Sample records for single shot fast

  1. Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.

    PubMed

    Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald

    2006-01-01

    Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.

  2. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  3. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    PubMed

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  4. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  5. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  6. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions.

    PubMed

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-04

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  7. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong

    2014-12-01

    A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.

  8. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  9. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

    NASA Astrophysics Data System (ADS)

    Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten

    2017-11-01

    We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.

  10. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  11. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  12. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  13. Referenceless one-dimensional Nyquist ghost correction in multicoil single-shot spatiotemporally encoded MRI.

    PubMed

    Chen, Ying; Liao, Yupeng; Yuan, Lisha; Liu, Hui; Yun, Seong Dae; Shah, Nadim Joni; Chen, Zhong; Zhong, Jianhui

    2017-04-01

    Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data. Copyright © 2016. Published by Elsevier Inc.

  14. Shot sequencing based on biological equivalent dose considerations for multiple isocenter Gamma Knife radiosurgery.

    PubMed

    Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A; Sahgal, Arjun

    2011-11-21

    Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R² = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.

  15. Manned and Unmanned Aircraft Effectiveness in Fast Attack Craft / Fast Inshore Attack Craft ASUW Kill Chain Execution

    DTIC Science & Technology

    2016-09-01

    par. 4) Based on a RED projected size of 22.16 m, a sample calculation for the unadjusted single shot probability of kill for HELLFIRE missiles is...framework based on intelligent objects (SIMIO) environment to model a fast attack craft/fast inshore attack craft anti-surface warfare expanded kill chain...concept of operation efficiency. Based on the operational environment, low cost and less capable unmanned aircraft provide an alternative to the

  16. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    NASA Astrophysics Data System (ADS)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  18. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  19. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  20. Single-shot time stretch stimulated Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saltarelli, Francesco; Kumar, Vikas; Viola, Daniele; Crisafi, Francesco; Preda, Fabrizio; Cerullo, Giulio; Polli, Dario

    2017-02-01

    Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to 15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate 10^-5 sensitivity over 500 cm-1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.

  1. Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.

    PubMed

    Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G

    2013-10-21

    In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.

  2. Shot sequencing based on biological equivalent dose considerations for multiple isocenter Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A.; Sahgal, Arjun

    2011-11-01

    Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R2 = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.

  3. Single-shot pressure-sensitive paint lifetime measurements on fast rotating blades using an optimized double-shutter technique

    NASA Astrophysics Data System (ADS)

    Weiss, Armin; Geisler, Reinhard; Schwermer, Till; Yorita, Daisuke; Henne, Ulrich; Klein, Christian; Raffel, Markus

    2017-09-01

    A pressure-sensitive paint (PSP) system is presented to measure global surface pressures on fast rotating blades. It is dedicated to solve the problem of blurred image data employing the single-shot lifetime method. The efficient blur reduction capability of an optimized double-shutter imaging technique is demonstrated omitting error-prone post-processing or laborious de-rotation setups. The system is applied on Mach-scaled DSA-9A helicopter blades in climb at various collective pitch settings and blade tip Mach and chord Reynolds numbers (M_{ {tip}} = 0.29-0.57; Re_{ {tip}} = 4.63-9.26 × 10^5). Temperature effects in the PSP are corrected by a theoretical approximation validated against measured temperatures using temperature-sensitive paint (TSP) on a separate blade. Ensemble-averaged PSP results are comparable to pressure-tap data on the same blade to within 250 Pa. Resulting pressure maps on the blade suction side reveal spatially high resolved flow features such as the leading edge suction peak, footprints of blade-tip vortices and evidence of laminar-turbulent boundary-layer (BL) transition. The findings are validated by a separately conducted BL transition measurement by means of TSP and numerical simulations using a 2D coupled Euler/boundary-layer code. Moreover, the principal ability of the single-shot technique to capture unsteady flow phenomena is stressed revealing three-dimensional pressure fluctuations at stall.

  4. High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    2018-04-01

    The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

  5. Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys

    PubMed Central

    Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.

    2011-01-01

    Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023

  6. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less

  7. Application of single-shot spiral scanning for volume localization.

    PubMed

    Ra, J B; Rim, C Y; Cho, Z H

    1991-02-01

    A new technique using a spiral scan single-shot RF pulse for localized volume selection has been developed and its experimental results are presented. This technique employs an additional radial-gradient coil in conjunction with the oscillating gradients for the spiral scan to localize the 3D volume. The short selection time in this technique minimizes both signal contamination from unwanted regions and signal attenuation due to T2 decay. We provide both the theoretical background of the technique and the experimental results obtained from a phantom as well as a human volunteer. The proposed method appears simple and accurate in localizing a volume which would be used as either fast imaging or localized spectroscopy.

  8. Improvement of on/off ratio in single-shot multichannel demultiplexing by using an optical Kerr gate of a squarylium dye J aggregate film

    NASA Astrophysics Data System (ADS)

    Sato, Yasuhiro; Furuki, Makoto; Tian, Minquan; Iwasa, Izumi; Pu, Lyong Sun; Tatsuura, Satoshi

    2002-04-01

    We demonstrated ultrafast single-shot multichannel demultiplexing by using a squarylium dye J aggregate film as an optical Kerr medium. High efficiency and fast recovery of the optical Kerr responses were achieved when a signal-pulse wavelength was close to the absorption peak of the J aggregate film with off-resonant excitation. The on/off ratio in demultiplexing of 1 Tb/s signals was improved to be approximately 5. By introducing time delay to both horizontal and vertical directions, we succeeded in directly observing the conversion of 1 Tb/s serial signals into two-dimensionally arranged parallel signals.

  9. Fast optical and electrical diagnostics of pulsed spark discharges in different gap geometries

    NASA Astrophysics Data System (ADS)

    Höft, Hans; Huiskamp, Tom; Kettlitz, Manfred

    2016-09-01

    Spark discharges in different electrode configurations and with various electrode materials were ignited in air at atmospheric pressure using a custom build pulse charger with 1 μs voltage rise time (up to 28 kV) in single shot operation. Fast voltage and current measurements were combined with iCCD imaging with high spatial resolution (better than 10 μm) on pin-to-pin, pin-to-half-sphere and symmetrical half-sphere tungsten electrodes and symmetrical half-sphere brass electrodes for electrode gaps of 0.1 to 0.7 mm. Breakdown voltages, consumed electrical energies and the discharge emission structures as well as the discharge diameters were obtained. Because of the synchronization of the electrical measurements and the iCCD imaging (i.e. one complete data set for every shot), it was possible to estimate the current density and the change of the discharge pattern, such as single or multiple channels, for all cases. EU funding under Grant No 316216 (PlasmaShape).

  10. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Eres, Gyula; Larson, B. C.; Rouleau, Christopher M.; Zschack, P.; Lowndes, Douglas H.

    2006-06-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  11. One-Shot Determination of Residual Dipolar Couplings: Application to the Structural Discrimination of Small Molecules Containing Multiple Stereocenters.

    PubMed

    Castañar, Laura; Garcia, Manuela; Hellemann, Erich; Nolis, Pau; Gil, Roberto R; Parella, Teodor

    2016-11-18

    A novel approach for the fast and efficient structural discrimination of molecules containing multiple stereochemical centers is described. A robust J-resolved HSQC experiment affording highly resolved 1 J CH / 1 T CH splittings along the indirect dimension and homodecoupled 1 H signals in the detected dimension is proposed. The experiment enables in situ distinction of both isotropic and anisotropic components of molecules dissolved in compressed PMMA gels, allowing a rapid and direct one-shot determination of accurate residual dipolar coupling constants from a single NMR spectrum.

  12. Demonstration Of Fast, Single-Shot Photocathode QE Mapping Method Using Mla Pattern Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, E. E.; Conde, M.; Doran, D. S.

    Quantum efficiency (QE) is the chief figure of merit in the characterization of photocathodes. Semiconductor photocathodes, especially when used in high rep-rate photoinjectors, are known to show QE degradation over time and must be replaced. The totalQE is the basic diagnosticwhich is used widely and is easy to obtain. However, a QE map indicating variations of QE across the cathode surface has greater utility. It can quickly diagnose problems of QE inhomogeneity. Most QE mapping techniques require hours to complete and are thus disruptive to a user facility schedule. A fast, single-shot method has been proposed using a micro-lens arraymore » (MLA) generated QE map. In this paper we report the implementation of the method at Argonne Wakefield Accelerator facility. A micro-lens array (MLA) is used to project an array of beamlets onto the photocathode. The resulting photoelectron beam in the form of an array of electron beamlets is imaged at a YAG screen. Four synchronized measurements are made and the results used to produce a QE map of the photocathode.« less

  13. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  14. Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades

    NASA Astrophysics Data System (ADS)

    Peng, Di; Jiao, Lingrui; Yu, Yuelong; Liu, Yingzheng; Oshio, Tetsuya; Kawakubo, Tomoki; Yakushiji, Akimitsu

    2017-09-01

    Fast-responding pressure-sensitive paint (Fast PSP) and temperature-sensitive paint (TSP) measurements were conducted on two turbocharger compressors using a single-shot lifetime-based technique. The fast PSP and TSP were applied on separate blades of one compressor, and both paints were excited by a pulsed 532 nm Nd:YAG laser. The luminescent decay signals following the laser pulse were recorded by a CCD camera in a double-exposure mode. Instantaneous pressure and temperature fields on compressor blades were obtained simultaneously, for rotation speeds up to 150,000 rpm. The variations in pressure and temperature fields with rotation speed, flow rate and runtime were clearly visualized, showing the advantage of high spatial resolution. Severe image blurring problems and significant temperature-induced errors in the PSP results were found at high rotation speeds. The first issue was addressed by incorporating a deconvolution-based deblurring algorithm to recover the clear image from the blurred image using the combination of luminescent lifetime and rotation speed. The second issue was resolved by applying a pixel-by-pixel temperature correction based on the TSP results. The current technique has shown great capabilities in flow diagnostics of turbomachinery and can serve as a powerful tool for CFD validations and design optimizations.

  15. Acid-fast intranuclear inclusion bodies in the kidneys of mallards fed lead shot

    USGS Publications Warehouse

    Locke, L.N.; Bagley, George E.; Irby, H.D.

    1966-01-01

    Acid-fast intranuclear inclusion bodies were found in the cells of the proximal convoluted tubules of the kidneys of mallards fed one, two, three or eight number 6 lead shot and maintained on cracked or whole corn and on grain-duck pellet diets. No acid-fast inclusion bodies were found in mallards fed one or three lead shot but maintained on a duck pellet ration. Dietary factors may be responsible for the failure of mallards fed a duck pellet ration to develop lead Inclusion bodies when treated with one or three lead shot. The authors suggest these inclusion bodies can be used as presumptive evidence for lead intoxication in mallards.

  16. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    NASA Astrophysics Data System (ADS)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  17. Single ion as a shot-noise-limited magnetic-field-gradient probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, A.; Poschinger, U.; Ziesel, F.

    2011-06-15

    It is expected that ion-trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between subregions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of {Delta}B/B{sub 0{approx}}5x10{sup -7} over a test distance of 140 {mu}m, which can be extended to the mm range, stillmore » with sub-{mu}m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic-field-gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.« less

  18. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.

    PubMed

    Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V

    2018-07-01

    Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Single-shot dimension measurements of the mouse eye using SD-OCT.

    PubMed

    Jiang, Minshan; Wu, Pei-Chang; Fini, M Elizabeth; Tsai, Chia-Ling; Itakura, Tatsuo; Zhang, Xiangyang; Jiao, Shuliang

    2012-01-01

    The authors demonstrate the feasibility and advantage of spectral-domain optical coherence tomography (SD-OCT) for single-shot ocular biometric measurement during the development of the mouse eye. A high-resolution SD-OCT system was built for single-shot imaging of the whole mouse eye in vivo. The axial resolution and imaging depth of the system are 4.5 μm (in tissue) and 5.2 mm, respectively. The system is capable of acquiring a cross-sectional OCT image consisting of 2,048 depth scans in 85 ms. The imaging capability of the SD-OCT system was validated by imaging the normal ocular growth and experimental myopia model using C57BL/6J mice. The biometric dimensions of the mouse eye can be calculated directly from one snapshot of the SD-OCT image. The biometric parameters of the mouse eye including axial length, corneal thickness, anterior chamber depth, lens thickness, vitreous chamber depth, and retinal thickness were successfully measured by the SD-OCT. In the normal ocular growth group, the axial length increased significantly from 28 to 82 days of age (P < .001). The lens thickness increased and the vitreous chamber depth decreased significantly during this period (P < .001 and P = .001, respectively). In the experimental myopia group, there were significant increases in vitreous chamber depth and axial length in comparison to the control eyes (P = .040 and P < .001, respectively). SD-OCT is capable of providing single-shot direct, fast, and high-resolution measurements of the dimensions of young and adult mouse eyes. As a result, SD-OCT is a potentially powerful tool that can be easily applied to research in eye development and myopia using small animal models. Copyright 2012, SLACK Incorporated.

  20. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis.

    PubMed

    Zhang, Zhenbin; Dovichi, Norman J

    2018-02-25

    The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A systematic examination of the bone destruction pattern of the two-shot technique

    PubMed Central

    Stoetzer, Marcus; Stoetzer, Carsten; Rana, Majeed; Zeller, Alexander; Hanke, Alexander; Gellrich, Nils-Claudius; von See, Constantin

    2014-01-01

    Introduction: The two-shot technique is an effective stopping power method. The precise mechanisms of action on the bone and soft-tissue structures of the skull; however, remain largely unclear. The aim of this study is to compare the terminal ballistics of the two-shot and single-shot techniques. Materials and Methods: 40 fresh pigs’ heads were randomly divided into 4 groups (n = 10). Either a single shot or two shots were fired at each head with a full metal jacket or a semi-jacketed bullet. Using thin-layer computed tomography and photography, the diameter of the destruction pattern and the fractures along the bullet path were then imaged and assessed. Results: A single shot fired with a full metal jacket bullet causes minor lateral destruction along the bullet path. With two shots fired with a full metal jacket bullet, however, the maximum diameter of the bullet path is significantly greater (P < 0.05) than it is with a single shot fired with a full metal jacket bullet. In contrast, the maximum diameter with a semi-jacketed bullet is similar with the single-shot and two-shot techniques. Conclusion: With the two-shot technique, a full metal jacket bullet causes a destruction pattern that is comparable to that of a single shot fired with a semi-jacketed bullet. PMID:24812454

  3. Lower Extremity Muscle Activity During a Women’s Overhand Lacrosse Shot

    PubMed Central

    Millard, Brianna M.; Mercer, John A.

    2014-01-01

    The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg) were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG) leads to measure muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (GA). Participants completed five trials of a warm-up speed shot (Slow) and a game speed shot (Fast). Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration). Average EMG per muscle was analyzed using a 4 (Phase) × 2 (Speed) ANOVA. BF was greater during Fast vs. Slow for all phases (p<0.05), while TA was not influenced by either Phase or Speed (p>0.05). RF and GA were each influenced by the interaction of Phase and Speed (p<0.05) with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05) but only tended to be greater during Stick Acceleration (p=0.076) for Fast vs. Slow. The greater muscle activity (BF, RF, GA) during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements. PMID:25114727

  4. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla.

    PubMed

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten

    2017-06-01

    A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

  5. [Single shot fast spin echo sequence MRI cholangiopancreatography].

    PubMed

    Lefèvre, F; Crouzet, P; Gaucher, H; Chapuis, F; Béot, S; Boccaccini, H; Bazin, C; Régent, D

    1998-05-01

    To assess the value of single shot fast spin echo MR sequence (SS-FSE) in the morphological analysis of the biliary tree and pancreatic ducts and to compare its accuracy with other imaging methods. 95 consecutive patients referred for clinical and/or biological suspicion of biliary obstruction were explored with MR cholangiopancreatography (MRCP). All patients were explored with a Signa 1.5 T GE MR unit, with High Gradient Field Strength and Torso Phased Array Coil. Biliary ducts were explored with SS-FSE sequence, coronal and oblique coronal 20 mm thick slices on a 256 x 256 matrix. Total acquisition time was 1 second. Native pictures were reviewed by two radiologists blinded to clinical information. In case of disagreement, a third radiologist's judgement was requested. In 88 cases, MRCP results were compared with direct biligraphy methods. In all cases, MRCP produced high quality images without MIP or other post-processing methods. For detection of biliary tree distensions, the concordance value of MRCP was over 91% (Kappa 0.82). For detection of biliary tree and/or pancreatic duct obstruction, MR sensitivity was 100% and specificity 91%. The overall diagnostic concordance value of MRCP was > or = 93%. Difficulties in MRCP were caused by functional diseases or benign stenosis. MRCP accurately diagnosed all lithiasic obstructions starting from a stone size of 3 mm. MRCP produces fastly high-quality images. As it is totally safe, it can be proposed as a first intention method in biliopancreatic duct explorations.

  6. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  7. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by kmṡs-1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  8. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials.

    PubMed

    Bassett, Will P; Dlott, Dana D

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by km⋅s -1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  9. High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction

    PubMed Central

    Joseph, Arun A; Kalentev, Oleksandr; Merboldt, Klaus-Dietmar; Voit, Dirk; Roeloffs, Volkert B; van Zalk, Maaike; Frahm, Jens

    2016-01-01

    Objective: To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. Methods: The proposed strategy represents a single-shot inversion recovery experiment triggered to early diastole during a brief breath-hold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3-T MRI system using a graphics processing unit-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 beats per minute. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. Results: At 1-mm in-plane resolution and 6-mm section thickness, the inversion recovery measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 beats per minute. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± standard deviation, n = 6). Conclusion: Diastolic myocardial T1 mapping with use of single-shot inversion recovery FLASH offers high spatial resolution, T1 accuracy and precision, and practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation. PMID:27759423

  10. Single-shot spiral imaging at 7 T.

    PubMed

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer.

    PubMed

    Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun

    2012-09-04

    In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants K(m) and k(cat) can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin-β-D-galactopyranoside) and found K(m) and k(cat) to be 333 ± 130 μM and 64 ± 8 s(-1), respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions.

  12. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  13. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  14. PROPELLER for motion-robust imaging of in vivo mouse abdomen at 9.4 T.

    PubMed

    Teh, Irvin; Golay, Xavier; Larkman, David J

    2010-11-01

    In vivo high-field MRI in the abdomen of small animals is technically challenging because of the small voxel sizes, short T(2) and physiological motion. In standard Cartesian sampling, respiratory and gastrointestinal motion can lead to ghosting artefacts. Although respiratory triggering and navigator echoes can either avoid or compensate for motion, they can lead to variable TRs, require invasive intubation and ventilation, or extend TEs. A self-navigated fast spin echo (FSE)-based periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) acquisition was implemented at 9.4 T to enable high-resolution in vivo MRI of mouse abdomen without the use of additional navigators or triggering. T(2)-weighted FSE-PROPELLER data were compared with single-shot FSE and multi-shot FSE data with and without triggering. Single-shot methods, although rapid and robust to motion, demonstrated strong blurring. Multi-shot FSE data showed better resolution, but suffered from marked blurring in the phase-encoding direction and motion in between shots, leading to ghosting artefacts. When respiratory triggering was used, motion artefacts were largely avoided. However, TRs and acquisition times were lengthened by up to approximately 20%. The PROPELLER data showed a 25% and 61% improvement in signal-to-noise ratio and contrast-to-noise ratio, respectively, compared with multi-shot FSE data, together with a 35% reduction in artefact power. A qualitative comparison between acquisition methods using diffusion-weighted imaging was performed. The results were similar, with the exception that respiratory triggering was unable to exclude major motion artefacts as a result of the sensitisation to motion by the diffusion gradients. The PROPELLER data were of consistently higher quality. Considerations specific to the use of PROPELLER at high field are discussed, including the selection of practical blade widths and the effects on contrast, resolution and artefacts.

  15. Histopathology of mallards dosed with lead and selected substitute shot

    USGS Publications Warehouse

    Locke, L.N.; Irby, H.D.; Bagley, George E.

    1967-01-01

    The histopathological response of male game farm mallards fed lead, three types of plastic-coated lead, two lead-magnesium alloys, iron, copper, zinc-coated iron, and molybdenum-coated iron shot was studied. Mallards fed lead, plastic-coated lead, or lead-magnesium alloy shot developed a similar pathological response, including the formation of acid-fast intranuclear inclusion bodies in the kidneys. Birds fed iron or molybdenum-coated iron shot developed hemosiderosis of the liver. Two of four mallards fed zinc-coated iron shot also developed hemosiderosis of the liver. No lesions were found in mallards fed copper shot.

  16. Highly Resolved Mg/Ca Depth Profiles of Planktic Foraminifer test Walls Using Single shot Measurements of fs-LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Schiebel, R.; Stoll, B.; Weis, U.; Haug, G. H.

    2017-12-01

    Foraminifers are sensitive archives of changes in climate and marine environment. It has been shown that the Mg/Ca signal is a suitable proxy of seawater temperature, because the incorporation of Mg depends on ambient water temperature. In contrast to most former studies, where this ratio is determined by solution-based bulk analysis of 20 - 30 specimens, we have investigated Mg/Ca in single specimens and single chambers at high resolution. A new fs-200 nm-LA-ICPMS technique was developed for the µm-sized layered calcite shells. To generate depth profiles with a resolution of about 50 nm/shot, we chose a low fluence of about 0.3 Jcm-2 and performed single shot measurements of the double charged 44Ca++ and the single charged 25Mg+ ions together. Precision (RSD) of the Mg/Ca data is about 5 %. Calibration was performed with the carbonate reference material MACS-3 from the USGS. Our results for different species from the Arabian Sea and Caribbean Sea demonstrate that Mg/Ca of different chambers vary and indicate that the foraminifer individuals built their chambers in different water depths and/or experienced seasonal changes in seawater temperature caused, for example, by upwelling (cold) versus stratified (warm) conditions. Typically, the Mg/Ca ratios of the final two chambers of the planktic foraminifer Globorotalia menardii from a sediment core of the Arabian Sea differ by about 5 mmol/mol from earlier chambers (2 mmol/mol) corresponding to seawater temperatures of 28 °C and 18 °C, respectively. In addition, mass fractions of other elements like Sr, Mn, Fe, Ba, and U have been determined with fs-LA-ICPMS using fast line scans, and thus provide further insights in the ecology of foraminifers.

  17. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  18. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    PubMed Central

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2016-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720

  19. Safeguarding Our Health: Vaccines Protect Us All

    MedlinePlus

    ... the most serious illnesses. Staying current on your shots helps you—and your neighbors—avoid getting and ... point that we no longer need to get shots against this fast-spreading, once-deadly disease. Polio ...

