons. This effect was inhibited by an antibody that neutralized the activity of transforming growth factor-beta2. All of these data indicate that sympathetic innervation increased VSM contractile protein expression and thereby suggest that the SNS promotes and/or maintains VSM differentiation.

  9. Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow.

    PubMed

    Pinacho-García, Manuel; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2016-02-15

    Since histamine H3 and H4 receptors are coupled to heterotrimeric Gi/o proteins, a signal transduction pathway associated with inhibition of neurotransmitter release, the present study has investigated the inhibition of the rat cardioaccelerator sympathetic outflow induced by the H3/H4 receptor agonist immepip by using antagonists for histamine H1 (ketotifen), H2 (ranitidine), H3 (thioperamide) and H4 (JNJ7777120) receptors. For this purpose, 102 male Wistar rats were pithed, artificially ventilated and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n=90) or i.v. bolus injections of noradrenaline (n=12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively. I.v. continuous infusions of immepip (3 and 10 μg/kg min), but not of saline (0.02 ml/min), dose-dependently inhibited the sympathetically-induced tachycardic responses. Moreover, the cardiac sympatho-inhibition induced by 10 μg/kg min immepip (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unaltered after i.v. treatment with 1 ml/kg vehicle, 100 μg/kg ketotifen, 3000 μg/kg ranitidine, 30 μg/kg thioperamide or 300 μg/kg JNJ7777120; and (ii) abolished after 100 μg/kg thioperamide (i.v.). These doses of antagonists, which did not affect per se the sympathetically-induced tachycardic responses, were high enough to block their respective receptors. In conclusion, the cardiac sympatho-inhibition induced by 10 μg/kg.min immepip involves histamine H3 receptors, with further pharmacological evidence excluding the involvement of H1, H2 and H4 receptors.

  10. Sympathetic denervation does not alter the density or properties of alpha-1 adrenergic receptors in rat vas deferens

    SciTech Connect

    Abel, P.W.; Johnson, R.D.; Martin, T.J.; Minneman, K.P.

    1985-06-01

    Alpha-1 adrenergic receptors in surgically denervated rat vas deferens were studied using radioligand binding assays of (/sup 125/I) BE 2254 ((/sup 125/I)BE) and contraction measurements. Scatchard analysis of saturation isotherms of specific (/sup 125/I)BE binding showed no change in the affinity or density of binding sites 4, 7 or 14 days after denervation of rat vas deferens. The potency of norepinephrine in inhibiting specific (/sup 125/I)BE binding was also unchanged 7 days after denervation of vas deferens. The potency of phenylephrine in causing contractions in vitro did not change 4, 7 or 14 days after denervation of vas deferens; however, there was a significant increase in the maximum contractile response to phenylephrine at all time points. After partial inactivation of alpha-1 adrenergic receptors in vitro with phenoxybenzamine, there was an equivalent reduction in the number of (/sup 125/I)BE binding sites in the control and 14-day denervated vas deferens. The equilibrium dissociation constants calculated from contractile measurements for norepinephrine were the same in the control and denervated tissues. However, there was a 2.2-fold increase in contractile sensitivity to norepinephrine 14 days after denervation and a 3.6-fold increase in contractile sensitivity to methacholine 7 days after denervation.

  11. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats.

    PubMed

    Marichal-Cancino, Bruno A; Manrique-Maldonado, Guadalupe; Altamirano-Espinoza, Alain H; Ruiz-Salinas, Inna; González-Hernández, Abimael; Maassenvandenbrink, Antoinette; Villalón, Carlos M

    2013-12-05

    The endocannabinoid system exhibits multiple functions in cardiovascular regulation mainly by cannabinoid (CB1 and CB2) receptors, vanilloid TRPV1 receptors and, probably, by the orphan G protein-coupled receptor 55 (GPR55). Hence, the role of these receptors was investigated in Wistar pithed rats on anandamide- and lysophosphatidylinositol (LPI)-induced inhibition of the vasopressor responses induced by preganglionic (T7-T9) stimulation of the vasopressor sympathetic outflow or i.v. bolus injections of noradrenaline. The corresponding frequency- and dose-dependent vasopressor responses were analyzed before and during i.v. continuous infusions of anandamide (CB1, CB2, TRPV1 and GPR55), JWH-015 (CB2) and LPI (GPR55) in animals receiving (i.v.) the antagonists NIDA41020 (CB1), AM630 (CB2), capsazepine (TRPV1) and/or cannabidiol (GPR55). Anandamide (0.1-3.1 μg/kg min) inhibited the vasopressor responses by electrical stimulation, but not those by noradrenaline; while LPI (5.6-10 μg/kg min) inhibited both responses. In contrast, JWH-015 (5.6-10 μg/kg min) failed to induce sympatho-inhibition. Anandamide-induced sympatho-inhibition was: (i) dose-dependently blocked by 31 and 100 μg/kg NIDA41020; (ii) slightly blocked by 310 μg/kg AM630 or 31 μg/kg cannabidiol; and (iii) unaffected by 310 μg/kg capsazepine. Moreover, LPI-induced inhibition of both vasopressor responses was blocked and abolished by 10 and 31 μg/kg cannabidiol, respectively, and weakly blocked by 100 μg/kg NIDA41020. Thus, the sympatho-inhibition by anandamide is primarily mediated by cannabinoid CB1 and, minimally, by cannabidiol-sensitive receptors. In contrast, LPI-induced inhibition of both responses seems to be mainly mediated by postjunctional cannabidiol-sensitive (presumably endothelial GPR55) receptors.

  12. Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5-hydroxytryptamine (5-HT)1A/5-HT7 receptors in the rat spinal cord

    PubMed Central

    Madden, C. J.; Morrison, S. F.

    2008-01-01

    In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min−1) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA. PMID:18082230

  13. Incoming synapses and size of small granule-containing cells in a rat sympathetic ganglion after post-ganglionic axotomy.

    PubMed Central

    Case, C P; Matthews, M R

    1986-01-01

    A quantitative ultrastructural study has been made of the reaction of the incoming synapses of small granule-containing cells after axotomy of the major post-ganglionic branches of the superior cervical ganglion of the young adult rat. These cells are intrinsic and interneurone-like in this ganglion, receiving a preganglionic input and giving outgoing synapses to principal post-ganglionic neurones. Unlike their outgoing synapses, which are lost after post-ganglionic axotomy (Case & Matthews, 1986), the incoming synapses of the small granule-containing cells in axotomized ganglia increased in incidence post-operatively. The increase first became clearly evident 5-7 days post-operatively and was greater, being both more sustained and progressive, after bilateral than after unilateral axotomy. After bilateral axotomy the incidence of incoming synapses rose to more than four times that of normal ganglia and was still elevated at 128 days post-operatively, but was within normal limits at 390 days. After a unilateral lesion, increases of similar extent and time course to those in the axotomized ganglia were seen in the incoming synapses of small granule-containing cells in the uninjured contralateral ganglia. The incoming synapses of the small granule-containing cells are multifocal, i.e. show several points or active foci of synaptic specialization. The increase in synapses expressed itself both through an increased incidence of these synaptic active foci per nerve terminal and through an increase in the number of presynaptic nerve terminal profiles associated with the cells. Control observations indicated that the increase in synapses was not due to surgical stress, nor was it attributable solely to post-operative ageing. The nerve terminals which were presynaptic to the small granule-containing cells post-operatively were all of preganglionic origin: no incoming synapses or presynaptic nerve terminals remained at 2 days after a preganglionic denervation of axotomized

  14. Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons

    PubMed Central

    Ruiz-Velasco, Victor; Ikeda, Stephen R

    2001-01-01

    cDNA constructs coding for a yellow-emitting green fluorescent protein (GFP) mutant fused to the N-terminus of the G-protein subunit β1 (YFP-β1) and a cyan-emitting GFP mutant fused to the N-terminus of the G-protein subunit γ2 (CFP-γ2) were heterologously expressed in rat superior cervical ganglion (SCG) neurons following intranuclear injection of the tagged subunits. The ability of the tagged subunits to modulate effectors, form a heterotrimer and couple to receptors was characterized using the whole-cell patch-clamp technique. Fluorescent resonance energy transfer (FRET) was also measured to determine the protein-protein interaction between the two fusion proteins. Similar to co-expression of untagged β1/γ2, co-expression of YFP-β1/γ2, β1/CFP-γ2, or YFP-β1/CFP-γ2 resulted in a significant increase in basal N-type Ca2+ channel facilitation when compared to uninjected neurons. Furthermore, the noradrenaline (NA)-mediated inhibition of Ca2+ channels was significantly attenuated. Co-expression of YFP-β1/CFP-γ2 with G-protein-gated inwardly rectifying K+ channels (GIRK1 and GIRK4) resulted in tonic GIRK currents that were blocked by Ba2+. The ability of the tagged subunits to form heterotrimers was tested by co-injecting either tagged or untagged Gβ1 and Gγ2 with excess GαoA cDNA. Under these conditions, the NA-mediated Ca2+ current inhibition was significantly decreased when compared to uninjected neurons. Coupling to the α2-adrenergic receptor was reconstituted in neurons expressing pertussis toxin (PTX)-insensitive GαoA and either tagged or untagged Gβ1γ2 subunits. Application of NA to PTX-treated cells resulted in a voltage-dependent inhibition of N-type Ca2+ currents. FRET measurements in the SCG revealed an in vivo interaction between YFP-β1 and CFP-γ2. Co-expression of untagged β1 significantly decreased the interaction between the two fusion proteins. In summary, the attachment of GFP mutants to the N-terminus of Gβ1 or Gγ2 does not

  15. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  16. Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors.

    PubMed

    Shimizu, Takahiro; Yokotani, Kunihiko

    2009-09-18

    The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-alpha-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 degrees C for 3h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective beta-adrenoreceptor antagonist) (2mg/animal) or SR59230A (a selective beta(3)-adrenoreceptor antagonist) (2mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated beta(3)-adrenoreceptor-mediated mechanisms in rats.

  17. Clinical utility of sympathetic blockade in cardiovascular disease management.

    PubMed

    Park, Chan Soon; Lee, Hae-Young

    2017-04-01

    A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.

  18. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    PubMed Central

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data. PMID:28298886

  19. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas.

    PubMed

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G; Menuet, Clement; Neve, Rachael; Allen, Andrew M; Goodchild, Ann K; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88-94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.

  20. Antinociceptive effects of metamizol (dipyrone) in rat single motor units.

    PubMed

    Mazario, J; Herrero, J F

    1999-10-29

    Metamizol has been considered as a peripherally acting non-steroidal antiinflammatory drug, though a central action is possible. The aim of the present study was to elucidate if metamizol induces antinociception in the single motor unit preparation, in normal rats versus rats with carrageenan-induced monoarthritis, and whether this action is produced at central and/or peripheral sites. Metamizol induced a potent antinociceptive effect in both groups of animals, though the effect on responses evoked by natural stimulation was stronger in hyperalgesic rats. Metamizol also depressed wind-up in a dose-dependent manner. We conclude that metamizol is a potent antinociceptive agent both in normal and hyperalgesic animals and that the effect was induced both at peripheral and central sites, at the level of the spinal cord.

  1. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  2. Sympathetic nervous system and spaceflight

    NASA Astrophysics Data System (ADS)

    Cooke, William H.; Convertino, Victor A.

    2007-02-01

    Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity. Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability. Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance. Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.

  3. Cardiac Fibroblasts Regulate Sympathetic Nerve Sprouting and Neurocardiac Synapse Stability

    PubMed Central

    Mias, Céline; Coatrieux, Christelle; Denis, Colette; Genet, Gaël; Seguelas, Marie-Hélène; Laplace, Nathalie; Rouzaud-Laborde, Charlotte; Calise, Denis; Parini, Angelo; Cussac, Daniel; Pathak, Atul; Sénard, Jean-Michel; Galés, Céline

    2013-01-01

    Sympathetic nervous system (SNS) plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF) and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts) isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of cardiac sympathetic

  4. Increased norepinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats

    SciTech Connect

    Ekas, R.D. Jr.; Steenberg, M.L.; Lokhandwala, M.F.

    1983-01-01

    The present study was performed to measure norepinephrine release during sympathetic nerve stimulation and determine the inhibitory action of adenosine on stimulus-induced release of norepinephrine in the isolated perfused kidney of WKY and SHR. Norepinephrine release during periarterial nerve stimulation was measured as total /sup 3/H-overflow since greater than 75% of total /sup 3/H-overflow was /sup 3/H-norepinephrine in both the WKY and SHR. A significantly greater increase in /sup 3/H-norepinephrine overflow was observed during periarterial nerve stimulation in SHR in comparison with WKY. Adenosine (0.3, 1.0, 3.0 and 10.0 micrograms/ml) produced dose-dependent inhibition of /sup 3/H-norepinephrine overflow elicited by periarterial nerve stimulation. However, the effect of adenosine on transmitter release was more pronounced in the SHR in that the threshold dose required to cause inhibition of stimulus-induced release of /sup 3/H-norepinephrine was smaller in the SHR. These results demonstrate that while norepinephrine release during sympathetic nerve stimulation is greater in the SHR, this finding can not be explained on the basis of a decrease in the presynaptic inhibitory action of adenosine. Therefore, the mechanism responsible for the increased release of norepinephrine in the SHR remains to be determined.

  5. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  6. Reflex sympathetic dystrophy in hemiplegia.

    PubMed

    Gokkaya, Nilufer Kutay Ordu; Aras, Meltem; Yesiltepe, Elcin; Koseoglu, Fusun

    2006-12-01

    There is a high incidence of reflex sympathetic dystrophy of the upper limbs in patients with hemiplegia, and its painful and functional consequences present a problem to specialists in physical medicine and rehabilitation. This study was designed to assess the role of several factors in the occurrence of reflex sympathetic dystrophy in patients with hemiplegia. Ninety-five consecutive stroke patients (63 male and 32 female, mean age 59+/-12 years) admitted to our hospital were evaluated. Of the study group, 29 patients (30.5%) were found to develop reflex sympathetic dystrophy. There were no significant differences between the hemiplegic patient groups with or without reflex sympathetic dystrophy regarding age, gender, etiology, side of involvement, disease duration and the presence of comorbidities. The recovery stages of hemiplegia, as shown by Brunnstrom functional classification, were significantly different between the two groups; patients in lower recovery stages tended to develop reflex sympathetic dystrophy more frequently (P<0.01). Additionally, the presence of flaccidity was also a significant factor in the development of reflex sympathetic dystrophy. Glenohumeral subluxation was present in 37 patients (38.9%) in our study group and the presence of this complication was related to the occurrence of reflex sympathetic dystrophy. The presence of glenohumeral subluxation was significantly higher in patients with reflex sympathetic dystrophy (21/29, 72.4%) when compared to the patients without reflex sympathetic dystrophy (16/66, 24.2%) (P<0.001). Also, hemiplegic patients with more severe shoulder subluxation were significantly more likely to develop reflex sympathetic dystrophy. These results suggest that lower recovery stages, reduced tonus and glenohumeral subluxation significantly contribute to the occurrence of reflex sympathetic dystrophy in the hemiplegic patient. We believe that preventive and treatment measures should consider these factors as they

  7. A ryanodine fluorescent derivative reveals the presence of high-affinity ryanodine binding sites in the Golgi complex of rat sympathetic neurons, with possible functional roles in intracellular Ca(2+) signaling.

    PubMed

    Cifuentes, F; González, C E; Fiordelisio, T; Guerrero, G; Lai, F A; Hernández-Cruz, A

    2001-05-01

    The plant alkaloid ryanodine (Ry) is a high-affinity modulator of ryanodine receptor (RyR) Ca(2+) release channels. Although these channels are present in a variety of cell types, their functional role in nerve cells is still puzzling. Here, a monosubstituted fluorescent Ry analogue, B-FL-X Ry, was used to reveal the distribution of RyRs in cultured rat sympathetic neurons. B-FL-X Ry competitively inhibited the binding of [3H]Ry to rabbit skeletal muscle SR membranes, with an IC(50) of 150 nM, compared to 7 nM of unlabeled Ry. Binding of B-FL-X Ry to the cytoplasm of sympathetic neurons is saturable, reversible and of high affinity. The pharmacology of B-FL-X Ry showed marked differences with unlabeled Ry, which are partially explained by its lower affinity: (1) use-dependent reversible inhibition of caffeine-induced intracellular Ca(2+) release; (2) diminished voltage-gated Ca(2+) influx, due to a positive shift in the activation of voltage gated Ca(2+) currents. B-FL-X Ry-stained sympathetic neurons, viewed under confocal microscopy, showed conspicuous labeling of crescent-shaped structures pertaining to the Golgi complex, a conclusion supported by experiments showing co-localization with Golgi-specific fluorescent probes and the breaking up of crescent-shaped staining after treatment with drugs that disassemble Golgi complex. The presence of RyRs to the Golgi could be confirmed with specific anti-RyR(2) antibodies, but evidence of caffeine-induced Ca(2+) release from this organelle could not be obtained using fast confocal microscopy. Rather, an apparent decrease of the cytosolic Ca(2+) signal was detected close to this organelle. In spite of that, short-term incubation with brefeldin A (BFA) suppressed the fast component of caffeine-induced Ca(2+) release, and the Ca(2+) release process lasted longer and appeared less organized. These observations, which suggest a possible role of the Golgi complex in Ca(2+) homeostasis and signaling in nerve cells, could be

  8. Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors

    PubMed Central

    Sánchez-López, Araceli; Centurión, David; Vázquez, Erika; Arulmani, Udayasankar; Saxena, Pramod R; Villalón, Carlos M

    2003-01-01

    Continuous infusions of 5-hydroxytryptamine (5-HT) inhibit the tachycardiac responses to preganglionic (C7-T1) sympathetic stimulation in pithed rats pretreated with desipramine. The present study identified the pharmacological profile of this inhibitory action of 5-HT. The inhibition induced by intravenous (i.v.) continuous infusions of 5-HT (5.6 μg kg−1 min−1) on sympathetically induced tachycardiac responses remained unaltered after i.v. treatment with saline or the antagonists GR 127935 (5-HT1B/1D), the combination of WAY 100635 (5-HT1A) plus GR 127935, ritanserin (5-HT2), tropisetron (5-HT3/4), LY215840 (5-HT7) or a cocktail of antagonists/inhibitors consisting of yohimbine (α2), prazosin (α1), ritanserin, GR 127935, WAY 100635 and indomethacin (cyclooxygenase), but was abolished by methiothepin (5-HT1/2/6/7 and recombinant 5-ht5A/5B). These drugs, used in doses high enough to block their respective receptors/mechanisms, did not modify the sympathetically induced tachycardiac responses per se. I.v. continuous infusions of the agonists 5-carboxamidotryptamine (5-CT; 5-HT1/7 and recombinant 5-ht5A/5B), CP 93,129 (r5-HT1B), sumatriptan (5-HT1B/1D), PNU-142633 (5-HT1D) and ergotamine (5-HT1B/1D and recombinant 5-ht5A/5B) mimicked the above sympatho-inhibition to 5-HT. In contrast, the agonists indorenate (5-HT1A) and LY344864 (5-ht1F) were inactive. Interestingly, 5-CT-induced cardiac sympatho-inhibition was abolished by methiothepin, the cocktail of antagonists/inhibitors, GR 127935 or the combination of SB224289 (5-HT1B) plus BRL15572 (5-HT1D), but remained unchanged when SB224289 or BRL15572 were given separately. Therefore, 5-HT-induced cardiac sympatho-inhibition, being unrelated to 5-HT2, 5-HT3, 5-HT4, 5-ht6, 5-HT7 receptors, α1/2-adrenoceptor or prostaglandin synthesis, seems to be primarily mediated by (i) 5-HT1 (probably 5-HT1B/1D) receptors and (ii) a novel mechanism antagonized by methiothepin that, most likely, involves putative 5-ht5A/5B

  9. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons.

    PubMed

    Bratton, B O; Martelli, D; McKinley, M J; Trevaks, D; Anderson, C R; McAllen, R M

    2012-11-01

    The 'inflammatory reflex' acts through efferent neural connections from the central nervous system to lymphoid organs, particularly the spleen, that suppress the production of inflammatory cytokines. Stimulation of the efferent vagus has been shown to suppress inflammation in a manner dependent on the spleen and splenic nerves. The vagus does not innervate the spleen, so a synaptic connection from vagal preganglionic neurons to splenic sympathetic postganglionic neurons was suggested. We tested this idea in rats. In a preparatory operation, the anterograde tracer DiI was injected bilaterally into the dorsal motor nucleus of vagus and the retrograde tracer Fast Blue was injected into the spleen. On histological analysis 7-9 weeks later, 883 neurons were retrogradely labelled from the spleen with Fast Blue as follows: 89% in the suprarenal ganglia (65% left, 24% right); 11% in the left coeliac ganglion; but none in the right coeliac or either of the superior mesenteric ganglia. Vagal terminals anterogradely labelled with DiI were common in the coeliac but sparse in the suprarenal ganglia, and confocal analysis revealed no putative synaptic connection with any Fast Blue-labelled cell in either ganglion. Electrophysiological experiments in anaesthetized rats revealed no effect of vagal efferent stimulation on splenic nerve activity or on that of 15 single splenic-projecting neurons recorded in the suprarenal ganglion. Together, these findings indicate that vagal efferent neurons in the rat neither synapse with splenic sympathetic neurons nor drive their ongoing activity.

  10. Interruption of perivascular sympathetic nerves of cerebral arteries offers neuroprotection against ischemia.

    PubMed

    Lee, Reggie H; Couto E Silva, Alexandre; Lerner, Francesca M; Wilkins, Carl S; Valido, Stephen E; Klein, Daniel D; Wu, Celeste Y; Neumann, Jake T; Della-Morte, David; Koslow, Stephen H; Minagar, Alireza; Lin, Hung Wen

    2017-01-01

    Sympathetic nervous system activity is increased after cardiopulmonary arrest, resulting in vasoconstrictor release from the perivascular sympathetic nerves of cerebral arteries. However, the pathophysiological function of the perivascular sympathetic nerves in the ischemic brain remains unclear. A rat model of global cerebral ischemia (asphyxial cardiac arrest, ACA) was used to investigate perivascular sympathetic nerves of cerebral arteries via bilateral decentralization (preganglionic lesion) of the superior cervical ganglion (SCG). Decentralization of the SCG 5 days before ACA alleviated hypoperfusion and afforded hippocampal neuroprotection and improved functional outcomes. These studies can provide further insights into the functional mechanism(s) of the sympathetic nervous system during ischemia. Interruption of the perivascular sympathetic nerves can alleviate CA-induced hypoperfusion and neuronal cell death in the CA1 region of the hippocampus to enhance functional learning and memory. Copyright © 2017 the American Physiological Society.

  11. Interaction of Xylamine with peripheral sympathetic neurons

    SciTech Connect

    Ransom, R.W.; Waggaman, L.A.; Cho, A.K.

    1985-09-30

    Xylamine (XYL) administered to intact rats caused a 70-80% reduction in norepinephrine (NE) uptake by the vas deferens but had little or no effect on NE content in that tissue. The vas deferens accumulates /sup 3/H-XYL in vitro by a desmethylimipramine (DMI)-sensitive mechanism. Vasa deferentia from 6-hydroxydopamine (60HDA) pretreated animals exhibited a 80% reduction in both NE content and XYL uptake activity. These results indicate that XYL is taken up by sympathetic nerve terminals and can reduce NE uptake activity without depleting terminals of neurotransmitter. 9 references, 4 tables.

  12. Eph/ephrin interactions modulate vascular sympathetic innervation.

    PubMed

    Damon, Deborah H; teRiele, Jaclyn A; Marko, Stephen B

    2010-12-08

    Ephs and ephrins are membrane-bound proteins that interact to modulate axon growth and neuronal function. We tested the hypothesis that eph/ephrin interactions affected the growth and function of vascular sympathetic innervation. Using RT-PCR analyses, we detected both classes of ephs (A and B) and both classes of ephrins (A and B) in sympathetic ganglia from neonatal and adult rats. Both classes of ephs (A and B) and both classes of ephrins (A and B) bound to the cell bodies and neurites of dissociated postganglionic sympathetic neurons. Messenger RNAs encoding for both classes of ephs (A and B) and both classes of ephrins (A and B) were also detected in sympathetically innervated arteries from neonatal and adult rats. These data suggest that ephrins/ephs on nerve fibers of postganglionic sympathetic neurons could interact with ephs/ephrins on cells in innervated arteries. We found that ephA4 reduced reinnervation of denervated femoral arteries. Reinnervation in the presence of ephA4-Fc (38.9±6.6%) was significantly less than that in the presence of IgG-Fc (62±10%; n=5; p<0.05; one-tailed unpaired t-test). These data indicate that eph/ephrin interactions modulated the growth of vascular sympathetic innervation. We also found that ephA4 increased basal release of norepinephrine from nerve terminals of isolated tail arteries. These data indicate that eph/ephrin interactions affect the growth and function of vascular sympathetic innervation.

  13. ß-adrenoceptor blockers increase cardiac sympathetic innervation by inhibiting autoreceptor suppression of axon growth.

    PubMed

    Clarke, Gwenaëlle L; Bhattacherjee, Aritra; Tague, Sarah E; Hasan, Wohaib; Smith, Peter G

    2010-09-15

    β-Adrenoceptor antagonists are used widely to reduce cardiovascular sympathetic tone, but withdrawal is accompanied by sympathetic hyperactivity. Receptor supersensitivity accounts for some but not all aspects of this withdrawal syndrome. Therefore, we investigated effects of β-blockers on sympathetic innervation. Rats received infusions of adrenergic receptor blockers or saline for 1 week. The nonselective β-blocker propranolol and the β(1)-antagonist metoprolol both increased myocardial sympathetic axon density. At 2 d after propranolol discontinuation, β-receptor sensitivity and responsiveness to isoproterenol were similar to controls. However, tyramine-induced mobilization of norepinephrine stores produced elevated ventricular contractility consistent with enhanced sympathetic neuroeffector properties. In addition, rats undergoing discontinuation showed exaggerated increases in mean arterial pressure in response to air puff or noise startle. In sympathetic neuronal cell cultures, both propranolol and metoprolol increased axon outgrowth but the β(2)-blocker ICI 118551 did not. Norepinephrine synthesis suppression by α-methyl-p-tyrosine also increased sprouting and concurrent dobutamine administration reduced it, confirming that locally synthesized norepinephrine inhibits outgrowth via β(1)-adrenoceptors. Immunohistochemistry revealed β(1)-adrenoceptor protein on sympathetic axon terminations. In rats with coronary artery ligation, propranolol reversed heart failure-induced ventricular myocardial sympathetic axon depletion, but did not affect infarct-associated sympathetic hyperinnervation. We conclude that sympathetic neurons possess β(1)-autoreceptors that negatively regulate axon outgrowth. Chronic β-adrenoceptor blockade disrupts this feedback system, leading to ventricular sympathetic axon proliferation and increased neuroeffector gain, which are likely to contribute to β-blocker withdrawal syndrome.

  14. Single and Double Alternation Learning in Rats: The Role of Set Size and Correction

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; Rowan, James D.

    2009-01-01

    In many experiments, rats have evidenced extreme difficulty mastering alternation patterns. In three experiments, we explored rats' ability to learn double alternation patterns and possible reasons behind their past difficulties with such patterns. In Experiment 1, rats learned single and double alternation patterns. In the second and third…

  15. Single and Double Alternation Learning in Rats: The Role of Set Size and Correction

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; Rowan, James D.

    2009-01-01

    In many experiments, rats have evidenced extreme difficulty mastering alternation patterns. In three experiments, we explored rats' ability to learn double alternation patterns and possible reasons behind their past difficulties with such patterns. In Experiment 1, rats learned single and double alternation patterns. In the second and third…

  16. Different sympathetic pathways control the metabolism of distinct bone envelopes.

    PubMed

    Bataille, Caroline; Mauprivez, Cédric; Haÿ, Eric; Baroukh, Brigitte; Brun, Adrian; Chaussain, Catherine; Marie, Pierre J; Saffar, Jean-Louis; Cherruau, Marc

    2012-05-01

    Bone remodeling, the mechanism that modulates bone mass adaptation, is controlled by the sympathetic nervous system through the catecholaminergic pathway. However, resorption in the mandible periosteum envelope is associated with cholinergic Vasoactive Intestinal Peptide (VIP)-positive nerve fibers sensitive to sympathetic neurotoxics, suggesting that different sympathetic pathways may control distinct bone envelopes. In this study, we assessed the role of distinct sympathetic pathways on rat femur and mandible envelopes. To this goal, adult male Wistar rats were chemically sympathectomized or treated with agonists/antagonists of the catecholaminergic and cholinergic pathways; femora and mandibles were sampled. Histomorphometric analysis showed that sympathectomy decreased the number of preosteoclasts and RANKL-expressing osteoblasts in mandible periosteum but had no effect on femur trabecular bone. In contrast, pharmacological stimulation or repression of the catecholaminergic cell receptors impacted the femur trabecular bone and mandible endosteal retromolar zone. VIP treatment of sympathectomized rats rescued the disturbances of the mandible periosteum and alveolar wall whereas the cholinergic pathway had no effect on the catecholaminergic-dependent envelopes. We also found that VIP receptor-1 was weakly expressed in periosteal osteoblasts in the mandible and was increased by VIP treatment, whereas osteoblasts of the retromolar envelope that was innervated only by tyrosine hydroxylase-immunoreactive fibers, constitutively expressed beta-2 adrenergic receptors. These data highlight the complexity of the sympathetic control of bone metabolism. Both the embryological origin of the bone (endochondral for the femur, membranous for the mandibular periosteum and the socket wall) and environmental factors specific to the innervated envelope may influence the phenotype of the sympathetic innervation. We suggest that an origin-dependent imprint of bone cells through

  17. Low-order chaos in sympathetic nerve activity and scaling of heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Kumagai, Hiroo; Sakata, Katsufumi; Onami, Toshiko; Chon, Ki H.; Watanabe, Mari A.; Saruta, Takao

    2003-04-01

    The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals, sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using nonlinear analyses, we demonstrate that the dynamics of this system of three variables is low-order chaos, and that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observable steeper scaling of heartbeat intervals in hypertensive (high blood pressure) rats.

  18. Low-order chaos in sympathetic nerve activity causes 1/f fluctuation of heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Kumagai, Hiroo; Sakata, Katsufumi; Onami, Toshiko; Chon, Ki H.; Watanabe, Mari A.; Saruta, Takao

    2004-04-01

    The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals, sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using nonlinear analyses, we demonstrate that the dynamics of this system of 3 variables is low-order chaos, and that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that 1/f scaling of heartbeat intervals results from the low-order chaos of these variables and that impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observable steeper scaling of heartbeat intervals in hypertensive (high blood pressure) rats.

  19. Relaxation abnormalities in single cardiac myocytes from renovascular hypertensive rats.

    PubMed

    Yelamarty, R V; Moore, R L; Yu, F T; Elensky, M; Semanchick, A M; Cheung, J Y

    1992-04-01

    In myocardial hypertrophy secondary to renovascular hypertension, the rate of intracellular Ca2+ concentration decline during relaxation in paced left ventricular (LV) myocytes isolated from hypertensive (Hyp) rats is much slower compared with that from normotensive (Sham) rats. By use of a novel liquid-crystal television-based optical-digital processor capable of performing on-line real-time Fourier transformation and the striated pattern (similar to 1-dimensional diffraction grating) of cardiac muscle cells, sarcomere shortening and relaxation velocities were measured in single Hyp and Sham myocytes 18 h after isolation. There were no differences in resting sarcomere length, percent of maximal shortening, time to peak shortening, and average sarcomere shortening velocity between Sham and Hyp cardiac cells. In contrast, average sarcomere relaxation velocity and half-relaxation time were significantly prolonged in Hyp myocytes. Contractile differences between Sham and Hyp myocytes detected by the optical-digital processor are confirmed by an independent method of video tracking of whole cell length changes during excitation-contraction. Despite the fact that freshly isolated myocytes contract more rigorously than 18-h-old myocytes, the relaxation abnormality was still observed in freshly isolated Hyp myocytes, suggesting impaired relaxation is an intrinsic property of Hyp myocytes rather than changes brought about by short-term culture. We postulate that reduced sarcomere relaxation velocity is a direct consequence of impaired Ca2+ sequestration-extrusion during relaxation in Hyp myocytes and may be responsible for diastolic dysfunction in hypertensive hypertrophic myocardium at the cellular level.

  20. Influence of simulated microgravity on the sympathetic response to exercise

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Kregel, K. C.; Tipton, C. M.

    1997-01-01

    Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.

  1. Influence of simulated microgravity on the sympathetic response to exercise

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Kregel, K. C.; Tipton, C. M.

    1997-01-01

    Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.

  2. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    PubMed

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  3. TH and NPY in sympathetic neurovascular cultures: role of LIF and NT-3.

    PubMed

    Damon, Deborah H

    2008-01-01

    The sympathetic nervous system is an important determinant of vascular function. The effects of the sympathetic nervous system are mediated via release of neurotransmitters and neuropeptides from postganglionic sympathetic neurons. The present study tests the hypothesis that vascular smooth muscle cells (VSM) maintain adrenergic neurotransmitter/neuropeptide expression in the postganglionic sympathetic neurons that innervate them. The effects of rat aortic and tail artery VSM (AVSM and TAVSM, respectively) on neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were assessed in cultures of dissociated sympathetic neurons. AVSM decreased TH (39 +/- 12% of control) but did not affect NPY. TAVSM decreased TH (76 +/- 10% of control) but increased NPY (153 +/- 20% of control). VSM expressed leukemia inhibitory factor (LIF) and neurotrophin-3 (NT-3), which are known to modulate NPY and TH expression. Sympathetic neurons innervating blood vessels expressed LIF and NT-3 receptors. Inhibition of LIF inhibited the effect of AVSM on TH. Inhibition of neurotrophin-3 (NT-3) decreased TH and NPY in neurons grown in the presence of TAVSM. These data suggest that vascular-derived LIF decreases TH and vascular-derived NT-3 increases or maintains NPY and TH expression in postganglionic sympathetic neurons. NPY and TH in vascular sympathetic nerves are likely to modulate NPY and/or norepinephrine release from these nerves and are thus likely to affect blood flow and blood pressure. The present studies suggest a novel mechanism whereby VSM would modulate sympathetic control of vascular function.

  4. Sympathetic regulation of estradiol secretion from the ovary.

    PubMed

    Uchida, Sae

    2015-01-01

    It is well known that hormone secretion from endocrine glands is regulated by hierarchical feedback mechanisms. However, although Cannon revealed in the 1920s that sympathoadrenal medullary function increased during emergency situations, no studies on the autonomic nervous regulation of hormone secretion have been undertaken for many years. In the past 40 years, the autonomic nervous regulation of insulin secretion from the pancreas, gastrin secretion from the stomach, glucocorticoid secretion from the adrenal cortex, etc., has been demonstrated. Estradiol secretion from the ovary is strongly controlled by the hypothalamic-pituitary-ovarian axis, and its possible regulation by autonomic nerves has been largely unnoticed. Some histological studies have revealed rich adrenergic sympathetic innervation in the ovary. Recently, it has been demonstrated that the activation of the sympathetic nerves to the ovary directly reduces estradiol secretion from the ovary. This article reviews physiological and morphological studies, primarily in rats, on the sympathetic regulation of estradiol secretion from the ovary.

  5. Vascular endothelial-derived semaphorin 3 inhibits sympathetic axon growth.

    PubMed

    Damon, Deborah H

    2006-03-01

    Vascular sympathetic innervation is an important determinant of blood pressure and blood flow. The mechanisms that determine vascular sympathetic innervation are not well understood. Recent studies indicate that vascular endothelial cells (EC) express semaphorin 3A, a repulsive axon guidance cue. This suggests that EC would inhibit the growth of axons to blood vessels. The present study tests this hypothesis. RT-PCR and Western analyses confirmed that rat aortic vascular ECs expressed semaphorin 3A as well as other class 3 semaphorins (sema 3s). To determine the effects of EC-derived sema 3 on sympathetic axons, axon outgrowth was assessed in cultures of neonatal sympathetic ganglia grown for 72 h in the absence and presence of vascular EC. Nerve growth factor-induced axon growth in the presence of ECs was 50 +/- 4% (P < 0.05) of growth in the absence of ECs. ECs did not inhibit axon growth in the presence of an antibody that neutralized the activity of sema 3 (P > 0.05). RT-PCR and Western analyses also indicated that sema 3s were expressed in ECs of intact arteries. To assess the function of sema 3s in arteries, sympathetic ganglia were grown in the presence of arteries for 72 h, and the percentage of axons that grew toward the artery was determined: 44 +/- 4% of axons grew toward neonatal carotid arteries. Neutralization of sema 3s or removal of EC increased the percentage of axons that grew toward the artery (71 +/- 8% and 72 +/- 8%, respectively). These data indicate that vascular EC-derived sema 3s inhibit sympathetic axon growth and may thus be a determinant of vascular sympathetic innervation.