  20. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  1. PROPELLER EPI: An MRI Technique Suitable for Diffusion Tensor Imaging at High Field Strength With Reduced Geometric Distortions

    PubMed Central

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K.

    2013-01-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. PMID:16206142

  2. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions.

    PubMed

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K

    2005-11-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. (c) 2005 Wiley-Liss, Inc.

  3. Relative toxicity of lead and five proposed substitute shot types to pen-reared mallards

    USGS Publications Warehouse

    Grandy, John W.; Locke, Louis N.; Bagley, George E.

    1968-01-01

    A 30-day toxicity test was made to determine the relative toxicity of lead, a tin-lead alloy, zinc, nickel, teflon-coated steel, and tin, all in shot form, to pen-reared mallard drakes. All of the 15 ducks dosed with lead died. Twenty-seven percent of 15 dosed with alloy, and 20 percent of 15 dosed with zinc also died. Ten of the remaining zinc-dosed ducks showed signs of distress, including losses of muscular control and body weight. There were no deaths among 15 ducks dosed with nickel, 15 dosed with teflon-coated steel, and 15 dosed with tin. Seventy-three percent of those dosed with nickel shot eliminated all shot before the end of the 30-day period. Acid-fast intranuclear inclusion bodies were present in the kidneys of mallards dosed with commercial lead shot, or with tin-lead alloy shot, but not in the kidneys of birds given nickel, tin, or teflon-coated steel shot. Atypical, pale, acid-fast bodies were found in kidneys of 1 of 15 birds dosed with zinc. An iron-containing pigment, which stained positive with the Prussian blue technique, was present in variable amounts in almost all livers. Zinc-dosed ducks that died or were killed while still showing signs of zinc intoxication had higher iron levels in the liver than ducks that had recovered from zinc intoxication.

  4. [Comparison of Quantification of Myocardial Infarct Size by One Breath Hold Single Shot PSIR Sequence and Segmented FLASH-PSIR Sequence at 3. 0 Tesla MR].

    PubMed

    Cheng, Wei; Cai, Shu; Sun, Jia-yu; Xia, Chun-chao; Li, Zhen-lin; Chen, Yu-cheng; Zhong, Yao-zu

    2015-05-01

    To compare the two sequences [single shot true-FISP-PSIR (single shot-PSIR) and segmented-turbo-FLASH-PSIR (segmented-PSIR)] in the value of quantification for myocardial infarct size at 3. 0 tesla MRI. 38 patients with clinical confirmed myocardial infarction were served a comprehensive gadonilium cardiac MRI at 3. 0 tesla MRI system (Trio, Siemens). Myocardial delayed enhancement (MDE) were performed by single shot-PSIR and segmented-PSIR sequences separatedly in 12-20 min followed gadopentetate dimeglumine injection (0. 15 mmol/kg). The quality of MDE images were analysed by experienced physicians. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) between the two techniques were compared. Myocardial infarct size was quantified by a dedicated software automatically (Q-mass, Medis). All objectives were scanned on the 3. 0T MR successfully. No significant difference was found in SNR and CNR of the image quality between the two sequences (P>0. 05), as well as the total myocardial volume, between two sequences (P>0. 05). Furthermore, there were still no difference in the infarct size [single shot-PSIR (30. 87 ± 15. 72) mL, segmented-PSIR (29. 26±14. 07) ml], ratio [single shot-PSIR (22. 94%±10. 94%), segmented-PSIR (20. 75% ± 8. 78%)] between the two sequences (P>0. 05). However, the average aquisition time of single shot-PSIR (21. 4 s) was less than that of the latter (380 s). Single shot-PSIR is equal to segmented-PSIR in detecting the myocardial infarct size with less acquisition time, which is valuable in the clinic application and further research.

  5. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  6. Experimental lead-shot poisoning in bald eagles

    USGS Publications Warehouse

    Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.M.; Sileo, L.; Carpenter, J.W.

    1981-01-01

    Captive, crippled bald eagles unsuitable for release were fed lead shot to determine diagnostic criteria for lead poisoning. The eagles were fluoroscoped and bled periodically to determine shot retention and blood delta--aminolevulinic acid dehydratase activity. Microscopic examination revealed renal tubular degeneration, arterial fibrinoid necrosis and myocardial necrosis. Acid-fast intra-nuclear inclusion bodies were not found in proximal convoluted tubule cells. Analyses of blood and toxicological data are not yet complete.

  7. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

  8. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  9. 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy.

    PubMed

    Kanal, Florian; Keiber, Sabine; Eck, Reiner; Brixner, Tobias

    2014-07-14

    Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.

  10. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  11. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  12. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  13. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  14. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  15. One Shot Detection with Laplacian Object and Fast Matrix Cosine Similarity.

    PubMed

    Biswas, Sujoy Kumar; Milanfar, Peyman

    2016-03-01

    One shot, generic object detection involves searching for a single query object in a larger target image. Relevant approaches have benefited from features that typically model the local similarity patterns. In this paper, we combine local similarity (encoded by local descriptors) with a global context (i.e., a graph structure) of pairwise affinities among the local descriptors, embedding the query descriptors into a low dimensional but discriminatory subspace. Unlike principal components that preserve global structure of feature space, we actually seek a linear approximation to the Laplacian eigenmap that permits us a locality preserving embedding of high dimensional region descriptors. Our second contribution is an accelerated but exact computation of matrix cosine similarity as the decision rule for detection, obviating the computationally expensive sliding window search. We leverage the power of Fourier transform combined with integral image to achieve superior runtime efficiency that allows us to test multiple hypotheses (for pose estimation) within a reasonably short time. Our approach to one shot detection is training-free, and experiments on the standard data sets confirm the efficacy of our model. Besides, low computation cost of the proposed (codebook-free) object detector facilitates rather straightforward query detection in large data sets including movie videos.

  16. Wide-Field Imaging of Single-Nanoparticle Extinction with Sub-nm2 Sensitivity

    NASA Astrophysics Data System (ADS)

    Payne, Lukas M.; Langbein, Wolfgang; Borri, Paola

    2018-03-01

    We report on a highly sensitive wide-field imaging technique for quantitative measurement of the optical extinction cross section σext of single nanoparticles. The technique is simple and high speed, and it enables the simultaneous acquisition of hundreds of nanoparticles for statistical analysis. Using rapid referencing, fast acquisition, and a deconvolution analysis, a shot-noise-limited sensitivity down to 0.4 nm2 is achieved. Measurements on a set of individual gold nanoparticles of 5 nm diameter using this method yield σext=(10.0 ±3.1 ) nm2, which is consistent with theoretical expectations and well above the background fluctuations of 0.9 nm2 .

  17. Single-shot optical recording with sub-picosecond resolution spans record nanosecond lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, Ryan; Heebner, John

    With the advent of electronics, oscilloscopes and photodiodes are now routinely capable of measuring events well below nanosecond resolution. However, these electronic instruments do not currently measure events below 10 ps resolution. From Walden’s observation that there is an engineering tradeoff between electronic bit depth and temporal resolution in analog-to-digital converters, this technique is projected to have extremely poor fidelity if it is extended to record single events with picosecond resolution. While this constraint may be circumvented with extensive signal averaging or other multiple measurements approaches, rare events and nonrepetitive events cannot be observed with this technique. Techniques capable ofmore » measuring information in a single shot are often required. There is a general lack of available technologies that are easily scalable to long records with sub-picosecond resolution, and are simultaneously versatile in wavelength of operation. Since it is difficult to scale electronic methods to shorter resolutions, we instead aim to scale optical methods to longer records. Demonstrated optical recording methods that have achieved 1 ps resolution and long recording lengths rely on either time scaling to slow down the temporal information or, like Wien, perform time-to-space mapping so that fast events may be captured with a conventional camera.« less

  18. Single-shot optical recording with sub-picosecond resolution spans record nanosecond lengths

    DOE PAGES

    Muir, Ryan; Heebner, John

    2018-01-18

    With the advent of electronics, oscilloscopes and photodiodes are now routinely capable of measuring events well below nanosecond resolution. However, these electronic instruments do not currently measure events below 10 ps resolution. From Walden’s observation that there is an engineering tradeoff between electronic bit depth and temporal resolution in analog-to-digital converters, this technique is projected to have extremely poor fidelity if it is extended to record single events with picosecond resolution. While this constraint may be circumvented with extensive signal averaging or other multiple measurements approaches, rare events and nonrepetitive events cannot be observed with this technique. Techniques capable ofmore » measuring information in a single shot are often required. There is a general lack of available technologies that are easily scalable to long records with sub-picosecond resolution, and are simultaneously versatile in wavelength of operation. Since it is difficult to scale electronic methods to shorter resolutions, we instead aim to scale optical methods to longer records. Demonstrated optical recording methods that have achieved 1 ps resolution and long recording lengths rely on either time scaling to slow down the temporal information or, like Wien, perform time-to-space mapping so that fast events may be captured with a conventional camera.« less

  19. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0.06) did not exhibit significant differences, quantitative DW single-shot TSE imaging (p = 0.002) and quantitative chemical-shift imaging (p = 0.01) showed significant differences between benign and malignant fractures. The DW-PSIF sequence (delta = 3 ms) had the highest accuracy in differentiating benign from malignant vertebral fractures. Quantitative chemical-shift imaging and quantitative DW single-shot TSE imaging had a lower accuracy than DW-PSIF imaging because of a large overlap. Qualitative assessment of opposed-phase, DW-EPI, and DW single-shot TSE sequences and quantitative assessment of the DW-EPI sequence were not suitable for distinguishing between benign and malignant vertebral fractures.

  20. Improved diagnosis of common bile duct stone with single-shot balanced turbo field-echo sequence in MRCP.

    PubMed

    Noda, Yoshifumi; Goshima, Satoshi; Kojima, Toshihisa; Kawaguchi, Shimpei; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T

    2017-04-01

    To evaluate the value of adding single-shot balanced turbo field-echo (b-TFE) sequence to conventional magnetic resonance cholangiopancreatography (MRCP) for the detection of common bile duct (CBD) stone. One hundred thirty-seven consecutive patients with suspected CBD stone underwent MRCP including single-shot b-TFE sequence. Twenty-five patients were confirmed with CBD stone by endoscopic retrograde cholangiopancreatography or ultrasonography. Two radiologists reviewed two image protocols: protocol A (conventional MRCP protocol: unenhanced T1-, T2-, and respiratory-triggered three-dimensional fat-suppressed single-shot turbo spin-echo MRCP sequence) and protocol B (protocol A plus single-shot b-TFE sequence). The sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and area under the receiver-operating-characteristic (ROC) curve (AUC) for the detection of CBD stone were compared. The sensitivity (72%) and NPV (94%) were the same between the two protocols. However, protocol B was greater in the specificity (99%) and PPV (94%) than protocol A (92% and 67%, respectively) (P = 0.0078 and 0.031, respectively). The AUC was significantly greater for protocol B (0.93) than for protocol A (0.86) (P = 0.026). Inclusion of single-shot b-TFE sequence to conventional MRCP significantly improved the specificity and PPV for the detection of CBD stone.

  1. Comparison of DWI Methods in the Pediatric Brain: PROPELLER Turbo Spin-Echo Imaging Versus Readout-Segmented Echo-Planar Imaging Versus Single-Shot Echo-Planar Imaging.

    PubMed

    Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun

    2018-06-01

    The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.

  2. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Price, H. T.; Shaw, S. R.

    1987-04-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  3. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Technical Reports Server (NTRS)

    Price, H. T.; Shaw, S. R.

    1987-01-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  4. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  5. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.

    2017-02-01

    Optical phase conjugation based wavefront shaping techniques are being actively developed to focus light through or inside scattering media such as biological tissue, and they promise to revolutionize optical imaging, manipulation, and therapy. The speed of digital optical phase conjugation (DOPC) has been limited by the low speeds of cameras and spatial light modulators (SLMs), preventing DOPC from being applied to thick living tissue. Recently, a fast DOPC system was developed based on a single-shot wavefront measurement method, a field programmable gate array (FPGA) for data processing, and a digital micromirror device (DMD) for fast modulation. However, this system has the following limitations. First, the reported single-shot wavefront measurement method does not work when our goal is to focus light inside, instead of through, scattering media. Second, the DMD performed binary amplitude modulation, which resulted in a lower focusing contrast compared with that of phase modulations. Third, the optical fluence threshold causing DMDs to malfunction under pulsed laser illumination is lower than that of liquid crystal based SLMs, and the system alignment is significantly complicated by the oblique reflection angle of the DMD. Here, we developed a simple but high-speed DOPC system using a ferroelectric liquid crystal based SLM (512 × 512 pixels), and focused light through three diffusers within 4.7 ms. Using focused-ultrasound-guided DOPC along with a double exposure scheme, we focused light inside a scattering medium containing two diffusers within 7.7 ms, thus achieving the fastest digital time-reversed ultrasonically encoded (TRUE) optical focusing to date.

  6. Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu).

    PubMed

    Wang, W D; Kong, K M; Xiao, Y Y; Wang, X J; Liang, B; Qi, W L; Wu, R H

    2006-01-01

    The purpose is to investigate the cervical spinal cord mapping on electrical stimulation at LI4 (Hegu) by using 'signal enhancement by extravascular water protons' (SEEP)-fMRI, and to establish the response of acupoint-stimulation in spinal cord. Three healthy volunteers were underwent low-frequency electrical stimulation at LI4. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. Cord activation was measured both in the sagittal and transverse imaging planes and then analyzed by AFNI (analysis of functional neuroimages) system. In the sagittal view, two subjects had an fMRI response in the cervical spinal cord upon electrical stimulation at LI4. The localizations of the segmental fMRI activation are both at C6 through T1 and C2/3 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured in the last subjects locating at C6/7 segment, the cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. It is concluded that the fMRI technique can be used for detecting with activity in the human cervical spinal cord by a single-shot fast spin-echo sequence on a 1.5 T GE clinical system. Investigating the acupoint-stimulation response in the spinal cord using the spinal fMRI will be helpful for the further discussion on the mechanisms of acupuncture to spinal cord diseases.

  7. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences.

    PubMed

    Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin

    2014-07-01

    The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less

  9. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    DTIC Science & Technology

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow...2001). 6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant

  10. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Ultrafast MR imaging of the pelvic floor.

    PubMed

    Unterweger, M; Marincek, B; Gottstein-Aalame, N; Debatin, J F; Seifert, B; Ochsenbein-Imhof, N; Perucchini, D; Kubik-Huch, R A

    2001-04-01

    The aim of this study was to compare pelvic floor anatomy and laxity at rest and on straining (Valsalva's maneuver) using dynamic ultrafast MR imaging in women who were continent versus those with stress incontinence differing in obstetric history. Thirty continent women were divided into three equal groups (nulliparous, previous cesarean delivery, previous vaginal delivery) and compared with 10 women with stress-incontinence with a history of at least one vaginal delivery. MR imaging of the pelvic floor at rest and on maximal strain was performed, using axial T2-weighted fast spin-echo images followed by sagittal ultrafast T2-weighted single-shot fast spin-echo sequences. Mean population age (age range, 22-45 years; mean +/- SD, 36 +/- 5.4 years), was similar in the four groups, as was parity in the three parous groups. Mean distances between the bladder floor and pubococcygeal line at rest did not differ between the four groups. On straining, bladder floor descent was 1.1 +/- 0.9, 1.0 +/- 1.1, and 1.9 +/- 0.9 cm in continent nulliparous, cesarean delivery, and vaginal delivery women, respectively, versus 3.2 +/- 1.0 cm in incontinent women (p = 0.0005). Cervical descent was greater in incontinent versus nulliparous women (p = 0.0019). Bladder floor descent was greater in the continent vaginal delivery group than in continent cesarean delivery control patients (p = 0.04). In patients with stress incontinence, symptoms did not correlate with amplitude of descent. The right levator muscle was thinner overall than the left, regardless of frequency direction (p = 0.001). Ultrafast MR imaging using the T2-weighted single-shot fast spin-echo sequence allows dynamic evaluation of the pelvic compartments at maximal strain with no need for contrast medium. Pelvic floor laxity and supporting fascia abnormalities were most common in patients with stress incontinence followed by continent women with a history of vaginal delivery. The results are therefore compatible with the hypothesis of vaginal delivery as a contributory factor to stress incontinence in older parous women.

  12. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  13. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility

    PubMed Central

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system’s design enables it to be controlled by an external trigger signal for single-shot pump–probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in ‘single-shot image’, ‘shot-to-shot image (image-to-image storage or block storage)’ and ‘shot-to-shot sweep’ modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in ‘ordinary sweep’ mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL. PMID:24365935

  14. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    DOE PAGES

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; ...

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore » have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm 2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm 2 and 0.75 J/cm 2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  15. Ultrafast chirped optical waveform recorder using a time microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  16. Dual echelon femtosecond single-shot spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noisemore » level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%−0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.« less

  17. Single-shot water-immersion microscopy platform for qualitative visualization and quantitative phase imaging of biosamples

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Cojoc, Dan; Torre, Vincent; Micó, Vicente

    2017-07-01

    We present the combination of a single-shot water-immersion digital holographic microscopy with broadband illumination for simultaneous visualization of coherent and incoherent images using microbeads and different biosamples.

  18. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  19. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  20. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  1. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  2. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  3. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.

    PubMed

    Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F

    2011-09-01

    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics

  4. Facts about Vitamin K Deficiency Bleeding

    MedlinePlus

    ... K shot into a muscle in the thigh. One shot given just after birth will protect your baby ... easily preventable with just a single vitamin K shot at birth. References 1. Zipursky A. Prevention of vitamin K deficiency bleeding ...

  5. Diffusion-weighted imaging of the spine with a non-carr-purcell-meiboom-gill single-shot fast spin-echo sequence: initial experience.

    PubMed

    Oner, A Y; Tali, T; Celikyay, F; Celik, A; Le Roux, P

    2007-03-01

    To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. Twenty-four patients were enrolled after written informed consent. DWI of the spine was obtained with an echo-planar imaging (EPI)-based sequence followed by a non-CPMG SS-FSE technique. SNR and ADC values were measured over a lesion-free vertebral corpus. A quality score was assigned for each set of images to assess the image quality. When a spinal lesion was present, contrast-to-noise ratio (CNR) and ADC were also measured. Student t tests were used for statistical analysis. Mean SNR values were 5.83 +/- 2.2 and 11.68 +/- 2.87 for EPI and non-CPMG SS-FSE DWI, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher (P < .01). Mean ADCs of the spine were 0.53 +/- 0.15 and 0.35 +/- 0.15 x 10(-3) mm(2)/s for EPI and non-CPMG SS-FSE DWI, respectively. Quality scores were found to be higher for the non-CPMG SS-FSE DWI technique (P < .05). Overall lesion CNR was found to be higher in DWI with non-CPMG SS-FSE. The non-CPMG SS-FSE technique provides a significant improvement to current EPI-based DWI of the spine. A study including a larger number of patients is required to determine the use of this DWI sequence as a supplementary tool to conventional MR imaging for increasing diagnostic confidence in spinal pathologic conditions.

  6. New perspectives for high accuracy SLR with second generation geodesic satellites

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return of a single clean pulse with an adequate cross-section.

  7. Magnetic resonance cholangiopancreatography: value of using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence.

    PubMed

    Ho, J T; Yap, C K

    1999-05-01

    The purpose of this study was to evaluate the accuracy of magnetic resonance cholangiopancreatography (MRCP) for visualisation and diagnosis of pancreatico-biliary diseases. Our results of 35 case studies, correlating with results from endoscopic, percutaneous cholangiopancreatography or laparotomy, showed that MRCP performed using the half-Fourier acquisition single-shot turbo spin echo (HASTE) sequences was fast and accurate for depiction of the biliary and pancreatic system, with a diagnostic value comparable to that of direct cholangiography. The presence of biliary obstruction was accurately diagnosed in all but one patient. In hilar strictures, MR cholangiogram was able to depict the intrahepatic biliary tree proximal to the level of obstruction which was not readily displayed by endoscopic retrograde cholangiopancreatography (ERCP) (Figs. 1 & 2). This overview of the entire biliary system was found to be advantageous for preprocedural planning. However, the accuracy for stone detection was limited by the presence of aerobilia from previous sphincterotomy or biliary-enteric anastomosis. Ductal stones less than 3 mm in size within a non-dilated system may be missed due to inadequate spatial resolution. This occurred in a patient with pancreatic duct stones. It is hoped that the accuracy of HASTE magnetic resonance cholangiopancreatography in evaluation of pancreatico-biliary disease would obviate the need for diagnostic invasive cholangiography in selected patients.

  8. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  10. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  11. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si platemore » was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.« less

  12. High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon.

    PubMed

    Broome, M A; Watson, T F; Keith, D; Gorman, S K; House, M G; Keizer, J G; Hile, S J; Baker, W; Simmons, M Y

    2017-07-28

    In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4±0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T.

  13. Single-shot detection and direct control of carrier phase drift of midinfrared pulses.

    PubMed

    Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea

    2010-03-01

    We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.

  14. Persistent increase of blood lead level and suppression of δ-ALAD activity in northern bobwhite quail orally dosed with even a single 2-mm spent lead shot.

    PubMed

    Holladay, S D; Kerr, R; Holladay, J P; Meldrum, B; Williams, S M; Gogal, R M

    2012-10-01

    Birds that display grit ingestion behavior are potentially at risk of lead (Pb) poisoning from mistaken ingestion of spent Pb shot pellets. The majority of available studies designed to assess such risk have used unspent shot pellets rather than field-obtained spent shot, which is oxidized and otherwise changed by weathering. Available studies also often administered more or heavier shot pellets to a bird than it might be expected to ingest. The current study dosed northern bobwhite quail (Colinus virginianus) weighing 194.6 ± 23.1 g (female birds) and 199.3 ± 12.2 g (male birds) with one to three spent no. 9 Pb shot collected from a skeet range, with particular interest in the toxicity that may occur from ingestion of a single 2-mm, 50 mg shot. An 8 week post-dosing clinical observation period was employed, over which feed consumption, body weight, blood Pb levels, and a battery of blood physiological parameters were made. Weight loss occurred in the birds, including male birds dosed with one Pb pellet. Erythrocyte delta aminolevulinic acid dehydratase (δ-ALAD) levels were decreased for the duration of the study across exposures and to levels associated with injury in wild bird populations. Decreased ALAD was particularly severe in female birds dosed with one Pb pellet and was still 92 % decreased at 8 weeks after dosing. Together, these results suggest that inadvertent ingestion of a single no. 9 Pb shot pellet can adversely affect the health of northern bobwhite quail.