  6. Tonic postganglionic sympathetic inhibition induced by afferent renal nerves?

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Siegel, Kirsten; Fiedler, Christian; Small, Lisa; Neuhuber, Winfried; Heinlein, Sonja; Reeh, Peter W; Schmieder, Roland E; Veelken, Roland

    2012-02-01

    Other than efferent sympathetic innervation, the kidney has peptidergic afferent fibers expressing TRPV1 receptors and releasing substance P. We tested the hypothesis that stimulation of afferent renal nerve activity with the TRPV1 agonist capsaicin inhibits efferent renal sympathetic nerve activity tonically by a neurokinin 1 receptor-dependant mechanism. Anesthetized Sprague-Dawley rats were instrumented as follows: (1) arterial and venous catheters for recording of blood pressure and heart rate and drug administration; (2) left-sided renal arterial catheter for selective intrarenal administration of the TRPV1 agonist capsaicin (3.3, 6.6, 10, 33*10(-7) m; 10 μL; after 15, 30, 45, and 60 minutes, respectively) to stimulate afferent renal nerve activity; (3) right-sided bipolar electrode for continuous renal sympathetic nerve recording; and (4) specialized renal pelvic and renal artery catheters to separate pelvic from intrarenal afferent activity. Before and after intrarenal capsaicin application, increasing intravenous doses of the neurokinin 1 receptor blocker RP67580 were given. Intrarenal capsaicin decreased integrated renal sympathetic activity from 65.4±13.0 mV*s (baseline) to 12.8±3.2 mV*s (minimum; P<0.01). This sustained renal sympathetic inhibition reached its minimum within 70 minutes and was not directly linked to the transient electric afferent response to be expected with intrarenal capsaicin. Suppressed renal sympathetic activity transiently but completely recovered after intravenous administration of the neurokinin 1 blocker (maximum: 120.3±19.4 mV*s; P<0.01). Intrarenal afferent activity could be unequivocally separated from pelvic afferent activity. For the first time we provide direct evidence that afferent intrarenal nerves provide a tonically acting sympathoinhibitory system, which seems to be rather mediated by neurokinin release acting via neurokinin 1 receptor pathways rather than by electric afferent effects on central sympathetic

  7. Increased Apoptosis in the Paraventricular Nucleus Mediated by AT1R/Ras/ERK1/2 Signaling Results in Sympathetic Hyperactivity and Renovascular Hypertension in Rats after Kidney Injury

    PubMed Central

    Zhu, Hongguo; Tan, Lishan; Li, Yumin; Li, Jiawen; Qiu, Minzi; Li, Lanying; Zhang, Mengbi; Liang, Min; Li, Aiqing

    2017-01-01

    , Ras, or MEK/ERK1/2 would significantly reduce PVN apoptosis as indicated by changes of apoptosis-related proteins (p < 0.05). AT1R inhibition would cause reduction in Ras-GTP and p-ERK1/2, but not vice versa; such intervention with corresponding inhibitors also suggested the unidirectional regulation of Ras to ERK1/2. Conclusion: These findings demonstrated that the activation of renin-angiotensin system in PVN could induce apoptosis through Ras/ERK1/2 pathway, which then led to increased sympathetic nerve activity and renal hypertension in 5/6Nx rats. PMID:28210225

  8. Rats socially-reared and full fed learned an autoshaping task, showing less levels of fear-like behaviour than fasted or singly-reared rats.

    PubMed

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2004-07-01

    During the learning of instrumental tasks, rats are usually fasted to increase reinforced learning. However, fasting produces several undesirable side effects. The aim of this study was to test the hypothesis that control rats, i.e. full-fed and group-reared rats, will learn an autoshaping task to the same level as fasted or singly-reared rats. The interaction between fasting and single-rearing of rats was also tested. Results showed that control rats and fasted rats acquired the autoshaping task similarly, independently of rearing condition or gender. However, fasted or singly-reared rats produced fear-like behaviour, since male rats group-reared and fasted (85% body/wt, P <0.05), male rats singly-reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05), female rats group-reared (12 h fasted, P <0.05; 85% body/wt, P <0.05) and female rats singly reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05) displayed reduced amounts of time exploring the open arms of the elevated plus-maze. In conclusion, control rats learned the autoshaping task to the same level as fasted or singly-reared rats. However, fasting or single-rearing produced fear-like behaviour. Thus, the training of control rats in autoshaping tasks may be an option that improves animal welfare.

  9. Glyceroneogenesis is reduced and glucose uptake is increased in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation.

    PubMed

    Chaves, Valéria E; Frasson, Danúbia; Martins-Santos, Maria E S; Boschini, Renata P; Garófalo, Maria A R; Festuccia, William T L; Kettelhut, Isis C; Migliorini, Renato H

    2006-10-01

    The pathways of glycerol-3-P (G3P) generation were examined in retroperitoneal (RETRO) and epididymal (EPI) adipose tissues from rats fed a cafeteria diet for 3 wk. The cafeteria diet induced marked increases in body fat mass and in the plasma levels of insulin and triacylglycerol (TAG). RETRO and EPI from cafeteria diet-fed rats had increased rates of norepinephrine turnover (143 and 60%, respectively) and of de novo fatty acid (FA) synthesis (58 and 98%), compared with controls fed a balanced commercial diet. Cafeteria diet feeding induced marked increases in RETRO and EPI in vivo rates of glucose uptake (52 and 51%, respectively), used to evaluate G3P generation via glycolysis, as well as in glycerokinase activity (119 and 36%) and TAG-glycerol synthesis from glycerol (56 and 71%, respectively). In contrast, there was a marked reduction of glyceroneogenesis in RETRO and EPI from cafeteria diet-fed rats, which was evidenced by the significant decreases of P-enolpyruvate carboxykinase (PEPCK-C) activity (48 and 36%) and TAG-glycerol synthesis from pyruvate (45 and 56%, respectively). Denervation of RETRO from cafeteria diet-fed rats reduced the activity of glycerokinase by 50%, but did not affect glucose uptake or PEPCK-C activity and TAG-glycerol synthesis from pyruvate by the tissue. The data show that glyceroneogenesis can also be inhibited to adjust the supply of G3P to the existing rates of FA esterification and TAG synthesis and suggest that this adjustment is made by reciprocal changes in the generation of G3P from glucose via glycolysis and from glyceroneogenesis, independently from G3P production by glycerokinase.

  10. Co-expression changes of lncRNAs and mRNAs in the cervical sympathetic ganglia in diabetic cardiac autonomic neuropathic rats.

    PubMed

    Li, Guilin; Sheng, Xuan; Xu, Yurong; Jiang, Huaide; Zheng, Chaoran; Guo, Jingjing; Sun, Shanshan; Yi, Zhihua; Qin, Shulan; Liu, Shuangmei; Gao, Yun; Zhang, Chunping; Xu, Hong; Wu, Bing; Zou, Lifang; Liang, Shangdong; Zhu, Gaochun

    2016-12-19

    Cardiac autonomic neuropathy in Type 2 diabetes (T2D) is often a devastating complication. Long non-coding RNAs (lncRNAs) have important effects on both normal development and disease pathogenesis. In this study, we explored the expression profiles of some lncRNAs involved in inflammation which may be co-expressed with messenger RNA (mRNA) in superior cervical and stellate ganglia after type 2 diabetic injuries. Total RNA isolated from 10 pairs of superior cervical and stellate ganglia in diabetic and normal male rats was hybridized to lncRNA arrays for detections. Pathway analysis indicated that the most significant gene ontology (GO) processes that were upregulated in diabetes were associated with immune response, cell migration, defense response, taxis, and chemotaxis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that most of the target genes of the lncRNAs were located in cytokine-cytokine receptor interactions, the chemokine signaling pathway and cell adhesion molecules, which were involved in T2D. Gene co-expression network construction showed that the co-expression network in the experimental rats consisted of 268 regulation edges among 105 lncRNAs and 11 mRNAs. Our studies demonstrated the co-expression profile of lncRNAs and mRNAs in diabetic cardiac autonomic ganglia, suggesting possible roles for multiple lncRNAs as potential targets for the development of therapeutic strategies or biomarkers for diabetic cardiac autonomic neuropathy. © 2016 Wiley Periodicals, Inc.

  11. Angiotensin II stimulates sympathetic neurotransmission to adipose tissue

    PubMed Central

    King, Victoria L; English, Victoria L; Bharadwaj, Kalyani; Cassis, Lisa A

    2013-01-01

    Angiotensin II (AngII) facilitates sympathetic neurotransmission by regulating norepinephrine (NE) synthesis, release, and uptake. These effects of AngII contribute to cardiovascular control. Previous studies in our laboratory demonstrated that chronic AngII infusion decreased body weight of rats. We hypothesized that AngII facilitates sympathetic neurotransmission to adipose tissue and may thereby decrease body weight. The effect of chronic AngII infusion on the NE uptake transporter and NE turnover was examined in metabolic (interscapular brown adipose tissue, ISBAT; epididymal fat, EF) and cardiovascular tissues (left ventricle, LV; kidney) of rats. To examine the uptake transporter saturation isotherms were performed using [3H]nisoxetine (NIS). At doses that lowered body weight, AngII significantly increased ISBAT [3H]NIS binding density. To quantify NE turnover, alpha-methyl-para-tyrosine (AMPT) was injected in saline-infused, AngII-infused, or saline-infused rats that were pair-fed to food intake of AngII-infused rats. AngII significantly increased the rate of NE decline in all tissues compared to saline. The rate of NE decline in EF was increased to a similar extent by AngII and by pair feeding. In rats administered AngII and propranolol, reductions in food and water intake and body weight were eliminated. These data support the hypothesis that AngII facilitates sympathetic neurotransmission to adipose tissue. Increased sympathetic neurotransmission to adipose tissue following AngII exposure is suggested to contribute to reductions in body weight. PMID:24224084

  12. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  13. Fibromyalgia as a sympathetically maintained pain syndrome.

    PubMed

    Martinez-Lavin, Manuel

    2004-10-01

    Abnormal activity of the sympathetic nervous system may be involved in the pathogenesis of chronic pain syndromes. This article reviews the animal studies of sympathetically induced pain behavior, the controversy of sympathetically maintained pain in clinical practice, and the dysautonomic nature of fibromyalgia (FM). FM has neuropathic pain features (stimuli-independent pain state accompanied by allodynia and paresthesias). The proposal of FM as a sympathetically maintained pain syndrome is based on the controlled studies showing that patients with FM display signs of relentless sympathetic hyperactivity and that the pain is submissive to sympathetic blockade and is rekindled by norepinephrine injections. Dysautonomia also may explain the multisystem features of FM.

  14. Homeodynamics versus homeostasis: periodicities superimposed on non-linear dynamic sympathetic tone generated in ventral medulla.

    PubMed

    Trzebski, A

    1994-01-01

    Homeodynamics based on theories of complexity and chaos and its impact on mechanisms generating sympathetic activity are presented. Activity in rats cervical, lumbar and renal sympathetic nerves was analyzed. In time domain glutamate stimulation of neurons within medullary periambigual area (PAA) disturbed temporal pattern of respiratory-sympathetic synchronization. Divalént calcium antagonists, Co2+ and Mg2+, blockers of synaptic transmission, uncoupled respiratory oscillator and sympathetic activity. PAA neurons act as an interphase between different subsets of respiratory neurons and bulbospinal sympathoexcitatory neurons in rostral ventrolateral medulla (RVLM). In frequency domain sympathetic activity analyzed by FFT algorithm and power density spectra (PDS) exhibited periodicities at the range from 0.4 Hz to 7.5 Hz. Blockers of synaptic transmission microinjected bilaterally into RVLM reduced total power exhibited in PDS to low level of magnitude generated in spinal cord and increased total, yet non-synchronized sympathetic activity and arterial blood pressure. A two component hybrid model of generation of sympathetic activity was proposed: a tone-generating system confined mainly to intrinsic activity of RVLM pacemaker neurons responsible for chaos-like discharges and a second component-neuronal circuits superimposed on tone-generating neurons and shaping the pattern of PDS. Contribution of spinal cord oscillatory mechanism to overall power of sympathetic periodicities was discussed.

  15. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  16. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  17. Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype.

    PubMed Central

    Marrion, N. V.; Smart, T. G.; Marsh, S. J.; Brown, D. A.

    1989-01-01

    1. Under voltage-clamp dissociated adult and foetal rat superior cervical ganglion (s.c.g.) cells exhibited a non-inactivating voltage- and time-dependent component of K+ current termed the M-current (IM). IM was detected and measured from the current decay during hyperpolarizing voltage steps applied from potentials where IM was pre-activated. 2. Neither the resting membrane current nor the amplitude of these current decay relaxations were reduced by omitting Ca from the bathing fluid, showing that the M-current was not a 'Ca-activated' K-current dependent on a primary Ca-influx. Concentrations of (+)-tubocurarine sufficient to block the slow Ca-activated K-current IAHP did not inhibit IM or antagonize the effect of muscarinic agonists on IM, showing that IM was not contaminated by IAHP. Tetraethylammonium (1 mM), which blocks the fast Ca-activated K-current IC, produced a small inhibition of IM. This was not due to contamination of IM by IC since muscarinic agonists did not consistently block IC. 3. The muscarinic agonists muscarine, oxotremorine, McN-A-343 and methacholine reversibly suppressed IM, resulting in an inward (depolarizing) current. The rank order of potency was: oxotremorine greater than or equal to muscarine greater than McN-A-343 greater than methacholine. 4. The suppression of IM by muscarine was similar in cultured cells derived from adult and foetal tissue to that seen in the intact ganglia. 5. IM-suppression by muscarine was inhibited by pirenzepine (Pz) and AF-DX 116 with mean pKB values of 7.53 +/- 0.13 (n = 3) and 6.02 +/- 0.13 (n = 4) respectively. 6. The suppression of IM by muscarinic agonists was not affected by gallamine (10-30 microM). 4-Diphenylacetoxy-N-methylpiperidine methiodide inhibited the response at 300 nM. 7. Pirenzepine inhibited the contractions of the guinea-pig isolated ileum produced by muscarine with a mean pKB of 6.37 +/- 0.03 (n = 8). 8. These results suggest that the receptors mediating suppression of the M

  18. Multimodal Imaging in Sympathetic Ophthalmia.

    PubMed

    Mahajan, Sarakshi; Invernizzi, Alessandro; Agrawal, Rupesh; Biswas, Jyotirmay; Rao, Narsing A; Gupta, Vishali

    2017-04-01

    To show the current status of multimodal imaging and its role in supporting an early diagnosis of sympathetic ophthalmia. The diagnosis is mainly clinical supported with ancillary investigations; mainly fluorescein angiography and others, including indocyanine angiography optical coherence tomography (OCT), OCT enhanced depth imaging, autofluorescence imaging, and ultrasonography. Various imaging modalities such as OCT, autofluorescence imaging and angiography are critical in the diagnosis and management of sympathetic ophthalmia. The clinician must make adequate use of such ancillary investigations in the management of the patients. Sympathetic ophthalmia is a rare, bilateral inflammation of the uveal tract following penetrating trauma or surgery in one eye. The intraocular inflammation requires a prompt diagnosis so that the treatment can be initiated as early as possible.

  19. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  20. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    PubMed

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  1. Effect of a single dosis of 96% ethanol on rat gastric mucosa. Part II. Histoenzymological studies.

    PubMed

    Kotz, J; Knapik, Z; Lubczyńska-Kowalska, W; Houszka, M; Lapińska, J; Rybak, M

    1989-01-01

    The histoenzymological studies of ATPase and SDH enzymes in rats' gastric mucosa after a single 90 s administration of 96% ethanol proved considerable changes in the enzymes activity in course of injury and subsequent regeneration of mucosa.

  2. PRIMARY CULTURES OF DISSOCIATED SYMPATHETIC NEURONS

    PubMed Central

    Mains, Richard E.; Patterson, Paul H.

    1973-01-01

    Rat sympathetic ganglia were disrupted by mechanical agitation to yield dissociated primary neurons, and the conditions for long-term growth in culture of the isolated neurons were examined. The neurons were grown with or without non-neural cells, simply by the addition or deletion of bicarbonate during growth in culture. Fluorescence histochemistry indicated that the isolated neurons contained catecholamines; incubations with radioactive precursors were used to verify the synthesis and accumulation of both dopamine and norepinephrine. The neurons also produced octopamine using tyramine as precursor, but not with tyrosine as the precursor. In the presence of eserine, older cultures synthesized and stored small amounts of acetylcholine. The cultures did not synthesize and accumulate detectable levels of radioactive γ-aminobutyric acid, 5-hydroxytryptamine, or histamine. PMID:4616046

  3. Kinetics of noradrenaline released by sympathetic nerves.

    PubMed

    Gonon, F; Msghina, M; Stjärne, L

    1993-10-01

    At the skeletal neuromuscular junction the released neurotransmitter, acetylcholine, is eliminated within some milliseconds. This time course is known with great precision through the electrical response of target cells. At the sympathetic neuroeffector junction the fast electrical response is not mediated by noradrenaline but by a cotransmitter: ATP. The slow electrical response and the slow component of smooth muscle contraction are principally mediated by noradrenaline. These responses are two orders of magnitude slower than the electrical response to ATP. Therefore, great uncertainty remains regarding the kinetics of noradrenaline appearance and elimination. Here, the local noradrenaline concentration at the surface of the isolated rat tail artery was electrochemically monitored in real time using a carbon fibre electrode. We have shown that the time course of the neurogenically released noradrenaline is at least one order of magnitude faster than the resulting contraction. The kinetics of noradrenaline inactivation by neuronal reuptake were also precisely measured.

  4. The History of Sympathetic Surgery.

    PubMed

    Hashmonai, Moshe

    2016-11-01

    At present, primary hyperhidrosis is the main indication for sympathectomy. For upper thoracic sympathetic ablation, excision of the second thoracic ganglion alone or with the first and/or third ganglia was the standard during the open surgery era. With the advent of thoracoscopy, modifications related to the level, extent, and type of ablation were proposed to attenuate compensatory hyperhidrosis. The ideal operation for sympathetic denervation of the face and upper limbs remain to be defined. Controlled double-blind studies with quantitave measurements of sweat production are required.

  5. Disposition of styrene-acrylonitrile (SAN) trimer in female rats: single dose intravenous and gavage studies.

    PubMed

    Gargas, Michael L; Collins, Brad; Fennell, Timothy R; Gaudette, Norman F; Sweeney, Lisa M

    2008-04-21

    Styrene-acrylonitrile trimer (SAN Trimer), a mixture of six isomers (four isomers of 4-cyano-1,2,3,4-tetrahydro-alpha-methyl-1-naphthaleneacetonitrile [THAN] and two isomers of 4-cyano-1,2,3,4-tetrahydro-1-naphthaleneproprionitrile [THNP]), is a by-product of a specific production process of styrene-acrylonitrile polymer. Disposition studies in female rats were conducted to evaluate the pharmacokinetic behavior of [3H]SAN Trimer following a single intravenous administration (26 mg/kg) to nonpregnant rats; a single gavage administration (nominal doses of 25 mg/kg, 75 mg/kg, or 200 mg/kg in corn oil) to nonpregnant rats; and a single gavage administration (nominal dose of 200 mg/kg in corn oil) to pregnant and lactating rats. SAN Trimer was rapidly eliminated from blood (T1/2 approximately 1h) following a single intravenous dose and following single oral doses (T1/2 approximately 3-4h). SAN Trimer was also rapidly excreted in the urine and feces following single oral doses, while total radioactivity was cleared more slowly. In pregnant rats, the concentrations of both radioactivity and SAN Trimer 2h after dosing were highest in the blood, followed by the placenta, with the lowest levels in the fetus. In lactating rats, the concentrations of both radioactivity and SAN Trimer were higher in milk than in maternal blood. Total radioactivity and SAN Trimer blood concentrations in nonpregnant, pregnant, and lactating rats were both higher in lactating rats compared to nonpregnant and pregnant rats.