  15. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  16. A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation.

    PubMed

    Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap

    2013-04-01

    This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.

  17. Experimental lead poisoning in bald eagles

    USGS Publications Warehouse

    Pattee, H.; Wiemeyer, S.; Hoffman, P.; Carpenter, J.; Sileo, L.

    1979-01-01

    Captive, crippled bald eagles unsuitable for release were fed lead shot to determine diagnostic criteria for lead poisoning. The eagles were fluoroscoped and bled periodically to determine shot retention and blood delta--aminolevulinic acid dehydratase activity. Microscopic examination revealed renal tubular degeneration, arterial fibrinoid necrosis and myocardial necrosis. Acid-fast intra-nuclear inclusion bodies were not found in proximal convoluted tubule cells. Analyses of blood and toxicological data are not yet complete.

  18. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  19. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  20. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juha, L.; Hajkova, V.; Vorlicek, V.

    2009-05-01

    High-surface-quality amorphous carbon (a-C) optical coatings with a thickness of 45 nm, deposited by magnetron sputtering on a silicon substrate, were irradiated by the focused beam of capillary-discharge Ne-like Ar extreme ultraviolet laser (CDL=capillary-discharge laser; XUV=extreme ultraviolet, i.e., wavelengths below 100 nm). The laser wavelength and pulse duration were 46.9 nm and 1.7 ns, respectively. The laser beam was focused onto the sample surface by a spherical Sc/Si multilayer mirror with a total reflectivity of about 30%. The laser pulse energy was varied from 0.4 to 40 muJ on the sample surface. The irradiation was carried out at five fluencemore » levels between 0.1 and 10 J/cm{sup 2}, accumulating five different series of shots, i.e., 1, 5, 10, 20, and 40. The damage to the a-C thin layer was investigated by atomic force microscopy (AFM) and Nomarski differential interference contrast (DIC) optical microscopy. The dependence of the single-shot-damaged area on pulse energy makes it possible to determine a beam spot diameter in the focus. Its value was found to be equal to 23.3+-3.0 mum using AFM data, assuming the beam to have a Gaussian profile. Such a plot can also be used for a determination of single-shot damage threshold in a-C. A single-shot threshold value of 1.1 J/cm{sup 2} was found. Investigating the consequences of the multiple-shot exposure, it has been found that an accumulation of 10, 20, and 40 shots at a fluence of 0.5 J/cm{sup 2}, i.e., below the single-shot damage threshold, causes irreversible changes of thin a-C layers, which can be registered by both the AFM and the DIC microscopy. In the center of the damaged area, AFM shows a-C removal to a maximum depth of 0.3, 1.2, and 1.5 nm for 10-, 20- and 40-shot exposure, respectively. Raman microprobe analysis does not indicate any change in the structure of the remaining a-C material. The erosive behavior reported here contrasts with the material expansion observed earlier [L. Juha et al., Proc. SPIE 5917, 91 (2005)] on an a-C sample irradiated by a large number of femtosecond pulses of XUV high-order harmonics.« less

  1. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions.

    PubMed

    Kim, Jaeuk U; Kinaret, Jari M; Choi, Mahn-Soo

    2005-06-29

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example.

  2. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions

    NASA Astrophysics Data System (ADS)

    Kim, Jaeuk U.; Kinaret, Jari M.; Choi, Mahn-Soo

    2005-06-01

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example.

  3. Missing pulse detector for a variable frequency source

    DOEpatents

    Ingram, Charles B.; Lawhorn, John H.

    1979-01-01

    A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.

  4. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  5. Single-shot distributed Brillouin optical time domain analyzer.

    PubMed

    Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William

    2017-06-26

    We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.

  6. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens

    NASA Astrophysics Data System (ADS)

    Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.

    2016-07-01

    We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  7. Lead shot toxicity to passerines

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Heinz, G.H.

    2001-01-01

    This study evaluated the toxicity of a single size 7.5 lead shot to passerines. No mortalities or signs of plumbism were observed in dosed cowbirds (Molothrus ater) fed a commercial diet, but when given a more natural diet, three of 10 dosed birds died within 1 day. For all survivors from which shot were recovered, all but one excreted the shot within 24 h of dosing, whereas, the dead birds retained their shot. Shot erosion was significantly greater (P < 0.05) when weathered shot were ingested compared to new shot, and the greatest erosion was observed in those birds that died (2.2-9.7%). Blood lead concentrations of birds dosed with new shot were not significantly different (P=0.14) from those of birds exposed to weathered shot. Liver lead concentrations of birds that died ranged from 71 to 137 ppm, dry weight. Despite the short amount of time the shot was retained, songbirds may absorb sufficient lead to compromise their survival.

  8. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  9. Single shot laser speckle based 3D acquisition system for medical applications

    NASA Astrophysics Data System (ADS)

    Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young

    2018-06-01

    The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.

  10. 27 CFR 478.11 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than one shot, without manual reloading, by a single function of the trigger. The term shall also... than an antique firearm. The term shall not include (a) any shotgun shot or pellet not designed for use as the single, complete projectile load for one shotgun hull or casing, nor (b) any unloaded, non...

  11. 27 CFR 478.11 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... than one shot, without manual reloading, by a single function of the trigger. The term shall also... than an antique firearm. The term shall not include (a) any shotgun shot or pellet not designed for use as the single, complete projectile load for one shotgun hull or casing, nor (b) any unloaded, non...

  12. 27 CFR 478.11 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... than one shot, without manual reloading, by a single function of the trigger. The term shall also... than an antique firearm. The term shall not include (a) any shotgun shot or pellet not designed for use as the single, complete projectile load for one shotgun hull or casing, nor (b) any unloaded, non...

  13. 27 CFR 478.11 - Meaning of terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than one shot, without manual reloading, by a single function of the trigger. The term shall also... than an antique firearm. The term shall not include (a) any shotgun shot or pellet not designed for use as the single, complete projectile load for one shotgun hull or casing, nor (b) any unloaded, non...

  14. 27 CFR 478.11 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... than one shot, without manual reloading, by a single function of the trigger. The term shall also... than an antique firearm. The term shall not include (a) any shotgun shot or pellet not designed for use as the single, complete projectile load for one shotgun hull or casing, nor (b) any unloaded, non...

  15. Single shot FASTBUS sequencer

    NASA Astrophysics Data System (ADS)

    Ikeda, H.

    1989-10-01

    A description is given of a single-shot sequencer, a FASTBUS master module that can execute only a predetermined FASTBUS WRITE operation. The execution cycle is directly activated by an external signal. The module is a single-width auxiliary card mounted on a rear slot adjacent to the crate ancillary card. The application of the module to the TOPAZ data acquisition system of TRISTAN is discussed, and the circuit itself is described.

  16. 3D Visual Proxemics: Recognizing Human Interactions in 3D from a Single Image (Open Access)

    DTIC Science & Technology

    2013-06-28

    accurate tracking and identity associations of people’s motions in videos. Proxemics is a subfield of anthropology that involves study of people...cinematography where the shot composition and camera viewpoint is optimized for visual weight [1]. In cinema , a shot is either a long shot, a medium

  17. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  18. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  19. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.

    PubMed

    Schmidt, Rita; Seginer, Amir; Frydman, Lucio

    2016-05-01

    Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments. © 2015 Wiley Periodicals, Inc.

  1. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  2. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  3. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  4. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  5. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  6. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  7. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens.

    PubMed

    Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K

    2016-07-08

    We present the results of an experiment where a short focal length (∼1.3  cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600  T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  8. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  9. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  10. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T.

    PubMed

    Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val

    2013-04-01

    Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.

  11. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  12. 76 FR 58108 - Safety Zone; Ryder Cup Captain's Duel Golf Shot, Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...-AA00 Safety Zone; Ryder Cup Captain's Duel Golf Shot, Chicago River, Chicago, IL AGENCY: Coast Guard... Ryder Cup Captain's Duel Golf Shot event takes place on the Chicago River near Chicago, Illinois from 4... reasons: the safety zone will only be in effect for one hour on a single day and vessels will be allowed...

  13. In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity

    NASA Astrophysics Data System (ADS)

    Choi, In-Young; Lee, Sang-Pil; Shen, Jun

    2005-01-01

    A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90°, a slice-selective universal rotator 90°, and a spectral-spatial pulse composed of two slice-selective universal rotator 45° pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C3 and C4 methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 ± 0.2 μmol/g (means ± SD, n = 15) in the fronto-parietal region of the human brain in vivo.

  14. Investigating radiation induced damage processes with femtosecond x-ray pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Changyong

    2017-05-01

    Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.

  15. Statistical study of single and multiple pulse laser-induced damage in glasses.

    PubMed

    Gallais, L; Natoli, J; Amra, C

    2002-12-16

    Single and multiple pulse laser damage studies are performed in Suprasil silica and BK-7 borosilicate glasses. Experiments are made in the bulk of materials at 1.064microm with nanosecond pulses, using an accurate and reliable measurement system. By means of a statistical study on laser damage probabilities, we demonstrate that the same nano-precursors could be involved in the multiple shot and single shot damage process. A damage mechanism with two stages is then proposed to explain the results. Firstly, a pre-damage process, corresponding to material changes at a microscopic level, leads the precursor to a state that can induce a one-pulse damage. And secondly a final damage occurs, with a mechanism identical to the single shot case. For each material, a law is found to predict the precursor life-time. We can then deduce the long term life of optical elements in high-power laser systems submitted to multipulse irradiation.

  16. Lead poisoning in a sample of Maryland mourning doves

    USGS Publications Warehouse

    Locke, L.N.; Bagley, George E.

    1967-01-01

    A sick mourning dove (Zenuidura macroura) collected in Maryland with 2 lead shot in the gizzard showed acid-fast intranuclear inclusion bodies in the kidney tubular cells. The liver and the tibia contained 72 ppm and 187 ppm lead (wet weight) respectively. Four gizzards from 62 doves killed by hunters contained lead shot. The lead content of 43 dove livers ranged from 0.4-14.0 ppm (wet weight); 40 of these doves were collected by hunters, and the other 3 were dying of trichomoniasis.

  17. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  18. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  19. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  20. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  1. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    PubMed

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  2. A new type of shotgun ammunition produces unique wound characteristics.

    PubMed

    Nelson, Craig L; Winston, David C

    2007-01-01

    The Tucson Police Department, Tucson, AZ, has begun using the Polyshok Impact Reactive Projectile (IRP), a new type of shotgun ammunition that includes a lead bead core that travels within single, plastic-encased projectile. On impact, the core is released to distribute over a small area, thereby disintegrating on impact to reduce the likelihood of exit or collateral damage on missed shots. After a brief review of shotgun slug ballistics and wound characteristics and a discussion of the mechanism of the Polyshok IRP, we report the first death in the United States from this ammunition. Findings included a single entrance wound with plastic ammunition components and small lead particles recovered from the body, the combination of which normally would suggest a close-range shooting with birdshot. However, the characteristics of this ammunition create different patterns than are found with slugs or shot, so that a medical examiner unfamiliar with the Polyshok IRP could draw inaccurate conclusions about ammunition and range of fire. Because the single projectile fired from this ammunition is composed of both plastic and lead, plastic components are likely to be found within the wound at any range of fire, unlike traditional shot or slug ammunition. Also, the small size of lead particles found spread through the wound cavity would ordinarily suggest a small-size shot, whereas the external appearance of the wound (a single entrance with no dispersion of shot) and the pattern of tissue destruction are more consistent with the patterns of injury associated with shotgun slugs.

  3. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  4. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE PAGES

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam; ...

    2018-02-19

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  5. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  6. COVART 6.1: FASTGEN Legacy Model User’s Manual

    DTIC Science & Technology

    2010-03-31

    Program Office • Crystal Gateway #4 • Suite 1103 • 200 12 th St. South • Arlington, VA 22202 REPORT DOCUMENTATION PAGE Form Approved... Single Proximity Burst File Layout ................................................ 208 Figure 23-2 OFRAGB Multiple Proximity Burst File Layout...dimensional normal, distribution of shotlines about an aim point (SHOT1) 2. Multiple shotlines over a two-dimensional grid (SHOT2) 3. A single shotline at

  7. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  8. Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    PubMed Central

    Gatenby, J. Christopher; Gore, John C.; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646

  9. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    PubMed

    Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  10. Experimental study of the transient hydrogen jet - Using a fast response probe

    NASA Astrophysics Data System (ADS)

    Tanabe, H.; Ohnishi, M.; Sato, G. T.; Fujimoto, H.

    Mixing processes of a transient hydrogen jet, such as those of a hydrogen-injection internal combustion engine, are studied by means of a concentration probe having a response time of less than 200 microsec. Hydrogen was injected into quiescent air by means of (1) a single-shot device, in order to study the air interactions of the jet with schlieren photography and smoke wire methods, and (2) a hydrogen diesel engine injection nozzle to determine jet shape with high speed schlieren photography. The concentration probe's response time was found to be adequate for the very short injection period, and it was determined that air-hydrogen mixing in the case of high jet momentum is governed by eddy diffusion.

  11. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  12. Single-shot hyperspectral coherent Raman planar imaging in the range 0–4200 cm⁻¹

    DOE PAGES

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-10-23

    We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm⁻¹ is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H₂, with spatially resolved 2D measurement of transitions of both the pure-rotational H₂ S-branch and the vibrational H₂ Q-branch, analyzing the temperature contour of amore » reacting fuel-species as it evolves at a flame-front.« less

  13. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  14. Billion frames per second spectrum measurement for high-repetition-rate optical pulses based on time stretching technique

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Wang, Xiaomin; Kobayashi, Tetsuya; Man, Wai S.; Tsang, Kwong Shing; Wada, Naoya

    2017-02-01

    Single-shot and long record length spectrum measurements of high-repetition-rate optical pulses are essential for research on nonlinear dynamics as well as for applications in sensing and communication. To achieve a continuous measurements we employ the Time Stretch Dispersive Fourier Transform. We show single-shot measurements of millions of sequential pulses at high repetition rate of 1 Giga spectra per second. Results were obtained using -100 ps/nm dispersive Fourier transform module and a 50 Gsample/s real-time digitizer of 16 GHz bandwidth. Single-shot spectroscopy of 1 GHz optical pulse train was achieved with the wavelength resolution of approximately 150 pm. This instrument is ideal for observation of complex nonlinear dynamics such as switching, mode locking and soliton dynamics in high repetition rate lasers.

  15. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  16. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Gadjev, I.; Hoang, P.

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses$-$picosecond and below$-$of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by thismore » source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.« less

  17. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    DOE PAGES

    Sakai, Y.; Gadjev, I.; Hoang, P.; ...

    2017-06-05

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses$-$picosecond and below$-$of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by thismore » source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.« less

  18. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  19. Application of Coherent Anti-Stokes Raman Scattering to Combustion Media.

    DTIC Science & Technology

    1981-02-01

    BANDS FOR REAL-TIME TEMPERATURE MEASUREMENT IN FLAMES 44 3.6 COMPARISONS OF SINGLE-SHOT THERMOMETRY OF CARS WITH OTHER OPTICAL THERMOMETRIC ...b COMPARISONS OF SINGLE-SHOT THERMOMETRY OF CARS WITH OTHER OPTICAL THERMOMETRIC TECHNIQUES Two-Line Fluorescence A fluorescence system was developed...constitute a firm basis for evaluating the validity and accuracy of the CARS process as a thermometric tool for flames. Winefordner 30 has shown that the

  20. Image domain propeller fast spin echo☆

    PubMed Central

    Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland

    2013-01-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683

  1. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    PubMed

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  3. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  4. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  5. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  6. Interactive exploration of surveillance video through action shot summarization and trajectory visualization.

    PubMed

    Meghdadi, Amir H; Irani, Pourang

    2013-12-01

    We propose a novel video visual analytics system for interactive exploration of surveillance video data. Our approach consists of providing analysts with various views of information related to moving objects in a video. To do this we first extract each object's movement path. We visualize each movement by (a) creating a single action shot image (a still image that coalesces multiple frames), (b) plotting its trajectory in a space-time cube and (c) displaying an overall timeline view of all the movements. The action shots provide a still view of the moving object while the path view presents movement properties such as speed and location. We also provide tools for spatial and temporal filtering based on regions of interest. This allows analysts to filter out large amounts of movement activities while the action shot representation summarizes the content of each movement. We incorporated this multi-part visual representation of moving objects in sViSIT, a tool to facilitate browsing through the video content by interactive querying and retrieval of data. Based on our interaction with security personnel who routinely interact with surveillance video data, we identified some of the most common tasks performed. This resulted in designing a user study to measure time-to-completion of the various tasks. These generally required searching for specific events of interest (targets) in videos. Fourteen different tasks were designed and a total of 120 min of surveillance video were recorded (indoor and outdoor locations recording movements of people and vehicles). The time-to-completion of these tasks were compared against a manual fast forward video browsing guided with movement detection. We demonstrate how our system can facilitate lengthy video exploration and significantly reduce browsing time to find events of interest. Reports from expert users identify positive aspects of our approach which we summarize in our recommendations for future video visual analytics systems.

  7. Effects of Body Armor Fit on Marksmanship Performance

    DTIC Science & Technology

    2016-09-01

    center target also used in the single target task. TPs fired one shot per target, following the order of target engagement. They repeated firing in...quickly TPs moved from one target to the next. TPs were allowed as much time for their first shot as needed and therefore, shot accuracy for the...FIT ON MARKSMANSHIP PERFORMANCE by Hyeg Joo Choi* K. Blake Mitchell Todd Garlie Jay McNamara Edward Hennessy and Jeremy Carson *Author

  8. Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.

    1990-01-01

    The power spectrum of the relative intensity noise (RIN) of single-frequency diode-pumped Nd:YAG lasers is observed to be shot-noise limited at frequencies above 20 MHz for a photocurrent of up to 4.4 mA. Relaxation oscillations result in noise 60-70 dB above shot noise at a few hundred kHz. These relaxation oscillations have been suppressed using electronic feedback.

  9. Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns (CXIDB ID 9)

    DOE Data Explorer

    Loh, Ne-Te Duane

    2011-08-01

    These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.

  10. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms.

    PubMed

    Hincapie, Diego; Herrera-Ramírez, Jorge; Garcia-Sucerquia, Jorge

    2015-04-15

    A single-shot method to reduce the speckle noise in the numerical reconstructions of electronically recorded holograms is presented. A recorded hologram with the dimensions N×M is split into S=T×T sub-holograms. The uncorrelated superposition of the individually reconstructed sub-holograms leads to an image with the speckle noise reduced proportionally to the 1/S law. The experimental results are presented to support the proposed methodology.

  11. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  12. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  13. ["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].

    PubMed

    Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta

    2014-01-01

    Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear.

  14. Fast tracking of wind speed with a differential absorption LiDAR system: first results of an experimental campaign at Stromboli volcano

    NASA Astrophysics Data System (ADS)

    Parracino, Stefano; Santoro, Simone; Maio, Giovanni; Nuvoli, Marcello; Aiuppa, Alessandro; Fiorani, Luca

    2017-04-01

    Carbon dioxide (CO2) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO2 concentrations and wind speeds, using the same sample of LiDAR returns. A correlation method was used for the wind speed retrieval in which the transport of the spatial inhomogeneities of the aerosol backscattering coefficient, along the optical path of the system, was analyzed.

  15. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    PubMed Central

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-01-01

    BACKGROUND Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). METHODS In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. RESULTS There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). CONCLUSION It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock. PMID:26405451

  16. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting.

    PubMed

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-05-01

    Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.

  17. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  18. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  19. Efficacy of triplet regimen antiemetic therapy for chemotherapy-induced nausea and vomiting (CINV) in bone and soft tissue sarcoma patients receiving highly emetogenic chemotherapy, and an efficacy comparison of single-shot palonosetron and consecutive-day granisetron for CINV in a randomized, single-blinded crossover study

    PubMed Central

    Kimura, Hiroaki; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Tanzawa, Yoshikazu; Takeuchi, Akihiko; Igarashi, Kentaro; Inatani, Hiroyuki; Shimozaki, Shingo; Kato, Takashi; Aoki, Yu; Higuchi, Takashi; Tsuchiya, Hiroyuki

    2015-01-01

    The first aim of this study was to evaluate combination antiemetic therapy consisting of 5-HT3 receptor antagonists, neurokinin-1 receptor antagonists (NK-1RAs), and dexamethasone for multiple high emetogenic risk (HER) anticancer agents in bone and soft tissue sarcoma. The second aim was to compare the effectiveness of single-shot palonosetron and consecutive-day granisetron in a randomized, single-blinded crossover study. A single randomization method was used to assign eligible patients to the palonosetron or granisetron arm. Patients in the palonosetron arm received a palonosetron regimen during the first and third chemotherapy courses and a granisetron regimen during the second and fourth courses. All patients received NK-1RA and dexamethasone. Patients receiving the palonosetron regimen were administered 0.75 mg palonosetron on day 1, and patients receiving the granisetron regimen were administered 3 mg granisetron twice daily on days 1 through 5. All 24 patients in this study received at least 4 chemotherapy courses. A total of 96 courses of antiemetic therapy were evaluated. Overall, the complete response CR rate (no emetic episodes and no rescue medication use) was 34%, while the total control rate (a CR plus no nausea) was 7%. No significant differences were observed between single-shot palonosetron and consecutive-day granisetron. Antiemetic therapy with a 3-drug combination was not sufficient to control chemotherapy-induced nausea and vomiting (CINV) during chemotherapy with multiple HER agents for bone and soft tissue sarcoma. This study also demonstrated that consecutive-day granisetron was not inferior to single-shot palonosetron for treating CINV. PMID:25533447

  20. Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense

    PubMed Central

    Liu, Jizhan; Yuan, Yan; Zhou, Yao; Zhu, Xinxin

    2018-01-01

    Fruit recognition based on depth information has been a hot topic due to its advantages. However, the present equipment and methods cannot meet the requirements of rapid and reliable recognition and location of fruits in close shot for robot harvesting. To solve this problem, we propose a recognition algorithm for citrus fruit based on RealSense. This method effectively utilizes depth-point cloud data in a close-shot range of 160 mm and different geometric features of the fruit and leaf to recognize fruits with a intersection curve cut by the depth-sphere. Experiments with close-shot recognition of six varieties of fruit under different conditions were carried out. The detection rates of little occlusion and adhesion were from 80–100%. However, severe occlusion and adhesion still have a great influence on the overall success rate of on-branch fruits recognition, the rate being 63.8%. The size of the fruit has a more noticeable impact on the success rate of detection. Moreover, due to close-shot near-infrared detection, there was no obvious difference in recognition between bright and dark conditions. The advantages of close-shot limited target detection with RealSense, fast foreground and background removal and the simplicity of the algorithm with high precision may contribute to high real-time vision-servo operations of harvesting robots. PMID:29751594

  1. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  2. Increasing shot and data collection rates of the Shock/Shear experiment at the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Flippo, K. A.; Capelli, D.; ...

    2016-05-26

    Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.

  3. Increasing shot and data collection rates of the Shock/Shear experiment at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, F. W.; Flippo, K. A.; Capelli, D.

    Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.

  4. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    PubMed Central

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  5. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  6. High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast

    NASA Astrophysics Data System (ADS)

    Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori

    2017-01-01

    The temporal contrast of an ultrahigh-intensity laser is a crucial parameter for laser plasma experiments. We have developed a multichannel cross-correlator (MCCC) for single-shot measurements of the temporal contrast in a high-power laser system. The MCCC is based on third-order cross-correlation, and has four channels and independent optical delay lines. We have experimentally demonstrated that the MCCC system achieves a high dynamic range of ˜1012 and a large temporal window of ˜1 ns. Moreover, we were able to measure the shot-to-shot fluctuations of a short-prepulse intensity at -26 ps and long-pulse (amplified spontaneous emission, ASE) intensities at -30, -450, and -950 ps before the arrival of the main pulse at the interaction point.

  7. Clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph

    2012-06-01

    Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.

  8. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Parallel MR imaging: a user's guide.

    PubMed

    Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin

    2005-01-01

    Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.

  10. Split-probe hybrid femtosecond/picosecond rotational CARS for time-domain measurement of S-branch Raman linewidths within a single laser shot.

    PubMed

    Patterson, Brian D; Gao, Yi; Seeger, Thomas; Kliewer, Christopher J

    2013-11-15

    We introduce a multiplex technique for the single-laser-shot determination of S-branch Raman linewidths with high accuracy and precision by implementing hybrid femtosecond (fs)/picosecond (ps) rotational coherent anti-Stokes Raman spectroscopy (CARS) with multiple spatially and temporally separated probe beams derived from a single laser pulse. The probe beams scatter from the rotational coherence driven by the fs pump and Stokes pulses at four different probe pulse delay times spanning 360 ps, thereby mapping collisional coherence dephasing in time for the populated rotational levels. The probe beams scatter at different folded BOXCARS angles, yielding spatially separated CARS signals which are collected simultaneously on the charge coupled device camera. The technique yields a single-shot standard deviation (1σ) of less than 3.5% in the determination of Raman linewidths and the average linewidth values obtained for N(2) are within 1% of those previously reported. The presented technique opens the possibility for correcting CARS spectra for time-varying collisional environments in operando.

  11. Microfluidics platform for single-shot dose-response analysis of chloride channel-modulating compounds.

    PubMed

    Jin, Byung-Ju; Ko, Eun-A; Namkung, Wan; Verkman, A S

    2013-10-07

    We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for single-shot determination of concentration-activity relations in which a 1.5 × 1.5 mm square area of adherent cultured cells is exposed for 5-10 min to a pseudo-logarithmic gradient of test compound generated by iterative, two-component channel mixing. Cell fluorescence is imaged following perfusion with an iodide-containing solution to give iodide influx rate at each location in the image field, thus quantifying modulator effects over a wide range of concentrations in a single measurement. IC50 determined for CFTR and TMEM16A activators and inhibitors by single-shot microfluidics were in agreement with conventional plate reader measurements. The microfluidics approach developed here may accelerate the discovery and characterization of chloride channel-targeted drugs.

  12. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  13. On-shot characterization of single plasma mirror temporal contrast improvement

    NASA Astrophysics Data System (ADS)

    Obst, L.; Metzkes-Ng, J.; Bock, S.; Cochran, G. E.; Cowan, T. E.; Oksenhendler, T.; Poole, P. L.; Prencipe, I.; Rehwald, M.; Rödel, C.; Schlenvoigt, H.-P.; Schramm, U.; Schumacher, D. W.; Ziegler, T.; Zeil, K.

    2018-05-01

    We report on the setup and commissioning of a compact recollimating single plasma mirror (PM) for temporal contrast enhancement at the Draco 150 TW laser during laser-proton acceleration experiments. The temporal contrast with and without PM is characterized single-shot by means of self-referenced spectral interferometry with extended time excursion at unprecedented dynamic and temporal range. This allows for the first single-shot measurement of the PM trigger point, which is interesting for the quantitative investigation of the complex pre-plasma formation process at the surface of the target used for proton acceleration. As a demonstration of high contrast laser plasma interaction we present proton acceleration results with ultra-thin liquid crystal targets of ∼ 1 μm down to 10 nm thickness. Focus scans of different target thicknesses show that highest proton energies are reached for the thinnest targets at best focus. This indicates that the contrast enhancement is effective such that the acceleration process is not limited by target pre-expansion induced by laser light preceding the main laser pulse.

  14. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  15. Single-shot measurement of ultrafast time-varying phase modulation induced by femtosecond laser pulses with arbitrary polarization

    NASA Astrophysics Data System (ADS)

    Hartinger, Klaus; Bartels, Randy A.

    2008-01-01

    We demonstrate a single-shot measurement of the transient phase modulation due to field free molecular alignment at the revival times of a rotational wave packet. The wave packet is excited by an arbitrarily polarized ultrashort laser pulse in CO2 at room temperature. With this technique the time dependence along the eigenpolarization directions of the linear susceptibility tensor, i.e., the time dependence of its principle components, can be directly observed with high sensitivity.

  16. Single-shot diffusion measurement in laser-polarized Gas

    NASA Technical Reports Server (NTRS)

    Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.

    1999-01-01

    A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.

  17. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  18. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  19. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  20. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  1. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  2. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  3. Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system.

    PubMed

    Gil, Youngmi; Oh, Youngdo; Cho, Moohyun; Namkung, Won

    2011-02-01

    We propose a method to identify materials in the dual energy X-ray (DeX) inspection system. This method identifies materials by combining information on the relative proportions T of high-energy and low-energy X-rays transmitted through the material, and the ratio R of the attenuation coefficient of the material when high-energy are used to that when low energy X-rays are used. In Monte Carlo N-Particle Transport Code (MCNPX) simulations using the same geometry as that of the real container inspection system, this T vs. R method successfully identified tissue-equivalent plastic and several metals. In further simulations, the single-shot mode of operating the accelerator led to better distinguishing of materials than the dual-shot system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  5. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management.

    PubMed

    Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

  6. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  7. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  8. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Bielawski, Serge; Szwaj, Christophe; Randoux, Stéphane; Suret, Pierre

    2018-04-01

    Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of 80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.

  9. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.

    PubMed

    Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2013-09-01

    It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.

  10. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  11. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O'Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  12. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  13. Partial Fourier techniques in single-shot cross-term spatiotemporal encoded MRI.

    PubMed

    Zhang, Zhiyong; Frydman, Lucio

    2018-03-01

    Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses-especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments' acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506-1514, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Non-contact single shot elastography using line field low coherence holography

    PubMed Central

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.

    2016-01-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  15. 9 CFR 313.16 - Mechanical; gunshot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...

  16. 9 CFR 313.16 - Mechanical; gunshot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...

  17. 9 CFR 313.16 - Mechanical; gunshot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...

  18. 9 CFR 313.16 - Mechanical; gunshot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...

  19. 9 CFR 313.16 - Mechanical; gunshot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...

  20. Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments†

    PubMed Central

    Nir, Eyal; Michalet, Xavier; Hamadani, Kambiz M.; Laurence, Ted A.; Neuhauser, Daniel; Kovchegov, Yevgeniy; Weiss, Shimon

    2011-01-01

    We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 Å. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted. PMID:17078646

  1. A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies

    NASA Astrophysics Data System (ADS)

    Crane, J. M.; Lorenzo, J. M.

    2010-12-01

    Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates. Reflected, refracted and surface arrivals resulting from a single shot of this seismic source are comparable in signal, noise, and frequency composition to three stacked hammer blows to a ground-planted stationary target.

  2. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, E.; Allaria, E.; Buck, J.

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  3. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE PAGES

    Ferrari, E.; Allaria, E.; Buck, J.; ...

    2015-08-28

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  4. Evolution of direct reciprocity under uncertainty can explain human generosity in one-shot encounters

    PubMed Central

    Delton, Andrew W.; Krasnow, Max M.; Cosmides, Leda; Tooby, John

    2011-01-01

    Are humans too generous? The discovery that subjects choose to incur costs to allocate benefits to others in anonymous, one-shot economic games has posed an unsolved challenge to models of economic and evolutionary rationality. Using agent-based simulations, we show that such generosity is the necessary byproduct of selection on decision systems for regulating dyadic reciprocity under conditions of uncertainty. In deciding whether to engage in dyadic reciprocity, these systems must balance (i) the costs of mistaking a one-shot interaction for a repeated interaction (hence, risking a single chance of being exploited) with (ii) the far greater costs of mistaking a repeated interaction for a one-shot interaction (thereby precluding benefits from multiple future cooperative interactions). This asymmetry builds organisms naturally selected to cooperate even when exposed to cues that they are in one-shot interactions. PMID:21788489

  5. Full counting statistics and shot noise of cotunneling in quantum dots and single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Belzig, Wolfgang

    2015-06-01

    We develop a conceptually simple scheme based on a master-equation approach to evaluate the full-counting statistics (FCS) of elastic and inelastic off-resonant tunneling (cotunneling) in quantum dots (QDs) and molecules. We demonstrate the method by showing that it reproduces known results for the FCS and shot noise in the cotunneling regime. For a QD with an excited state, we obtain an analytic expression for the cumulant generating function (CGF) taking into account elastic and inelastic cotunneling. From the CGF we find that the shot noise above the inelastic threshold in the cotunneling regime is inherently super-Poissonian when external relaxation is weak. Furthermore, a complete picture of the shot noise across the different transport regimes is given. In the case where the excited state is a blocking state, strongly enhanced shot noise is predicted both in the resonant and cotunneling regimes.

  6. Evolution of direct reciprocity under uncertainty can explain human generosity in one-shot encounters.

    PubMed

    Delton, Andrew W; Krasnow, Max M; Cosmides, Leda; Tooby, John

    2011-08-09

    Are humans too generous? The discovery that subjects choose to incur costs to allocate benefits to others in anonymous, one-shot economic games has posed an unsolved challenge to models of economic and evolutionary rationality. Using agent-based simulations, we show that such generosity is the necessary byproduct of selection on decision systems for regulating dyadic reciprocity under conditions of uncertainty. In deciding whether to engage in dyadic reciprocity, these systems must balance (i) the costs of mistaking a one-shot interaction for a repeated interaction (hence, risking a single chance of being exploited) with (ii) the far greater costs of mistaking a repeated interaction for a one-shot interaction (thereby precluding benefits from multiple future cooperative interactions). This asymmetry builds organisms naturally selected to cooperate even when exposed to cues that they are in one-shot interactions.

  7. Vacuum suppression of acousto-optic self-modulation in a broad-area Nd-doped yttrium-aluminum-garnet single-shot laser

    NASA Astrophysics Data System (ADS)

    Rus, M. Odín Soler; Cabrera-Granado, E.; Guerra Pérez, J. M.

    2013-07-01

    We report on the origin of an acousto-optic Raman-Nath self-modulation found in a broad-area Nd:YAG single-shot laser. Operating the laser device under vacuum conditions suppresses the spectral splitting associated with acousto-optic modulation by the shock waves produced by the discharge of the pumping flash lamps. This splitting is reproduced by a general class B laser model that takes into account the dynamical density grating generated by a stationary acoustic radial wave.

  8. High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1996-01-01

    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.

  9. Efficacy of triplet regimen antiemetic therapy for chemotherapy-induced nausea and vomiting (CINV) in bone and soft tissue sarcoma patients receiving highly emetogenic chemotherapy, and an efficacy comparison of single-shot palonosetron and consecutive-day granisetron for CINV in a randomized, single-blinded crossover study.

    PubMed

    Kimura, Hiroaki; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Tanzawa, Yoshikazu; Takeuchi, Akihiko; Igarashi, Kentaro; Inatani, Hiroyuki; Shimozaki, Shingo; Kato, Takashi; Aoki, Yu; Higuchi, Takashi; Tsuchiya, Hiroyuki

    2015-03-01

    The first aim of this study was to evaluate combination antiemetic therapy consisting of 5-HT3 receptor antagonists, neurokinin-1 receptor antagonists (NK-1RAs), and dexamethasone for multiple high emetogenic risk (HER) anticancer agents in bone and soft tissue sarcoma. The second aim was to compare the effectiveness of single-shot palonosetron and consecutive-day granisetron in a randomized, single-blinded crossover study. A single randomization method was used to assign eligible patients to the palonosetron or granisetron arm. Patients in the palonosetron arm received a palonosetron regimen during the first and third chemotherapy courses and a granisetron regimen during the second and fourth courses. All patients received NK-1RA and dexamethasone. Patients receiving the palonosetron regimen were administered 0.75 mg palonosetron on day 1, and patients receiving the granisetron regimen were administered 3 mg granisetron twice daily on days 1 through 5. All 24 patients in this study received at least 4 chemotherapy courses. A total of 96 courses of antiemetic therapy were evaluated. Overall, the complete response CR rate (no emetic episodes and no rescue medication use) was 34%, while the total control rate (a CR plus no nausea) was 7%. No significant differences were observed between single-shot palonosetron and consecutive-day granisetron. Antiemetic therapy with a 3-drug combination was not sufficient to control chemotherapy-induced nausea and vomiting (CINV) during chemotherapy with multiple HER agents for bone and soft tissue sarcoma. This study also demonstrated that consecutive-day granisetron was not inferior to single-shot palonosetron for treating CINV. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  11. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.

    PubMed

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-10

    Experiments were performed in the temperature range of 294-1143 K in pure CO(2) using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO(2) was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO(2)/N(2)-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO(2)/N(2) concentrations were underestimated. Potential sources for these discrepancies are discussed.

  12. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  13. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzillo, Valerio; Grigutis, Robertas; Jukna, Vytautas

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of themore » absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.« less

  14. Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.

    PubMed

    Yue, Orin; Bremer, Marshall T; Pestov, Dmitry; Gord, James R; Roy, Sukesh; Dantus, Marcos

    2012-08-09

    We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.

  15. Revising the "One-Shot" through Lesson Study: Collaborating with Writing Faculty to Rebuild a Library Instruction Session

    ERIC Educational Resources Information Center

    Watson, Shevaun E.; Rex, Cathy; Markgraf, Jill; Kishel, Hans; Jennings, Eric; Hinnant, Kate

    2013-01-01

    The one-shot library instruction session has long been a mainstay for many information literacy programs. Identifying realistic learning goals, integrating active learning techniques, and conducting meaningful assessment for a single lesson all present challenges. Librarians and English faculty at one college campus confronted these challenges by…

  16. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  17. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  18. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  19. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  20. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  1. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a practical impact on lidar design parameters. In high SNR operation, for example, a lidar's efficiency in obtaining mean wind measurements is determined by its repetition rate and not pulse energy or average power. In addition, this variance puts a practical limit on the shot-to-shot hard target performance required of a lidar.

  2. Single-shot polarimetry imaging of multicore fiber.

    PubMed

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  3. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  4. The linac coherent light source single particle imaging road map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Barty, A.; Bostedt, C.

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  5. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  6. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  7. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema

    Lagrange, Thomas; Reed, Bryan

    2018-01-26

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  8. Simulation of single-molecule trapping in a nanochannel

    PubMed Central

    Robinson, William Neil; Davis, Lloyd M.

    2010-01-01

    The detection and trapping of single fluorescent molecules in solution within a nanochannel is studied using numerical simulations. As optical forces are insufficient for trapping molecules much smaller than the optical wavelength, a means for sensing a molecule’s position along the nanochannel and adjusting electrokinetic motion to compensate diffusion is assessed. Fluorescence excitation is provided by two adjacently focused laser beams containing temporally interleaved laser pulses. Photon detection is time-gated, and the displacement of the molecule from the middle of the two foci alters the count rates collected in the two detection channels. An algorithm for feedback control of the electrokinetic motion in response to the timing of photons, to reposition the molecule back toward the middle for trapping and to rapidly reload the trap after a molecule photobleaches or escapes, is evaluated. While accommodating the limited electrokinetic speed and the finite latency of feedback imposed by experimental hardware, the algorithm is shown to be effective for trapping fast-diffusing single-chromophore molecules within a micron-sized confocal region. Studies show that there is an optimum laser power for which loss of molecules from the trap due to either photobleaching or shot-noise fluctuations is minimized. PMID:20799801

  9. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shapemore » real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.« less

  10. The LCLS variable-energy hard X-ray single-shot spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, David; Zhu, Diling; Turner, James

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less

  11. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  12. The LCLS variable-energy hard X-ray single-shot spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, David; Zhu, Diling; Turner, James

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less

  13. Quantitative imaging of single-shot liquid distributions in sprays using broadband flash x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, B. R.; Roy, S.; Gord, J. R.

    Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less

  14. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less

  15. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie

    2018-03-01

    An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.

  16. Single-shot real-time three dimensional measurement based on hue-height mapping

    NASA Astrophysics Data System (ADS)

    Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng

    2018-06-01

    A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.

  17. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  18. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less

  19. Physiological characteristics of badminton match play.

    PubMed

    Faude, Oliver; Meyer, Tim; Rosenberger, Friederike; Fries, Markus; Huber, Günther; Kindermann, Wilfried

    2007-07-01

    The present study aimed at examining the physiological characteristics and metabolic demands of badminton single match play. Twelve internationally ranked badminton players (eight women and four men) performed an incremental treadmill test [VO(2peak = )50.3 +/- 4.1 ml min(-1) kg(-1) (women) and 61.8 +/- 5.9 ml min(-1) kg(-1) (men), respectively]. On a separate day, they played a simulated badminton match of two 15 min with simultaneous gas exchange (breath-by-breath) and heart rate measurements. Additionally, blood lactate concentrations were determined before, after 15 min and at the end of the match. Furthermore, the duration of rallies and rests in between, the score as well as the number of shots per rally were recorded. A total of 630 rallies was analysed. Mean rally and rest duration were 5.5 +/- 4.4 s and 11.4 +/- 6.0 s, respectively, with an average 5.1 +/- 3.9 shots played per rally. Mean oxygen uptake (VO(2)), heart rate (HR), and blood lactate concentrations during badminton matches were 39.6 +/- 5.7 ml min(-1) kg(-1) (73.3% VO(2peak)), 169 +/- 9 min(-1) (89.0% HR(peak)) and 1.9 +/- 0.7 mmol l(-1), respectively. For a single subject 95% confidence intervals for VO(2) and HR during match play were on average 45.7-100.9% VO(2peak) and 78.3-99.8% HR(peak). High average intensity of badminton match play and considerable variability of several physiological variables demonstrate the importance of anaerobic alactacid and aerobic energy production in competitive badminton. A well-developed aerobic endurance capacity seems necessary for fast recovery between rallies or intensive training workouts.

  20. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  1. Confined ion energy >200 keV and increased fusion yield in a DPF with monolithic tungsten electrodes and pre-ionization

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred

    2017-10-01

    To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.

  2. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.

  3. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Hering, P.; Brown, S. B.

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  4. Sub-Microsecond Temperature Measurement in Liquid Water Using Laser Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Alderfer, David W.; Herring, G. C.; Danehy, Paul M.; Mizukaki, Toshiharu; Takayama, Kazuyoshi

    2005-01-01

    Using laser-induced thermal acoustics, we demonstrate non-intrusive and remote sound speed and temperature measurements over the range 10 - 45 C in liquid water. Averaged accuracy of sound speed and temperature measurements (10 s) are 0.64 m/s and 0.45 C respectively. Single-shot precisions based on one standard deviation of 100 or greater samples range from 1 m/s to 16.5 m/s and 0.3 C to 9.5 C for sound speed and temperature measurements respectively. The time resolution of each single-shot measurement was 300 nsec.

  5. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    DOE PAGES

    Chen, Z.; Hering, P.; Brown, S. B.; ...

    2016-09-19

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  6. Quantum rotation gates with controlled nonadiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Abdelrahman A. H.; Benmachiche, Abderrahim; Subhi Mahmoud, Gharib; Messikh, Azeddine

    2018-04-01

    Quantum gates can be implemented adiabatically and nonadiabatically. Many schemes used at least two sequentially implemented gates to obtain an arbitrary one-qubit gate. Recently, it has been shown that nonadiabatic gates can be realized by single-shot implementation. It has also been shown that quantum gates can be implemented with controlled adiabatic evolutions. In this paper, we combine the advantage of single-shot implementation with controlled adiabatic evolutions to obtain controlled nonadiabatic evolutions. We also investigate the robustness to different types of errors. We find that the fidelity is close to unity for realistic decoherence rates.

  7. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  8. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.

    PubMed

    Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A

    2011-04-01

    The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics

  9. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction.

    PubMed

    van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J

    2010-12-31

    We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

  10. Particle field diagnose using angular multiplexing volume holography

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  11. Mix Models Applied to the Pushered Single Shell Capsules Fired on NIF1

    NASA Astrophysics Data System (ADS)

    Tipton, Robert; Dewald, Eduard; Pino, Jesse; Ralph, Joe; Sacks, Ryan; Salmonson, Jay

    2017-10-01

    The goal of the Pushered Single Shell (PSS) experimental campaign is to study the mix of partially ionized ablator material into the hotspot. To accomplish this goal, we used a uniformly Si doped plastic capsule based on the successful Two-Shock campaign. The inner few microns of the capsule can be doped with a few percent Ge. To diagnose mix, we used the method of separated reactants; deuterating the inner Ge-doped layer, CD/Ge, while using a gas fill of Tritium and Hydrogen. Mix is inferred by measuring the neutron yields from DD, DT, and TT reactions. The PSS implosion is fast ( 400 km/sec), hot ( 3KeV) and round (P2 0). This paper will present the calculations of RANS type mix models such as KL along with LES models such as multicomponent Navier Stokes on several PSS shots. The calculations will be compared to each other and to the measured data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function

    PubMed Central

    Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli

    2017-01-01

    A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483

  13. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    PubMed

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

  14. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  15. Suppression of shot noise and spontaneous radiation in electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it wasmore » proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.« less

  16. Shot noise and electronic properties in the inversion-symmetric Weyl semimetal resonant structure

    NASA Astrophysics Data System (ADS)

    Yang, Yanling; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2018-02-01

    Using the transfer matrix method, the authors combine the analytical formula with numerical calculation to explore the shot noise and conductance of massless Weyl fermions in the Weyl semimetal resonant junction. By varying the barrier strength, the structure of the junction, the Fermi energy, and the crystallographic angle, the shot noise and conductance can be tuned efficiently. For a quasiperiodic superlattice, in complete contrast to the conventional junction case, the effect of the disorder strength on the shot noise and conductance depends on the competition of classical tunneling and Klein tunneling. Moreover, the delta barrier structure is also vital in determining the shot noise and conductance. In particular, a universal Fano factor has been found in a single delta potential case, whereas the resonant structure of the Fano factor perfectly matches with the number of barriers in a delta potential superlattice. These results are crucial for engineering nanoelectronic devices based on this topological semimetal material.