  6. Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilisation in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition

    PubMed Central

    del Río, Elena; Bevilacqua, Jorge A; Marsh, Stephen J; Halley, Pamela; Caulfield, Malcolm P

    1999-01-01

    The relationship between muscarinic receptor activation, phosphoinositide turnover, calcium mobilisation and M-current inhibition has been studied in rat superior cervical ganglion (SCG) neurones in primary culture. Phosphoinositide-specific phospholipase C (PLC) stimulation was measured by the accumulation of [3H]-cytidine monophosphate phosphatidate (CMP-PA) after incubation with [3H]-cytidine in the presence of Li+. The muscarinic agonist oxotremorine methiodide (oxo-M) stimulated PLC in a dose-dependent manner with an EC50 of approximately 3.5 μm. The concentration-response curve for oxo-M was shifted to the right by a factor of about 10 by pirenzepine (100 nm), suggesting a pKB (—log of the apparent dissociation constant) of 7.9 ± 0.4, while himbacine (1 μm) shifted the curve by a factor of about 13 (pKB∼7.1 ± 0.6). This indicates involvement of the M1 muscarinic receptor in this response. The accumulation of CMP-PA was localised by in situ autoradiography to SCG principal neurones, with no detectable signal in glial cells present in the primary cultures. The ability of oxo-M to release Ca2+ from inositol(1,4,5)trisphosphate (InsP3)-sensitive stores was determined by fura-2 microfluorimetry of SCG neurones voltage clamped in perforated patch mode. Oxo-M failed to evoke intracellular Ca2+ (Cai2+) mobilisation in SCG neurones voltage clamped at −60 mV, but produced a significant Cai2+ rise (67 ± 15 nm, n = 9) in cells voltage clamped at −25 mV. Thapsigargin (0.5–1 μm) caused a 70% inhibition of the oxo-M-induced Cai2+ increase, indicating its intracellular origin, while oxo-M-induced inhibition of M-current in the same cells was unaffected by thapsigargin. Our results do not support the involvement of InsP3-sensitive calcium mobilisation in M-current inhibition. PMID:10517804

  7. Computational solution of spike overlapping using data-based subtraction algorithms to resolve synchronous sympathetic nerve discharge

    PubMed Central

    Su, Chun-Kuei; Chiang, Chia-Hsun; Lee, Chia-Ming; Fan, Yu-Pei; Ho, Chiu-Ming; Shyu, Liang-Yu

    2013-01-01

    Sympathetic nerves conveying central commands to regulate visceral functions often display activities in synchronous bursts. To understand how individual fibers fire synchronously, we establish “oligofiber recording techniques” to record “several” nerve fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal cord preparations of neonatal rats as experimental models. While distinct spike potentials were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising from synchronous nerve discharges is a higher incidence of complex waveforms resulted from spike overlapping. Because commercial softwares do not provide an explicit solution for spike overlapping, a series of custom-made LabVIEW programs incorporated with MATLAB scripts was therefore written for spike sorting. Spikes were represented as data points after waveform feature extraction and automatically grouped by k-means clustering followed by principal component analysis (PCA) to verify their waveform homogeneity. For dissimilar waveforms with exceeding Hotelling's T2 distances from the cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine if they were the complex waveforms resulted from superimposing a spike pattern close to the cluster centroid with the other signals that could be observed in original recordings. In comparisons with commercial software, higher accuracy was achieved by analyses using our algorithms for the synthetic data that contained synchronous spiking and complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined as unit activities. Quantitative analyses were performed to evaluate if unit activities truly originated from single fibers. We conclude that applications of our programs can help to resolve synchronous sympathetic nerve discharges (SND). PMID:24198782

  8. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular

  9. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular

  10. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    PubMed

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size.

  11. Interaction of sympathetic vasoconstriction and antidromic vasodilatation in the control of skin blood flow.

    PubMed

    Häbler, H J; Wasner, G; Jänig, W

    1997-03-01

    We studied the interaction between the vasoconstriction evoked by postganglionic sympathetic neurones (sympathetic vasoconstriction) and the vasodilatation mediated by small-diameter afferent neurones (antidromic vasodilatation) in hairless skin of anaesthetized rats kept under controlled conditions. In all animals both the lumbar sympathetic trunk (LST) and the ipsilateral dorsal root (DR) L5 were surgically exposed, sectioned and electrically stimulated using different protocols. This experimental approach results in the exclusive and selective activation of sympathetic efferents and primary afferents respectively. Blood flow responses were measured using laser Doppler flowmetry. Sectioning the LST resulted in a pronounced increase in cutaneous blood flow by 112+/-15% (mean+/-SEM, n=25) indicating that ongoing sympathetic vasoconstrictor activity had been abolished. When a brief antidromic vasodilatation was produced by DR stimulation with 10-15 pulses at 1 Hz with C-fibre intensity during a sustained sympathetic vasoconstriction, peak blood flow reached preconstriction levels at LST stimulation frequencies of < or = 3 Hz. By contrast, antidromic vasodilatation was reduced at sympathetic stimulation frequencies of > or = 5 Hz and absent when stimulating the LST with 20 Hz. A similar response characteristic was obtained when LST and DR stimulation were started simultaneously. Continuous DR stimulation with 0.1 Hz evoked a substantial increase in cutaneous blood flow by 38+/-10% (mean+/-SEM, n=8) to a new baseline level. When sympathetic vasoconstriction was elicited on this background DR stimulation, the responses were smaller at all sympathetic frequencies. However, the maximum decrease in blood flow was significantly smaller than the controls at LST stimulation with < or = 3 Hz but not at higher frequencies. We conclude that sympathetic vasoconstriction and antidromic vasodilatation are competitive influences in the control of cutaneous blood flow. At low levels

  12. Role for the cervical sympathetic trunk in regulating anaphylactic and endotoxic shock.

    PubMed

    Waddell, S C; Davison, J S; Befus, A D; Mathison, R D

    1992-01-01

    This study tests the hypothesis that spinal nerves projecting down the cervical sympathetic trunk contribute to the regulation of systemic immune responses. Decentralization or ablation (ganglionectomy) of the superior cervical ganglia (SCG), which receive innervation from spinal segments C8-T8, were found to reduce the pulmonary inflammatory response consequent to induction of anaphylaxis in rats sensitized to the nematode Nippostrongylus brasiliensis. Furthermore, the hypotensive responses to IV endotoxin were attenuated in sensitized rats by these operations, whereas decentralization without ganglionectomy protected against endotoxic shock in normal (unsensitized) rats. These results suggest that systemic inflammatory events are regulated by the cervical sympathetic nervous system at a level superior to the superior cervical ganglia. Further studies are warranted to investigate the role of the cervical and thoracic sympathetic nerves in the regulation of systemic immunological function.

  13. Cardiovascular indices of peripheral and central sympathetic activation.

    PubMed

    Schächinger, H; Weinbacher, M; Kiss, A; Ritz, R; Langewitz, W

    2001-01-01

    A number of sympathetic nervous system (SNS) parameters have been used in cardiovascular psychophysiology. This study aimed to describe the pattern and redundancy of a set of SNS parameters during peripherally induced changes of cardiac sympathetic activation and reflex modulation of central SNS control. Preejection period (PEP) was assessed as a marker of peripheral sympathetic activation. Low-frequency blood pressure variability (BPV) was assessed as an estimate of central SNS control. Peripheral beta-sympathetic stimulation and blockade were achieved with epinephrine and esmolol hydrochloride (beta1-blockade), respectively. Changes in central SNS output were induced by loading and unloading arterial baroreceptors with norepinephrine and nitroprusside sodium, respectively. This single-blinded, crossover study in 24 healthy men also included two placebo control periods. PEP was derived from impedance cardiography and adjusted individually for heart rate. BPV was calculated by power spectral analyses of beat-to-beat heart rate and systolic blood pressure (Finapres system) data. PEP decreased during epinephrine infusion (-40.1 +/- 3.8 ms, p <.0001) and increased during esmolol infusion (+6.6 +/- 3.5 ms, p =.05). PEP was shortened after central SNS activation by nitroprusside (-16.8 +/- 2.9 ms, p < 0.0001). Systolic BPV in the low-frequency range (0.07-0.14 Hz, Mayer waves) increased during nitroprusside infusion (+0.44 +/- 0.19 ln mm Hg(2), p =.03) and decreased during norepinephrine infusion (-0.67 +/- 0.13 ln mm Hg(2), p < 0.0001). Low-frequency BPV did not change significantly during epinephrine or esmolol infusion. Our data provide empirical evidence of separable peripheral and central sympathetic response components. The combined report of low-frequency BPV and PEP gives distinct information on both central SNS control and the level of sympathetic cardiac activation achieved.

  14. A single dose of mifepristone induces ovulation in pseudopregnant rats.

    PubMed

    Carón, R W; Deis, R P

    1997-01-01

    We used mifepristone (M) to evaluate the role of progesterone in maintaining pseudopregnancy. Cycling rats were made pseudopregnant (psp) by cervico-vaginal stimulation (CVS) on the day of estrus (day 0) and received 10 mg/kg M or vehicle (control groups) on day 3. Blood samples were taken at 06.00 h on days 4, 6 or 7 or at 18.00 h on days 3, 4, 6 or 10. M induced proestrus 2 days later (day 5), estrus on day 6, and a second prolonged diestrus afterwards. Prolactin and progesterone levels were similar in the control and M treated groups excepting on day 6, when both were reduced in the M-treated animals, and these rats were in estrus, suggesting a temporary impairment of luteal function. To demonstrate activated corpora lutea the endometrium was scratched on the fourth day of the first or second diestrus in additional control and M-treated groups. The deciduomal response was seen in the control and M groups after scratching the endometrium on day 4 of the first or second diestrus, respectively, but M blocked the deciduomal response in the first diestrus. Ovulation was confirmed by finding that 66.7% of the M-treated rats showed ova in the Fallopian tubes on the M-induced estrus and 4 out of 10 of the M rats placed with males on the M-induced proestrus showed spermatozoa in the vaginal smears. Half of these became pregnant, delivering 2 pups each. The results show that M can induce ovulation in psp rats, demonstrating that the anovulation observed after CVS is dependent on progesterone, yet luteal function persists after M in pseudopregnancy. Progesterone may act either by suppressing LH secretion or by permitting prolactin secretion, or both. Moreover, progesterone is required to maintain endometrial responsiveness.

  15. Heart Rates of Male and Female Sprague–Dawley and Spontaneously Hypertensive Rats Housed Singly or in Groups

    PubMed Central

    Azar, Toni; Sharp, Jody; Lawson, David

    2011-01-01

    This study was conducted to confirm our previous reports that group housing lowered basal heart rate and various evoked heart-rate responses in Sprague–Dawley male and female rats and to extend these observations to spontaneously hypertensive rats. Heart rate data were collected by using radiotelemetry. Initially, group- and single-housed rats were evaluated in the same animal room at the same time. Under these conditions, group-housing did not decrease heart rate in undisturbed male and female rats of either strain compared with single-housed rats. Separate studies then were conducted to examine single-housed rats living in the room with only single-housed rats. When group-housed rats were compared with these single-housed rats, undisturbed heart rates were reduced significantly, confirming our previous reports for Sprague–Dawley rats. However, evoked heart rate responses to acute procedures were not reduced universally in group-housed rats compared with either condition of single housing. Responses to some procedures were reduced, but others were not affected or were significantly enhanced by group housing compared with one or both of the single-housing conditions. This difference may have been due, in part, to different sensory stimuli being evoked by the various procedures. In addition, the variables of sex and strain interacted with housing condition. Additional studies are needed to resolve the mechanisms by which evoked cardiovascular responses are affected by housing, sex, and strain. PMID:21439210

  16. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides

    PubMed Central

    Shanks, Julia

    2013-01-01

    High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome. PMID:24005254

  17. Attempted protection of spermatogenesis from single doses of gamma-irradiation in the androgen pretreated rat.

    PubMed

    Schlappack, O K; Delic, J I; Harwood, J R; Stanley, J A

    1987-01-01

    Spermatogenic stem-cell survival after gamma-irradiation has been investigated in the adult Wistar rat. Single doses of 4.5 and 9 Gy gamma-rays were administered to the testes of rats who received arachis oil (0.1 ml/100 g body weight) or testosterone enanthate (240 micrograms/100 g body weight) subcutaneously three times weekly for 6 weeks prior to radiation and during the week in which the radiations were given. A mean percentage of regenerating seminiferous tubule cross-sections of 32.45% and 7.26% was found in the testes of androgen-pretreated rats at 8 weeks after 4.5 and 9 Gy, respectively. Similar values (33.4% and 6.2%) were obtained in arachis oil-pretreated controls. We therefore conclude that protection of rat spermatogenesis from single doses of gamma-rays cannot be achieved by androgen pretreatment.

  18. Single-dose Intravenous Toxicology Testing of Daebohwalryeok Pharmcopuncture in Sprague-Dawley Rats

    PubMed Central

    Sun, Seung-Ho; Park, Sunju; Jeong, Jong-Jin; Lee, Kwang-Ho; Yu, Jun-Sang; Seo, Hyung-Sik; Kwon, Ki-Rok

    2015-01-01

    Objectives: The aims of the study were to test the single-dose intravenous toxicity of Daebohwalryeok pharmacopuncture (DHRP) in Sprague-Dawley (SD) rats and to estimate the crude lethal dose. Methods: The experiments were conducted at Biotoxtech Co., a Good Laboratory Practice (GLP) laboratory, according to the GLP regulation and were approved by the Institutional Animal Care and Use Committee of Biotoxtech Co. (Approval no: 110156). The rats were divided into three groups: DHRP was injected into the rats in the two test groups at doses of 10 mL/kg and 20 mL/kg, respectively, and normal saline solution was injected into the rats in the control group. Single doses of DHRP were injected intravenously into 6 week old SD rats (5 male and 5 female rats per group). General symptoms were observed and weights were measured during the 14 day observation period after the injection. After the observation period, necropsies were done. Then, histopathological tests were performed. Weight data were analyzed with a one-way analysis of variance (ANOVA) by using statistical analysis system (SAS, version 9.2). Results: No deaths and no statistical significant weight changes were observed for either male or female SD rats in either the control or the test groups during the observation period. In addition, no treatment related general symptoms or necropsy abnormalities were observed. Histopathological results showed no DHRP related effects in the 20 mL/kg DHRP group for either male or female rats. Conclusion: Under the conditions of this study, the results from single-dose intravenous injections of DHRP showed that estimated lethal doses for both male and female rats were above 20 mL/kg. PMID:26120487

  19. Treatment of paroxysmal sympathetic hyperactivity.

    PubMed

    Rabinstein, Alejandro A; Benarroch, Eduardo E

    2008-03-01

    Episodes of paroxysmal sympathetic hyperactivity, sometimes referred to as autonomic storms, are not uncommon in patients with severe traumatic brain injury. Their distinctive characteristics include fever, tachycardia, hypertension, tachypnea, hyperhidrosis, and dystonic posturing. The episodes may be induced by stimulation or may occur spontaneously. Their pathophysiology has not been fully elucidated, but the manifestations clearly indicate activation or disinhibition of sympathoexcitatory areas. These spells are often confused with seizures, leading to unnecessary treatment with antiepileptic drugs. General principles in the management of paroxysmal sympathetic hyperactivity include adequate hydration, exclusion of mimicking conditions (infection, pulmonary embolism, hydrocephalus, epilepsy), effective analgesia, and avoidance of triggers, when identified. The most useful pharmacologic agents are morphine sulfate and nonselective beta-blockers (eg, propranolol). Intrathecal baclofen may be effective in refractory cases. Bromocriptine and clonidine are helpful in some patients, but their efficacy is less consistent. Early recognition and adequate treatment of paroxysmal sympathetic hyperactivity is important to avoid prolongation of the patient's stay in the intensive care unit and to enable recovering patients to participate without restrictions in rehabilitation therapy.

  20. Single and Repeated Ultra-Rapid Detoxification Prevents Cognitive Impairment in Morphine Addicted Rats: A Privilege for Single Detoxification

    PubMed Central

    Ghamati, Leila; Hajali, Vahid; Sheibani, Vahid; Esmaeilpour, Khadijeh; Sepehri, Gholamreza; Shojaee, Mojtaba

    2014-01-01

    Background Opioids have been shown to affect learning and memory processes. Different protocols of morphine withdrawal can substantially vary in their success to prevent opioid induced impairments of cognitive performance. In the present study, we report the effects of single and repetitive ultra-rapid detoxification (URD) on spatial learning and memory in morphine addicted rats. Methods Morphine (10 mg/kg) was intraperitoneally (IP) injected in male rats once a day over one week and after which they were detoxified with naloxone administration under anesthesia. For the repetitive procedure, a second one week morphine treatment with a second subsequent detoxification was performed. Control groups received an equivalent volume of saline injections. Spatial learning and memory was evaluated using the Morris water maze (MWM) task. Findings Both protocols of morphine administration resulted in a severe spatial memory impairment that could be significantly prevented by both single and repetitive URD. However, memory abilities in animals treated with repetitive URD were still significantly lower than in animals of the corresponding control group. Alterations in motor activity or sensory-motor coordination between morphine treated and control animals could be ruled out by comparing swimming speed and visible platform performances that were not different between groups. Thus, URD and, specifically single URD, can prevent the spatial memory impairments in addicted rats. Conclusion As opioid addiction is an extending and serious concern in many societies, these findings may have clinical values and therapeutic implications for patients who experience multiple opioid relapses. PMID:25140218

  1. Single-dose Intramuscular Injection Toxicology of Danggui Pharmacopuncture (DGP) in Sprague-Dawley Rats

    PubMed Central

    Sun, SeungHo; Jeong, JongJin; Park, Sunju; Lee, KwangHo; Yu, JunSang; Seo, Hyung-Sik; Kwon, KiRok

    2015-01-01

    Objectives: The purpose of the study is to assess both the approximate lethal dose and the single dose intramuscular injection toxicity of Danggui (Angelica gigantis radix) pharmacopuncture (DGP) in Sprague-Dawley (SD) rats. Methods: The experiments were conducted at the good laboratory practice (GLP) laboratory, Biotoxtech Co., which is a laboratory approved by the ministry of food and drug safety (MFDS). The study was performed according to the GLP regulation and the toxicity test guidelines of the MFDS (2009) after approval of the institutional animal care and use committee of Biotoxtech. Single doses of DGP were injected intramuscularly into the rats in three test groups of 6 week old SD rats (5 male and 5 female rats per groups) in the amounts of 0.1, 0.5, and 1.0 mL/animal for groups 2, 3, and 4, respectively, and normal saline solution in the amount of 1.0 mL/animal was injected intramuscularly into the rats (5 male and 5 female rats) in the control group. Observations of the general symptoms and weight measurements were performed during the 14 day observation period after the injection. Hematologic and serum biochemical examination, necropsy, and a local tolerance test at the injection site were done after the observation period. Results: No death was observed in three test groups (0.1, 0.5 and 1.0 mL/animal group). In addition, the injection of DGP had no effect on general symptoms, weights, hematologic and serum biochemical examination, and necropsy. The results from the local tolerance tests at injection site showed no treatment related effects in the SD rats. Conclusion: The results of single dose intramuscular injection of DGP suggest that the approximate lethal dose is above 1.0 mL/animal for both male and female SD rats and that intramuscular injection of DGP may be safe. PMID:25830059

  2. The sympathetic nervous system in obesity hypertension.

    PubMed

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  3. Enhanced sympathetic cardiac modulation in bruxism patients.

    PubMed

    Marthol, Harald; Reich, Sven; Jacke, Julia; Lechner, Karl-Heinz; Wichmann, Manfred; Hilz, Max Josef

    2006-08-01

    Sleep bruxism, an oral parafunction including teeth clenching and grinding, might be related to increased stress. To evaluate sympathetic cardiac activity in bruxism patients, we monitored cardiac autonomic modulation using spectral analysis of heart rate variability and compared results to those of age-matched healthy volunteers. In bruxism patients, sympathetic cardiac activity was higher than in volunteers. The increased sympathetic tone suggests increased stress and might be related to occlusal disharmonies.

  4. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias.

    PubMed

    McCully, Belinda H; Hasan, Wohaib; Streiff, Cole T; Houle, Jennifer C; Woodward, William R; Giraud, George D; Brooks, Virginia L; Habecker, Beth A

    2013-11-15

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250-275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events.

  5. [The influence of prolonged painful stimulation on adrenaline and noradrenaline concentration in different regions of the brain and in the adrenals of white rats before and after removal of the superior cervical sympathetic ganglia].