  17. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less

  18. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.

    PubMed

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming

    2014-08-01

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  19. Multiple Time-of-Flight/Time-of-Flight Events in a Single Laser Shot for Improved Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry Quantification.

    PubMed

    Prentice, Boone M; Chumbley, Chad W; Hachey, Brian C; Norris, Jeremy L; Caprioli, Richard M

    2016-10-04

    Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R 2 ) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.

  20. Thermal emission measurements with FINESSE in the era of JWST

    NASA Astrophysics Data System (ADS)

    Bean, Jacob; FINESSE Science Team

    2018-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopy Survey Explorer) is a candidate Medium-Class Explorer (MIDEX) mission dedicated to performing a statistical census of transiting exoplanet atmospheres. The objectives of FINESSE are to test theories of planetary origins and climate, enable comparative planetology, and open up discovery space on atmospheric chemistry, planetary evolution, and other topics. The baseline design for FINESSE is a 75 cm telescope observing from L2. The FINESSE instrument is a high throughput spectrometer with continuous coverage from 0.5 to 5.0 microns in a single shot. FINESSE will survey on order of 1000 exoplanets with a combination of transmission, dayside emission, and phase-resolved emission spectroscopy during a two year mission. FINESSE is currently being developed as part of a Phase A concept study. I will present an overview of FINESSE with a particular emphasis on the thermal emission measurements and their importance in the era of JWST.

  1. Time stretch and its applications

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  2. Hybrid cardiac imaging with MR-CAT scan: a feasibility study.

    PubMed

    Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M

    2000-06-01

    We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.

  3. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  4. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  5. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    PubMed Central

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  6. Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee.

    PubMed

    Lee, Changgook; Lee, Younghoon; Lee, Jae-Gon; Buglass, Alan J

    2013-06-21

    A simultaneous multiple solid-phase microextraction-single shot-gas chromatography mass spectrometry (smSPME-ss-GC/MS) method has been developed for headspace analysis. Up to four fibers (50/30 μm DVB/CAR/PDMS) were used simultaneously for the extraction of aroma components from the headspace of a single sample chamber in order to increase sensitivity of aroma extraction. To avoid peak broadening and to maximize resolution, a simple cryofocusing technique was adopted during sequential thermal desorption of multiple SPME fibers prior to a 'single shot' chromatographic run. The method was developed and validated on a model flavor mixture, containing 81 known pure components. With the conditions of 10 min of incubation and 30 min of extraction at 50 °C, single, dual, triple and quadruple SPME extractions were compared. The increase in total peak area with increase in the number of fibers showed good linearity (R(2)=0.9917) and the mean precision was 12.0% (RSD) for the total peak sum, with quadruple simultaneous SPME extraction. Using a real sample such as commercial coffee granules, aroma profile analysis was conducted using single, dual, triple and quadruple SPME fibers. The increase in total peak intensity again showed good linearity with increase in the number of SPME fibers used (R(2)=0.9992) and the precision of quadruple SPME extraction was 9.9% (RSD) for the total peak sum. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Postoperative analgesic efficacy of single-shot and continuous transversus abdominis plane block after laparoscopic cholecystectomy: A randomized controlled clinical trial.

    PubMed

    Choi, Yun-Mi; Byeon, Gyeong-Jo; Park, Soon-Ji; Ok, Young-Min; Shin, Sang-Wook; Yang, Kwangho

    2017-06-01

    To compare the analgesic efficacy of ultrasound-guided single-shot and continuous transversus abdominis plane (TAP) block to that of IV-PCA in patients undergoing laparoscopic cholecystectomy. Prospective randomized controlled trial. Post-anesthesia care unit and General ward. 108 American Society of Anesthesiologist (ASA) physical status I-II patients undergoing laparoscopic cholecystectomy. Group A received IV-PCA; group B received both ultrasound-guided single-shot TAP block with 0.2% ropivacaine (20mL) and IV-PCA; and group C received continuous TAP block using an ultrasound-guidance-inserted indwelling catheter. In group C, infusion of 0.2% ropivacaine at a basal rate of 3mL/h, bolus dose of 4mL, and a lockout interval of 30min was maintained for 48h postoperatively. The primary outcome was evaluated analgesic efficacy using the numeric rating scale (NRS) for 48h postoperatively. Other outcomes included the number of patients requiring additional analgesics, patient satisfaction with postoperative pain control, and incidence of postoperative adverse events. Compared to other groups, group C had higher deep abdominal NRS at 1h postoperatively (P<0.05), and lower incidence of postoperative urinary retention (P<0.05). There were no significant intergroup differences in the number of patients requiring additional analgesics, and patient satisfaction with postoperative pain control. Compared to IV-PCA with or without single-shot TAP block, ultrasound-guided continuous TAP block provided similar analgesia in somatic pain and less analgesia in visceral pain. Moreover, the latter resulted in a lower incidence of postoperative urinary retention. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sequential interactions-in which one player plays first and another responds-promote cooperation in evolutionary-dynamical simulations of single-shot Prisoner's Dilemma and Snowdrift games.

    PubMed

    Laird, Robert A

    2018-09-07

    Cooperation is a central topic in evolutionary biology because (a) it is difficult to reconcile why individuals would act in a way that benefits others if such action is costly to themselves, and (b) it underpins many of the 'major transitions of evolution', making it essential for explaining the origins of successively higher levels of biological organization. Within evolutionary game theory, the Prisoner's Dilemma and Snowdrift games are the main theoretical constructs used to study the evolution of cooperation in dyadic interactions. In single-shot versions of these games, wherein individuals play each other only once, players typically act simultaneously rather than sequentially. Allowing one player to respond to the actions of its co-player-in the absence of any possibility of the responder being rewarded for cooperation or punished for defection, as in simultaneous or sequential iterated games-may seem to invite more incentive for exploitation and retaliation in single-shot games, compared to when interactions occur simultaneously, thereby reducing the likelihood that cooperative strategies can thrive. To the contrary, I use lattice-based, evolutionary-dynamical simulation models of single-shot games to demonstrate that under many conditions, sequential interactions have the potential to enhance unilaterally or mutually cooperative outcomes and increase the average payoff of populations, relative to simultaneous interactions-benefits that are especially prevalent in a spatially explicit context. This surprising result is attributable to the presence of conditional strategies that emerge in sequential games that can't occur in the corresponding simultaneous versions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation.

    PubMed

    Sari, Roger S; de Almeida, Anna Christina; Cangussu, Alex S R; Jorge, Edson V; Mozzer, Otto D; Santos, Hércules Otacílio; Quintilio, Wagner; Brandi, Igor Viana; Andrade, Viviane Aguiar; Miguel, Angelo Samir M; Sobrinho Santos, Eliane M

    2016-12-01

    The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH) 3 , pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Anharmonic phonon-polariton dynamics in ferroelectric LiNbO3 studied with single-shot pump-probe imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuribayashi, T.; Motoyama, T.; Arashida, Y.; Katayama, I.; Takeda, J.

    2018-05-01

    We demonstrate that single-shot pump-probe imaging spectroscopy with an echelon mirror enables us to disclose the ferroelectric phonon-polariton dynamics across a wide temperature range from 10 K to 375 K while avoiding the photorefractive effects that appear prominently at low temperatures. The E-mode phonon-polaritons corresponding to the two transverse optical modes, TO1 and TO3, up to ˜7 THz were induced in LiNbO3 through an impulsive stimulated Raman scattering process. Subsequently, using single-shot pump-probe imaging spectroscopy over a minimal cumulative time, we successfully visualized the phonon-polariton dynamics in time-wavelength space even at low temperatures. We found that the phase-matching condition significantly affected the observed temperature-dependent phonon-polariton frequency shift. The anharmonicity of the TO1 and TO3 modes was then evaluated based on an anharmonic model involving higher-order interactions with acoustic phonons while eliminating the influence of the frequency shift due to the phase-matching condition. The observed wavenumber-dependent damping rate was analyzed by considering the bilinear coupling of the TO1 or TO3 modes with the thermally activated relaxation mode. We found that the phonon-polariton with a higher frequency and wavenumber had a higher damping rate at high temperatures because of its frequent interaction with the thermally activated relaxation mode and acoustic phonons. The TO3 mode displayed greater bilinear coupling than the TO1 mode, which may also have contributed to the observed high damping rate. Thus, using our unique single-shot spectroscopy technique, we could reveal the overall anharmonic characteristics of the E-mode phonon-polaritons arising from both the acoustic phonons and the relaxation mode.

  11. Comparison of low-dose spinal anesthesia and single-shot femoral block combination with conventional dose spinal anesthesia in outpatient arthroscopic meniscus repair.

    PubMed

    Turhan, K S Cakar; Akmese, R; Ozkan, F; Okten, F F

    2015-04-01

    In the current prospective, randomized study, we aimed to compare the effects of low dose selective spinal anesthesia with 5 mg of hyperbaric bupivacaine and single-shot femoral nerve block combination with conventional dose selective spinal anesthesia in terms of intraoperative anesthesia characteristics, block recovery characteristics, and postoperative analgesic consumption. After obtaining institutional Ethics Committee approval, 52 ASA I-II patients aged 25-65, undergoing arthroscopic meniscus repair were randomly assigned to Group S (conventional dose selective spinal anesthesia with 10 mg bupivacaine) and Group FS (low-dose selective spinal anesthesia with 5mg bupivacaine +single-shot femoral block with 0.25% bupivacaine). Primary endpoints were time to reach T12 sensory block level, L2 regression, and complete motor block regression. Secondary endpoints were maximum sensory block level (MSBL); time to reach MSBL, time to first urination, time to first analgesic consumption and pain severity at the time of first mobilization. Demographic characteristics were similar in both groups (p > 0.05). MSBL and time to reach T12 sensory level were similar in both groups (p > 0.05). Time to reach L2 regression, complete motor block regression, and time to first micturition were significantly shorter; time to first analgesic consumption was significantly longer; and total analgesic consumption and severity of pain at time of first mobilization were significantly lower in Group FS (p < 0.05). The findings of the current study suggest that addition of single-shot femoral block to low dose spinal anesthesia could be an alternative to conventional dose spinal anesthesia in outpatient arthroscopic meniscus repair. NCT02322372.

  12. Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique.

    PubMed

    Johnson, Perry B; Monterroso, Maria I; Yang, Fei; Mellon, Eric

    2017-11-25

    This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm 3 . This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.

  13. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  14. Optical frequency shot-noise suppression in electron beams: Three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, A.; Dyunin, E.; Gover, A.

    2010-05-15

    A predicted effect of current shot-noise suppression at optical-frequencies in a drifting charged-particle-beam and the corresponding process of particles self-ordering are analyzed in a one-dimensional (1D) model and verified by three-dimensional numerical simulations. The analysis confirms the prediction of a 1D single mode Langmuir plasma wave model of longitudinal plasma oscillation in the beam, and it defines the regime of beam parameters in which this effect takes place. The suppression of relativistic beam shot noise can be utilized to enhance the coherence of free electron lasers and of any coherent radiation device using an electron beam.

  15. Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T

    PubMed Central

    Choi, Kwang Won; Samsonov, Alexey; Spencer, Richard G.; Wilson, John J.; Block, Walter F.; Kijowski, Richard

    2015-01-01

    Purpose To compare multicomponent T2 parameters of the articular cartilage of the knee joint measured by using multicomponent driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and patients with osteoarthritis. Materials and Methods This prospective study was performed with institutional review board approval and with written informed consent from all subjects. The mcDESPOT sequence was performed in the knee joint of 13 asymptomatic volunteers and 14 patients with osteoarthritis of the knee. Single-component T2 (T2Single), T2 of the fast-relaxing water component (T2F) and of the slow-relaxing water component (T2S), and the fraction of the fast-relaxing water component (FF) of cartilage were measured. Wilcoxon rank-sum tests and multivariate linear regression models were used to compare mcDESPOT parameters between volunteers and patients with osteoarthritis. Receiver operating characteristic analysis was used to assess diagnostic performance with mcDESPOT parameters for distinguishing morphologically normal cartilage from morphologically degenerative cartilage identified at magnetic resonance imaging in eight cartilage subsections of the knee joint. Results Higher cartilage T2Single (P < .001), lower cartilage FF (P < .001), and similar cartilage T2F (P = .079) and T2S (P = .124) values were seen in patients with osteoarthritis compared with those in asymptomatic volunteers. Differences in T2Single and FF remained significant (P < .05) after consideration of age differences between groups of subjects. Diagnostic performance was higher with FF than with T2Single for distinguishing between normal and degenerative cartilage (P < .05), with greater areas under the curve at receiver operating characteristic analysis. Conclusion Patients with osteoarthritis of the knee had significantly higher cartilage T2Single and significantly lower cartilage FF than did asymptomatic volunteers, and receiver operating characteristic analysis results suggested that FF may allow greater diagnostic performance than that with T2Single for distinguishing between normal and degenerative cartilage. © RSNA, 2015 Online supplemental material is available for this article. PMID:26024307

  16. Mask CD relationship to temperature at the time backscatter is received

    NASA Astrophysics Data System (ADS)

    Zable, Harold; Kronmiller, Tom; Pearman, Ryan; Guthrie, Bill; Shirali, Nagesh; Masuda, Yukihiro; Kamikubo, Takashi; Nakayamada, Noriaki; Fujimura, Aki

    2017-07-01

    Mask writers need to be able to write sub-50nm features accurately. Nano-imprint lithography (NIL) masters need to create sub-20nm line and space (L:S) patterns reliably. Increasingly slower resists are deployed, but mask write times need to remain reasonable. The leading edge EBM-9500 offers 1200A/cm2 current density to shoot variable shaped beam (VSB) to write the masks. Last year, thermal effect correction (TEC) was introduced by NuFlare in the EBM-95001. It is a GPU-accelerated inline correction for the effect that the temperature of the resist has on CD. For example, a 100nm CD may print at 102nm where that area was at a comparably high temperature at the time of the shot. Since thermal effect is a temporal effect, the simulated temperature of the surface of the mask is dynamically updated for the effect of each shot in order to accurately predict the cumulative effect that is the temperature at the location of the shot at the time of the shot and therefore its impact on CD. The shot dose is changed to reverse the effects of the temperature change. This paper for the first time reveals an enhancement to this thermal model and a simulator for it. It turns out that the temperature at the time each location receives backscatter from other shots also make a difference to the CD. The effect is secondary, but still measurable for some resists and substrates. Results of a test-chip study will be presented. The computation required for the backscatter effect is substantial. It has been demonstrated that this calculation can be performed fast enough to be inline with the EBM-9500 with a reasonable-sized computing platform. Run-time results and the computing architecture will be presented.

  17. A single dopant atom in silicon sees the light

    NASA Astrophysics Data System (ADS)

    Rogge, Sven

    2014-03-01

    Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.

  18. Progress toward a unified kJ-machine CANDY

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yoneyoshi; Mori, Yoshitaka; Komeda, Osamu; Hanayama, Ryohei; Ishii, Katsuhiro; Okihara, Shinichiro; Fujita, Kazuhisa; Nakayama, Suisei; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Watari, Takeshi; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Nishimura, Yasuhiko; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Arikawa, Yasunobu; Nagai, Takahiro; Abe, Yuki; Ozaki, Satoshi; Noda, Akira

    2016-03-01

    To construct a unified experimental machine CANDY using a kJ DPSSL driver in the fast-ignition scheme, the Laser for Fast Ignition Experiment (LFEX) at Osaka is used, showing that the laser-driven ions heat the preimploded core of a deuterated polystyrene (CD) shell target from 0.8 keV to 2 keV, resulting in 5 x 108 DD neutrons best ever obtained in the scheme. 4-J/10-Hz DPSSL laser HAMA is for the first time applied to the CD shell implosion- core heating experiments in the fast ignition scheme to yield neutrons and also to a continuous target injection, which yields neutrons of 3 x 105 n/4πsr n/shot.

  19. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

    PubMed

    Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2013-03-29

    We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

  20. Single-shot secure quantum network coding on butterfly network with free public communication

    NASA Astrophysics Data System (ADS)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  1. Single-shot transient absorption spectroscopy with a 45  ps pump-probe time delay range.

    PubMed

    Wilson, Kelly S; Wong, Cathy Y

    2018-02-01

    We report a single-shot transient absorption apparatus that successfully uses a tilted pump pulse to spatially encode a 45 ps pump-probe time delay. The time delay range is significantly improved over other reported instruments by using a spatial light modulator to flatten the intensity of the excitation field at the sample position. The full time delay range of the instrument is demonstrated by measuring a long-lived dye. A signal-to-noise ratio of >35 is attained in 8 s. This advance will enable the measurement of excited state dynamics of systems that are not at structural equilibrium.

  2. Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction.

    PubMed

    Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui

    2015-06-01

    We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chao; Jiang, Tao; Liu, Shengguang

    Here, an accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ~3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10 –19 sm, about 2 orders of magnitude higher than that achieved withmore » state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.« less

  4. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  5. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    DOE PAGES

    Lu, Chao; Jiang, Tao; Liu, Shengguang; ...

    2018-03-12

    Here, an accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ~3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10 –19 sm, about 2 orders of magnitude higher than that achieved withmore » state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.« less

  6. Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study.

    PubMed

    Edelman, Robert R; Silvers, Robert I; Thakrar, Kiran H; Metzl, Mark D; Nazari, Jose; Giri, Shivraman; Koktzoglou, Ioannis

    2017-06-30

    For evaluation of the pulmonary arteries in patients suspected of pulmonary embolism, CT angiography (CTA) is the first-line imaging test with contrast-enhanced MR angiography (CEMRA) a potential alternative. Disadvantages of CTA include exposure to ionizing radiation and an iodinated contrast agent, while CEMRA is sensitive to respiratory motion and requires a gadolinium-based contrast agent. The primary goal of our technical feasibility study was to evaluate pulmonary arterial conspicuity using breath-hold and free-breathing implementations of a recently-developed nonenhanced approach, single-shot radial quiescent-interval slice-selective (QISS) MRA. Breath-hold and free-breathing, navigator-gated versions of radial QISS MRA were evaluated at 1.5 Tesla in three healthy subjects and 11 patients without pulmonary embolism or arterial occlusion by CTA. Images were scored by three readers for conspicuity of the pulmonary arteries through the level of the segmental branches. In addition, one patient with pulmonary embolism was imaged. Scan time for a 54-slice acquisition spanning the pulmonary arteries was less than 2 minutes for breath-hold QISS, and less than 3.4 min using free-breathing QISS. Pulmonary artery branches through the segmental level were conspicuous with either approach. Free-breathing scans showed only mild blurring compared with breath-hold scans. For both readers, less than 1% of pulmonary arterial segments were rated as "not seen" for breath-hold and navigator-gated QISS, respectively. In subjects with atrial fibrillation, single-shot radial QISS consistently depicted the pulmonary artery branches, whereas navigator-gated 3D balanced steady-state free precession showed motion artifacts. In one patient with pulmonary embolism, radial QISS demonstrated central pulmonary emboli comparably to CEMRA and CTA. The thrombi were highly conspicuous on radial QISS images, but appeared subtle and were not prospectively identified on scout images acquired using a single-shot bSSFP acquisition. In this technical feasibility study, both breath-hold and free-breathing single-shot radial QISS MRA enabled rapid, consistent demonstration of the pulmonary arteries through the level of the segmental branches, with only minimal artifacts from respiratory motion and cardiac arrhythmias. Based on these promising initial results, further evaluation in patients with suspected pulmonary embolism appears warranted.

  7. Truly work-like work extraction via a single-shot analysis.

    PubMed

    Aberg, Johan

    2013-01-01

    The work content of non-equilibrium systems in relation to a heat bath is often analysed in terms of expectation values of an underlying random work variable. However, when optimizing the expectation value of the extracted work, the resulting extraction process is subject to intrinsic fluctuations, uniquely determined by the Hamiltonian and the initial distribution of the system. These fluctuations can be of the same order as the expected work content per se, in which case the extracted energy is unpredictable, thus intuitively more heat-like than work-like. This raises the question of the 'truly' work-like energy that can be extracted. Here we consider an alternative that corresponds to an essentially fluctuation-free extraction. We show that this quantity can be expressed in terms of a one-shot relative entropy measure introduced in information theory. This suggests that the relations between information theory and statistical mechanics, as illustrated by concepts like Maxwell's demon, Szilard engines and Landauer's principle, extends to the single-shot regime.

  8. Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Chen, Songlin; Zhu, Jiliang; Wang, Gang; Pan, Feng; Sun, Ping; Zhu, Xiaohong; Zhu, Jianguo; Xiao, Dingquan

    2012-07-01

    We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO2/SiO2 high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to ˜48% of that measured in air, while the multi-shot LIDT in vacuum dropped to ˜47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO2 layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO2 layer under irradiation by the 5-ns laser pulses in air.

  9. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  10. Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  11. X-rays only when you want them: optimized pump–probe experiments using pseudo-single-bunch operation

    PubMed Central

    Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; Robin, D. S.

    2015-01-01

    Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated. PMID:25931090

  12. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  13. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis.

    PubMed

    Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S

    2000-11-01

    We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.

  14. Multi-shot PROPELLER for high-field preclinical MRI

    PubMed Central

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F.; Johnson, G. Allan

    2012-01-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T2-weighted imaging using PROPELLER MRI meets this need. The 2-shot PROPELLER technique presented here, provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and non-invasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The 2-shot modification introduced here, retains more high-frequency information and provides higher SNR than conventional single-shot PROPELLER, making this sequence feasible at high-fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. PMID:20572138

  15. A Shot Number Based Approach to Performance Analysis in Table Tennis

    PubMed Central

    Yoshida, Kazuto; Yamada, Koshi

    2017-01-01

    Abstract The current study proposes a novel approach that improves the conventional performance analysis in table tennis by introducing the concept of frequency, or the number of shots, of each shot number. The improvements over the conventional method are as follows: better accuracy of the evaluation of skills and tactics of players, additional insights into scoring and returning skills and ease of understanding the results with a single criterion. The performance analysis of matches played at the 2012 Summer Olympics in London was conducted using the proposed method. The results showed some effects of the shot number and gender differences in table tennis. Furthermore, comparisons were made between Chinese players and players from other countries, what threw light on the skills and tactics of the Chinese players. The present findings demonstrate that the proposed method provides useful information and has some advantages over the conventional method. PMID:28210334

  16. Hybrid fs/ps Coherent Anti-Stokes Raman Scattering for Multiparameter Measurements of Combustion and Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Dedic, Chloe Elizabeth

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is developed for measuring internal energy distributions, species concentration, and pressure for highly dynamic gas-phase environments. Systems of interest include next-generation combustors, plasma-based manufacturing and plasma-assisted combustion, and high-speed aerodynamic flow. These challenging environments include spatial variations and fast dynamics that require the spatial and temporal resolution offered by hybrid fs/ps CARS. A novel dual-pump fs/ps CARS approach is developed to simultaneously excite pure-rotational and rovibrational Raman coherences for dynamic thermometry (300-2400 K) and detection of major combustion species. This approach was also used to measure single-shot vibrational and rotational energy distributions of the nonequilibrium environment of a dielectric barrier discharge plasma. Detailed spatial distributions and shot-to-shot fluctuations of rotational and vibrational temperatures spanning 325-450 K and 1200-5000 K were recorded across the plasma and surrounding flow, and are compared to plasma emission spectroscopy measurements. Dual-pump hybrid fs/ps CARS allows for concise, kHz-rate measurements of vibrational and rotational energy distributions or temperatures at equilibrium and nonequilibrium without nonresonant wave-mixing or molecular collisional interference. Additionally, a highly transient ns laser spark is explored using CARS to measure temperature and pressure behind the shock wave and temperature of the expanding plasma kernel. Vibrational energy distributions at the exit of a microscale gaseous detonation tube are presented. Theory required to model fs/ps CARS response, including nonthermal energy distributions, is presented. The impact of nonequilibrium on measurement accuracy is explored, and a coherent line-mixing model is validated with high-pressure measurements. Temperature and pressure sensitivity are investigated for multiple measurement configurations, and accuracy and precision is quantified as a function of signal-to-noise for the fs/ps CARS system.

  17. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  18. Neural Computations Mediating One-Shot Learning in the Human Brain

    PubMed Central

    Lee, Sang Wan; O’Doherty, John P.; Shimojo, Shinsuke

    2015-01-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required. PMID:25919291

  19. Neural computations mediating one-shot learning in the human brain.

    PubMed

    Lee, Sang Wan; O'Doherty, John P; Shimojo, Shinsuke

    2015-04-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively "switched" on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a "switch," turning on and off one-shot learning as required.

  20. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  1. Comparison of the safety and efficacy of one-shot and telescopic metal dilatation in percutaneous nephrolithotomy: a randomized controlled trial.

    PubMed

    Amirhassani, Shahriar; Mousavi-Bahar, Seyed Habibollah; Iloon Kashkouli, Abdolmajid; Torabian, Saadat

    2014-06-01

    Minimizing X-ray exposure during percutaneous nephrolithotomy (PCNL) is challenging. Using the single semirigid dilator, also called "one-shot" or "one-stage" is a good alternative to routine telescopic metal dilators to reduce X-ray exposure. Our aim was to compare the single semirigid one-shot dilator with a telescopic metal dilator in PCNL. The intraoperative status was evaluated in 100 consecutive patients randomly assigned to two equal groups undergoing PCNL either with the one-shot (group A) or telescopic technique (group B). No significant difference in stone burden and location existed between the groups (P > 0.05). The mean age of group A and group B was 44.8 ± 15 and 45.6 ± 14 years, respectively (P = 0.78). The mean operation time was 51.14 ± 40.85 min in group A and 57.00 ± 38.85 min in group B (P = 0.46). The mean X-ray exposure time was 41.2 ± 17 and 48.4 ± 15 s in group A and group B, respectively (P = 0.03). The stone-free rate was 94 % (n = 47) in group A and 84 % (n = 42) in group B (P = 0.10). The mean hemoglobin drop was 1.26 ± 0.09 and 1.44 ± 0.11 g/dl in group A and group B, respectively (P = 0.09). The one-shot technique is feasible, safe, and well tolerated in patients undergoing PCNL. In addition to lack of complications, the method also provides less radiation exposure for urologists and nursing teams.

  2. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    PubMed

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  3. One-shot estimate of MRMC variance: AUC.

    PubMed

    Gallas, Brandon D

    2006-03-01

    One popular study design for estimating the area under the receiver operating characteristic curve (AUC) is the one in which a set of readers reads a set of cases: a fully crossed design in which every reader reads every case. The variability of the subsequent reader-averaged AUC has two sources: the multiple readers and the multiple cases (MRMC). In this article, we present a nonparametric estimate for the variance of the reader-averaged AUC that is unbiased and does not use resampling tools. The one-shot estimate is based on the MRMC variance derived by the mechanistic approach of Barrett et al. (2005), as well as the nonparametric variance of a single-reader AUC derived in the literature on U statistics. We investigate the bias and variance properties of the one-shot estimate through a set of Monte Carlo simulations with simulated model observers and images. The different simulation configurations vary numbers of readers and cases, amounts of image noise and internal noise, as well as how the readers are constructed. We compare the one-shot estimate to a method that uses the jackknife resampling technique with an analysis of variance model at its foundation (Dorfman et al. 1992). The name one-shot highlights that resampling is not used. The one-shot and jackknife estimators behave similarly, with the one-shot being marginally more efficient when the number of cases is small. We have derived a one-shot estimate of the MRMC variance of AUC that is based on a probabilistic foundation with limited assumptions, is unbiased, and compares favorably to an established estimate.

  4. The reliability and internal consistency of one-shot and flicker change detection for measuring individual differences in visual working memory capacity.

    PubMed

    Pailian, Hrag; Halberda, Justin

    2015-04-01

    We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.

  5. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  6. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  7. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniyappan, S.; Johnson, R.; Shimada, T.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  8. Deconvolution single shot multibox detector for supermarket commodity detection and classification

    NASA Astrophysics Data System (ADS)

    Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian

    2017-07-01

    This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.

  9. Photon-assisted electron energy loss spectroscopy and ultrafast imaging.

    PubMed

    Howie, Archie

    2009-08-01

    A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

  10. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  11. Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1996-01-01

    A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.

  12. General ultrafast pulse measurement using the cross-correlation single-shot sonogram technique.

    PubMed

    Reid, Derryck T; Garduno-Mejia, Jesus

    2004-03-15

    The cross-correlation single-shot sonogram technique offers exact pulse measurement and real-time pulse monitoring via an intuitive time-frequency trace whose shape and orientation directly indicate the spectral chirp of an ultrashort laser pulse. We demonstrate an algorithm that solves a fundamental limitation of the cross-correlation sonogram method, namely, that the time-gating operation is implemented using a replica of the measured pulse rather than the ideal delta-function-like pulse. Using a modified principal-components generalized projections algorithm, we experimentally show accurate pulse retrieval of an asymmetric double pulse, a case that is prone to systematic error when one is using the original sonogram retrieval algorithm.

  13. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  14. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  15. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.

    2016-11-01

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  16. Quasi-thermal noise and shot noise spectroscopy using a CubeSat in Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Maj, R.; Cairns, I.

    2017-12-01

    We investigate the practicality of using quasi-thermal noise (QTN) and shot noisespectroscopy on a CubeSat in the Earth's ionosphere and constrain the satellite antennalength for optimal detection of these signals. The voltage spectra predicted for thermalLangmuir waves (QTN) and particle "shot noise" are modeled, and it is shown that thesignals detected can provide two very good, independent, passive, in situ methods ofmeasuring the plasma density and temperature in the ionosphere. The impact of theantenna potential φ is also discussed, and we show that the negative potential calculatedfor the ionosphere due to natural current flows has a significant impact on the voltagepower level of the shot noise spectrum. The antenna configuration is also shown to playan important role in the shot noise, with a monopole configuration enhancing thespectrum significantly compared with a dipole. Antenna lengths on the order of 20-40cm are found to be ideal for ionospheric plasma conditions, nicely matching CubeSatsizes and producing detectable thermal Langmuir waves and shot noise at the microvoltlevel. Further, with a continuous stream of data points at different latitudes andlongitudes an orbiting CubeSat can produce a global picture for the ionospheric plasmadensity and temperature using QTN and shot noise signals. If implemented, especiallyin a constellation, these data would be more frequent and cover a much greater domainthan current ground-based or single-satellite methods. This could lead to improvedionospheric models, such as the empirically based International Reference Ionosphere.

  17. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding withmore » linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.« less

  18. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy.

    PubMed

    Teo, Stephanie M; Ofori-Okai, Benjamin K; Werley, Christopher A; Nelson, Keith A

    2015-05-01

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.

  19. Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2016-03-01

    Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.

  20. Single-shot work extraction in quantum thermodynamics revisited

    NASA Astrophysics Data System (ADS)

    Wang, Shang-Yung

    2018-01-01

    We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.

  1. Shot Bee, a test of the TEAPOT series, 22 March 1955. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maag, C.; Wilkinson, M.; Rohrer, S.

    This report describes the activities of more than 3,000 DOD personnel, both military and civilian, in Shot BEE, the sixth nuclear test in the TEAPOT atmospheric nuclear weapons testing series. The test was conducted on 22 March 1955 and involved participants from Exercise Desert Rock VI, AFSWP, AFSWC, and the AEC Test Groups. The Marine Brigade Exercise troop test involved 2,271 Marines and was the largest single project conducted during Operation TEAPOT.

  2. Molecular origins of conduction channels observed in shot-noise measurements.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-01

    Measurements of shot noise from single molecules have indicated the presence of various conduction channels. We present three descriptions of these channels in molecular terms showing that the number of conduction channels is limited by bottlenecks in the molecule and that the channels can be linked to transmission through different junction states. We introduce molecular-conductance orbitals, which allow the transmission to be separated into contributions from individual orbitals and contributions from interference between pairs of orbitals.

  3. Imaging Sensor Development for Scattering Atmospheres.

    DTIC Science & Technology

    1983-03-01

    subtracted out- put from a CCD imaging detector for a single frame can be written as A _ S (2-22) V B + B{ shot noise thermal noise , dark current shot ...addition, the spectral re- sponses of current devices are limited to the visible region and their sensitivities are not very high. Solid state detectors ...are generally much more sensitive than spatial light modulators, and some (e.g., HgCdTe detectors ) can re- spond up to the 10 um region. Several

  4. Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.

    PubMed

    Ren, Zhong; Yang, Xiaojing

    2016-07-01

    X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.

  5. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    NASA Astrophysics Data System (ADS)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  6. Towards Testing General Relativity with a dual species interferometer

    NASA Astrophysics Data System (ADS)

    Schlippert, Dennis; Hartwig, Jonas; Tiarks, Daniel; Velte, Ulrich; Ganske, Sven; Ertmer, Wolfgang; Rasel, Ernst M.

    2012-06-01

    We report on our work directed towards a dual species matter-wave interferometer for performing a differential measurement of the acceleration of free falling ^87Rb and ^39K atoms to test Einstein's equivalence principle (universality of free fall). Based on minimal Standard Model Extension calculations this combination of test masses is more sensitive to composition based equivalence principle violating effects than, e.g. ^85Rb-^87Rb. During free fall, a Mach-Zehnder type interferometry sequence employing stimulated Raman transitions is applied synchronously for both species, achieving high common noise rejection. With an expected single shot resolution of 5x10-8g the apparatus will allow for studying systematics at the 10-9g level after 100 s integration time. Post-correction methods for high vibrational noise environments are investigated. To assure well defined starting conditions the two species will be trapped in an optical dipole trap. The properties of this trap at 2 μm allow for fast and efficient laser cooling, use of evaporative and sympathetic cooling techniques is possible. We will show the enviromental noise limited performance of the single species Rb gravimeter and the progress of the implementation of the K gravimeter.

  7. Barium Qubit State Detection and Ba Ion-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher

    2016-05-01

    A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  8. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  9. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Output Beam Polarisation of X-ray Lasers with Transient Inversion

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.

    It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.

  11. Optimization of single shot 3D breath-hold non-enhanced MR angiography of the renal arteries.

    PubMed

    Tan, Huan; Koktzoglou, Ioannis; Glielmi, Christopher; Galizia, Mauricio; Edelman, Robert R

    2012-05-19

    Cardiac and navigator-gated, inversion-prepared non-enhanced magnetic resonance angiography techniques can accurately depict the renal arteries without the need for contrast administration. However, the scan time and effectiveness of navigator-gated techniques depend on the subject respiratory pattern, which at times results in excessively prolonged scan times or suboptimal image quality. A single-shot 3D magnetization-prepared steady-state free precession technique was implemented to allow the full extent of the renal arteries to be depicted within a single breath-hold. Technical optimization of the breath-hold technique was performed with fourteen healthy volunteers. An alternative magnetization preparation scheme was tested to maximize inflow signal. Quantitative and qualitative comparisons were made between the breath-hold technique and the clinically accepted navigator-gated technique in both volunteers and patients on a 1.5 T scanner. The breath-hold technique provided an average of seven fold reduction in imaging time, without significant loss of image quality. Comparable single-to-noise and contrast-to-noise ratios of intra- and extra-renal arteries were found between the breath-hold and the navigator-gated techniques in volunteers. Furthermore, the breath-hold technique demonstrated good image quality for diagnostic purposes in a small number of patients in a pilot study. The single-shot, breath-hold technique offers an alternative to navigator-gated methods for non-enhanced renal magnetic resonance angiography. The initial results suggest a potential supplementary clinical role for the breath-hold technique in the evaluation of suspected renal artery diseases.

  12. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J.; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13C peaks, on the chemical shift offset of coupled nuclei, such as 1H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [13C, 1H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02 ppm when measured on a 400 MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance.

  13. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2017-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.

  14. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

  15. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    PubMed Central

    Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755

  16. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold.

    PubMed

    Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

  17. A novel percutaneous nephrolithotomy (PCNL) set: The 'Economical One-shot PCNL Set' (Ecoset).

    PubMed

    Penbegul, Necmettin; Dede, Onur; Daggulli, Mansur; Hatipoglu, Namik Kemal; Bozkurt, Yasar

    2017-09-01

    To suggest a novel disposable percutaneous nephrolithotomy (PCNL) set that we named the ' Ec onomical O ne-shot PCNL Set ' (Ecoset), which consists of a single 30-F dilator, 30-F sheath, and 8-F polyurethane dilator, as use of a 'one-shot' dilatation technique during PCNL is becoming widespread. The medical records of 42 patients with kidney stones who had undergone 'one-shot' PCNL from February 2014 to June 2016 were retrospectively reviewed and analysed. Demographic data, as well as the stone size, radiation exposure time, operation time, hospitalisation duration, rate of treatment success and complications, were recorded. The mean (SD, range) age of the patients was 44.43 (16.54, 11-72) years. The mean (SD) stone size was 35.12 (17.53) mm. The mean (SD) operation time was 54.58 (22.24) min. The mean (SD) fluoroscopic screening time was limited to 154.72 (117.48) s. Treatment success was achieved in 32 (76%) patients. The mean (SD) hospital stay was 3.09 (0.75) days. None of the patients had any major complications. Bleeding requiring blood transfusion was required in three patients. The cost of a disposable dilatation set for a single PCNL operation with a balloon set, a standard Amplatz set, or an Ecoset is ∼$137, $120, or $27 (American dollars), respectively. The one-shot dilatation technique using the Ecoset for PCNL can be feasibly, safely, and effectively performed in almost every adult patient. The Amplatz dilator set and balloon dilator set have the disadvantage of relatively high cost, whereas the Ecoset is the cheapest 'disposable set' that can be used during PCNL surgery.

  18. Strong suppression of shot noise in a feedback-controlled single-electron transistor

    NASA Astrophysics Data System (ADS)

    Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.

    2017-03-01

    Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.

  19. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  20. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGES

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  1. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with lessmore » charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.« less

  2. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  3. Phase reconstruction using compressive two-step parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith

    2018-04-01

    The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.

  4. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.« less

  5. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  6. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns.more » Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.« less

  7. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE PAGES

    Mo, M. Z.; Shen, X.; Chen, Z.; ...

    2016-08-04

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less

  9. Measurement of H/D ratio and ion temperature on a HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Wei, Lehan; Lin, Xiaodong

    1997-01-01

    By combining optical fibers with piezoelectric scanning Fabry-Perot interferometer, the profiles of Hα and Dα have been determined simultaneously in a single Tokamak discharge. Consequently, the ratio of hydrogen to deuterium and ion temperature are obtained. Not only is the uncertainty of shot-to-shot avoided, the results of the experiment indicate that this instrumentation has the advantage of rapid wavelength scanning, large dispersion, high resolution, and good adaptability of working in adverse circumstances such as at a Tokamak site.

  10. Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams

    DTIC Science & Technology

    1987-07-30

    The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines

  11. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure.

    PubMed

    Khorsand, A R; Sobierajski, R; Louis, E; Bruijn, S; van Hattum, E D; van de Kruijs, R W E; Jurek, M; Klinger, D; Pelka, J B; Juha, L; Burian, T; Chalupsky, J; Cihelka, J; Hajkova, V; Vysin, L; Jastrow, U; Stojanovic, N; Toleikis, S; Wabnitz, H; Tiedtke, K; Sokolowski-Tinten, K; Shymanovich, U; Krzywinski, J; Hau-Riege, S; London, R; Gleeson, A; Gullikson, E M; Bijkerk, F

    2010-01-18

    We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.

  12. Single-shot stand-off chemical identification of powders using random Raman lasing

    PubMed Central

    Hokr, Brett H.; Bixler, Joel N.; Noojin, Gary D.; Thomas, Robert J.; Rockwell, Benjamin A.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    The task of identifying explosives, hazardous chemicals, and biological materials from a safe distance is the subject we consider. Much of the prior work on stand-off spectroscopy using light has been devoted to generating a backward-propagating beam of light that can be used drive further spectroscopic processes. The discovery of random lasing and, more recently, random Raman lasing provide a mechanism for remotely generating copious amounts of chemically specific Raman scattered light. The bright nature of random Raman lasing renders directionality unnecessary, allowing for the detection and identification of chemicals from large distances in real time. In this article, the single-shot remote identification of chemicals at kilometer-scale distances is experimentally demonstrated using random Raman lasing. PMID:25114231

  13. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  14. Information transmission over an amplitude damping channel with an arbitrary degree of memory

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Antonio; Benenti, Giuliano; Falci, Giuseppe; Macchiavello, Chiara

    2015-12-01

    We study the performance of a partially correlated amplitude damping channel acting on two qubits. We derive lower bounds for the single-shot classical capacity by studying two kinds of quantum ensembles, one which allows us to maximize the Holevo quantity for the memoryless channel and the other allowing the same task but for the full-memory channel. In these two cases we also show the amount of entanglement which is involved in achieving the maximum of the Holevo quantity. For the single-shot quantum capacity we discuss both a lower and an upper bound, achieving a good estimate for high values of the channel transmissivity. We finally compute the entanglement-assisted classical channel capacity.

  15. Terahertz demultiplexing by a single-shot time-to-space conversion using a film of squarylium dye J aggregates

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Tatsuura, Satoshi; Wada, Osamu

    2000-07-01

    We applied time-to-space conversion using femtosecond nonlinear-optical response of squarylium-dye (SQ) J-aggregates film. A pump pulse and a train of four probe pulses were illuminated on the same area (10 mm φ) of the film in direction of oblique and normal to the film plane, respectively. Due to the oblique illumination, the pump pulse met probe pulses (interval time: 1 ps) at separate places. The film picked out part of each probe pulse by its transmittance change, which was observed for a transmitted image of spatially separated four lines. Response time of the SQ J aggregates is enough for the single-shot 1 THz demultiplexing.

  16. Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.

    PubMed

    Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre

    2016-08-01

    The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.

  17. Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout

    PubMed Central

    Vidorreta, Marta; Wang, Ze; Chang, Yulin V.; Wolk, David A.; Fernández-Seara, María A.; Detre, John A.

    2017-01-01

    Arterial Spin Labeled (ASL) perfusion MRI enables non-invasive, quantitative measurements of tissue perfusion, and has a broad range of applications including brain functional imaging. However, ASL suffers from low signal-to-noise ratio (SNR), limiting image resolution. Acquisitions using 3D readouts are optimal for background-suppression of static signals, but can be SAR intensive and typically suffer from through-plane blurring. In this study, we investigated the use of accelerated 3D readouts to obtain whole-brain, high-SNR ASL perfusion maps and reduce SAR deposition. Parallel imaging was implemented along the partition-encoding direction in a pseudo-continuous ASL sequence with background-suppression and 3D RARE Stack-Of-Spirals readout, and its performance was evaluated in three small cohorts. First, both non-accelerated and two-fold accelerated single-shot versions of the sequence were evaluated in healthy volunteers during a motor-photic task, and the performance was compared in terms of temporal SNR, GM-WM contrast, and statistical significance of the detected activation. Secondly, single-shot 1D-accelerated imaging was compared to a two-shot accelerated version to assess benefits of SNR and spatial resolution for applications in which temporal resolution is not paramount. Third, the efficacy of this approach in clinical populations was assessed by applying the single-shot 1D-accelerated version to a larger cohort of elderly volunteers. Accelerated data demonstrated the ability to detect functional activation at the subject level, including cerebellar activity, without loss in the perfusion signal temporal stability and the statistical power of the activations. The use of acceleration also resulted in increased GM-WM contrast, likely due to reduced through-plane partial volume effects, that were further attenuated with the use of two-shot readouts. In a clinical cohort, image quality remained excellent, and expected effects of age and sex on cerebral blood flow could be detected. The sequence is freely available upon request for academic use and could benefit a broad range of cognitive and clinical neuroscience research. PMID:28837640

  18. Controlling dynamics of imploded core plasma for fast ignition

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Johzaki, T.; Sunahara, A.; Shiraga, H.; Sakagami, H.; Cai, H.; Mima, K.