    PubMed

    Matrosov, V D

    1975-03-01

    Prior to removal of the sympathetic ganglia, the sustained nociceptive stimulation decreased the adrenalin and noradrenalin content in the medulla oblongata, cerebellum, and the midbrain while increasing it in the adrenal glands. After the removal, the stimulation was followed by a shorter (except in the medulla oblongata) decrease of the adrenalin and noradrenalin content in the same brain areas; in the adrenal glands the noradrenalin contents increased.

  6. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.

    PubMed

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.

  7. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.

  8. Does single cortical spreading depression elicit pain behaviour in freely moving rats?

    PubMed

    Akcali, Didem; Sayin, Aslihan; Sara, Yildirim; Bolay, Hayrunnisa

    2010-10-01

    Behavioural animal studies are critical, particularly to translate results to human beings. Cortical spreading depression (CSD) has been implicated in migraine pathogenesis. We aimed to investigate the effects of CSD on the behaviour of freely moving rats, since available CSD models do not include awake animals. We developed a new model to induce single CSD by applying topical N-methyl-D-aspartate (NMDA) and employed a combination of an automated behavioural analysis system, video camera and ultrasonic vocalisation (USV) calls for the first time. Electrocorticograms were also studied during CSD in freely moving rats. Behaviour associated with cephalic pain was assessed in a group of rats that received sumatriptan. Cortical c-fos immunoreactivity was performed in order to confirm CSD. NMDA induced single CSD in ipsilateral cortex, evoked freezing behaviour (P < 0.01) and increased the number of wet dog shakes (WDS; P < 0.01). Grooming, locomotion, eating, drinking, and circling were not significantly altered among groups. Ultrasonic vocalisations compatible with pain calls (22-27 kHz) were only detected in 3 out of 25 rats. Sumatriptan did not significantly reduce the freezing behaviour. CSD induced significant c-fos expression in ipsilateral cerebral cortex and amygdala (P < 0.01). CSD induces freezing behaviour by invoking anxiety/fear via amygdala activation in freely-moving rats. Single CSD is unlikely to lead to severe pain in freely-moving rats, though the development of mild or vague pain cannot be excluded. The relevance of rat behavioural responses triggered by CSD to migraine symptoms in humans needs further evaluation.

  9. Studies on single-dose toxicity of hydrophobically modified hydroxypropyl methylcellulose in rats.

    PubMed

    Obara, S; Muto, H; Kokubo, H; Ichikawa, N; Kawanabe, M; Tanaka, O

    1992-02-01

    Single-dose toxicological studies of hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC, hydroxypropyl methylcellulose modified with stearylglycidylether) were conducted. A dispersion of HM-HPMC was administered to rats orally or by dermal application at doses up to 900 mg/kg. After the oral administration, the mean body weight of the 900 mg/kg group on the first day after administration was slightly but significantly lower (P less than 0.05) than that of the control group, and one rat had loose stools at 30 min. after the administration. No other abnormalities were noted. In the case of dermal application, no abnormalities were observed. No rats died, and no abnormalities in their organs were found by either route. In conclusion, there was no observed toxicity of HM-HMPC after oral or dermal administration at single dose up to 900 mg/kg under the conditions of these studies.

  10. Sympathetic crashing acute pulmonary edema

    PubMed Central

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-01-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence. PMID:28149030

  11. Sympathetic crashing acute pulmonary edema.

    PubMed

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-12-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence.

  12. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure

    PubMed Central

    Kumagai, Hiroo; Oshima, Naoki; Matsuura, Tomokazu; Iigaya, Kamon; Imai, Masaki; Onimaru, Hiroshi; Sakata, Katsufumi; Osaka, Motohisa; Onami, Toshiko; Takimoto, Chie; Kamayachi, Tadashi; Itoh, Hiroshi; Saruta, Takao

    2012-01-01

    Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy. PMID:22170390

  13. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure.

    PubMed

    Kumagai, Hiroo; Oshima, Naoki; Matsuura, Tomokazu; Iigaya, Kamon; Imai, Masaki; Onimaru, Hiroshi; Sakata, Katsufumi; Osaka, Motohisa; Onami, Toshiko; Takimoto, Chie; Kamayachi, Tadashi; Itoh, Hiroshi; Saruta, Takao

    2012-02-01

    Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy.

  14. Single Prolonged Stress Disrupts Retention of Extinguished Fear in Rats

    ERIC Educational Resources Information Center

    Knox, Dayan; George, Sophie A.; Fitzpatrick, Christopher J.; Rabinak, Christine A.; Maren, Stephen; Liberzon, Israel

    2012-01-01

    Clinical research has linked post-traumatic stress disorder (PTSD) with deficits in fear extinction. However, it is not clear whether these deficits result from stress-related changes in the acquisition or retention of extinction or in the regulation of extinction memories by context, for example. In this study, we used the single prolonged stress…

  15. Single Prolonged Stress Disrupts Retention of Extinguished Fear in Rats

    ERIC Educational Resources Information Center

    Knox, Dayan; George, Sophie A.; Fitzpatrick, Christopher J.; Rabinak, Christine A.; Maren, Stephen; Liberzon, Israel

    2012-01-01

    Clinical research has linked post-traumatic stress disorder (PTSD) with deficits in fear extinction. However, it is not clear whether these deficits result from stress-related changes in the acquisition or retention of extinction or in the regulation of extinction memories by context, for example. In this study, we used the single prolonged stress…

  16. [Intracerebral distribution of lindane in rats: short term observation after administration of a single dose].

    PubMed

    Lièvremont, M; Potus, J

    1981-06-22

    Residual radioactivity in Rat brain structures is studied after single dose 14C Lindane administration. Short time after injection, at the onset of convulsions, white matter and myelinated structures show important retention, nucleated cells do not. This heterogeneous distribution agrees with the lipophilic behaviour of the pesticide.

  17. Single Landmark Learning in Rats: Sex Differences in a Navigation Task

    ERIC Educational Resources Information Center

    Forcano, L.; Santamaria, J.; Mackintosh, N. J.; Chamizo, V. D.

    2009-01-01

    In Experiments 1 and 2, rats were trained in a Morris pool to find a hidden platform located some distance away from a single landmark. Males learned to swim to the platform faster than females, but on test trials without the platform, males, unlike females, spent less time in the platform quadrant of the pool in the second half of each test trial…

  18. Safety of red ginseng oil for single oral administration in Sprague–Dawley rats

    PubMed Central

    Bak, Min-Ji; Kim, Kyu-Bong; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    The single oral administration of red ginseng oil (5000 mg/kg) to Sprague–Dawley rats induced no changes in behavioral patterns, clinical signs, and body weight, and hepatotoxicity parameters such as aspartate aminotransferase and alanine aminotransferase for 14 d. Therefore, these results suggest that the red ginseng oil is safe and nontoxic acutely. PMID:24558315

  19. Sympathetic activity controls fat-induced oleoylethanolamide signaling in small intestine.

    PubMed

    Fu, Jin; Dipatrizio, Nicholas V; Guijarro, Ana; Schwartz, Gary J; Li, Xiaosong; Gaetani, Silvana; Astarita, Giuseppe; Piomelli, Daniele

    2011-04-13

    Ingestion of dietary fat stimulates production of the small-intestinal satiety factors oleoylethanolamide (OEA) and N-palmitoyl-phosphatidylethanolamine (NPPE), which reduce food intake through a combination of local (OEA) and systemic (NPPE) actions. Previous studies have shown that sympathetic innervation of the gut is necessary for duodenal infusions of fat to induce satiety, suggesting that sympathetic activity may engage small-intestinal satiety signals such as OEA and NPPE. In the present study, we show that surgical resection of the sympathetic celiac-superior mesenteric ganglion complex, which sends projections to the upper gut, abolishes feeding-induced OEA production in rat small-intestinal cells. These effects are accounted for by suppression of OEA biosynthesis, and are mimicked by administration of the selective β2-adrenergic receptor antagonist ICI-118,551. We further show that sympathetic ganglionectomy or pharmacological blockade of β2-adrenergic receptors prevents NPPE release into the circulation. In addition, sympathetic ganglionectomy increases meal frequency and lowers satiety ratio, and these effects are corrected by pharmacological administration of OEA. The results suggest that sympathetic activity controls fat-induced satiety by enabling the coordinated production of local (OEA) and systemic (NPPE) satiety signals in the small intestine.

  20. Sympathetic activity controls fat-induced OEA signaling in small intestine

    PubMed Central

    Fu, Jin; DiPatrizio, Nicholas V; Guijarro, Ana; Schwartz, Gary J; Li, Xiaosong; Gaetani, Silvana; Astarita, Giuseppe; Piomelli, Daniele

    2011-01-01

    Ingestion of dietary fat stimulates production of the small-intestinal satiety factors oleoylethanolamide (OEA) and N-palmitoyl-phosphatidylethanolamine (NPPE), which reduce food intake through a combination of local (OEA) and systemic (NPPE) actions. Previous studies have shown that sympathetic innervation of the gut is necessary for duodenal infusions of fat to induce satiety, suggesting that sympathetic activity may engage small-intestinal satiety signals such as OEA and NPPE. In the present study, we show that surgical resection of the sympathetic celiac superior mesenteric ganglion, which sends projections to the upper gut, abolishes feeding-induced OEA production in rat small-intestinal cells. These effects are accounted for by suppression of OEA biosynthesis, and are mimicked by administration of the selective β2-adrenergic receptor antagonist, ICI-118,551. We further show that sympathetic ganglionectomy or pharmacological blockade of β2-adrenergic receptors prevents NPPE release into the circulation. In addition, sympathetic ganglionectomy increases meal frequency and lowers satiety ratio, and these effects are corrected by pharmacological administration of OEA. The results suggest that sympathetic activity controls fat-induced satiety by enabling the coordinated production of local (OEA) and systemic (NPPE) satiety signals in the small intestine. PMID:21490214

  1. Neurotrimin is an estrogen-regulated determinant of peripheral sympathetic innervation

    PubMed Central

    Krizsan-Agbas, Dora; Pedchenko, Tetyana; Smith, Peter G.

    2008-01-01

    Mechanisms underlying axon degeneration in peripheral neuropathies and during normal remodeling are poorly understood. Because estrogen induces widespread sympathetic axon degeneration within female reproductive tract smooth muscle, we surveyed estrogen-regulated genes in rat myometrium. Microarray analysis revealed that the neural cell adhesion protein neurotrimin (Ntm) was markedly upregulated at 6h and down-regulated by 24h after injection of 17β-estradiol and real time RT-PCR confirmed this pattern of expression. Protein analysis by western blotting showed that uterine Ntm protein is also upregulated in vivo at 6−24h following estrogen injection, and that Ntm protein is increased selectively in the myometrium during the high-estrogen phase of the estrous cycle. Cultured myometrial smooth muscle cells display peri-nuclear accumulations of Ntm protein, and 17β-Estradiol also increases intracellular levels of Ntm and its secretion into the culture medium. To determine if neurotrimin is required for estrogen-induced sympathetic pruning, sympathetic neurons were co-cultured with uterine smooth muscle cells transfected with siRNA directed against Ntm. While estrogen inhibited neurite outgrowth in non-transfected co-cultures, estrogen's ability to reduce sympathetic outgrowth was impaired substantially following Ntm downregulation. This supports a role for neurotrimin in mediating estrogen-induced sympathetic pruning in some peripheral targets. Together with earlier studies, these findings support the idea that physiological sympathetic axon degeneration is a multifactorial process requiring dynamic regulation of multiple repellant proteins. PMID:18627025

  2. Sympathetic nerves bridge the cross-transmission in hemifacial spasm.

    PubMed

    Zheng, Xuesheng; Hong, Wenyao; Tang, Yinda; Wu, Zhenghai; Shang, Ming; Zhang, Wenchuan; Zhong, Jun; Li, Shiting

    2012-05-23

    The pathophysiologic basis of hemifacial spasm is abnormal cross-transmission between facial nerve fibers. The author hypothesized that the demyelinated facial nerve fibers were connected with the sympathetic nerve fibers on the offending artery wall, and thus the latter function as a bridge in the cross-transmission circuit. This hypothesis was tested using a rat model of hemifacial spasm. A facial muscle response was recorded while the offending artery wall was electrically stimulated. The nerve fibers on the offending artery wall were blocked with lidocaine, or the superior cervical ganglion, which innervates the offending artery, was resected, and meanwhile the abnormal muscle response was monitored and analyzed. A waveform was recorded from the facial muscle when the offending artery wall was stimulated, named as "Z-L response". The latency of Z-L response was different from that of abnormal muscle response. When the nerve fibers on the offending artery wall were blocked by lidocaine, the abnormal muscle response disappeared gradually and recovered in 2h. The abnormal muscle response disappeared permanently after the sympathetic ganglion was resected. Our findings indicate that cross-transmission between the facial nerve fibers is bridged by the nerve fibers on the offending artery wall, probably sympathetic nerve fibers.

  3. Contralateral genitofemoral sympathetic nerve discharge increases following ipsilateral testicular torsion.

    PubMed

    Otçu, Selçuk; Durakoğugil, Murat; Orer, Hakan S; Tanyel, Feridun C

    2002-10-01

    The decrease in blood flow due to the activation of sympathetic system has been suggested to play a role in contralateral testicular deterioration associated with unilateral testicular torsion. Sympathetic nerve discharges (SND) from the genitofemoral nerve were evaluated before and during unilateral testicular torsion. Under urethane anesthesia, arterial blood pressure and SND from splanchnic and right genitofemoral nerves were recorded in 12 male Sprague-Dawley rats, 8 of which were included in subsequent analyses. After control recordings of basal discharges for 2 min the left testis was twisted 720 degrees counterclockwise, and recording was resumed for an additional 30 min. Changes in nerve activity were calculated by measuring the area under the autospectrum curve, and alterations were compared. Following testicular torsion no significant changes were obtained for splanchnic SND, but the amplitude of SND from contralateral genitofemoral nerve showed an overall increase of 21.20+/-7.03% in six rats. This increase lasted about 10-15 min and activities returned to pretorsion levels. In two other rats no significant change was observed in either splanchnic or genitofemoral SND. Ipsilateral testicular torsion results in a transient increase in genitofemoral SND. A possible autonomic reflex mechanism may exist, and it may be activated by noxious stimuli from contralateral side. This reflex mechanism may initiate a series of events that lead to the injury of contralateral testis.

  4. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    PubMed

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  5. Sympathetic actions on the skeletal muscle.

    PubMed

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  6. Effect of single-dose amoxicillin on rat incisor odontogenesis: a morphological study.

    PubMed

    Kumazawa, Kaido; Sawada, Takashi; Yanagisawa, Takaaki; Shintani, Seikou

    2012-06-01

    The effect of exposure to amoxicillin on tooth development remains to be elucidated. The purpose of this study was to investigate the effect of amoxicillin on rat incisor odontogenesis. Male Wistar rats weighing approximately 100 g were given a single intraperitoneal injection of 3.0 g/kg body weight amoxicillin. One week after injection, the rats were fixed, and the lower incisors were demineralized and prepared into paraffin sections for light microscopy (LM) and immunohistochemistry. Undemineralized samples were embedded in resin and ground for processing for contact microradiography (CMR) and scanning electron microscopy (SEM). Serum calcium, phosphate, and magnesium concentrations were measured. At 1 week after amoxicillin administration, LM, CMR, and SEM revealed a clear increase in the area of interglobular dentin, representing disruption of mineralization by odontoblasts. Immunohistochemistry demonstrated moderate levels of the small integrin-binding ligand N-linked glycoprotein family dentin matrix protein 1 in large areas of interglobular dentin. On the other hand, no morphological alteration or hypomineralization was observed in the enamel. Serum calcium values showed no significant differences between the control and experimental rats during the experimental period although both serum phosphate and magnesium levels increased at day 1 after amoxicillin injection. The results suggest that a single dose of amoxicillin specifically affects normal tooth dentin mineralization, but not enamel mineralization in rat incisor odontogenesis. The present results further our understanding of the clinical association between dentin abnormality and amoxicillin exposure during tooth development.

  7. 5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation

    PubMed Central

    Darios, Emma S.; Barman, Susan M.; Orer, Hakan S.; Morrison, Shaun F.; Davis, Robert P.; Seitz, Bridget M.; Burnett, Robert; Watts, Stephanie W.

    2015-01-01

    Infusion of 5-hydroxytryptamine (5-HT) in conscious rats results in a sustained (up to 30 days) fall in blood pressure. This is accompanied by an increase in splanchnic blood flow. Because the splanchnic circulation is regulated by the sympathetic nervous system, we hypothesized that 5-HT would: 1) directly reduce sympathetic nerve activity in the splanchnic region; and/or 2) inhibit sympathetic neuroeffector function in splanchnic blood vessels. Moreover, removal of the sympathetic innervation of the splanchnic circulation (celiac ganglionectomy) would reduce 5-HT-induced hypotension. In anaesthetized Sprague-Dawley rats, mean blood pressure was reduced from 101 ± 4 to 63 ± 3 mm Hg during slow infusion of 5-HT (25 μg/kg/min, i.v.). Pre- and postganglionic splanchnic sympathetic nerve activity was unaffected during 5-HT infusion. In superior mesenteric arterial rings prepared for electrical field stimulation, neither 5-HT (3, 10, 30 nM), the 5-HT1B receptor agonist CP 93129 nor 5-HT1/7 receptor agonist 5-carboxamidotryptamine inhibited neurogenic contraction compared to vehicle. 5-HT did not inhibit neurogenic contraction in superior mesenteric venous rings. Finally, celiac ganglionectomy did not modify the magnitude of fall or time course of 5-HT-induced hypotension when compared to animals receiving sham ganglionectomy. We conclude it is unlikely 5-HT interacts with the sympathetic nervous system at the level of the splanchnic preganglionic or postganglionic nerve, as well as at the neuroeffector junction, to reduce blood pressure. These important studies allow us to rule out a direct interaction of 5-HT with the splanchnic sympathetic nervous system as a cause of the 5-HT-induced fall in blood pressure. PMID:25732865

  8. 5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation.

    PubMed

    Darios, Emma S; Barman, Susan M; Orer, Hakan S; Morrison, Shaun F; Davis, Robert P; Seitz, Bridget M; Burnett, Robert; Watts, Stephanie W

    2015-05-05

    Infusion of 5-hydroxytryptamine (5-HT) in conscious rats results in a sustained (up to 30 days) fall in blood pressure. This is accompanied by an increase in splanchnic blood flow. Because the splanchnic circulation is regulated by the sympathetic nervous system, we hypothesized that 5-HT would: 1) directly reduce sympathetic nerve activity in the splanchnic region; and/or 2) inhibit sympathetic neuroeffector function in splanchnic blood vessels. Moreover, removal of the sympathetic innervation of the splanchnic circulation (celiac ganglionectomy) would reduce 5-HT-induced hypotension. In anaesthetized Sprague-Dawley rats, mean blood pressure was reduced from 101±4 to 63±3mm Hg during slow infusion of 5-HT (25μg/kg/min, i.v.). Pre- and postganglionic splanchnic sympathetic nerve activity were unaffected during 5-HT infusion. In superior mesenteric arterial rings prepared for electrical field stimulation, neither 5-HT (3, 10, 30nM), the 5-HT1B receptor agonist CP 93129 nor 5-HT1/7 receptor agonist 5-carboxamidotryptamine inhibited neurogenic contraction compared to vehicle. 5-HT did not inhibit neurogenic contraction in superior mesenteric venous rings. Finally, celiac ganglionectomy did not modify the magnitude of fall or time course of 5-HT-induced hypotension when compared to animals receiving sham ganglionectomy. We conclude it is unlikely 5-HT interacts with the sympathetic nervous system at the level of the splanchnic preganglionic or postganglionic nerve, as well as at the neuroeffector junction, to reduce blood pressure. These important studies allow us to rule out a direct interaction of 5-HT with the splanchnic sympathetic nervous system as a cause of the 5-HT-induced fall in blood pressure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    PubMed Central

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca2+ upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons. PMID:26818524

  10. Netrin-1 controls sympathetic arterial innervation

    PubMed Central

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-01-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433

  11. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  12. Sympathetic innervation of human muscle spindles.