    2010-08-01

    In the Fast ignition, formation of highly compressed core plasma is one of critical issue. In this work, the effect hydrodynamic instability in cone-guided shell implosion is studied. Two-dimensional radiation hydrodynamic simulations are carried out where realistic seeds of Rayleigh-Taylor instability are imposed. Preliminary results suggest that the instability reduces implosion performance, such as implosion velocity, areal density, and maximum density. In perturbed target implosion, the break-up time of the tip of the cone is earlier than that of ideal unperturbed target implosion case. This is crucial matter for the Fast ignition because the pass for the heating laser is filled with plasma before the shot of heating laser. A sophisticated implosion design of stable and low in-flight aspect ratio is necessary for cone-guided shell implosion.

  19. Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    DOE PAGES

    Gamboa, E. J.; Bachmann, B.; Kraus, D.; ...

    2016-08-01

    The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS)more » for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.« less

  20. Measurement of M²-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor.

    PubMed

    Du, Yongzhao

    2016-11-29

    For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M²-curve is developed. The M²-curve not only contains the beam quality factor M x 2 and M y 2 in the x -direction and y -direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M²-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  1. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  2. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    PubMed Central

    Du, Yongzhao

    2016-01-01

    For asymmetric laser beams, the values of beam quality factor Mx2 and My2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor Mx2 and My2 in the x-direction and y-direction, respectively; but also introduces a curve of Mxα2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts. PMID:27916845

  3. Validating predictive models for fast ion profile relaxation in burning plasmas

    DOE PAGES

    Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; ...

    2016-07-22

    The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfvén eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up tomore » $$\\gamma /\\omega \\sim 20\\%$$ violating assumptions of perturbative approaches used in NOVA-K code. Lastly, we demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2.« less

  4. Optical performance analysis of plenoptic camera systems

    NASA Astrophysics Data System (ADS)

    Langguth, Christin; Oberdörster, Alexander; Brückner, Andreas; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Adding an array of microlenses in front of the sensor transforms the capabilities of a conventional camera to capture both spatial and angular information within a single shot. This plenoptic camera is capable of obtaining depth information and providing it for a multitude of applications, e.g. artificial re-focusing of photographs. Without the need of active illumination it represents a compact and fast optical 3D acquisition technique with reduced effort in system alignment. Since the extent of the aperture limits the range of detected angles, the observed parallax is reduced compared to common stereo imaging systems, which results in a decreased depth resolution. Besides, the gain of angular information implies a degraded spatial resolution. This trade-off requires a careful choice of the optical system parameters. We present a comprehensive assessment of possible degrees of freedom in the design of plenoptic systems. Utilizing a custom-built simulation tool, the optical performance is quantified with respect to particular starting conditions. Furthermore, a plenoptic camera prototype is demonstrated in order to verify the predicted optical characteristics.

  5. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  6. Coherent diffraction imaging of non-isolated object with apodized illumination.

    PubMed

    Khakurel, Krishna P; Kimura, Takashi; Joti, Yasumasa; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2015-11-02

    Coherent diffraction imaging (CDI) is an established lensless imaging method widely used at the x-ray regime applicable to the imaging of non-periodic materials. Conventional CDI can practically image isolated objects only, which hinders the broader application of the method. We present the imaging of non-isolated objects by employing recently proposed "non-scanning" apodized-illumination CDI at an optical wavelength. We realized isolated apodized illumination with a specially designed optical configuration and succeeded in imaging phase objects as well as amplitude objects. The non-scanning nature of the method is important particularly in imaging live cells and tissues, where fast imaging is required for non-isolated objects, and is an advantage over ptychography. We believe that our result of phase contrast imaging at an optical wavelength can be extended to the quantitative phase imaging of cells and tissues. The method also provides the feasibility of the lensless single-shot imaging of extended objects with x-ray free-electron lasers.

  7. SU-F-P-36: Automation of Linear Accelerator Star Shot Measurement with Advanced XML Scripting and Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, N; Knutson, N; Schmidt, M

    Purpose: To verify a method used to automatically acquire jaw, MLC, collimator and couch star shots for a Varian TrueBeam linear accelerator utilizing Developer Mode and an Electronic Portal Imaging Device (EPID). Methods: An XML script was written to automate motion of the jaws, MLC, collimator and couch in TrueBeam Developer Mode (TBDM) to acquire star shot measurements. The XML script also dictates MV imaging parameters to facilitate automatic acquisition and recording of integrated EPID images. Since couch star shot measurements cannot be acquired using a combination of EPID and jaw/MLC collimation alone due to a fixed imager geometry, amore » method utilizing a 5mm wide steel ruler placed on the table and centered within a 15×15cm2 open field to produce a surrogate of the narrow field aperture was investigated. Four individual star shot measurements (X jaw, Y jaw, MLC and couch) were obtained using our proposed as well as traditional film-based method. Integrated EPID images and scanned measurement films were analyzed and compared. Results: Star shot (X jaw, Y jaw, MLC and couch) measurements were obtained in a single 5 minute delivery using the TBDM XML script method compared to 60 minutes for equivalent traditional film measurements. Analysis of the images and films demonstrated comparable isocentricity results, agreeing within 0.3mm of each other. Conclusion: The presented automatic approach of acquiring star shot measurements using TBDM and EPID has proven to be more efficient than the traditional film approach with equivalent results.« less

  8. [Injury patterns and roentgen findings in gunshot wounds with rare flint ammunition].

    PubMed

    Pollak, S; Lindermann, A

    1990-01-01

    Smoothbore shotgun barrels can fire cartridges with common pellet loads as well as shotgun slugs and rubber bullets. Other than conventional shot, the cylindrical Brenneke-type rifled shotgun slugs sometimes cause perforating wounds. The shotgun ammunition for use in self-defence can have a single projectile or several rubber pellets. Where the propellant is black powder, short range shots will probably leave searing marks and intensive soot deposits. Fired at close range, rubber bullets can penetrate through the skin into the body, fired at greater distance they cause contusions. A case of homicide (repeated firing with a 12-ga. pump gun) is used to present and discuss the injury patterns and X-ray findings after impact of Brenneke-type slugs and rubber bullets as well as of "classical" shot pellets.

  9. Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor

    PubMed Central

    Delbruck, Tobi; Lang, Manuel

    2013-01-01

    Conventional vision-based robotic systems that must operate quickly require high video frame rates and consequently high computational costs. Visual response latencies are lower-bound by the frame period, e.g., 20 ms for 50 Hz frame rate. This paper shows how an asynchronous neuromorphic dynamic vision sensor (DVS) silicon retina is used to build a fast self-calibrating robotic goalie, which offers high update rates and low latency at low CPU load. Independent and asynchronous per pixel illumination change events from the DVS signify moving objects and are used in software to track multiple balls. Motor actions to block the most “threatening” ball are based on measured ball positions and velocities. The goalie also sees its single-axis goalie arm and calibrates the motor output map during idle periods so that it can plan open-loop arm movements to desired visual locations. Blocking capability is about 80% for balls shot from 1 m from the goal even with the fastest-shots, and approaches 100% accuracy when the ball does not beat the limits of the servo motor to move the arm to the necessary position in time. Running with standard USB buses under a standard preemptive multitasking operating system (Windows), the goalie robot achieves median update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball movement to motor command at a peak CPU load of less than 4%. Practical observations and measurements of USB device latency are provided1. PMID:24311999

  10. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  11. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    PubMed

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  12. Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI.

    PubMed

    Razek, Ahmed Abdel; Elmorsy, Ahmed; Elshafey, Mohsen; Elhadedy, Tamer; Hamza, Osama

    2009-09-01

    To assess the role of diffusion-weighted single-shot echo-planar magnetic resonance imaging (MRI) in patients with mediastinal tumors. Prospective study was conducted on 45 consecutive patients (29 male, 16 female, age 22-66 years, mean 41 years) with mediastinal tumor. They underwent diffusion-weighted single-shot echo-planar MRI of the mediastinum with a b-factor of 0, 300, and 600 sec/mm(2). The apparent diffusion coefficient (ADC) value of the mediastinal tumor was correlated with the histopathological findings. The mean ADC value of malignant mediastinal tumors was 1.09 +/- 0.25 x 10(-3) mm(2)/sec, and of benign tumors was 2.38 +/- 0.56 x 10(-3) mm(2)/sec. There was a significant difference in the mean ADC value between malignant and benign tumors (P = 0.001) and within different grades of malignancy (0.001). When an ADC value of 1.56 x 10(-3) mm(2)/sec was used as a threshold value for differentiating malignant from benign tumor, the best results were obtained with an accuracy of 95%, sensitivity of 96%, specificity of 94%, positive predictive value of 94%, negative predictive value of 96%, and area under the curve of 0.938. The ADC value is a noninvasive parameter that can be used for differentiation of malignant from benign mediastinal tumors and grading of mediastinal malignancy.

  13. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  14. Management of hypertrophic pylorus stenosis with ultrasound guided single shot epidural anaesthesia--a retrospective analysis of 20 cases.

    PubMed

    Willschke, Harald; Machata, Anette-Marie; Rebhandl, Winfried; Benkoe, Thomas; Kettner, Stephan C; Brenner, Lydia; Marhofer, Peter

    2011-02-01

    To retrospectively describe the performance of ultrasound guided thoracic epidural anaesthesia under sedation for anaesthesia management of open pyloromyotomy. Anaesthesia management for hypertrophic pylorus stenosis (HPS) is usually performed under general anaesthesia with tracheal intubation. Only a few publications describe avoidance of tracheal intubation in infants by using spinal or caudal anaesthesia. The present retrospective analysis describes the performance of ultrasound guided thoracic epidural anaesthesia under sedation for anaesthetic management of open pyloromyotomy. Twenty consecutive infants scheduled for pyloromyotomy according to the Weber-Ramstedt technique were retrospectively analysed. After sedation with nalbuphine and propofol, an ultrasound guided single shot thoracic epidural anaesthesia was performed with 0.75 ml·kg(-1) ropivacaine 0.475%. Insufficient blockade was defined as increase of HR > 15% from initial value and/or any movements at skin incision. In those cases we were prepared for rapid sequence intubation according to the departmental standard. All pyloromyotomies could be performed under single shot thoracic epidural anaesthesia and sedation. One case of moderate oxygen desaturation was treated with intermittent ventilation via face mask. Thoracic epidural anaesthesia under sedation for pyloromyotomy has been a useful technique in this retrospective series of infants suffering from HPS. In 1/20 infants short term assisted ventilation via face mask was required. Undisturbed surgery was possible in all cases. © 2010 Blackwell Publishing Ltd.

  15. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  16. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Greef, Daniël; Dirckx, Joris J. J.

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy lossesmore » due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising on the quality. Results of a repeatability test will be presented as well. Since the method measures the membrane motion as a function of time in small time steps, we do not only measure vibration amplitude like in time-average holography, but we can also measure non-linear elastic and transient behaviour. In conclusion, the combination of good spatial, depth and time resolution with the fast data acquisition and very wide frequency range make our technique applicable in a number of fields, including biological tissue vibrations.« less

  17. Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas

    NASA Astrophysics Data System (ADS)

    Mistakidis, S. I.; Katsimiga, G. C.; Kevrekidis, P. G.; Schmelcher, P.

    2018-04-01

    We explore the quench dynamics of a binary Bose–Einstein condensate crossing the miscibility–immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body (MB) approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark–antidark solitary waves are spontaneously generated and subsequently found to decay in the MB scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system.

  18. Single-shot detection of bacterial endospores via coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav O; Murawski, Robert K; Sautenkov, Vladimir A; Dogariu, Arthur; Sokolov, Alexei V; Scully, Marlan O

    2008-01-15

    Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al. (2007) Science 316:265-268] yield single-shot identification of a small sample of Bacillus subtilis endospores (approximately 10(4) spores). The results convey the utility of the technique and its potential for "on-the-fly" detection of biohazards, such as Bacillus anthracis. The application of optimized coherent anti-Stokes Raman scattering scheme to problems requiring chemical specificity and short signal acquisition times is demonstrated.

  19. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  20. Anterior chamber configuration in patients with glaucoma: MR gonioscopy evaluation with half-Fourier single-shot RARE sequence and microscopy coil.

    PubMed

    Tanitame, Keizo; Sasaki, Ko; Sone, Takashi; Uyama, Shinji; Sumida, Masumi; Ichiki, Toshio; Ito, Katsuhide

    2008-10-01

    The purpose of the study was to determine the accuracy of half-Fourier single-shot rapid acquisition with relaxation enhancement high-spatial-resolution magnetic resonance (MR) imaging performed with a microscopy coil in the diagnosis of narrow anterior chamber angle in patients with glaucoma. Slit-lamp biomicroscopy served as the reference standard. The institutional review board approved this study, and written informed consent was obtained from the 20 recruited patients. There was excellent agreement between MR gonioscopy and slit-lamp biomicroscopy in the classification of anterior chamber angles as narrow or open (kappa = 0.89 [95% confidence interval: 0.69, 1.10]). MR gonioscopy has substantial potential as a technique used to evaluate glaucoma. (c) RSNA, 2008.

  1. A versatile diffractive maskless lithography for single-shot and serial microfabrication.

    PubMed

    Jenness, Nathan J; Hill, Ryan T; Hucknall, Angus; Chilkoti, Ashutosh; Clark, Robert L

    2010-05-24

    We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of approximately 700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.

  2. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nora G.; Herrwerth, O.; Wirth, A.

    2011-01-15

    Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along themore » laser polarization axis.« less

  3. Transductive multi-view zero-shot learning.

    PubMed

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2015-11-01

    Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  4. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE PAGES

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma; ...

    2017-01-01

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  5. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  6. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.

    PubMed

    Jiang, Lin; Kondo, Akira; Shigeta, Masahiro; Endoh, Shigehisa; Uejima, Mitsugu; Ogura, Isamu; Naito, Makio

    2014-01-01

    To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.

  7. Pressure Monitoring Using Hybrid fs/ps Rotational CARS

    NASA Technical Reports Server (NTRS)

    Kearney, Sean P.; Danehy, Paul M.

    2015-01-01

    We investigate the feasibility of gas-phase pressure measurements at kHz-rates using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is then probed by a high-energy 6-ps pulse introduced at a time delay from the Raman preparation. Rotational CARS spectra were recorded in N2 contained in a room-temperature gas cell for pressures from 0.1 to 3 atm and probe delays ranging from 10-330 ps. Using published self-broadened collisional linewidth data for N2, both the spectrally integrated coherence decay rate and the spectrally resolved decay were investigated as means for detecting pressure. Shot-averaged and single-laser-shot spectra were interrogated for pressure and the accuracy and precision as a function of probe delay and cell pressure are discussed. Single-shot measurement accuracies were within 0.1 to 6.5% when compared to a transducer values, while the precision was generally between 1% and 6% of measured pressure for probe delays of 200 ps or more, and better than 2% as the delay approached 300 ps. A byproduct of the pressure measurement is an independent but simultaneous measurement of the gas temperature.

  8. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  9. Sensitivity of an imaging space infrared interferometer.

    PubMed

    Nakajima, T; Matsuhara, H

    2001-02-01

    We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.

  10. Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy

    PubMed Central

    Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent

    2011-01-01

    We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. PMID:21641327

  11. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.

    The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.

  13. Integrated simulation of magnetic-field-assist fast ignition laser fusion

    NASA Astrophysics Data System (ADS)

    Johzaki, T.; Nagatomo, H.; Sunahara, A.; Sentoku, Y.; Sakagami, H.; Hata, M.; Taguchi, T.; Mima, K.; Kai, Y.; Ajimi, D.; Isoda, T.; Endo, T.; Yogo, A.; Arikawa, Y.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2017-01-01

    To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target case, the core heating performance deteriorates by applying magnetic fields since the core is considerably deformed and most of the fast electrons are reflected due to the magnetic mirror formed through the implosion. On the other hand, in the case of a cone-attached solid ball target, the implosion is more stable under the kilo-tesla-class magnetic field. In addition, feasible magnetic field configuration is formed through the implosion. As a result, the core heating efficiency doubles by magnetic guiding. The dependence of core heating properties on the heating pulse shot timing was also investigated for the solid ball target.

  14. Estimation of ultrashort laser irradiation effect over thin transparent biopolymer films morphology

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, C.; Bliznakova, I.; Slavov, D.; Husinsky, W.

    2015-01-01

    The collagen - elastin biopolymer thin films treated by CPA Ti:Sapphire laser (Femtopower - Compact Pro) at 800nm central wavelength with 30fs and 1kHz repetition rate are investigated. A process of surface modifications and microporous scaffold creation after ultrashort laser irradiation has been observed. The single-shot (N=1) and multi-shot (N<1) ablation threshold values were estimated by studying the linear relationship between the square of the crater diameter D2 and the logarithm of the laser fluence F for determination of the threshold fluences for N=1, 2, 5, 10, 15 and 30 number of laser pulses. The incubation analysis by calculation of the incubation coefficient ξ for multi - shot fluence threshold for selected materials by power - law relationship form Fth(N)=Fth(1)Nξ-1 was also obtained. In this paper, we have also shown another consideration of the multi - shot ablation threshold calculation by logarithmic dependence of the ablation rate d on the laser fluence. The morphological surface changes of the modified regions were characterized by scanning electron microscopy to estimate the generated variations after the laser treatment.

  15. Resolution enhancement in integral microscopy by physical interpolation.

    PubMed

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-08-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens.

  16. Resolution enhancement in integral microscopy by physical interpolation

    PubMed Central

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-01-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens. PMID:26309749

  17. Quicker, faster, darker: Changes in Hollywood film over 75 years

    PubMed Central

    Cutting, James E; Brunick, Kaitlin L; DeLong, Jordan E; Iricinschi, Catalina; Candan, Ayse

    2011-01-01

    We measured 160 English-language films released from 1935 to 2010 and found four changes. First, shot lengths have gotten shorter, a trend also reported by others. Second, contemporary films have more motion and movement than earlier films. Third, in contemporary films shorter shots also have proportionately more motion than longer shots, whereas there is no such relation in older films. And finally films have gotten darker. That is, the mean luminance value of frames across the length of a film has decreased over time. We discuss psychological effects associated with these four changes and suggest that all four linear trends have a single cause: Filmmakers have incrementally tried to exercise more control over the attention of filmgoers. We suggest these changes are signatures of the evolution of popular film; they do not reflect changes in film style. PMID:23145246

  18. MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production.

    PubMed

    Lee, Chiara; Kang, Hae Joo; Hjelm, Anna; Qureshi, Abdul Aziz; Nji, Emmanuel; Choudhury, Hassanul; Beis, Konstantinos; de Gier, Jan-Willem; Drew, David

    2014-10-16

    Optimising membrane protein production yields in Escherichiacoli can be time- and resource-consuming. Here, we present a simple and effective Membrane protein Single shot amplification recipe: MemStar. This one-shot amplification recipe is based on the E. coli strain Lemo21(DE3), the PASM-5052 auto-induction medium and, contradictorily, an IPTG induction step. Using MemStar, production yields for most bacterial membrane proteins tested were improved to reach an average of 5 mg L(-1) per OD600 unit, which is significantly higher than yields obtained with other common production strategies. With MemStar, we have been able to obtain new structural information for several transporters, including the sodium/proton antiporter NapA. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. A Modification to Maxwell's Needle Apparatus

    ERIC Educational Resources Information Center

    Soorya, Tribhuvan N.

    2015-01-01

    Maxwell's needle apparatus is used to determine the shear modulus (?) of the material of a wire of uniform cylindrical cross section. Conventionally, a single observation is taken for each observable, and the value of ? is calculated in a single shot. A modification to the above apparatus is made by varying one of the observables, namely the mass…

  20. Compressive sensing for single-shot two-dimensional coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, E.; Spencer, A.; Spokoyny, B.

    2017-02-01

    In this work, we explore the use of compressive sensing for the rapid acquisition of two-dimensional optical spectra that encodes the electronic structure and ultrafast dynamics of condensed-phase molecular species. Specifically, we have developed a means to combine multiplexed single-element detection and single-shot and phase-resolved two-dimensional coherent spectroscopy. The method described, which we call Single Point Array Reconstruction by Spatial Encoding (SPARSE) eliminates the need for costly array detectors while speeding up acquisition by several orders of magnitude compared to scanning methods. Physical implementation of SPARSE is facilitated by combining spatiotemporal encoding of the nonlinear optical response and signal modulation by a high-speed digital micromirror device. We demonstrate the approach by investigating a well-characterized cyanine molecule and a photosynthetic pigment-protein complex. Hadamard and compressive sensing algorithms are demonstrated, with the latter achieving compression factors as high as ten. Both show good agreement with directly detected spectra. We envision a myriad of applications in nonlinear spectroscopy using SPARSE with broadband femtosecond light sources in so-far unexplored regions of the electromagnetic spectrum.

  1. The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma.

    PubMed

    Khemani, S; Lingam, R K; Kalan, A; Singh, A

    2011-08-01

    To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.

  2. Fast prototyping of microtubes with embedded sensing elements made possible with an inkjet printing and rolling process

    NASA Astrophysics Data System (ADS)

    Wang, N.; Meissner, M. V.; MacKinnon, N.; Luchnikov, V.; Mager, D.; Korvink, J. G.

    2018-02-01

    We present a new fabrication process to create sub-mm micro tubes with embedded conductive patterns. Based on common 2D patterning techniques and a specially designed rolling process, it achieves 3D structures featuring potentially complex, embedded electrical, mechanical and micro-fluidic functions. We demonstrate the advantage in creating freeform electrical conductors around sub-mm tubes, such as needed for a tube-integrated micro heater. The production of the 2D patterns is flexible, and we demonstrate that both additive manufacturing (fast, accessible) and conventional micro-fabrication processes (cleanroom, wafer-scale) are compatible with the rolling process. To adapt the rolling process for high frequency applications, the patterned tracks can be directly electroplated, with good adhesion, to reduce electrical resistance. For the first time, we achieve saddle-geometry NMR micro detectors. They feature 100 μm wide, 10 μm thick conductive tracks on 25 μm thick polyimide film, and were successfully tested in a 500 MHz (11.7 T) NMR spectrometer. Using a 620 μm diameter coil, we measured the single-shot SNR of deionized water sample, which corresponded to a mole sensitivity of 18.78 nmolHz-1/2 , and a water line shape of 1.52/26.8/37.3 Hz (50, 0.55, 0.11% of the maximum height) from a sample volume of only 82 nl.

  3. Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.

    PubMed

    Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C

    2007-09-01

    Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.

  4. Applications of nuclear magnetic resonance in paediatric surgery: magnetic resonance cholangiopancreatography and new sequences.