    PubMed

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-06-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes.

  13. Painful peripheral states and sympathetic blocks.

    PubMed Central

    Loh, L; Nathan, P W

    1978-01-01

    In various chronic painful states, the sympathetic nerve supply was blocked either by injecting the sympathetic chain and ganglia with local anaesthesia or by the injection of guanethidine during occlusion of the circulation. There was a striking relation between the presence of hyperpathia and the relief of pain by the blocks. The sympathetic block was unlikely to relieve the pain unless hyperpathia accompanied the pain; when hyperpathia was present, a sympathetic block relieved both the constant pain and the hyperpathia. The effectiveness of the guanethidine blocks shows that the pain and the hyperpathia are maintained by the emission of noradrenaline in the periphery. The facts related to the sympathetic system and sensibility are discussed. PMID:690645

  14. Sympathetic ophthalmia complicating helium ion irradiation of a choroidal melanoma

    SciTech Connect

    Fries, P.D.; Char, D.H.; Crawford, J.B.; Waterhouse, W.

    1987-11-01

    Sympathetic ophthalmia was diagnosed 49 months after helium ion irradiation of a left choroidal melanoma. The patient maintained good vision until 18 months after therapy, when she developed neovascular glaucoma. This complication required multiple therapeutic procedures, including topical anti-inflammatory and antiglaucomatous drops, 360 degrees peripheral panretinal cryoblation, and a single 180 degrees application of inferior cyclocryotherapy over a 2 1/2-year period. Four weeks after the cyclocryotherapy, inflammation was noted in both eyes, and, one month later, enucleation of the left sympathogenic eye was performed. Serial histopathologic sections showed a full-thickness, fibrovascular, scleral scar and tantalum marker ring suture without uveal incarceration. Penetrating surgical trauma, a uveal melanoma, and multiple nonpenetrating treatments resulted in the development of sympathetic ophthalmia.

  15. Sympathetic rhythms and cardiovascular oscillations.

    PubMed

    Montano, N; Cogliati, C; Dias da Silva, V J; Gnecchi-Ruscone, T; Malliani, A

    2001-07-20

    Spectral analysis of heart rate and arterial pressure variabilities is a powerful noninvasive tool, which is increasingly used to infer alterations of cardiovascular autonomic regulation in a variety of physiological and pathophysiological conditions, such as hypertension, myocardial infarction and congestive heart failure. A most important methodological issue to properly interpret the results obtained by the spectral analysis of cardiovascular variability signals is represented by the attribution of neurophysiological correlates to these spectral components. In this regard, recent applications of spectral techniques to the evaluation of the oscillatory properties of sympathetic efferent activity in animals, as well as in humans, offer a new approach to a better understanding of the relationship between cardiovascular oscillations and autonomic regulation.

  16. How to assess sympathetic activity in humans.

    PubMed

    Grassi, G; Esler, M

    1999-06-01

    Sympathetic factors play a central role not only in cardiovascular homeostatic control but also in the pathogenesis and/or in the progression of several cardiovascular diseases, such as essential hypertension, myocardial infarction, cardiac arrhythmias and congestive heart failure. This explains why assessment of adrenergic neural function in humans has been, and certainly still remains, one of the major fields in cardiovascular research. The present paper will review in detail the haemodynamic, pharmacological, biochemical, neurophysiological, neurochemical and neural imaging techniques by which sympathetic activity is assessed in humans, highlighting the main advantages and limitations of each of them. Although plasma noradrenaline measurement represents a useful guide to assess sympathetic neural function, direct recording of sympathetic nerve traffic via microneurography and noradrenaline radiotracer methods have in recent years largely supplanted the plasma noradrenaline approach. This is because they allow (1) discrimination between the central or peripheral nature of increased plasma noradrenaline levels, and (2) precise estimation of the behaviour of regional sympathetic neural function both under physiological and pathological conditions. In contrast, the approach based on spectral analysis of heart rate and blood pressure signals has been shown to have important limitations which prevent the method from faithfully reflecting sympathetic cardiovascular drive. Neural imaging techniques, which require expensive technical support, allow direct visualization of sympathetic enervation of human organs, thus providing information on the 'in vivo' metabolism of noradrenaline in different cardiovascular districts. Although technical improvements have allowed a more precise assessment of human adrenergic function, no technique so far available can be viewed as a 'gold standard' with which the others might be compared. Limitations and disadvantages of the various

  17. Serological validation of an alveolar echinococcosis rat model with a single hepatic lesion

    PubMed Central

    YAMASHITA, Masamichi; IMAGAWA, Tomohiro; SAKO, Yasuhito; OKAMOTO, Munehiro; YANAGIDA, Tetsuya; OKAMOTO, Yoshiharu; TSUKA, Takeshi; OSAKI, Tomohiro; ITO, Akira

    2016-01-01

    Serology is important for the diagnosis and follow-up of human alveolar echinococcosis (AE). However, patient conditions are highly variable among those with AE, and antibody responses in serological follow-up have not been well-defined. We recently described a new AE rat model established by implantation of small AE tissue into a single arbitrary location in the liver; no metastasis and dissemination were observed. In the present study, we examined the serological characteristics in our rat model before and after surgical treatment. The results showed that antibody responses against crude antigens were increased at one month after transplantation and similar to those of other model animals. For the antigen Em18, antibody responses were slower in our rat model than in other animal models. After surgical resection, changes in antibody responses against Em18 were similar to those observed in human patients with AE. Because of the slow growth of lesions, establishment of a single hepatic lesion and patterns of antibody responses, our rat model may be useful for clarifying follow-up serodiagnoses in human AE and determining the mechanisms of multi-organ involvement by primary infection with oncospheres rather than metastasis. PMID:27890868

  18. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    PubMed Central

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  19. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  20. Cyclooxygenase-1 and -2 in spinally projecting neurons are involved in CRF-induced sympathetic activation.

    PubMed

    Yamaguchi, Naoko; Okada, Shoshiro

    2009-12-03

    Corticotropin-releasing factor (CRF) in the brain has been shown to stimulate sympathetic activity, leading to elevations of blood pressure, heart rate and plasma catecholamine levels and neuronal activation of the sympathetic ganglia and adrenal medulla. We previously reported that brain cyclooxygenase (COX), the rate-limiting enzyme in the synthesis of prostanoids, is involved in centrally administered CRF-induced sympathetic activation in rats. Therefore, the present study was designed to reveal the effect of centrally administered CRF (1.5 nmol/animal) on the expression of COX isozymes, COX-1 and COX-2, in spinally projecting neurons until 6h after the administration, using rats microinjected with a monosynaptic retrograde tracer into the intermediolateral cell column of the thoracic spinal cord. Retrogradely labeled neurons were detected in the paraventricular hypothalamic nucleus (PVN), locus coeruleus (LC), raphe pallidus nucleus and rostral ventrolateral medulla. Centrally administered CRF significantly increased the number of spinally projecting PVN neurons expressing COX-1 throughout the experimental period and those expressing COX-2 during only the late phase. CRF also increased the number of spinally projecting LC neurons expressing COX-2 throughout the experimental period. In other regions, the CRF administration had no effect on COXs expression in spinally projecting neurons. These results suggest that COX-1 and COX-2 in the PVN and COX-2 in the LC play roles in the CRF-induced sympathetic regulation in rats.

  1. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension.

    PubMed

    Ye, Zeng-You; Li, De-Pei; Li, Li; Pan, Hui-Lin

    2011-06-01

    Increased glutamatergic input in the paraventricular nucleus (PVN) is important for high sympathetic outflow in hypertension, but the associated molecular mechanisms remain unclear. Here, we determined the role of protein kinase CK2 (formerly casein kinase II) in increased N-methyl-d-aspartate receptor (NMDAR) activity in spinally projecting PVN neurons and sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The selective CK2 inhibitors 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) significantly decreased the frequency of miniature EPSCs (mEPSCs) of labeled PVN neurons in SHRs but not in Wistar-Kyoto (WKY) normotensive rats. Also, DRB abolished the inhibitory effect of the NMDAR antagonist AP5 on the frequency of mEPSCs in SHRs. Treatment with DRB or TBB significantly reduced the amplitude of evoked NMDA-EPSCs but not AMPA-EPSCs in SHRs. Furthermore, DRB significantly decreased the firing activity of PVN neurons in SHRs but not in WKY rats. The membrane protein level of CK2α in the PVN, but not brainstem and prefrontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased CK2α level and the effects of DRB on mEPSCs and NMDA-EPSCs. In addition, intracerebroventricular injection of DRB not only significantly reduced blood pressure and lumbar sympathetic nerve discharges but also eliminated the inhibitory effect of AP5 microinjected into the PVN on sympathetic nerve activity in SHRs. Our findings suggest that augmented CK2 activity critically contributes to increased presynaptic and postsynaptic NMDAR activity in the PVN and elevated sympathetic vasomotor tone in essential hypertension.

  2. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines.

    PubMed

    Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Yu, Yang; Johnson, Alan Kim; Felder, Robert B

    2013-07-01

    Proinflammatory cytokines play an important role in regulating autonomic and cardiovascular function in hypertension and heart failure. Peripherally administered proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), act on the brain to increase blood pressure, heart rate, and sympathetic nerve activity. These molecules are too large to penetrate the blood-brain barrier, and so the mechanisms by which they elicit these responses remain unknown. We tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ that lacks a blood-brain barrier, plays a major role in mediating the sympathetic and hemodynamic responses to circulating proinflammatory cytokines. Intracarotid artery injection of TNF-α (200 ng) or IL-1β (200 ng) dramatically increased mean blood pressure, heart rate, and renal sympathetic nerve activity in rats with sham lesions of the SFO (SFO-s). These excitatory responses to intracarotid artery TNF-α and IL-1β were significantly attenuated in SFO-lesioned (SFO-x) rats. Similarly, the increases in mean blood pressure, heart rate, and renal sympathetic nerve activity in response to intravenous injections of TNF-α (500 ng) or IL-1β (500 ng) in SFO-s rats were significantly reduced in the SFO-x rats. Immunofluorescent staining revealed a dense distribution of the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, in the SFO. These data suggest that SFO is a predominant site in the brain at which circulating proinflammatory cytokines act to elicit cardiovascular and sympathetic responses.

  3. Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system.

    PubMed

    Fernandois, Daniela; Cruz, Gonzalo; Na, Eun Kyung; Lara, Hernán E; Paredes, Alfonso H

    2017-01-01

    Previous work has demonstrated that the increase in the activity of sympathetic nerves, which occurs during the subfertility period in female rats, causes an increase in follicular cyst development and impairs follicular development. In addition, the increase in ovarian sympathetic activity of aged rats correlates with an increased expression of kisspeptin (KISS1) in the ovary. This increase in KISS1 could participate in the decrease in follicular development that occurs during the subfertility period. We aimed to determine whether the blockade of ovarian sympathetic tone prevents the increase in KISS1 expression during reproductive aging and improves follicular development. We performed 2 experiments in rats: (1) an in vivo blockade of beta-adrenergic receptor with propranolol (5.0 mg/kg) and (2) an ovarian surgical denervation to modulate the sympathetic system at these ages. We measured Kisspeptin and follicle-stimulating hormone receptor (FSHR) mRNA and protein levels by qRT-PCR and western blot and counted primordial, primary and secondary follicles at 8, 10 and 12 months of age. The results showed that ovarian KISS1 decreased but FSHR increased after both propranolol administration and the surgical denervation in rats of 8, 10 and 12 months of age. An increase in FSHR was related to an increase in the number of smaller secondary follicles and a decreased number of primordial follicles at 8, 10 and 12 months of age. These results suggest that intraovarian KISS1 is regulated by sympathetic nerves via a beta-adrenergic receptor and participates locally in ovarian follicular development in reproductive aging. © 2017 Society for Endocrinology.

  4. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  5. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  6. Sympathetic fiber sprouting in inflamed joints and adjacent skin contributes to pain-related behavior in arthritis.

    PubMed

    Longo, Geraldine; Osikowicz, Maria; Ribeiro-da-Silva, Alfredo

    2013-06-12

    Although chronic pain is the most common symptom of arthritis, relatively little is known about the mechanisms driving it. Recently, a sprouting of autonomic sympathetic fibers into the upper dermis of the skin, an area that is normally devoid of them, was found in the skin following chronic inflammation of the rat hindpaw. While this sprouting only occurred when signs of joint and bone damage were present, it remained to be clarified whether it was a consequence of the chronic inflammation of the skin or of the arthritis and whether it also occurred in the joint. In the present study, we used a model of arthritis in which complete Freund's adjuvant (CFA) was injected into the rat ankle joint. At 4 weeks following CFA treatment, there was an increase in sympathetic and peptidergic fiber density in the ankle joint synovium. We also observed a sympathetic, but not peptidergic, fiber sprouting in the skin over the joint, which may be a consequence of the increased levels of mature nerve growth factor levels in skin, as revealed by Western blot analysis. The pharmacological suppression of sympathetic fiber function with systemic guanethidine significantly decreased the pain-related behavior associated with arthritis. Guanethidine completely suppressed the heat hyperalgesia and attenuated mechanical and cold hypersensitivity. These results suggest that transmitters released from the sprouted sympathetic fibers in the synovial membrane and upper dermis contribute to the pain-related behavior associated with arthritis. Blocking the sympathetic fiber sprouting may provide a novel therapeutic approach to alleviate pain in arthritis.

  7. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences.

    PubMed

    Jänig, W; Häbler, H-J

    2003-03-01

    vitro models and the methodological diversity have increased. In vivo experimentation on larger animals has almost disappeared and has been replaced by experimentation on rats, which became the species for practically all types of studies on the central organization of the sympathetic nervous system.

  8. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  9. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  10. Sildenafil Increases Sympathetically Mediated Vascular Tone in Humans

    PubMed Central

    2013-01-01

    BACKGROUND Sildenafil, a selective phosphodiesterase-type-5 (PDE-5) inhibitor, produces vasodilation that improves erectile dysfunction and pulmonary hypertension. Sildenafil could also cause baroreflex sympathetic activation that would enhance vascular tone and oppose direct vasodilation. We tested the hypothesis that sildenafil administration increases sympathetically mediated vascular tone in healthy middle-aged men. METHODS We randomized 9 healthy, middle-aged, male volunteers (mean age 45±2 years) in a double-blind, crossover fashion to receive a single oral dose of sildenafil 100mg or placebo on 2 separate study days. Hemodynamics and forearm blood flow responses were measured at baseline, at 30 and 45 minutes after study drug administration, and then during intra-arterial infusions of vasoactive drugs. After sildenafil and placebo administration, intrabrachial medications were infused to test forearm alpha receptor sensitivity (norepinephrine), cyclic-AMP–mediated vasodilation (isoproterenol), and sympathetically mediated vascular tone (phentolamine) (adenosine was a control vasodilator). Blood samples were taken before and 60 minutes after study drug administration and at the end of the intrabrachial infusions for measurement of plasma norepinephrine concentrations. RESULTS Forearm vascular responses to norepinephrine, isoproterenol, and adenosine were not different after placebo and sildenafil administration. Percentage reduction in forearm vascular resistance during phentolamine was significantly lower after sildenafil than placebo (−73% ± 3% vs −63% ± 3%; P = 0.0002). Sildenafil significantly increased plasma norepinephrine compared with placebo 60 minutes after study drug administration and at the end of the study session (P = 0.02). CONCLUSIONS Sildenafil increased sympathetically mediated vascular tone in middle-aged healthy men. Alpha-adrenergic–mediated vasoconstriction may offset vasodilation during PDE-5 inhibition and may explain the

  11. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  12. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  13. A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS

    SciTech Connect

    Toeroek, T.; Titov, V. S.; Mikic, Z.; Linker, J. A.; Panasenco, O.; Reeves, K. K.; Velli, M.; De Toma, G.

    2011-10-01

    Sympathetic eruptions on the Sun have been observed for several decades, but the mechanisms by which one eruption can trigger another remain poorly understood. We present a three-dimensional MHD simulation that suggests two possible magnetic trigger mechanisms for sympathetic eruptions. We consider a configuration that contains two coronal flux ropes located within a pseudo-streamer and one rope located next to it. A sequence of eruptions is initiated by triggering the eruption of the flux rope next to the streamer. The expansion of the rope leads to two consecutive reconnection events, each of which triggers the eruption of a flux rope by removing a sufficient amount of overlying flux. The simulation qualitatively reproduces important aspects of the global sympathetic event on 2010 August 1 and provides a scenario for the so-called twin filament eruptions. The suggested mechanisms are also applicable for sympathetic eruptions occurring in other magnetic configurations.

  14. Salt Appetite Is Reduced by a Single Experience of Drinking Hypertonic Saline in the Adult Rat

    PubMed Central

    Greenwood, Michael P.; Greenwood, Mingkwan; Paton, Julian F. R.; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  15. Comparison of single-dose and extended methamphetamine administration on reversal learning in rats.

    PubMed

    Kosheleff, Alisa R; Rodriguez, Danilo; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2012-12-01

    Protracted use of methamphetamine (mAMPH) can result in long-term impairments in cognitive function in humans. A previous study reported reversal-specific learning impairments in rats after a binge administration of mAMPH. Several studies show that extended exposure to mAMPH may confer protection against cognitive impairments and the insult to monoamine systems typically observed after larger binge doses. To explore this issue, we compared the effects of escalating and single doses of mAMPH (and saline, SAL) on retention, reversal learning, and post-mortem analysis of dopamine and serotonin transporters, DAT and SERT. Rats learned to discriminate equiluminant stimuli and then were treated with either: (1) 4 weeks of mAMPH increasing by 0.3 mg/kg, culminating in 6 mg/kg (mAMPH(escal)); (2) 4 weeks of SAL with a single dose of 6 mg/kg on the last day of treatment (mAMPH(single)); or (3) 4 weeks of SAL. Following treatment, rats were tested on retention and reversal learning, with subsequent analysis of DAT and SERT binding across subregions of the striatum and frontoparietal cortex, respectively. Retention of the pretreatment discrimination was not significantly impaired in either mAMPH treatment group. A significant decrease in ventrolateral striatal DAT binding was observed only in the mAMPH(single) group and frontoparietal SERT was unaffected by either mAMPH treatment. Both treatment groups demonstrated attenuated reversal learning, particularly on measures of accuracy and effort. These results show that extended and single-dose pretreatment with mAMPH similarly and selectively affect reversal learning, even in the absence of significant DAT or SERT changes.

  16. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats

    PubMed Central

    Eagle, Andrew L.; Singh, Robby; Kohler, Robert J.; Friedman, Amy L.; Liebowitz, Chelsea P.; Galloway, Matthew P.; Enman, Nicole M.; Jutkiewicz, Emily M.; Perrine, Shane A.

    2017-01-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague–Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0,10 or 20mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, asexpected. However, compared to control ratson Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. PMID:25712697

  17. Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks.

    PubMed

    Chen, Xiaoyu; Wang, Huiying; Lin, Zhang; Li, Sa; Li, Yonghui; Bergen, Hugo T; Vrontakis, Maria E; Kirouac, Gilbert J

    2014-11-01

    Orexins (hypocretins) are peptides that have been shown to regulate behavioral arousal and wakefulness. Recent evidence indicates that orexin neurons are activated by stress and that orexins play a role in anxiety. The present paper describes a series of experiments that examined whether orexins are involved in the anxiety that resulted from exposing rats to an acute episode of footshocks (5 × 2 s of 1.5 mA shocks). We found that prepro-orexin (ppOX) mRNA was elevated in rats at 6 and 14 days after exposure to footshock and that ppOX mRNA levels were correlated with fear at 14 days post-shock. Systemic injections of the non-selective dual orexin receptor antagonist TCS-1102 (10 and 20 mg/kg, i.p.) were found to decrease fear and anxiety in rats 14 days after exposure to footshock. We also found that rats that exhibited a high level of immobility to a novel tone the day after the footshock episode (high responders, HR) showed significantly elevated levels of ppOX mRNA at 14 days post-shock compared to control rats. Furthermore, TCS-1102 (10 mg/kg, i.p.) was found to have anxiolytic effects that were specific for HR when tested in the elevated T-maze. This study provides evidence linking the orexin system to the anxiety produced by exposure of rats to a single episode of footshocks. It also provides preclinical evidence in support of the use of orexin antagonists for the treatment of anxiety in response to an acute episode of stress.

  18. Effect of baroreceptor stimulation on the respiratory pattern: Insights into respiratory-sympathetic interactions✰

    PubMed Central

    Baekey, David M.; Molkov, Yaroslav I.; Paton, Julian F.R.; Rybak, Ilya A.; Dick, Thomas E.

    2013-01-01

    Sympathetic nerve activity (SNA) is modulated by respiratory activity which indicates the existence of direct interactions between the respiratory and sympathetic networks within the brainstem. Our experimental studies reveal that TE prolongation evoked by baroreceptor stimulation varies with respiratory phase and depends on the pons. We speculate that the sympathetic baroreceptor reflex, providing negative feedback from baroreceptors to the rostral ventrolateral medulla and SNA, has two pathways: one direct and independent of the respiratory–sympathetic interactions and the other operating via the respiratory pattern generator and is hence dependent on the respiratory modulation of SNA. Our experimental studies in the perfused in situ rat preparation and complementary computational modelling studies support the hypothesis that baroreceptor activation during expiration prolongs the TE via transient activation of post-inspiratory and inhibition of augmenting expiratory neurones of the Bötzinger Complex (BötC). We propose that these BötC neurones are also involved in the respiratory modulation of SNA, and contribute to the respiratory modulation of the sympathetic baroreceptor reflex. PMID:20837166

  19. CAPON Modulates Neuronal Calcium Handling and Cardiac Sympathetic Neurotransmission During Dysautonomia in Hypertension

    PubMed Central

    Lu, Chieh-Ju; Larsen, Hege E.; Liu, Kun; Crabtree, Mark J.; Li, Dan; Herring, Neil; Paterson, David J.

    2015-01-01

    Genome-wide association studies implicate a variant in the neuronal nitric oxide synthase adaptor protein (CAPON) in electrocardiographic QT variation and sudden cardiac death. Interestingly, nitric oxide generated by neuronal NO synthase-1 reduces norepinephrine release; however, this pathway is downregulated in animal models of cardiovascular disease. Because sympathetic hyperactivity can trigger arrhythmia, is this neural phenotype linked to CAPON dysregulation? We hypothesized that CAPON resides in cardiac sympathetic neurons and is a part of the prediseased neuronal phenotype that modulates calcium handling and neurotransmission in dysautonomia. CAPON expression was significantly reduced in the stellate ganglia of spontaneously hypertensive rats before the development of hypertension compared with age-matched Wistar–Kyoto rats. The neuronal calcium current (ICa; n=8) and intracellular calcium transient ([Ca2+]i; n=16) were significantly larger in the spontaneously hypertensive rat than in Wistar–Kyoto rat (P<0.05). A novel noradrenergic specific vector (Ad.PRSx8-mCherry/CAPON) significantly upregulated CAPON expression, NO synthase-1 activity, and cGMP in spontaneously hypertensive rat neurons without altering NO synthase-1 levels. Neuronal ICa and [Ca2+]i were significantly reduced after CAPON transduction compared with the empty vector. In addition, Ad.PRSx8-mCherry/CAPON also reduced 3H-norepinephrine release from spontaneously hypertensive rat atria (n=7). NO synthase-1 inhibition (AAAN, 10 μmol/L; n=6) reversed these effects compared with the empty virus alone. In conclusion, targeted upregulation of CAPON decreases cardiac sympathetic hyperactivity. Moreover, dysregulation of this adaptor protein in sympathetic neurons might further amplify the negative cardiac electrophysiological properties seen with CAPON mutations. PMID:25916729

  20. Maternal sympathetic stress impairs follicular development and puberty of the offspring.

    PubMed

    Barra, Rafael; Cruz, Gonzalo; Mayerhofer, Artur; Paredes, Alfonso; Lara, Hernán E

    2014-08-01

    Chronic cold stress applied to adult rats activates ovarian sympathetic innervation and develops polycystic ovary (PCO) phenotype. The PCO syndrome in humans originates during early development and is expressed before or during puberty, which suggests that the condition derived from in utero exposure to neural- or metabolic-derived insults. We studied the effects of maternal sympathetic stress on the ovarian follicular development and on the onset of puberty of female offspring. Timed pregnant rats were exposed to chronic cold stress (4 °C, 3 h/daily from 1000 to 1300 h) during the entire pregnancy. Neonatal rats exposed to sympathetic stress during gestation had a lower number of primary, primordial, and secondary follicles in the ovary and a lower recruitment of primary and secondary follicles derived from the primordial follicular pool. The expression of the FSH receptor and response of the neonatal ovary to FSH were reduced. A decrease in nerve growth factor (NGF) mRNA was found without change in the low-affinity NGF receptor. The FSH-induced development of secondary follicles was decreased. At puberty, estradiol plasma levels decreased without changes in LH plasma levels. Puberty onset (as shown by the vaginal opening) was delayed. Ovarian norepinephrine (NE) was reduced; there was no change in its metabolite, 3-methoxy-4-hydroxyphenylglycol, in stressed rats and no change in NE turnover. The changes in ovarian NE in prepubertal rats stressed during gestation could represent a lower development of sympathetic nerves as a compensatory response to the chronically increased NE levels during gestation and hence participate in delaying reproductive performance in the rat. © 2014 Society for Reproduction and Fertility.

  1. Sympathetic mechanisms of hypoglycemic counterregulation.

    PubMed

    Hoffman, Robert P

    2007-08-01

    In normal individuals hypoglycemic counterregulation is a multifactorial, redundant process that involves reduction of insulin secretion, increasing glucagon secretion, adrenergic activation, and increased growth hormone and cortisol secretion. Metabolically, these lead to increased glucose production, initially through glycogenolysis and later through gluconeogenesis, decreased muscle glucose oxidation and storage and increased release and use of alternative fuels, primarily free fatty acids. They also lead to hypoglycemic symptoms and hunger which increase food intake. These systems are designed to provide as much glucose as possible for brain glucose use. In patients with type 1 diabetes there are multiple impairments of these responses. Insulin does not decrease. Glucagon secretion is decreased or absent. Recovery from hypoglycemia is therefore dependent on the adrenergic response. Hypoglycemia increases plasma levels of both epinephrine and norepinephrine. These catechols are released primarily from the adrenal medulla. However, it is well documented that hypoglycemic increases muscle sympathetic nerve activity, and that both alpha and beta adrenergic activity increase. Increased beta-activity increases free fatty acid release which increase glucose production and decrease glucose utilization. The increased alpha-adrenergic activity's primary role is to counteract beta-adrenergic vasodilation. It may also reduce neurogenic and neuroglycopenic symptoms. Lastly, there is evidence that both cardiac and adrenergic sensitivity are altered in type 1 diabetes. It is hoped that this information can be used in the future to help develop ways to protect patients with type 1 diabetes from hypoglycemia and its adverse effects.

  2. Double labeling of vagal preganglionic and sympathetic postganglionic fibers in celiac ganglion, superior mesenteric arteries and myenteric plexus.

    PubMed

    Ting, Shi-Jane; Kao, Chih-Kuan; Wang, Feng-Bin

    2017-02-28

    Sympathetic efferents regulate the “fight-or-flight” response and sympathetic and vagal fibers have been suggested to retrogradely and centrally spread pathogens associated with Parkinson’s disease. To examine the arrangement of the vagal and sympathetic motor fibers in the celiac ganglion (CG), gastrointestinal tract, and along the superior mesenteric artery and its sub-branches, we double-labeled the vagal efferents by injecting Dextran-Texas Red into the dorsal motor nucleus of the vagus and the sympathetic postganglionics with tyrosine hydroxylase immunohistochemistry in male Sprague-Dawley rats (n = 18). The laser scanning confocal microscope was used for image analysis. Vagal nerve endings were densely distributed around the CG neurons, and the right CG received more. Vagal and sympathetic efferent endings formed various ring or string shapes that tangled closely in the myenteric plexus of the forestomach, duodenum, jejunum and ileum. Vagal and sympathetic efferents coursed within the same nerve bundles before reaching the myenteric plexus, had in-apposition varicosities, and ran parallel with the superior mesenteric artery and its sub-branches. Although a complete sympathetic tracing and an incomplete tracing and/or damage to the vagal preganglionic neurons may lead to a sampling bias, the sympathetic innervations in the blood vessels and myenteric plexus are stronger than in the vagus. The in-apposition innervation varicosities of the vagal and sympathetic efferents within the same nerve bundles and in the myenteric plexus of the gut with complex innervation patterns may offer a network to automatically control gastrointestinal functions and an infection route of the Parkinson’s disease between the autonomic efferent endings.

  3. Toxicokinetic differences and toxicities of silver nanoparticles and silver ions in rats after single oral administration.

    PubMed

    Park, Kwangsik

    2013-01-01

    Blood levels, tissue distributions, and excretion of silver (Ag) were measured in male Sprague-Dawley rats (n = 5) up to 24 h after a single oral administration of silver nanoparticles (AgNP) and silver ions (Ag(+)), respectively. The AUC24hr of Ag(+) was 3.81 ± 0.57 μg/d/ml when rats were treated with a single dose of 20 mg/kg, whereas that of AgNP was 1.58 ± 0.25 μg/d/ml. Tissue distribution of Ag in liver, kidneys, and lungs was higher when Ag(+) was administered compared to AgNP. Orally administered AgNP were predominantly excreted through feces, suggesting low bioavailability. Death or body weight changes were not observed in the Ag(+)- or AgNP-treated groups. However, decreased red blood cell counts, hematocrit, and hemoglobin were found in the Ag(+)-treated groups, while increased platelet counts and mean platelet volume were noted in the AgNP-treated rats. A serum biochemical analysis showed that aspartate aminotransferase (AST) and alanine aminotransferase (ALT) rose significantly following Ag(+) treatment (20 mg/kg). AgNP treatment (2 or 20 mg/kg) also elevated AST, whereas infiltration of mononuclear cells with liver necrosis was found only in the 20 mg/kg Ag(+)-treated animals.

  4. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    PubMed

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  5. Conduction Properties Distinguish Unmyelinated Sympathetic Efferent Fibers and Unmyelinated Primary Afferent Fibers in the Monkey

    PubMed Central

    Ringkamp, Matthias; Johanek, Lisa M.; Borzan, Jasenka; Hartke, Timothy V.; Wu, Gang; Pogatzki-Zahn, Esther M.; Campbell, James N.; Shim, Beom; Schepers, Raf J.; Meyer, Richard A.

    2010-01-01

    Background Different classes of unmyelinated nerve fibers appear to exhibit distinct conductive properties. We sought a criterion based on conduction properties for distinguishing sympathetic efferents and unmyelinated, primary afferents in peripheral nerves. Methodology/Principal Findings In anesthetized monkey, centrifugal or centripetal recordings were made from single unmyelinated nerve fibers in the peroneal or sural nerve, and electrical stimuli were applied to either the sciatic nerve or the cutaneous nerve endings, respectively. In centrifugal recordings, electrical stimulation at the sympathetic chain and dorsal root was used to determine the fiber's origin. In centrifugal recordings, sympathetic fibers exhibited absolute speeding of conduction to a single pair of electrical stimuli separated by 50 ms; the second action potential was conducted faster (0.61 0.16%) than the first unconditioned action potential. This was never observed in primary afferents. Following 2 Hz stimulation (3 min), activity-dependent slowing of conduction in the sympathetics (8.6 0.5%) was greater than in one afferent group (6.7 0.5%) but substantially less than in a second afferent group (29.4 1.9%). In centripetal recordings, most mechanically-insensitive fibers also exhibited absolute speeding to twin pulse stimulation. The subset that did not show this absolute speeding was responsive to chemical stimuli (histamine, capsaicin) and likely consists of mechanically-insensitive afferents. During repetitive twin pulse stimulation, mechanosensitive afferents developed speeding, and speeding in sympathetic fibers increased. Conclusions/Significance The presence of absolute speeding provides a criterion by which sympathetic efferents can be differentiated from primary afferents. The differences in conduction properties between sympathetics and afferents likely reflect differential expression of voltage-sensitive ion channels. PMID:20140089

  6. Extreme obesity in female rats following prepuberal induction of lithium-pilocarpine seizures and a single injection of acepromazine.

    PubMed

    St-Pierre, L S; Persinger, M A

    2005-11-01

    Seizures were induced in female Wistar albino rats at either 35 or 55 days of age with a single systemic injection of lithium (3 mEq/kg) and pilocarpine (30 mg/kg); the rats were then treated with the atypical neuroleptic acepromazine (25 mg/kg). These rats manifested progressive weight gain for the rest of their lives. The effect was conspicuous by casual observation 6 weeks after treatment and occurred primarily in those rats that later developed spontaneous seizures. After 1 year, the rats were obese (>1000 g). Such weight gains, associated with almost three times the serum triglyceride levels, were not observed in male rats and have not been observed in hundreds of female rats that received this treatment as adults. Single postseizure injections of ketamine rather than acepromazine did not produce this obesity; the weights of these rats were similar to those of normal littermates. These results indicate that a single injection of a neuroleptic during limbic seizures before puberty can produce neuronal alterations that contribute to a lifetime of obesity.

  7. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat.

    PubMed

    Eberhorn, A C; Büttner-Ennever, J A; Horn, A K E

    2006-02-01

    In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons

  8. Sympathetic baroreflex gain in normotensive pregnant women

    PubMed Central

    Usselman, Charlotte W.; Skow, Rachel J.; Matenchuk, Brittany A.; Chari, Radha S.; Julian, Colleen G.; Stickland, Michael K.; Davenport, Margie H.

    2015-01-01

    Muscle sympathetic nerve activity is increased during normotensive pregnancy while mean arterial pressure is maintained or reduced, suggesting baroreflex resetting. We hypothesized spontaneous sympathetic baroreflex gain would be reduced in normotensive pregnant women relative to nonpregnant matched controls. Integrated muscle sympathetic burst incidence and total sympathetic activity (microneurography), blood pressure (Finometer), and R-R interval (ECG) were assessed at rest in 11 pregnant women (33 ± 1 wk gestation, 31 ± 1 yr, prepregnancy BMI: 23.5 ± 0.9 kg/m2) and 11 nonpregnant controls (29 ± 1 yr; BMI: 25.2 ± 1.7 kg/m2). Pregnant women had elevated baseline sympathetic burst incidence (43 ± 2 vs. 33 ± 2 bursts/100 heart beats, P = 0.01) and total sympathetic activity (1,811 ± 148 vs. 1,140 ± 55 au, P < 0.01) relative to controls. Both mean (88 ± 3 vs. 91 ± 2 mmHg, P = 0.4) and diastolic (DBP) (72 ± 3 vs. 73 ± 2 mmHg, P = 0.7) pressures were similar between pregnant and nonpregnant women, respectively, indicating an upward resetting of the baroreflex set point with pregnancy. Baroreflex gain, calculated as the linear relationship between sympathetic burst incidence and DBP, was reduced in pregnant women relative to controls (−3.7 ± 0.5 vs. −5.4 ± 0.5 bursts·100 heart beats−1·mmHg−1, P = 0.03), as was baroreflex gain calculated with total sympathetic activity (−294 ± 24 vs. −210 ± 24 au·100 heart beats−1·mmHg−1; P = 0.03). Cardiovagal baroreflex gain (sequence method) was not different between nonpregnant controls and pregnant women (49 ± 8 vs. 36 ± 8 ms/mmHg; P = 0.2). However, sympathetic (burst incidence) and cardiovagal gains were negatively correlated in pregnant women (R = −0.7; P = 0.02). Together, these data indicate that the influence of the sympathetic nervous system over arterial blood pressure is reduced in normotensive pregnancy, in terms of both long-term and beat-to-beat regulation of arterial pressure

  9. Median preoptic nucleus and subfornical organ drive renal sympathetic nerve activity via a glutamatergic mechanism within the paraventricular nucleus.

    PubMed

    Llewellyn, Tamra; Zheng, Hong; Liu, Xuefei; Xu, Bo; Patel, Kaushik P

    2012-02-15

    The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.

  10. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    PubMed

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P < 0.05), while LSNA increased in a step manner by 15.3% ± 2% (P < 0.05) relative to the NREM level. Systemic arterial pressure increased gradually (P < 0.05), while heart rate decreased in a step manner (P < 0.05) during REM sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  11. Depression increases sympathetic activity and exacerbates myocardial remodeling after myocardial infarction: evidence from an animal experiment.

    PubMed

    Shi, Shaobo; Liang, Jinjun; Liu, Tao; Yuan, Xiaoran; Ruan, Bing; Sun, Lifang; Tang, Yanhong; Yang, Bo; Hu, Dan; Huang, Congxin

    2014-01-01

    Depression is an independent risk factor for cardiovascular events and mortality in patients with myocardial infarction (MI). Excessive sympathetic activation and serious myocardial remodeling may contribute to this association. The aim of this study was to discuss the effect of depression on sympathetic activity and myocardial remodeling after MI. Wild-type (WT) rats were divided into a sham group (Sham), a myocardial infarction group (MI), a depression group (D), and a myocardial infarction plus depression group (MI+D). Compared with controls, the MI+D animals displayed depression-like behaviors and attenuated body weight gain. The evaluation of sympathetic activity showed an increased level in plasma concentrations of epinephrine and norepinephrine and higher expression of myocardial tyrosine hydroxylase in the MI+D group than the control groups (p<0.05 for all). Cardiac function and morphologic analyses revealed a decreased fractional shortening accompanied by increased left ventricular dimensions, thinning myocardium wall, and reduced collagen repair in the MI+D group compared with the MI group (p<0.05 for all). Frequent premature ventricular contractions, prolonged QT duration and ventricular repolarization duration, shorted effective refractory period, and increased susceptibility to ventricular arrhythmia were displayed in MI+D rats. These results indicate that sympathetic hyperactivation and exacerbated myocardial remodeling may be a plausible mechanism linking depression to an adverse prognosis after MI.

  12. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization.