    PubMed

    Ragazzi, S; Vanzulli, A; Del Maschio, A; Tomaselli, V; Dell' Agnola, C A

    2007-12-01

    The aim of the study was to evaluate fast magnetic resonance cholangio-pancreatography (MRCP) sequences as an alternative and safe investigation method for neonatal and children's pancreaticobiliary diseases. Between January 2000 and December 2000, five children (age: 1 month 14 years; mean: 7 years) affected by pancreaticobiliary diseases or already operated for biliary pathologies were studied. Patients were evaluated by 1.5 T magnet single shot T2-weighted sequences (1 image per s, TR = infinite, TE = 150-180 ms). T1-weighted conventional sequences were obtained to study parenchymal tissue. No patient needed general anaesthetic. Only in one case was sedation necessary. Fast MRCP sequences provided very precise information on biliary tract anatomy. They revealed the intra and extrahepatic bile ducts, the gallbladder, the common bile duct and the bilio-pancreatic junction in all cases investigated. MRCP allowed us to evaluate Roux-en-Y type bilio-enteric anastomosis as accurately as percutaneous transhepatic cholangiography (PTC). In addition MRCP was the only reliable study in evaluating Roux-en-Y type anastomosis where ultrasonography (US) and endoscopic retrograde cholangiography (ERCP) could not be used. In conclusion MRCP is an accurate and non-invasive method with which to investigate the anatomy of the pancreaticobiliary tract in children. It could become the investigation of choice after US in the case of biliary and pancreatic diseases.

  5. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  6. Single shot imaging through turbid medium and around corner using coherent light

    NASA Astrophysics Data System (ADS)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  7. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  8. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    NASA Astrophysics Data System (ADS)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  9. Compact Spreader Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Jung, J. -Y.; Ratti, A.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less

  10. Gradient rotating outer volume excitation (GROOVE): A novel method for single-shot two-dimensional outer volume suppression.

    PubMed

    Powell, Nathaniel J; Jang, Albert; Park, Jang-Yeon; Valette, Julien; Garwood, Michael; Marjańska, Małgorzata

    2015-01-01

    To introduce a new outer volume suppression (OVS) technique that uses a single pulse and rotating gradients to accomplish frequency-swept excitation. This new technique, which is called gradient rotating outer volume excitation (GROOVE), produces a circular or elliptical suppression band rather than suppressing the entire outer volume. Theoretical and k-space descriptions of GROOVE are provided. The properties of GROOVE were investigated with simulations, phantom, and human experiments performed using a 4T horizontal bore magnet equipped with a TEM coil. Similar suppression performance was obtained in phantom and human brain using GROOVE with circular and elliptical shapes. Simulations indicate that GROOVE requires less SAR and time than traditional OVS schemes, but traditional schemes provide a sharper transition zone and less residual signal. GROOVE represents a new way of performing OVS in which spins are excited temporally in space on a trajectory that can be tailored to fit the shape of the suppression region. In addition, GROOVE is capable of suppressing tailored regions of space with more flexibility and in a shorter period of time than conventional methods. GROOVE provides a fast, low SAR alternative to conventional OVS methods in some applications (e.g., scalp suppression). © 2014 Wiley Periodicals, Inc.

  11. Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging.

    PubMed

    Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.

  12. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking.

    PubMed

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13 C peaks, on the chemical shift offset of coupled nuclei, such as 1 H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [ 13 C, 1 H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02ppm when measured on a 400MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    PubMed

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy

    1996-01-01

    Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.

  15. HIV and AIDS: Medicines to Help You

    MedlinePlus

    ... HIV drugs. Single Tablet Regimen (You only take 1 pill each day.) Brand Name Other Names Atripla ... Name Other Names Fuzeon This medicine is a shot. enfuvirtide T-20 For more information about the ...

  16. Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Wahlstrand, Jared; Goers, Andy; Feder, Linus; Miao, Bo; Hine, George; Salehi, Fatholah; Milchberg, Howard

    2016-10-01

    We report on the use of single-shot supercontinuum spectral interferometry (SSSI) to make temporally and spatially resolved measurements of laser-induced avalanche breakdown in ambient air by a 200 ps pulse. By seeding the breakdown using an external 100 fs pulse, we demonstrate control over the timing and spatial characteristics of the avalanche. In addition, we calculate the collisional ionization rates at various laser intensities and demonstrate seeding of the avalanche breakdown both by multiphoton ionization and by photodetaching ions produced from a radioactive source. These observations provide proof-of-concept support for recent proposals to remotely measure radioactivity using laser-induced avalanche breakdown. This work supported by a DTRA, C-WMD Basic Research Program, and by the DOE NNSA Stewardship Science Graduate Fellowship, provided under Grant Number DE-NA0002135.

  17. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Wei; Jovanovic, Igor

    2016-09-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.

  18. Single-shot dual-wavelength in-line and off-axis hybrid digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2018-02-01

    We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.

  19. Single shot multi-wavelength phase retrieval with coherent modulation imaging.

    PubMed

    Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-04-15

    A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.

  20. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  1. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  2. [Periinterventional prophylactic antibiotics in radiological port catheter implantation].

    PubMed

    Gebauer, B; Teichgräber, U; Werk, M; Wagner, H-J

    2007-08-01

    To evaluate whether catheter-related infections after radiologically placed port catheters can be reduced by single-shot periinterventional antibiosis. Between January and September 2002, 164 consecutive patients with indication for central venous port catheter implantation were included in the present study. During implantation the interventional radiologist was responsible for deciding whether to administer a prophylactic single-shot antibiosis. The prophylactic antibiosis entailed intravenous administration of ampicillin and sulbactam (3 g Unacid, Pfizer) or 100 mg ciprofloxacine (Ciprobay, Bayer) in the case of an allergy history to penicillins. Catheter-related infection was defined as a local or systemic infection necessitating port catheter extraction. Indication for port catheter implantation was a malignant disease requiring chemotherapy in 158 cases. The port catheter (Chemosite [Tyco Healthcare] [n = 123], low-profile [Arrow International] [n = 35], other port system [n = 6]) was implanted via sonographically guided puncture of the right jugular vein in 139 patients, via the left jugular vein in 24 cases and via the right subclavian vein in one patient. 75 patients received periinterventional prophylactic antibiosis (Unacid [n = 63] Ciprobay [n = 12]) and 89 patients did not receive antibiosis. The prophylactic antibiosis caused a minor allergic reaction in one patient that improved with antihistamic and corticoid medication. A total of 7 ports, 6 without prophylactic antibiosis versus one with periinterventional prophylaxis, were extracted due to infectious complications. Single-shot periinterventional prophylactic antibiosis can reduce early and late infectious complications after radiological-interventional placement of central venous port catheters.

  3. Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices

    NASA Astrophysics Data System (ADS)

    Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola

    2017-10-01

    Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.

  4. Multishot PROPELLER for high-field preclinical MRI.

    PubMed

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F; Johnson, G Allan

    2010-07-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T(2)-weighted imaging using PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI meets this need. The two-shot PROPELLER technique presented here provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and noninvasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The two-shot modification introduced here retains more high-frequency information and provides higher signal-to-noise ratio than conventional single-shot PROPELLER, making this sequence feasible at high fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. (c) 2010 Wiley-Liss, Inc.

  5. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  6. Novel snapshot hyperspectral imager for fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi

    2018-02-01

    Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.

  7. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity.

    PubMed

    Pikula, Jiri; Bandouchova, Hana; Hilscherova, Klara; Paskova, Veronika; Sedlackova, Jana; Adamovsky, Ondrej; Knotkova, Zora; Lany, Petr; Machat, Jiri; Marsalek, Blahoslav; Novotny, Ladislav; Pohanka, Miroslav; Vitula, Frantisek

    2010-10-01

    Under environmental conditions, wild birds can be exposed to multiple stressors including natural toxins, anthropogenic pollutants and infectious agents at the same time. This experimental study was successful in testing the hypothesis that adverse effects of cyanotoxins, heavy metals and a non-pathogenic immunological challenge combine to enhance avian toxicity. Mortality occurred in combined exposures to naturally occurring cyanobacterial biomass and lead shots, lead shots and Newcastle vaccination as well as in single lead shot exposure. Mostly acute effects around day 10 were observed. On day 30 of exposure, there were no differences in the liver accumulation of lead in single and combined exposure groups. Interestingly, liver microcystin levels were elevated in birds co-exposed to cyanobacterial biomass together with lead or lead and the Newcastle virus. Significant differences in body weights between all Pb-exposed and Pb-non-exposed birds were found on days 10 and 20. Single exposure to cyanobacterial biomass resulted in hepatic vacuolar dystrophy, whereas co-exposure with lead led to more severe granular dystrophy. Haematological changes were associated with lead exposure, in particular. Biochemical analysis revealed a decrease in glucose and an increase in lactate dehydrogenase in single and combined cyanobacterial and lead exposures, which also showed a decreased antibody response to vaccination. The combined exposure of experimental birds to sub-lethal doses of individual stressors is ecologically realistic. It brings together new pieces of knowledge on avian health. In light of this study, investigators of wild bird die-offs should be circumspect when evaluating findings of low concentrations of contaminants that would not result in mortality on a separate basis. As such it has implications for wildlife biologists, veterinarians and conservationists of avian biodiversity. Copyright 2010 Elsevier B.V. All rights reserved.

  8. OZSPEC-2: an improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited).

    PubMed

    Heeter, R F; Anderson, S G; Booth, R; Brown, G V; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Schneider, M B; Young, B K F

    2008-10-01

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  9. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  10. Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.L.; Gross, D.; Pearson, D.C.

    In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic,more » videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.« less

  11. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  12. Measurement of H/D ratio and ion temperature on a HT-6M Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, L.; Lin, X.

    1997-01-01

    By combining optical fibers with piezoelectric scanning Fabry{endash}Perot interferometer, the profiles of H{sub {alpha}} and D{sub {alpha}} have been determined simultaneously in a single Tokamak discharge. Consequently, the ratio of hydrogen to deuterium and ion temperature are obtained. Not only is the uncertainty of shot-to-shot avoided, the results of the experiment indicate that this instrumentation has the advantage of rapid wavelength scanning, large dispersion, high resolution, and good adaptability of working in adverse circumstances such as at a Tokamak site. {copyright} {ital 1997 American Institute of Physics.}

  13. Preoperative local MRI-staging of patients with a suspected pancreatic mass.

    PubMed

    Fischer, U; Vosshenrich, R; Horstmann, O; Becker, H; Salamat, B; Baum, F; Grabbe, E

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas ( n=62) or the papilla ( n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum ( n=5), carcinoma or benign stenosis of the choledochus duct ( n=7) and carcinoma of the gall bladder ( n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases.

  14. Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup

    NASA Astrophysics Data System (ADS)

    Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.

  15. A Computationally Efficient Filter for Reducing Shot Noise in Low S/N Data

    PubMed Central

    Okada, Mami; Ishikawa, Tomoe; Ikegaya, Yuji

    2016-01-01

    Functional multineuron calcium imaging (fMCI) provides a useful experimental platform to simultaneously capture the spatiotemporal patterns of neuronal activity from a large cell population in situ. However, fMCI often suffers from low signal-to-noise ratios (S/N). The main factor that causes the low S/N is shot noise that arises from photon detectors. Here, we propose a new denoising procedure, termed the Okada filter, which is designed to reduce shot noise under low S/N conditions, such as fMCI. The core idea of the Okada filter is to replace the fluorescence intensity value of a given frame time with the average of two values at the preceding and following frames unless the focused value is the median among these three values. This process is iterated serially throughout a time-series vector. In fMCI data of hippocampal neurons, the Okada filter rapidly reduces background noise and significantly improves the S/N. The Okada filter is also applicable for reducing shot noise in electrophysiological data and photographs. Finally, the Okada filter can be described using a single continuous differentiable equation based on the logistic function and is thus mathematically tractable. PMID:27304217

  16. Towards Open-World Person Re-Identification by One-Shot Group-Based Verification.

    PubMed

    Zheng, Wei-Shi; Gong, Shaogang; Xiang, Tao

    2016-03-01

    Solving the problem of matching people across non-overlapping multi-camera views, known as person re-identification (re-id), has received increasing interests in computer vision. In a real-world application scenario, a watch-list (gallery set) of a handful of known target people are provided with very few (in many cases only a single) image(s) (shots) per target. Existing re-id methods are largely unsuitable to address this open-world re-id challenge because they are designed for (1) a closed-world scenario where the gallery and probe sets are assumed to contain exactly the same people, (2) person-wise identification whereby the model attempts to verify exhaustively against each individual in the gallery set, and (3) learning a matching model using multi-shots. In this paper, a novel transfer local relative distance comparison (t-LRDC) model is formulated to address the open-world person re-identification problem by one-shot group-based verification. The model is designed to mine and transfer useful information from a labelled open-world non-target dataset. Extensive experiments demonstrate that the proposed approach outperforms both non-transfer learning and existing transfer learning based re-id methods.

  17. Destruction of the Last Good Magnetic Surface in Diii-D Usn with Elms and C-Coils Shot 115467 due to C-Coils Using Maps

    NASA Astrophysics Data System (ADS)

    McCray, A.; Punjabi, A.; Ali, H.

    2004-11-01

    Unperturbed magnetic topology of DIII-D shot 115467 is described by the symmetric simple map (SSM) with map parameter k=0.2623 [1], then last good surface passes through x=0 and y=0.9995, q_edge=6.48 (same as in shot 115467) if six iterations of SSM are taken to be equivalent to single toroidal circuit of DIII-D. The dipole map (DM) calculates the effects of localized, external high mode numbers magnetic perturbations on motion of field lines. We use dipole map to describe effects of C-coils on field line trajectories in DIII-D. We apply DM after each iteration of SSM, with s=1.0021, x_dipole=1.5617, y_dipole= 0 [1] for shot 115467. We study the changes in the last good surface and its destruction as a function of I_C-coil. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.

  18. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Vutha, Amar C.

    2016-07-01

    The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >105 V/A, and input current noise <4 pA/ √{ Hz } , allowing us to obtain shot-noise-limited performance with low optical power.

  19. Complex amplitude reconstruction for dynamic beam quality M2 factor measurement with self-referencing interferometer wavefront sensor.

    PubMed

    Du, Yongzhao; Fu, Yuqing; Zheng, Lixin

    2016-12-20

    A real-time complex amplitude reconstruction method for determining the dynamic beam quality M2 factor based on a Mach-Zehnder self-referencing interferometer wavefront sensor is developed. By using the proposed complex amplitude reconstruction method, full characterization of the laser beam, including amplitude (intensity profile) and phase information, can be reconstructed from a single interference pattern with the Fourier fringe pattern analysis method in a one-shot measurement. With the reconstructed complex amplitude, the beam fields at any position z along its propagation direction can be obtained by first utilizing the diffraction integral theory. Then the beam quality M2 factor of the dynamic beam is calculated according to the specified method of the Standard ISO11146. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment, including the static and dynamic beam process. The experimental method is simple, fast, and operates without movable parts and is allowed in order to investigate the laser beam in inaccessible conditions using existing methods.

  20. Robust image alignment for cryogenic transmission electron microscopy.

    PubMed

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  2. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  3. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Astrophysics Data System (ADS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-09-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  4. Intense ion beam diagnostics for ICF

    NASA Astrophysics Data System (ADS)

    Yasuike, K.; Cuneo, M. E.; Wenger, D. F.; Bailey, J. E.; Hanson, D. L.; Mehlhorn, T. A.; Imasaki, K.; Nakai, S.; Mima, K.

    1998-11-01

    Development of diagnostic methods for high intensity ion beams for ICF is crucial for understanding the ion diode physics. At Osaka University, an arrayed pinhole camera (APC) diagnostic method had been developed to measure the proton beams with an energy of 1 MeV and a J_i. of 100 A/cm^2. on Reiden-SHVS. The APC measures spatial distributions of the beam divergence in r and θ drection and the intensity distribution. An ion image detector capable to acquire a whole temporal evolution within a shot is necessary to measure the higher intensity beams. A fast scintillator with photo-multiplier tubes has been chosen as the image detector. The detector is being tested on a single pinhole camera using a Lithium beam with a particle energy of 5 MeV, a J_i. of 0.5-1 kA/cm^2. and duration of 50 ns, which are very close to the parameters required from ICF, on the SABRE at Sandia National Labs. We will present the diagnostic design and preliminary experiments from SABRE and also present the experimental results from Reiden-SHVS.

  5. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promisingmore » non-contact, real-time, and high-resolution optical coherence elastography.« less

  6. Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Khare, Kedar

    2018-05-01

    We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.

  7. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  8. Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Jingui; Wang, Jing; Yuan, Peng; Xie, Guoqiang; Ge, Xulei; Liu, Feng; Yuan, Xiaohui; Zhu, Heyuan; Qian, Liejia

    2014-01-01

    Real-time pulse-contrast observation with a high dynamic range is a prerequisite to tackle the contrast challenge in ultra-high peak-power lasers. However, the commonly used delay-scanning cross-correlator (DSCC) can only provide the time-consumed measurements for repetitive lasers. Single-shot cross-correlator (SSCC) becomes essential in optimizing laser systems and exploring contrast mechanisms. Here we report our progress in developing SSCC towards its practical use. By integrating both the techniques of scattering-noise reduction and sensitive parallel detection into SSCC, we demonstrate a high dynamic range of >1010, which, to our best knowledge, is the first demonstration of an SSCC with a dynamic range comparable to that of commercial DSCCs. The comparison of high-dynamic measurement performances between SSCC and a standard DSCC (Sequoia, Amplitude Technologies) is also carried out on a 200 TW Ti:sapphire laser, and the consistency of results verifies the veracity of our SSCC.

  9. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  10. Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, T. J.; Behrens, C.; Ding, Y.

    2013-10-28

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less

  11. Compression of high-density 0.16 pC electron bunches through high field gradients for ultrafast single shot electron diffraction: The Compact RF Gun

    PubMed Central

    Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.

    2017-01-01

    We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973

  12. Monolithic focused reference beam X-ray holography

    PubMed Central

    Geilhufe, J.; Pfau, B.; Schneider, M.; Büttner, F.; Günther, C. M.; Werner, S.; Schaffert, S.; Guehrs, E.; Frömmel, S.; Kläui, M.; Eisebitt, S.

    2014-01-01

    Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux facilities like high harmonic generation sources. The application of monolithic focused reference beams improves the efficiency of high-resolution X-ray Fourier transform holography beyond all present approaches and paves the path towards sub-10 nm single-shot X-ray imaging. PMID:24394675

  13. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    PubMed Central

    De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-01-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. PMID:26290320

  14. Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-03-21

    A narrowband, time-asymmetric probe pulse is introduced into the hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering (fs/ps RCARS) technique to provide accurate and precise single-shot, high-repetition-rate gas-phase thermometric measurements. This narrowband pulse-generated by inserting a Fabry-Pérot étalon into the probe-pulse beam path-enables frequency-domain detection of pure-rotational transitions. The unique time-asymmetric nature of this pulse, in turn, allows for detection of resonant Raman-active rotational transitions free of signal contamination by nonresonant four-wave-mixing processes while still allowing detection at short probe-pulse delays, where collisional dephasing processes are negligible. We demonstrate that this approach provides excellent single-shot thermometric accuracy (<1% error) and precision (~2.5%) in gas-phase environments. © 2012 American Institute of Physics

  15. Frontiers in Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    2016-05-02

    These are slides dealing with frontiers in chemical physics. The following topics are covered: Time resolving chemistry with ultrashort pulses in the 0.1-40 THz spectral range; Example: Mid-infrared absorption spectrum of the intermediate state CH 2OO; Tracking reaction dynamics through changes in the spectra; Single-shot measurement of the mid-IR absorption dynamics; Applying 2D coherent mid-IR spectroscopy to learn more about transition states; Time resolving chemical reactions at a catalysis using mid-IR and THz pulses; Studying topological insulators requires a surface sensitive probe; Nonlinear phonon dynamics in Bi 2Se 3; THz-pump, SHG-probe as a surface sensitive coherent 2D spectroscopy; Nanometer andmore » femtosecond spatiotemporal resolution mid-IR spectroscopy; Coherent two-dimensional THz/mid-IR spectroscopy with 10nm spatial resolution; Pervoskite oxides as catalysts; Functionalized graphene for catalysis; Single-shot spatiotemporal measurements; Spatiotemporal pulse measurement; Intense, broad-band THz/mid-IR generation with organic crystals.« less

  16. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  17. Fractured Anterior Chamber Intraocular Lens (ACIOL) Complicating Nd: YAG Laser for Peripheral Iridotomy.

    PubMed

    Farah, Edgard; Koutsandrea, Chryssanthi; Papaefthimiou, Ioannis; Papaconstantinou, Dimitris; Georgalas, Ilias

    2013-01-01

    Laser peripheral iridotomy is the procedure of choice for the treatment of angle-closure glaucoma caused by relative or absolute pupillary block. Nd: YAG laser iridotomy has been reported to have several complications such as Iris bleeding, hyphema, transient IOP elevation, intraocular inflammation, choroidal, retinal detachment and vitreous hemorrhage. We report a case of a 74 year old lady on anticoagulant treatment who developed pupillary block and angle closure glaucoma after cataract surgery and anterior chamber intraocular lens (ACIOL) insertion complicated with intraoperative bleeding. The patient was treated with Nd: YAG laser iridotomy , however, the ACIOL was inadvertently fractured after a single shot of laser and it had to be replaced. Although the incidence is rare. Ophthalmologists and Opticians should be aware that an ACIOL may be fractured even after a single Nd:YAG laser shot and avoid to perform it close to the ACIOL. Pretreatment counseling should include this rare complication.

  18. Miniaturized Single-Shot Valve and its Application to the ExoMars Pasteur Payload

    NASA Technical Reports Server (NTRS)

    Muller, Pierre; Henkel, Hartmut; Klinkner, Sabine

    2010-01-01

    Hermetically sealing a gas tank and opening it into tubing under telecommand control is a function required in various space instruments. There are a number of space valves that are power saving, withstand vibration, and do not contaminate the gas. But none of them combines these features with low mass and the ability to withstand temperatures of 130 C during the sterilization process mandatory for planetary missions. In this paper, a novel miniature valve is presented, which is particularly adapted to space applications. It is electrically actuated, utilizing a bimetallic snap-disc that pierces a metallic membrane by a needle pin, thereby opening the valve. The design of this single-shot valve is such that it allows it to withstand a temperature of 130 C and a pressure of 50 bars. The valve is also lightweight (6.62 g) and it requires only 9 W to operate.

  19. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  20. Analysis of multilayer and single layer X-ray detectors for contrast-enhanced mammography using imaging task

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.

    2011-03-01

    A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.

Top