    PubMed

    Hart, Emma C J; Head, Geoffrey A; Carter, Jason R; Wallin, Gunnar; May, Clive N; Hamza, Shereen M; Hall, John E; Charkoudian, Nisha; Osborn, John W

    2017-03-31

    Over the past several decades, studies of the sympathetic nervous system in humans, sheep, rabbits, rats and mice have substantially increased mechanistic understanding of cardiovascular function and dysfunction. Recently, interest in sympathetic neural mechanisms contributing to blood pressure control has grown, due in part to the development of devices or surgical procedures, which treat hypertension by manipulating sympathetic outflow. Studies in animal models have provided important insights into physiological and pathophysiological mechanisms, which are not accessible in human studies. Across species and among laboratories, various approaches have been developed to record, quantify, analyze and interpret sympathetic nerve activity (SNA). In general, SNA demonstrates "bursting" behavior, where groups of action potentials are synchronized and linked to the cardiac cycle via the arterial baroreflex. In humans, it is common to quantify SNA as bursts/minute or bursts/100 heartbeats. This type of quantification can be done in other species, but is only commonly reported in sheep, which have heart rates similar to humans. In rabbits, rats and mice, SNA is often recorded relative to a maximal level elicited in the laboratory to control for differences in electrode position among animals or on different study days. SNA in humans can also be presented as total activity, where normalization to the largest burst is a common approach. The goal of the present paper is to put together a summary of "best practices" in several of the most common experimental models, and to discuss opportunities and challenges relative to the optimal measurement of SNA across species.

  13. Src Kinases Regulate Glutamatergic Input to Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension.

    PubMed

    Qiao, Xin; Zhou, Jing-Jing; Li, De-Pei; Pan, Hui-Lin

    2017-01-01

    The elevated sympathetic outflow associated with hypertension is maintained by increased N-methyl-d-aspartate receptor (NMDAR) activity in the paraventricular nucleus (PVN) of the hypothalamus. Synaptic NMDAR activity is tightly regulated by protein kinases, including the Src family of tyrosine kinases. We determined whether Src kinases play a role in increased NMDAR activity of PVN neurons projecting to the rostral ventrolateral medulla and in elevated sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The Src protein level in the PVN was significantly greater in SHRs than in normotensive Wistar-Kyoto (WKY) rats and was not significantly altered by lowering blood pressure with celiac ganglionectomy in SHRs. Inhibition of Src kinase activity with 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) completely normalized the higher amplitudes of evoked NMDAR-mediated excitatory postsynaptic currents and puff NMDA-elicited currents of rostral ventrolateral medulla-projecting PVN neurons in SHRs. PP2 treatment also attenuated the higher frequency of NMDAR-mediated miniature excitatory postsynaptic currents of these neurons in SHRs. However, PP2 had no effect on NMDAR-excitatory postsynaptic currents or miniature excitatory postsynaptic currents of rostral ventrolateral medulla-projecting PVN neurons in WKY rats. NMDAR activity increased by an Src-activating peptide was blocked by PP2 but not by inhibition of casein kinase 2. In addition, microinjection of PP2 into the PVN not only decreased lumbar sympathetic nerve discharges and blood pressure but also eliminated the inhibitory effect of the NMDAR antagonist on sympathetic nerve activity and blood pressure in SHRs. Collectively, our findings suggest that increased Src kinase activity potentiates presynaptic and postsynaptic NMDAR activity in the PVN and sympathetic vasomotor tone in hypertension. © 2016 American Heart Association, Inc.

  14. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    PubMed

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P < 0.01). GABA content of zolpidem group and Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P < 0.05). GABA content of Calculus Bovis group was higher than combination group (P < 0.05). GABA content of zolpidem group was not significantly different from combination group. Gly content of Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P < 0.05). Contents of two inhibitive neurotransmitters in rat striatum corpora were all significantly increased in Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  15. Ultrasound-guided pulsed radiofrequency treatment of the cervical sympathetic chain for complex regional pain syndrome

    PubMed Central

    Kim, Eung Don; Yoo, Woo Joo; Kim, Yoo Na; Park, Hue Jung

    2017-01-01

    Abstract The stellate ganglion is a common target to manage neuropathic pain in the upper extremities. However, the effect duration of a single stellate ganglion block is often temporary. To overcome the short-term effects of a single sympathetic block, pulsed radiofrequency (PRF) can be applied. The aim of the present study was to investigate the efficacy of PRF on the cervical sympathetic chain under ultrasound guidance for complex regional pain syndrome (CRPS). Twelve CRPS patients who underwent PRF on the cervical sympathetic chain were enrolled in this retrospective analysis. Under ultrasound guidance, PRF was performed for 420 seconds at 42°C on the C6- and C7-level sympathetic chain. The pain intensity decreased significantly at 1 week after the procedure. Overall, 91.7% of patients experienced at least moderate improvement. A positive correlation was observed between the extent of pain reduction at 1 week after PRF and the degree of overall benefit (r = 0.605, P = 0.037). This reduction in symptoms was maintained for a mean of 31.41 ± 26.07 days after PRF. There were no complications associated with this procedure. PRF on the cervical sympathetic chain, which can be performed easily and safely under ultrasound guidance, should be considered an option for managing CRPS of the upper extremities. PMID:28072749

  16. A single administration of fish oil inhibits the acute inflammatory response in rats.

    PubMed

    de Arruda, Laura Lícia Milani; Ames, Franciele Queiroz; de Morais, Damila Rodrigues; Grespan, Renata; Gil, Ana Paula Maziero; Silva, Maria Angélica Raffaini Covas Pereira; Visentainer, Jesuí Vergílio; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2017-08-01

    To investigate the antiinflammatory effects of a single administration of fish oil (FO) on the acute inflammatory response. The paw edema and pleurisy models were used to evaluate the effects of FO dissolved in olive oil (FOP) orally administered in a single dose in rats. Nitric oxide (NO) concentrations in the pleural exudate were performed according to the Griess method and the cytokine concentrations were determined by Luminex bead-based multiplex assay. FOP treatment (30 and 300 mg/kg) significantly reduced paw edema. FOP treatment at 18.75, 37.5, 75.0, 150.0, and 300 mg/kg decreased both the volume of pleural exudate and cellular migration into the pleural cavity and each of these doses presented the same effectiveness. Treatment with FOP (300 mg/kg) reduced NO, TNF-α, IL-1β, and IL-6 concentrations in the pleural exudate. The present data provide evidence that FO has inhibitory effects on the acute inflammatory response when administered in a single dose in rats. This effect might be attributable to a direct inhibitory effect of FO on the production or release of inflammatory mediators that are involved in the pathological processes evaluated herein. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  17. Is learning ability and spatial memory in rats influenced by single dose of nicotine?

    PubMed

    Hralová, M; Marešová, D; Riljak, V

    2011-01-01

    A lot of studies have been concentrated on an effect of a short or a long-term administration of nicotine in humans or in animals. The negative effects on the human organism have been known for a long time, but these health problems are known especially from observing smokers. The number of tasks in human and in animals with accent on positive effect of nicotine has increased especially with regard to improvement of cognitive functions. The aim of this study was to investigate, how much a single dose of nicotine can influence the learning ability in rats. Male Wistar albino rats, 25-day-old, were studied. Two groups of animals received an intraperitoneal (i.p.) injection of nicotine in two different doses (0.75 mg/kg and 1.00 mg/kg b.w.). The third group received a single i.p. injection of saline in the equal volume (the control group). After the drug application the escape latency and the path length were measured and assessed in two periods of sessions in the Morris water maze. In our study no explicit changes of learning ability after a single nicotine injection was confirmed. Only at the third day of the task the trajectory was shorter (p<0.05) but this result appears too isolated. So we cannot exclude that such improvement was caused by other factors than by the nicotine administration.

  18. Reflex control of inflammation by sympathetic nerves, not the vagus.

    PubMed

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-04-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge - the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg(-1)), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases.

  19. Single Intravenous-dose Toxicity of Water-soluble Carthami-flos Pharmacopuncture (WCF) in Rats

    PubMed Central

    Jung, Da-jung; Choi, Yoo-min; Kim, Seok-hee; Kim, Jong-uk; Yook, Tae-han

    2014-01-01

    Objectives: This study was performed to analyze the toxicity and to find the lethal dose of the test substance Water-soluble Carthami-flos pharmacopuncture (WCF) when used as a single intravenous-dose in 6-week-old, male and female Sprague-Dawley rats. Methods: The experiment was conducted at Biotoxtech according to Good Laboratory Practices. 20 female and 20 male Spague-Dawley rats were divided into 4 groups of 5 female and 5 male animals per group. The rats in the three experimental groups received single intravenous injections with 0.125-mL, 0.25-mL and 0.5-mL/animal doses of WCF, Groups 2, 3, and 4, respectively, and the control group, Group 1, received a single intravenous injection with a 0.5-mL dose of normal saline. Clinical signs were observed and body weight measurements were carried out for 14 days following the injections. At the end of the observation period, hematology, clinical chemistry, histopathological tests and necropsy were performed on the injected parts. Results: No deaths occurred in any of the groups. Also, no significant changes in body weight, hematological parameters or clinical chemistry test results between the control group and the experimental groups were observed. Visual inspection after necropsy showed no abnormalities. Histopathological tests on the injected parts showed no significant differences, except for Group 1 females; however, the result was spontaneous generation and had no toxicological meaning because it was not dose-dependent. Therefore, this study showed that WCF had no effect on the injected parts in terms of clinical signs, body weight, hematology, clinical chemistry, and necropsy. Conclusion: As a result of single intravenous-dose tests of the test substance WCF in 4 groups of rats, the lethal dose for both males and females exceeded 0.5 mL/animal. Therefore, WCF is a relatively safe pharmacopuncture that can be used for treatment, but further studies should be performed. PMID:25780707

  20. Renal sympathetic denervation in resistant hypertension.

    PubMed

    Santos, Mário; Carvalho, Henrique

    2013-04-26

    Resistant hypertension remains a major clinical problem despite the available multidrug therapy. Over the next decades, its incidence will likely increase given that it is strongly associated with older age and obesity. Resistant hypertension patients have an increased cardiovascular risk, thus effective antihypertensive treatment will provide substantial health benefits. The crosstalk between sympathetic nervous system and kidneys plays a crucial role in hypertension. It influences several pathophysiological mechanisms such as the central sympathetic tone, the sodium balance and the systemic neurohumoral activation. In fact, studies using several animal models demonstrated that the renal denervation prevented and attenuated hypertension in multiple species. Large reductions in blood pressure were also observed in malignant hypertension patients submitted to sympathectomy surgeries. However, these approaches had an unacceptably high rates of periprocedural complications and disabling adverse events. Recently, an innovative non-pharmacological therapy that modulates sympathetic activation has been successfully developed. Renal sympathetic percutaneous denervation is an endovascular procedure that uses radiofrequency energy to destroy the autonomic renal nerves running inside the adventitia of renal arteries. This method represents a promising new approach to the strategy of inhibiting the sympathetic nervous system. The aim of this review is to examine the background knowledge that resulted in the development of this hypertension treatment and to critically appraise the available clinical evidence.

  1. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    PubMed Central

    Schmidt, R. E.; Chae, H. Y.; Parvin, C. A.; Roth, K. A.

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic patients. They found significant, specific, age-related neuropathologic lesions in the prevertebral sympathetic superior mesenteric ganglia of autopsied patients. Markedly swollen dystrophic preterminal axons compressed or displaced the perikarya of principal sympathetic neurons. Ultrastructurally, these swollen presynaptic axons contained abundant disoriented neurofilaments surrounded by peripherally marginated dense core vesicles. Immunohistochemical studies demonstrated that dystrophic axons contained tyrosine hydroxylase and neuropeptide tyrosine (NPY)-like immunoreactivity but not other neuropeptides (VIP, substance P, gastrin-releasing peptide [GRP]/bombesin, met-enkephalin). Similar to the animal models of aging, lesions were much more frequent in the prevertebral superior mesenteric ganglia than in the paravertebral superior cervical ganglia. These studies demonstrate anatomic, peptidergic, and pathologic specificity in the aging human nervous system similar in many respects to that which the authors have described in experimental animal models. Neuroaxonal dystrophy in the sympathetic nervous system may underlie poorly understood alterations in clinical autonomic nervous system function that develop with age. Images Figure 1 Figure 2 p1333-a Figure 3 PMID:1694057

  2. Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate.

    PubMed

    Wang, Jiang-ping; Ding, Guo-fu; Wang, Qin-zhang

    2013-06-01

    Morphological and functional studies have confirmed that interstitial cells of Cajal (ICCs) are involved in many enteric motor neurotransmission pathways. Recent investigations have demonstrated that human and guinea pig prostate glands possess a distinct cell type with morphological and immunological similarities to ICCs. These prostate ICCs have a close relationship with nerve bundles and smooth muscle cells. Prostate smooth muscle tone is largely induced by stimulation from the sympathetic nervous system, which releases excitatory norepinephrine (NE) to act on the α1-adrenoceptor. We have performed morphological and functional experiments to determine the role of ICCs in sympathetic neurotransmission in the guinea pig prostate based on the hypothesis that prostate ICCs act as mediators of sympathetic neurotransmission. Immunohistochemistry revealed many close points of contact between ICCs and sympathetic nerve bundles and smooth muscle cells. Double-labeled sections revealed that α1-adrenoceptor and the gap junction protein connexin 43 were expressed in prostate ICCs. Surprisingly, prostate ICCs co-expressed tyrosine hydroxylase and dopamine β-hydroxylase, two markers of sympathetic neurons. Functionally, the application of NE evoked a large single inward current in isolated prostate ICCs in a dose-dependent manner. The inward current evoked by NE was mediated via the activation of α1-adrenoceptors, because it was abolished by the non-specific α-adrenoceptor antagonist, phentolamine and the specific α1-adrenoceptor antagonist, prazosin. Thus, ICCs in the guinea pig prostate are target cells for prostate sympathetic nerves and possess the morphological and functional characteristics required to mediate sympathetic signals.

  3. Prenatal development of the fetal thoracic sympathetic trunk in sheep (Ovis aries).

    PubMed

    Nourinezhad, Jamal; Gilanpour, Hassan; Radmehr, Bijan

    2013-10-01

    This study aims at clarifying the detailed morphological and topographical changes of the thoracic part of the sympathetic trunk of sheep during fetal development. Bilateral micro-dissection of the thoracic sympathetic trunk was performed on 40 sheep fetuses aged 6-20 weeks (18 males and 22 females) under a stereomicroscope. The cervicothoracic ganglion (CTG) was observed on 75/80 sides (93.7%) and was composed of the caudal cervical and the first thoracic ganglia on 45/80 sides (56.2%), and of the caudal cervical and the first two thoracic ganglia on 30/80 sides (37.5%). The presence of the two last (12th-13th) thoracic ganglia was not constant. The influence of the sex, the side of the body, and the ages of the fetus on the morphology and topography of the thoracic sympathetic trunk in sheep were identified. In spite of the differences in the morphology and topography of the thoracic sympathetic trunk between early and late fetal developments, the morphology and topography of the older fetal thoracic sympathetic trunk tended to be similar to that of the adult sheep. To comprehend the comparative morphology of the fetal thoracic sympathetic trunk more completely, our results were compared with previous studies. Consequently, differences and similarities in the composition and position of the CTG, presence of single caudal cervical ganglion without fusion to the thoracic ganglia, and absence of the thoracic ganglia, and presence of splitting of the interganglionic branch were found among sheep, pig, and human fetuses. Therefore, sheep might be the appropriate animal model to be applied in human sympathetic nervous system.

  4. Soluble complex of complement increases hydraulic conductivity in single microvessels of rat lung.

    PubMed

    Ishikawa, S; Tsukada, H; Bhattacharya, J

    1993-01-01

    We determined the effect of sera enriched with the soluble complex of complement (SC5b-9), on hydraulic conductivity (Lp) of single pulmonary venules (diameter 20-30 microns). Sera free of anticoagulants and blood cells were prepared from rat and human blood. Lp were determined by our split drop technique in isolated, blood-perfused lungs prepared from anesthetized rats (2% halothane; Sprague Dawley, 500 g; n = 73). Zymosan-activated (ZAS) and control sera were used for Lp determinations. In ZAS prepared from human serum, SC5b-9 concentration was > 300 micrograms/ml (control: < 1 microgram/ml) as determined by ELISA. At baseline, Lp averaged 3.4 +/- .4 x 10(-7) ml/(cm2.s.cm H2O), but it increased by 217 +/- 32% with undiluted ZAS (P < 0.05). The Lp increase correlated significantly with different ZAS dilutions for rat serum and with SC5b-9 concentration for human serum. Lp did not increase significantly with ZAS prepared from heat-treated sera, C6- and C8-deficient sera; or with ZAS in which SC5b-9 had been depleted by immunoprecipitation. The ZAS-induced increase of Lp was blocked completely by venular preinfusion with the arginine-glycine-aspartic acid (RGD) tripeptide (1 mg/ml, 10 min). We report for the first time that: (a) SC5b-9 increases lung endothelial Lp; and (b) the increase of Lp is attributable to an integrin-dependent mechanism.

  5. Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of developing rats

    PubMed Central

    Feng, X.; Liu, J. J.; Zhou, X.; Song, F. H.; Yang, X. Y.; Chen, X. S.; Huang, W. Q.; Zhou, L. H.; Ye, J. H.

    2012-01-01

    Background The use of general anaesthetics in young children and infants has raised concerns regarding the adverse effects of these drugs on brain development. Sevoflurane might have harmful effects on the developing brain; however, these effects have not been well investigated. Methods Postnatal day 7 (P7) Sprague–Dawley rats were continuously exposed to 2.3% sevoflurane for 6 h. We used the Fox battery test and Morris water maze (MWM) to examine subsequent neurobehavioural performance. Cleaved caspase-3 and neuronal nitric oxide synthase (nNOS) were quantified by immunoblotting, and the Nissl staining was used to observe the histopathological changes in the hippocampus. Results A single 6 h sevoflurane exposure at P7 rats resulted in increased cleaved caspase-3 expression and decreased nNOS levels in the hippocampus, and induced the loss of pyramidal neurones in the CA1 and CA3 subfields of the hippocampus at P7–8. These changes were accompanied by temporal retardation of sensorimotor reflexes. However, neither the Fox battery test at P1–21 nor the MWM test at P28–32 showed differences between the air- and sevoflurane-treated groups. Conclusions Although early exposure to sevoflurane increases activated caspase-3 expression and neuronal loss and decreases nNOS in the neonatal hippocampus, it does not affect subsequent neurobehavioural performances in juvenile rats. PMID:22535834

  6. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  7. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    PubMed

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability.

  8. Regulation of the level of uncoupling protein in brown adipose tissue by insulin requires the mediation of the sympathetic nervous system.

    PubMed

    Géloën, A; Trayhurn, P

    1990-07-16

    The role of the sympathetic nervous system in the regulation by insulin of the level of uncoupling protein in brown adipose tissue has been examined. The amount of uncoupling protein was substantially reduced in streptozotocin-diabetic rats, while insulin replacement to diabetic animals induced a partial restoration. Unilateral denervation of the interscapular brown fat pads also lowered the amount of uncoupling protein, and in diabetic animals inhibited the stimulation of the level of the protein by insulin replacement. Maintenance of normal uncoupling protein levels requires both insulin and the sympathetic system; regulation of the protein by insulin involves sympathetic mediation.

  9. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    PubMed

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcin