Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M
2017-01-01
Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favazza, C; Yu, L; Leng, S
2015-06-15
Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include:more » 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project was supported by National Institutes of Health grants R01 EB017095 and U01 EB017185 from the National Institute of Biomedical Imaging and Bioengineering.« less
Lee, Yong-Beom; Yang, Cheol-Jung; Li, Cheng Zhen; Zhuan, Zhong; Kwon, Seung-Cheol; Noh, Kyu-Cheol
2018-03-01
This study aimed to investigate whether fatty infiltration (FI) measured on a single sagittal magnetic resonance imaging (MRI) slice can represent FI of the whole supraspinatus muscle. This study retrospectively reviewed the MRIs of 106 patients (age 50-79 years) divided into three rotator cuff tear-size groups: medium, large, and massive. Fat mass and muscle mass on all T1-weighted sagittal MRI scans (FA and MA) were measured. Of the total MRI scans, the Y-view was defined as the most lateral image of the junction of the scapular spine with the scapular body on the oblique sagittal T1-weighted image. Fat mass and muscle mass seen on this Y-view single slice were recorded as F1 and M1, respectively. Fat mass and muscle mass were also assessed on MRI scans lateral and medial to the Y-view. The means of fat mass and muscle mass on these three slices were recorded as F3 and M3, respectively. Average FI ratios (fat mass/muscle mass) of the three assessment methods (F1/M1, FA/MA, and F3/M3) were compared. Intraclass correlation coefficients (ICCs) were calculated for inter- and intraobserver reliability. ICCs showed higher reliability (> 0.8) for all measurements. F1/M1 values were not statistically different from FA/MA and F3/M3 values ( p > 0.05), except in males with medium and large tears. F3/M3 and FA/MA were not statistically different. The difference between F1/M1 and FA/MA did not exceed 2%. A single sagittal MRI slice can represent the whole FI in chronic rotator cuff tears, except in some patient groups. We recommend measurement of FI using a single sagittal MRI slice, given the effort required for repeated measurements.
Lee, Yong-Beom; Yang, Cheol-Jung; Li, Cheng Zhen; Zhuan, Zhong; Kwon, Seung-Cheol
2018-01-01
Background This study aimed to investigate whether fatty infiltration (FI) measured on a single sagittal magnetic resonance imaging (MRI) slice can represent FI of the whole supraspinatus muscle. Methods This study retrospectively reviewed the MRIs of 106 patients (age 50–79 years) divided into three rotator cuff tear-size groups: medium, large, and massive. Fat mass and muscle mass on all T1-weighted sagittal MRI scans (FA and MA) were measured. Of the total MRI scans, the Y-view was defined as the most lateral image of the junction of the scapular spine with the scapular body on the oblique sagittal T1-weighted image. Fat mass and muscle mass seen on this Y-view single slice were recorded as F1 and M1, respectively. Fat mass and muscle mass were also assessed on MRI scans lateral and medial to the Y-view. The means of fat mass and muscle mass on these three slices were recorded as F3 and M3, respectively. Average FI ratios (fat mass/muscle mass) of the three assessment methods (F1/M1, FA/MA, and F3/M3) were compared. Intraclass correlation coefficients (ICCs) were calculated for inter- and intraobserver reliability. Results ICCs showed higher reliability (> 0.8) for all measurements. F1/M1 values were not statistically different from FA/MA and F3/M3 values (p > 0.05), except in males with medium and large tears. F3/M3 and FA/MA were not statistically different. The difference between F1/M1 and FA/MA did not exceed 2%. Conclusions A single sagittal MRI slice can represent the whole FI in chronic rotator cuff tears, except in some patient groups. We recommend measurement of FI using a single sagittal MRI slice, given the effort required for repeated measurements. PMID:29564048
Scatter measurement and correction method for cone-beam CT based on single grating scan
NASA Astrophysics Data System (ADS)
Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua
2017-06-01
In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.
O'Connor, Michelle; Ryan, John; Foley, Shane
2015-10-01
Visceral adipose tissue (VAT) is a significant risk factor for obesity-related metabolic diseases. This study investigates (1) the best single CT slice location for predicting total abdominal VAT volume in paediatrics and (2) the relationship between waist circumference (WC), sagittal diameter (SD), gender and VAT volume. A random sample of 130 paediatric abdomen CT scans, stratified according to age and gender, was collected. Three readers measured VAT area at each intervertebral level between T12 and S1 using ImageJ analysis (National Institute of Health, Bethesda, MD) software by thresholding -190 to -30 HU and manually segmenting VAT. Single-slice VAT measurements were correlated with total VAT volume to identify the most representative slice. WC and SD were measured at L3-L4 and L4-L5 slices, respectively. Regression analysis was used to evaluate WC, SD and gender as VAT volume predictors. Interviewer and intraviewer reliability were excellent (intraclass correlation coefficient = 0.99). Although VAT measured at multiple slices correlated strongly with abdominal VAT, only one slice in females at L2-L3 and two slices in males at L1-L2 and L5-S1 were strongly correlated across all age groups. Linear regression analysis showed that WC was strongly correlated with VAT volume (beta = 0.970, p < 0.001). Single-slice VAT measurements are highly reproducible. Measurements performed at L2-L3 in females and L1-L2 or L5-S1 in males were most representative of VAT. WC is indicative of VAT. VAT should be measured at L2-L3 in female children and at either L1-L2 or L5-S1 in males. WC is a strong indicator of VAT in children.
Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R
2018-04-27
Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.
NASA Astrophysics Data System (ADS)
Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.
2018-03-01
Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.
2006-10-01
patients with breast cancer underwent scanning with a hybrid camera which combined a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE...investigated a novel approach which combines the output of a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE Hawkeye®). This... scanner , (Hawkeye®, GE Medical system) is attempted in this study. This device is widely available in cardiology community and has the potential to
Multislice spiral CT simulator for dynamic cardiopulmonary studies
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2002-04-01
We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.
Rowe, Daniel B; Bruce, Iain P; Nencka, Andrew S; Hyde, James S; Kociuba, Mary C
2016-04-01
Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, In-Young; Lee, Sang-Pil; Shen, Jun
2005-01-01
A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90°, a slice-selective universal rotator 90°, and a spectral-spatial pulse composed of two slice-selective universal rotator 45° pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C3 and C4 methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 ± 0.2 μmol/g (means ± SD, n = 15) in the fronto-parietal region of the human brain in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M
Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less
Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960
Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.
Multi-signal FIB/SEM tomography
NASA Astrophysics Data System (ADS)
Giannuzzi, Lucille A.
2012-06-01
Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
Fourier crosstalk analysis of multislice and cone-beam helical CT
NASA Astrophysics Data System (ADS)
La Riviere, Patrick J.
2004-05-01
Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.
Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.
Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M
2015-12-01
Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo
2015-02-28
Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.
Simultaneous multi-slice combined with PROPELLER.
Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan
2018-08-01
Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.
Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil
2018-03-30
Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.
Design and Development of an Engineering Prototype Compact X-Ray Scanner (FMS 5000)
1989-03-31
machined by "wire-EDM" (electro discharge machining ). Three different slice thicknesses can be selected from the scan menu. The set of slice thicknesses...circuit. This type of circuit is used whenever more than ten kilowatts of power are needed by a machine . For example, lathes and milling machines in a... machine shop usually use this type of input power. A three- phase circuit delivers power more efficiently than a single-phase circuit because three
Study of a scanning HIFU therapy protocol, Part II: Experiment and results
NASA Astrophysics Data System (ADS)
Andrew, Marilee A.; Kaczkowski, Peter; Cunitz, Bryan W.; Brayman, Andrew A.; Kargl, Steven G.
2003-04-01
Instrumentation and protocols for creating scanned HIFU lesions in freshly excised bovine liver were developed in order to study the in vitro HIFU dose response and validate models. Computer-control of the HIFU transducer and 3-axis positioning system provided precise spatial placement of the thermal lesions. Scan speeds were selected in the range of 1 to 8 mm/s, and the applied electrical power was varied from 20 to 60 W. These parameters were chosen to hold the thermal dose constant. A total of six valid scans of 15 mm length were created in each sample; a 3.5 MHz single-element, spherically focused transducer was used. Treated samples were frozen, then sliced in 1.27 mm increments. Digital photographs of slices were downloaded to computer for image processing and analysis. Lesion characteristics, including the depth within the tissue, axial length, and radial width, were computed. Results were compared with those generated from modified KZK and BHTE models, and include a comparison of the statistical variation in the across-scan lesion radial width. [Work supported by USAMRMC.
Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study
NASA Astrophysics Data System (ADS)
Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas
2016-03-01
This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, p<0.05). The total calcium scores were larger for the thinner slice thickness. Among the scores obtained from the three reconstruction algorithms, FBP yielded the highest and IR5 yielded the lowest scores. The total calcium scores from the phantom without breast plates were significantly larger than those from the phantom with breast plates, and the difference increased with the stronger denoising in iterative algorithm and with thicker slices. Both gender-based anatomical differences and vessel size impacted the calcium scores. The calcium volume scores tended to be underestimated when the vessels were smaller. These findings are valuable for understanding inconsistencies between women and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.
NASA Astrophysics Data System (ADS)
Alshipli, Marwan; Kabir, Norlaili A.
2017-05-01
Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.
Freezing effect on bread appearance evaluated by digital imaging
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.
1999-01-01
In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.
Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.
Pan, Tinsu
2005-02-01
We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.
Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla
Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil
2013-01-01
We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722
Zhou, Yunfeng; Wang, Juan; Dassarath, Meera; Wang, Minhong; Zhang, Qiang; Xiong, Yuwei; Yuan, Quan
2015-01-01
To prospectively compare the new computed tomographic angiography (CTA) protocol (NCP) using 80-kV and dual-phase scanning with the routine CTA protocol (RCP) using 120-kV and single-phase scanning in patients with peripheral arterial disease. A total of 60 patients were randomized to undergo the NCP (30 patients) or RCP (30 patients) scan. We compared the arterial attenuation values, overriding of the contrast bolus, signal-to-noise ratio, and radiation dose between 2 groups. The occurrence rate of contrast bolus overriding was not statistically significant (P = 0.69). The average arterial attenuation value in the NCP group was significantly higher (P < 0.05) than that in the RCP group. The radiation dose in the RCP group was significantly higher (P < 0.001) than that in the NCP group. The mean signal-to-noise ratio in the NCP group was significantly lower (P < 0.001). Sixty-four-slice CTA with the NCP can significantly reduce the radiation dose and improve the arterial enhancement and calf arteries imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, L; Burmeister, J; Ye, Y
2015-06-15
Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to formmore » one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.« less
Determination of dosimetric quantities in pediatric abdominal computed tomography scans*
Jornada, Tiago da Silva; da Silva, Teógenes Augusto
2014-01-01
Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103
Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David
2014-01-01
Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683
Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David
2014-11-01
Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
Wang, Xi-ming; Wu, Le-bin; Zhang, Yun-ting; Li, Zhen-jia; Liu, Chen
2006-11-01
To discuss the value of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas. 16 patients with colonic lymphomas underwent multi-slice CT dynamic enhancement scans, images of axial and reconstructive images of VR, MPR and CTVE were analyzed, patients were respectively diagnosed. Appearances of primary colorectal lymphomas were categorized into focal and diffuse lesions. Focal and diffuse lesions were 6 and 10 patients, respectively. The accuracy rate of diagnosis was 87.5%. MSCT dynamic scan has distinctive superiority in diagnosis and treatment of colonic lymphomas.
Measurement of complex joint trajectories using slice-to-volume 2D/3D registration and cine MR
NASA Astrophysics Data System (ADS)
Bloch, C.; Figl, M.; Gendrin, C.; Weber, C.; Unger, E.; Aldrian, S.; Birkfellner, W.
2010-02-01
A method for studying the in vivo kinematics of complex joints is presented. It is based on automatic fusion of single slice cine MR images capturing the dynamics and a static MR volume. With the joint at rest the 3D scan is taken. In the data the anatomical compartments are identified and segmented resulting in a 3D volume of each individual part. In each of the cine MR images the joint parts are segmented and their pose and position are derived using a 2D/3D slice-to-volume registration to the volumes. The method is tested on the carpal joint because of its complexity and the small but complex motion of its compartments. For a first study a human cadaver hand was scanned and the method was evaluated with artificially generated slice images. Starting from random initial positions of about 5 mm translational and 12° rotational deviation, 70 to 90 % of the registrations converged successfully to a deviation better than 0.5 mm and 5°. First evaluations using real data from a cine MR were promising. The feasibility of the method was demonstrated. However we experienced difficulties with the segmentation of the cine MR images. We therefore plan to examine different parameters for the image acquisition in future studies.
Accelerated 1 H MRSI using randomly undersampled spiral-based k-space trajectories.
Chatnuntawech, Itthi; Gagoski, Borjan; Bilgic, Berkin; Cauley, Stephen F; Setsompop, Kawin; Adalsteinsson, Elfar
2014-07-30
To develop and evaluate the performance of an acquisition and reconstruction method for accelerated MR spectroscopic imaging (MRSI) through undersampling of spiral trajectories. A randomly undersampled spiral acquisition and sensitivity encoding (SENSE) with total variation (TV) regularization, random SENSE+TV, is developed and evaluated on single-slice numerical phantom, in vivo single-slice MRSI, and in vivo three-dimensional (3D)-MRSI at 3 Tesla. Random SENSE+TV was compared with five alternative methods for accelerated MRSI. For the in vivo single-slice MRSI, random SENSE+TV yields up to 2.7 and 2 times reduction in root-mean-square error (RMSE) of reconstructed N-acetyl aspartate (NAA), creatine, and choline maps, compared with the denoised fully sampled and uniformly undersampled SENSE+TV methods with the same acquisition time, respectively. For the in vivo 3D-MRSI, random SENSE+TV yields up to 1.6 times reduction in RMSE, compared with uniform SENSE+TV. Furthermore, by using random SENSE+TV, we have demonstrated on the in vivo single-slice and 3D-MRSI that acceleration factors of 4.5 and 4 are achievable with the same quality as the fully sampled data, as measured by RMSE of reconstructed NAA map, respectively. With the same scan time, random SENSE+TV yields lower RMSEs of metabolite maps than other methods evaluated. Random SENSE+TV achieves up to 4.5-fold acceleration with comparable data quality as the fully sampled acquisition. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D; Neylon, J; Dou, T
Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less
Single energy micro CT SkyScan 1173 for the characterization of urinary stone
NASA Astrophysics Data System (ADS)
Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.
2016-08-01
A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.
NASA Astrophysics Data System (ADS)
Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin
2018-04-01
Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.
Edelman, Robert R; Silvers, Robert I; Thakrar, Kiran H; Metzl, Mark D; Nazari, Jose; Giri, Shivraman; Koktzoglou, Ioannis
2017-06-30
For evaluation of the pulmonary arteries in patients suspected of pulmonary embolism, CT angiography (CTA) is the first-line imaging test with contrast-enhanced MR angiography (CEMRA) a potential alternative. Disadvantages of CTA include exposure to ionizing radiation and an iodinated contrast agent, while CEMRA is sensitive to respiratory motion and requires a gadolinium-based contrast agent. The primary goal of our technical feasibility study was to evaluate pulmonary arterial conspicuity using breath-hold and free-breathing implementations of a recently-developed nonenhanced approach, single-shot radial quiescent-interval slice-selective (QISS) MRA. Breath-hold and free-breathing, navigator-gated versions of radial QISS MRA were evaluated at 1.5 Tesla in three healthy subjects and 11 patients without pulmonary embolism or arterial occlusion by CTA. Images were scored by three readers for conspicuity of the pulmonary arteries through the level of the segmental branches. In addition, one patient with pulmonary embolism was imaged. Scan time for a 54-slice acquisition spanning the pulmonary arteries was less than 2 minutes for breath-hold QISS, and less than 3.4 min using free-breathing QISS. Pulmonary artery branches through the segmental level were conspicuous with either approach. Free-breathing scans showed only mild blurring compared with breath-hold scans. For both readers, less than 1% of pulmonary arterial segments were rated as "not seen" for breath-hold and navigator-gated QISS, respectively. In subjects with atrial fibrillation, single-shot radial QISS consistently depicted the pulmonary artery branches, whereas navigator-gated 3D balanced steady-state free precession showed motion artifacts. In one patient with pulmonary embolism, radial QISS demonstrated central pulmonary emboli comparably to CEMRA and CTA. The thrombi were highly conspicuous on radial QISS images, but appeared subtle and were not prospectively identified on scout images acquired using a single-shot bSSFP acquisition. In this technical feasibility study, both breath-hold and free-breathing single-shot radial QISS MRA enabled rapid, consistent demonstration of the pulmonary arteries through the level of the segmental branches, with only minimal artifacts from respiratory motion and cardiac arrhythmias. Based on these promising initial results, further evaluation in patients with suspected pulmonary embolism appears warranted.
500 x 1Byte x 136 images. So each 500 bytes from this dataset represents one scan line of the slice image. For example, using PBM: Get frame one: rawtopgm 256 256 < tomato.data > frame1 Get frames one to four into a single image: rawtopgm 256 1024 < tomato.data >frame1-4 Get frame two (skip
Spotting L3 slice in CT scans using deep convolutional network and transfer learning.
Belharbi, Soufiane; Chatelain, Clément; Hérault, Romain; Adam, Sébastien; Thureau, Sébastien; Chastan, Mathieu; Modzelewski, Romain
2017-08-01
In this article, we present a complete automated system for spotting a particular slice in a complete 3D Computed Tomography exam (CT scan). Our approach does not require any assumptions on which part of the patient's body is covered by the scan. It relies on an original machine learning regression approach. Our models are learned using the transfer learning trick by exploiting deep architectures that have been pre-trained on imageNet database, and therefore it requires very little annotation for its training. The whole pipeline consists of three steps: i) conversion of the CT scans into Maximum Intensity Projection (MIP) images, ii) prediction from a Convolutional Neural Network (CNN) applied in a sliding window fashion over the MIP image, and iii) robust analysis of the prediction sequence to predict the height of the desired slice within the whole CT scan. Our approach is applied to the detection of the third lumbar vertebra (L3) slice that has been found to be representative to the whole body composition. Our system is evaluated on a database collected in our clinical center, containing 642 CT scans from different patients. We obtained an average localization error of 1.91±2.69 slices (less than 5 mm) in an average time of less than 2.5 s/CT scan, allowing integration of the proposed system into daily clinical routines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Locating knots by industrial tomography- A feasibility study
Fred W. Taylor; Francis G. Wagner; Charles W. McMillin; Ira L. Morgan; Forrest F. Hopkins
1984-01-01
Industrial photon tomography was used to scan four southern pine logs and one red oak log. The logs were scanned at 16 cross-sectional slice planes located 1 centimeter apart along their longitudinal axes. Tomographic reconstructions were made from the scan data collected at these slice planes, and a cursory image analysis technique was developed to locate the log...
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gu, Jin; Shi, He-Shui; Han, Ping; Yu, Jie; Ma, Gui-Na; Wu, Sheng
2016-10-01
This study sought to compare the image quality and radiation dose of coronary computed tomography angiography (CCTA) from prospectively triggered 128-slice CT (128-MSCT) versus dual-source 64-slice CT (DSCT). The study was approved by the Medical Ethics Committee at Tongji Medical College of Huazhong University of Science and Technology. Eighty consecutive patients with stable heart rates lower than 70 bpm were enrolled. Forty patients were scanned with 128-MSCT, and the other 40 patients were scanned with DSCT. Two radiologists independently assessed the image quality in segments (diameter >1 mm) according to a three-point scale (1: excellent; 2: moderate; 3: insufficient). The CCTA radiation dose was calculated. Eighty patients with 526 segments in the 128-MSCT group and 544 segments in the DSCT group were evaluated. The image quality 1, 2 and 3 scores were 91.6%, 6.9% and 1.5%, respectively, for the 128-MSCT group and 97.6%, 1.7% and 0.7%, respectively, for the DSCT group, and there was a statistically significant inter-group difference (P ≤ 0.001). The effective doses were 3.0 mSv in the 128-MSCT group and 4.5 mSv in the DSCT group (P ≤ 0.001). Compared with DSCT, CCTA with prospectively triggered 128-MSCT had adequate image quality and a 33.3% lower radiation dose.
Li, Guang; Wei, Jie; Olek, Devin; Kadbi, Mo; Tyagi, Neelam; Zakian, Kristen; Mechalakos, James; Deasy, Joseph O; Hunt, Margie
2017-03-01
To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuchenbecker, Walter K H; Groen, Henk; Zijlstra, Tineke M; Bolster, Johanna H T; Slart, Riemer H J; van der Jagt, Erik J; Kobold, Anneke C Muller; Wolffenbuttel, Bruce H R; Land, Jolande A; Hoek, Annemieke
2010-05-01
Abdominal fat contributes to anovulation. We compared body fat distribution measurements and their contribution to anovulation in obese ovulatory and anovulatory infertile women. Seventeen ovulatory and 40 anovulatory women (age, 30 +/- 4 yr; body mass index, 37.7 +/- 6.1 kg/m(2)) participated. Body fat distribution was measured by anthropometrics, dual-energy x-ray absorptiometry, and single-sliced abdominal computed tomography scan. Multiple logistic regression analysis was applied to determine which fat compartments significantly contributed to anovulation. Anovulatory women had a higher waist circumference (113 +/- 11 vs. 104 +/- 9 cm; P < 0.01) and significantly more trunk fat (23.0 +/- 5.3 vs. 19.1 +/- 4.2 kg; P < 0.01) and abdominal fat (4.4 +/- 1.3 kg vs. 3.5 +/- 0.9 kg; P < 0.05) on dual-energy x-ray absorptiometry scan than ovulatory women despite similar body mass index. The volume of intraabdominal fat on single-sliced abdominal computed tomography scan was not significantly different between the two groups (203 +/- 56 vs. 195 +/- 71 cm(3); P = 0.65), but anovulatory women had significantly more sc abdominal fat (SAF) (992 +/- 198 vs. 864 +/- 146 cm(3); P < 0.05). After multiple logistic regression analysis, only trunk fat, abdominal fat, and SAF were associated with anovulation. Abdominal fat is increased in anovulatory women due to a significant increase in SAF and not in intraabdominal fat. SAF and especially abdominal and trunk fat accumulation are associated with anovulation.
2015-01-01
The use of fast scan cyclic voltammetry (FSCV) to measure the release and uptake of dopamine (DA) as well as other biogenic molecules in viable brain tissue slices has gained popularity over the last 2 decades. Brain slices have the advantage of maintaining the functional three-dimensional architecture of the neuronal network while also allowing researchers to obtain multiple sets of measurements from a single animal. In this work, we describe a simple, easy-to-fabricate perfusion device designed to focally deliver pharmacological agents to brain slices. The device incorporates a microfluidic channel that runs under the perfusion bath and a microcapillary that supplies fluid from this channel up to the slice. We measured electrically evoked DA release in brain slices before and after the administration of two dopaminergic stimulants, cocaine and GBR-12909. Measurements were collected at two locations, one directly over and the other 500 μm away from the capillary opening. Using this approach, the controlled delivery of drugs to a confined region of the brain slice and the application of this chamber to FSCV measurements, were demonstrated. Moreover, the consumption of drugs was reduced to tens of microliters, which is thousands of times less than traditional perfusion methods. We expect that this simply fabricated device will be useful in providing spatially resolved delivery of drugs with minimum consumption for voltammetric and electrophysiological studies of a variety of biological tissues both in vitro and ex vivo. PMID:24734992
Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I
2017-08-01
A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.
NASA Astrophysics Data System (ADS)
Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah
2017-05-01
The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.
Norris, Joseph M; Kishikova, Lyudmila; Avadhanam, Venkata S; Koumellis, Panos; Francis, Ian S; Liu, Christopher S C
2015-08-01
To investigate the efficacy of 640-slice multidetector computed tomography (MDCT) for detecting osteo-odonto laminar resorption in the osteo-odonto-keratoprosthesis (OOKP) compared with the current standard 32-slice MDCT. Explanted OOKP laminae and bone-dentine fragments were scanned using 640-slice MDCT (Aquilion ONE; Toshiba) and 32-slice MDCT (LightSpeed Pro32; GE Healthcare). Pertinent comparisons including image quality, radiation dose, and scanning parameters were made. Benefits of 640-slice MDCT over 32-slice MDCT were shown. Key comparisons of 640-slice MDCT versus 32-slice MDCT included the following: percentage difference and correlation coefficient between radiological and anatomical measurements, 1.35% versus 3.67% and 0.9961 versus 0.9882, respectively; dose-length product, 63.50 versus 70.26; rotation time, 0.175 seconds versus 1.000 seconds; and detector coverage width, 16 cm versus 2 cm. Resorption of the osteo-odonto lamina after OOKP surgery can result in potentially sight-threatening complications, hence it warrants regular monitoring and timely intervention. MDCT remains the gold standard for radiological assessment of laminar resorption, which facilitates detection of subtle laminar changes earlier than the onset of clinical signs, thus indicating when preemptive measures can be taken. The 640-slice MDCT exhibits several advantages over traditional 32-slice MDCT. However, such benefits may not offset cost implications, except in rare cases, such as in young patients who might undergo years of radiation exposure.
Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc
2004-01-01
To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.
Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing
2014-09-02
The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Gold Nanoparticle Quantitation by Whole Cell Tomography.
Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N
2015-12-22
Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.
Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens
Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof
2011-01-01
Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahi-Anwar, M; Lo, P; Kim, H
Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less
Enoki, Ryosuke; Ono, Daisuke; Hasan, Mazahir T; Honma, Sato; Honma, Ken-Ichi
2012-05-30
Single-point laser scanning confocal imaging produces signals with high spatial resolution in living organisms. However, photo-induced toxicity, bleaching, and focus drift remain challenges, especially when recording over several days for monitoring circadian rhythms. Bioluminescence imaging is a tool widely used for this purpose, and does not cause photo-induced difficulties. However, bioluminescence signals are dimmer than fluorescence signals, and are potentially affected by levels of cofactors, including ATP, O(2), and the substrate, luciferin. Here we describe a novel time-lapse confocal imaging technique to monitor circadian rhythms in living tissues. The imaging system comprises a multipoint scanning Nipkow spinning disk confocal unit and a high-sensitivity EM-CCD camera mounted on an inverted microscope with auto-focusing function. Brain slices of the suprachiasmatic nucleus (SCN), the central circadian clock, were prepared from transgenic mice expressing a clock gene, Period 1 (Per1), and fluorescence reporter protein (Per1::d2EGFP). The SCN slices were cut out together with membrane, flipped over, and transferred to the collagen-coated glass dishes to obtain signals with a high signal-to-noise ratio and to minimize focus drift. The imaging technique and improved culture method enabled us to monitor the circadian rhythm of Per1::d2EGFP from optically confirmed single SCN neurons without noticeable photo-induced effects or focus drift. Using recombinant adeno-associated virus carrying a genetically encoded calcium indicator, we also monitored calcium circadian rhythms at a single-cell level in a large population of SCN neurons. Thus, the Nipkow spinning disk confocal imaging system developed here facilitates long-term visualization of circadian rhythms in living cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing.
Nicolas, Jan David; Bernhardt, Marten; Markus, Andrea; Alves, Frauke; Burghammer, Manfred; Salditt, Tim
2017-11-01
A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.
NASA Technical Reports Server (NTRS)
Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.
1981-01-01
A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Helm, P. Johannes; Reppen, Trond; Heggelund, Paul
2009-02-01
Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.
NASA Astrophysics Data System (ADS)
Han, Minah; Jang, Hanjoo; Baek, Jongduk
2018-03-01
We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranallo, F; Szczykutowicz, T
2014-06-01
Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise andmore » dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.« less
Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.
Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E
2006-11-15
Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.
Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition
NASA Astrophysics Data System (ADS)
Low, Daniel
One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun
2015-02-15
Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less
Zinge, Priyanka Ramdas; Patil, Jayaprakash
2017-01-01
The aim of this study is to evaluate and compare the effect of one shape, Neolix rotary single-file systems and WaveOne, Reciproc reciprocating single-file systems on pericervical dentin (PCD) using cone-beam computed tomography (CBCT). A total of 40 freshly extracted mandibular premolars were collected and divided into two groups, namely, Group A - Rotary: A 1 - Neolix and A 2 - OneShape and Group B - Reciprocating: B 1 - WaveOne and B 2 - Reciproc. Preoperative scans of each were taken followed by conventional access cavity preparation and working length determination with 10-k file. Instrumentation of the canal was done according to the respective file system, and postinstrumentation CBCT scans of teeth were obtained. 90 μm thick slices were obtained 4 mm apical and coronal to the cementoenamel junction. The PCD thickness was calculated as the shortest distance from the canal outline to the closest adjacent root surface, which was measured in four surfaces, i.e., facial, lingual, mesial, and distal for all the groups in the two obtained scans. There was no significant difference found between rotary single-file systems and reciprocating single-file systems in their effect on PCD, but in Group B 2 , there was most significant loss of tooth structure in the mesial, lingual, and distal surface ( P < 0.05). Reciproc single-file system removes more PCD as compared to other experimental groups, whereas Neolix single file system had the least effect on PCD.
Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices
Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter
2009-01-01
We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271
Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G
2018-01-01
As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.
[Performance evaluation of CT automatic exposure control on fast dual spiral scan].
Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi
2014-11-01
The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.
Mishra, Anuj; Ehtuish, Ehtuish F
2006-06-01
To assess the renal vessel anatomy, compare the findings with the perioperative findings, to determine the sensitivity of multislice computed tomography (CT) angiography in the work-up of live potential donors and to discuss and compare the results of the present study with the reported results using single slice CT, magnetic resonance (MRI) and conventional angiography (CA). Retrospective analysis of the angiographic data of 118 of prospective live related kidney donors was carried out from October 2004 to August 2005 at the National Organ Transplant Centre, Tripoli Central Hospital, Libya. All donors underwent renal angiography on multislice (16-slice) CT scan using 80 cc intravenous contrast with 1.25 mm slice thickness followed by maximum intensity projection (MIP) and volume rendering techniques (VRT) post-processing algorithms. The number of vessels, vessel bifurcation, vessel morphology and venous anatomy were analyzed and the findings were compared with the surgical findings. Multislice spiral CT angiography (MSCTA) showed clear delineation of the main renal arteries in all donors with detailed vessel morphology. The study revealed 100% sensitivity in detection of accessory renal vessels, with an overall incidence of 26.7%, which is the most common distribution in the parahilar region. The present study showed 100% sensitivity in the visualization and detection of main and accessory renal vessels. These results were comparable with conventional angiography which has so far been considered as the gold standard and were found superior in specificity and accuracy to the use of single slice CT (SSCT) and MR in the angiographic work-up of live renal donors. Due to improved detection of accessory vessels less than 2 mm in diameter, a higher incidence of aberrant vessels was seen on the right side as has been suggested so far.
Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H
2009-12-01
To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom acquired with the ECG-triggered high-pitch scan mode were visually free from motion artifacts at heart rates of 60 and 70 bpm. However, image quality started to deteriorate for higher heart rates. At equivalent image quality, the ECG-triggered high-pitch scan mode demonstrated lower radiation dose than other cardiac scan techniques on the same DSCT equipment (25% and 60% dose reduction compared to ECG-triggered sequential step-and-shoot and ECG-gated spiral with x-ray pulsing). A high-pitch (up to pitch = 3.2), high-temporal-resolution (up to 75 ms) dual-source CT scan mode produced equivalent image quality relative to single-source scans using a more typical pitch value (pitch = 1.0). The resultant reduction in the overall acquisition time may offer clinical advantage for cardiovascular, trauma, and pediatric CT applications. In addition, ECG-triggered high-pitch scanning may be useful as an alternative to ECG-triggered sequential scanning for patients with low to moderate heart rates up to 70 bpm, with the potential to scan the heart within one heart beat at reduced radiation dose.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; McNitt-Gray, M
2014-06-15
Purpose: To demonstrate the feasibility of using existing data stored within the DICOM header of certain CT localizer radiographs as a patient size metric for calculating CT size-specific dose estimates (SSDE). Methods: For most Siemens CT scanners, the CT localizer radiograph (topogram) contains a private DICOM field that stores an array of numbers describing AP and LAT attenuation-based measures of patient dimension. The square root of the product of the AP and LAT size data, which provides an estimate of water-equivalent-diameter (WED), was calculated retrospectively from topogram data of 20 patients who received clinically-indicated abdomen/pelvis (n=10) and chest (n=10) scansmore » (WED-topo). In addition, slice-by-slice water-equivalent-diameter (WED-image) and effective diameter (ED-image) values were calculated from the respective image data. Using TG-204 lookup tables, size-dependent conversion factors were determined based upon WED-topo, WED-image and ED-image values. These conversion factors were used with the reported CTDIvol to calculate slice-by-slice SSDE for each method. Averaging over all slices, a single SSDE value was determined for each patient and size metric. Patientspecific SSDE and CTDIvol values were then compared with patientspecific organ doses derived from detailed Monte Carlo simulations of fixed tube current scans. Results: For abdomen/pelvis scans, the average difference between liver dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 18.70%, 8.17%, 6.84%, and 7.58%, respectively. For chest scans, the average difference between lung dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 25.80%, 3.33%, 4.11%, and 7.66%, respectively. Conclusion: SSDE calculated using WED derived from data in the DICOM header of the topogram was comparable to SSDE calculated using WED and ED derived from axial images; each of these estimated organ dose to within 10% for both abdomen/pelvis and chest CT examinations. The topogrambased method has the advantage that WED data are already provided and therefore available without additional post-processing of the image data. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less
NASA Astrophysics Data System (ADS)
Lee, Haeil; Lee, Hansang; Park, Minseok; Kim, Junmo
2017-03-01
Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.
RETROSPECTIVE DETECTION OF INTERLEAVED SLICE ACQUISITION PARAMETERS FROM FMRI DATA
Parker, David; Rotival, Georges; Laine, Andrew; Razlighi, Qolamreza R.
2015-01-01
To minimize slice excitation leakage to adjacent slices, interleaved slice acquisition is nowadays performed regularly in fMRI scanners. In interleaved slice acquisition, the number of slices skipped between two consecutive slice acquisitions is often referred to as the ‘interleave parameter’; the loss of this parameter can be catastrophic for the analysis of fMRI data. In this article we present a method to retrospectively detect the interleave parameter and the axis in which it is applied. Our method relies on the smoothness of the temporal-distance correlation function, which becomes disrupted along the axis on which interleaved slice acquisition is applied. We examined this method on simulated and real data in the presence of fMRI artifacts such as physiological noise, motion, etc. We also examined the reliability of this method in detecting different types of interleave parameters and demonstrated an accuracy of about 94% in more than 1000 real fMRI scans. PMID:26161244
Magnetic Resonance Fingerprinting with short relaxation intervals.
Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter
2017-09-01
The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Smolikova, Renata; Wachowiak, Mark P.; Drangova, Maria
2004-05-01
Interventional cardiac magnetic resonance (MR) procedures are the subject of an increasing number of research studies. Typically, during the procedure only two-dimensional images of oblique slices can be presented to the interventionalist in real time. There is a clear benefit to being able to register the real-time 2D slices to a previously acquired 3D computed tomography (CT) or MR image of the heart. Results from a study of the accuracy of registration of 2D cardiac images of an anesthetized pig to a 3D volume obtained in diastole are presented. Fast cine MR images representing twenty phases of the cardiac cycle were obtained of a 2D slice in a known oblique orientation. The 2D images were initially mis-oriented at distances ranging from 2 to 20 mm, and rotations of +/-10 degrees about all three axes. Images from all 20 cardiac phases were registered to examine the effect of timing between the 2D image and the 3D pre-procedural image. Linear registration using mutual information computed with 64 histogram bins yielded the highest accuracy. For the diastolic phases, mean translation and rotation errors ranged between 0.91 and 1.32 mm and between 1.73 and 2.10 degrees. Scans acquired at other phases also had high accuracy. These results are promising for the use of real time MR in image-guided cardiac interventions, and demonstrate the feasibility of registering 2D oblique MR slices to previously acquired single-phase volumes without preprocessing.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Boudes, Elodie; Gilbert, Guillaume; Leppert, Ilana Ruth; Tan, Xianming; Pike, G. Bruce; Saint-Martin, Christine; Wintermark, Pia
2014-01-01
Background Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. Objective To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. Design/methods We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. Results A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). Conclusion This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures. PMID:25379424
Mao, Songshou; Child, Janis; Carson, Sivi; Liu, Steve C K; Oudiz, Ronald J; Budoff, Matthew J
2003-03-01
To estimate the sensitivity to find small coronary artery calcium lesions with use of different slice widths with electron beam tomography. Two studies were performed. Study 1 utilized double scanning of a stationary cork phantom with three different slice thickness (1.5, 3, and 6 mm). Fifty different calcific lesions (all <20 mm2 in area) fitted in 10 cork coronary arteries were utilized. The calcium foci area, peak value and score were measured and compared. In group 2, 30 patients underwent coronary artery calcium (CAC) screen studies. Each patient was scanned with both 3-mm and 6-mm scan widths in a same study time. Lesions with < 20 mm2 of area of CAC were measured on both 3-mm and 6-mm images. The mean and peak Hounsfield unit measure, and Agatston score were compared between both images. In the cork study, the sensitivity to detect small calcium foci were 96% (48/50), 82% (41/50), and 34% (17/50) in images with 1.5-, 3-, and 6-mm slice thickness, respectively. There is a smaller value in mass, and calcium volume in 6-mm images than 1.5-mm and 3-mm images ( P< 0.001). There was no significant difference between the true value and measured value from 1.5-mm and 3-mm images. In the human study, 18 (30%) of 60 CAC lesions with an area < 20 mm2 defined on 3 mm images were not visible on 6-mm images. Sensitivity of small lesions (P< 5 mm2) was 48% using 6-mm slices. There was a smaller value in CAC area, mean and peak Hounsfield units and score measured from 6-mm images, as compared with 3 mm slices ( P< 0.05). Thinner slice imaging has a higher sensitivity to detect small calcium focus. There was no significant change in score between 3 mm and 1.5 mm on the cork phantom study. However, the use of 6-mm slices should be discouraged, as this protocol both underestimates calcific mass and misses a significant number of calcific lesions in both a phantom and human study.
Impact of Polymer Colonization on the Fate of Organic Contaminants in Sediment.
Wu, Chen-Chou; Bao, Lian-Jun; Liu, Liang-Ying; Shi, Lei; Tao, Shu; Zeng, Eddy Y
2017-09-19
Plastic pellets and microbes are important constitutes in sediment, but the significance of microbes colonizing on plastic pellets to the environmental fate and transport of organic contaminants has not been adequately recognized and assessed. To address this issue, low-density polyethylene (LDPE), polyoxymethylene (POM) and polypropylene (PP) slices were preloaded with dichlorodiphenyltrichloroethanes (DDTs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and incubated in abiotic and biotic sediment microcosms. Images from scanning electron microscope, Lysogeny Broth agar plates and confocal laser scanning microscope indicated that all polymer slices incubated in biotic sediments were colonized by microorganisms, particularly the LDPE slices. The occurrence of biofilms induced higher dissipation rates of DDTs and PAHs from the LDPE slice surfaces incubated in the biotic sediments than in the abiotic sediments. Plastic colonization on LDPE slice surfaces enhanced the biotransformation of DDT and some PAHs in both marine and river sediments, but had little impact on PCBs. By comparison, PP and POM with unique properties were shown to exert different impacts on the physical and microbial activities as compared to LDPE. These results clearly demonstrated that the significance of polymer surface affiliated microbes to the environmental fate and behavior of organic contaminants should be recognized.
Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei
2017-12-01
Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations
NASA Astrophysics Data System (ADS)
Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli
2018-03-01
Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.
Dual energy micro CT SkyScan 1173 for the characterization of urinary stone
NASA Astrophysics Data System (ADS)
Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.
2016-03-01
Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.
Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.
Bonanno, Gabriele; Brotman, David; Stuber, Matthias
2015-03-01
Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.
An extraction algorithm of pulmonary fissures from multislice CT image
NASA Astrophysics Data System (ADS)
Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki
2005-04-01
Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.
Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang
2017-01-01
AIM To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. METHODS A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group (n = 56, 65 tumors) and 64-slice group (n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. RESULTS Guided scan times in the dual-slice group was longer than that in the 64-slice group (t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). CONCLUSION 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used. PMID:28652661
Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang
2017-06-14
To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group ( n = 56, 65 tumors) and 64-slice group ( n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. Guided scan times in the dual-slice group was longer than that in the 64-slice group ( t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ 2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.
2009-09-01
Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.
Craft, Daniel F; Howell, Rebecca M
2017-09-01
Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Cunningham, Gregory; Freebody, John; Smith, Margaret M; Taha, Mohy E; Young, Allan A; Cass, Benjamin; Giuffre, Bruno
2018-05-16
Most glenoid version measurement methods have been validated on 3-dimensionally corrected axial computed tomography (CT) slices at the mid glenoid. Variability of the vault according to slice height and angulation has not yet been studied and is crucial for proper surgical implant positioning. The aim of this study was to analyze the variation of the glenoid vault compared with the Friedman angle according to different CT slice heights and angulations. The hypothesis was that the Friedman angle would show less variability. Sixty shoulder CT scans were retrieved from a hospital imaging database and were reconstructed in the plane of the scapula. Seven axial slices of different heights and coronal angulations were selected, and measurements were carried out by 3 observers. Mid-glenoid mean version was -8.0° (±4.9°; range, -19.6° to +7.0°) and -2.1° (±4.7°; range, -13.0° to +10.3°) using the vault method and Friedman angle, respectively. For both methods, decreasing slice height or angulation did not significantly alter version. Increasing slice height or angulation significantly increased anteversion for the vault method (P < .001). Both interobserver reliability and intraobserver reliability were significantly higher using the Friedman angle. Version at the mid and lower glenoid is similar using either method. The vault method shows less reliability and more variability according to slice height or angulation. Yet, as it significantly differs from the Friedman angle, it should still be used in situations where maximum bone purchase is sought with glenoid implants. For any other situation, the Friedman angle remains the method of choice. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim
2016-08-01
The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.
Multichordal charge exchange recombination spectroscopy on Doublet III (abstract)
NASA Astrophysics Data System (ADS)
Seraydarian, R. P.; Burrell, K. H.; Kahn, C.
1985-05-01
Single shot, multipoint ion temperature and plasma rotation profiles have been routinely obtained on the Doublet III tokamak for 32 consecutive time slices with 20-ms resolution. A six-chord tangentially viewing spectroscopic diagnostic has been built to look at radiation emitted by fully stripped low-Z impurity ions (He, C, O) that have undergone charge exchange recombination with hydrogen atoms from a 3-MW heating beam. The main components of the instrument are a single monochromator for wavelength dispersion, a single image intensifier tube for photon gain, and a pair of 1024-element linear photodiode arrays for detection. A special arrangement of fiber optics allows simultaneous data acquisition from all chords without the use of scanning mirrors or other moving parts. Ion temperature profiles taken under a variety of plasma conditions will be presented.
NAGANAWA, Shinji; KANOU, Mai; OHASHI, Toshio; KUNO, Kayao; SONE, Michihiko
2016-01-01
Purpose: To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %ELvolume) from an area ratio obtained from only one slice (%EL1slice) or from three slices (%EL3slices). The %ELvolume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL1slice and the %EL3slices. Methods: In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %ELvolume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL1slice or the %EL3slices and the %ELvolume values were evaluated. Results: A strong linear correlation was observed between the %ELvolume and the %EL3slices or the %EL1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %ELvolume and the %EL3slices or the %EL1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991–0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %ELvolume, the %EL3slices and the %EL1slice. Conclusion: The %ELvolume might be easily estimated from the %EL3slices or the %EL1slice. PMID:27001396
Naganawa, Shinji; Kanou, Mai; Ohashi, Toshio; Kuno, Kayao; Sone, Michihiko
2016-10-11
To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %EL volume ) from an area ratio obtained from only one slice (%EL 1slice ) or from three slices (%EL 3slices ). The %EL volume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL 1slice and the %EL 3slices . In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %EL volume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL 1slice or the %EL 3slices and the %EL volume values were evaluated. A strong linear correlation was observed between the %EL volume and the %EL 3slices or the %EL 1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %EL volume and the %EL 3slices or the %EL 1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991-0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %EL volume , the %EL 3slices and the %EL 1slice . The %EL volume might be easily estimated from the %EL 3slices or the %EL 1slice .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnell, E; Ferreira, C; Ahmad, S
Purpose: Accuracy of a RSP-HU calibration curve produced for proton treatment planning is tested by comparing the treatment planning system dose grid to physical doses delivered on film by a Mevion S250 double-scattering proton unit. Methods: A single batch of EBT3 Gafchromic film was used for calibration and measurements. The film calibration curve was obtained using Mevion proton beam reference option 20 (15cm range, 10cm modulation). Paired films were positioned at the center of the spread out Bragg peak (SOBP) in solid water. The calibration doses were verified with an ion chamber, including background and doses from 20cGy to 350cGy.more » Films were scanned in a flatbed Epson-Expression 10000-XL scanner, and analyzed using the red channel. A Rando phantom was scanned with a GE LightSpeed CT Simulator. A single-field proton plan (Eclipse, Varian) was calculated to deliver 171cGy to the pelvis section (heterogeneous region), using a standard 4×4cm aperture without compensator, 7.89cm beam range, and 5.36cm SOBP. Varied depths of the calculated distal 90% isodose-line were recorded and compared. The dose distribution from film irradiated between Rando slices was compared with the calculated plans using RIT v.6.2. Results: Distal 90% isodose-line depth variation between CT scans was 2mm on average, and 4mm at maximum. Fine calculation of this variation was restricted by the dose calculation grid, as well as the slice thickness. Dose differences between calibrated film measurements and calculated doses were on average 5.93cGy (3.5%), with the large majority of differences forming a normal distribution around 3.5cGy (2%). Calculated doses were almost entirely greater than those measured. Conclusion: RSP to HU calibration curve is shown to produce distal depth variation within the margin of tolerance (±4.3mm) across all potential scan energies and protocols. Dose distribution calculation is accurate to 2–4% within the SOBP, including areas of high tissue heterogeneity.« less
Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea
2017-03-21
Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.
2014-01-01
Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous. PMID:24877839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yubing; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Torigian, Drew A.
Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How doesmore » one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous.« less
Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system.
Bryant, J A; Drage, N A; Richmond, S
2008-10-01
As part of an ongoing programme to improve diagnosis and treatment planning relevant to implant placement, orthodontic treatment and dentomaxillofacial surgery, a study has been made of the spatial accuracy and density response of an i-CAT, a cone beam CT (CBCT) dental imaging system supplied by Imaging Sciences International Inc. Custom-made phantoms using acrylic sheet and water were used for measurements on spatial accuracy, density response and noise. The measurements were made over a period of several months on a clinical machine rather than on a machine dedicated to research. Measurements on a precision grid showed the spatial accuracy to be universally within the tolerance of +/-1 pixel. The density response and the noise in the data were found to depend strongly on the mass in the slice being scanned. The density response was subject to two effects. The first effect changes the whole slice uniformly and linearly depends on the total mass in the slice. The second effect exists when there is mass outside the field of view, dubbed the "exo-mass" effect. This effect lowers the measured CT number rapidly at the scan edge furthest from the exo-mass and raises it on the adjacent edge. The noise also depended quasi-linearly on the mass in the slice. Some general performance rules were drafted to describe these effects and a preliminary correction algorithm was constructed.
Hexagonal undersampling for faster MRI near metallic implants.
Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A
2015-02-01
Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.
Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong
2017-02-01
In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
Giannotti, E; Waugh, S; Priba, L; Davis, Z; Crowe, E; Vinnicombe, S
2015-09-01
Apparent Diffusion Coefficient (ADC) measurements are increasingly used for assessing breast cancer response to neoadjuvant chemotherapy although little data exists on ADC measurement reproducibility. The purpose of this work was to investigate and characterise the magnitude of errors in ADC measures that may be encountered in such follow-up studies- namely scanner stability, scan-scan reproducibility, inter- and intra- observer measures and the most reproducible measurement of ADC. Institutional Review Board approval was obtained for the prospective study of healthy volunteers and written consent acquired for the retrospective study of patient images. All scanning was performed on a 3.0-T MRI scanner. Scanner stability was assessed using an ice-water phantom weekly for 12 weeks. Inter-scan repeatability was assessed across two scans of 10 healthy volunteers (26-61 years; mean: 44.7 years). Inter- and intra-reader analysis repeatability was measured in 52 carcinomas from clinical patients (29-70 years; mean: 50.0 years) by measuring the whole tumor ADC value on a single slice with maximum tumor diameter (ADCS) and the ADC value of a small region of interest (ROI) on the same slice (ADCmin). Repeatability was assessed using intraclass correlation coefficients (ICC) and coefficients of repeatability (CoR). Scanner stability contributed 6% error to phantom ADC measurements (0.071×10(-3)mm(2)/s; mean ADC=1.089×10(-3)mm(2)/s). The measured scan-scan CoR in the volunteers was 0.122×10(-3)mm(2)/s, contributing an error of 8% to the mean measured values (ADCscan1=1.529×10(-3)mm(2)/s; ADCscan2=1.507×10(-3)mm(2)/s). Technical and clinical observers demonstrated excellent intra-observer repeatability (ICC>0.9). Clinical observer CoR values were marginally better than technical observer measures (ADCS=0.035×10(-3)mm(2)/s vs. 0.097×10(-3)mm(2)/s; ADCmin=0.09×10(-3)mm(2)/s vs. 0.114×10(-3)mm(2)/s). Inter-reader ICC values were good 0.864 (ADCS) and fair 0.677 (ADCmin). Corresponding CoR values were 0.202×10(-3)mm(2)/s and 0.264×10(-3)mm(2)/s, respectively. Both scanner stability and scan-scan variation have minimal influence on breast ADC measurements, contributing less than 10% error of average measured ADC values. Measurement of ADC values from a small ROI contributes a greater variability in measurements compared with measurement of ADC across the whole visible tumor on one slice. The greatest source of error in follow-up studies is likely to be associated with measures made by multiple observers, and this should be considered where multiple measures are required to assess response to treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B; Tan, Y; Tsai, W
2014-06-15
Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong
2018-01-01
Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Nandigam, R N Kaveer; Chen, Yu-Wei; Gurol, Mahmut E; Rosand, Jonathan; Greenberg, Steven M; Smith, Eric E
2007-01-01
We sought to determine whether mid-sagittal intracranial area (ICA) is a valid surrogate of intracranial volume (ICV) when using retrospective data with relatively thick (6-7 mm) sagittal slices. Data were retrospectively analyzed from 47 subjects who had two MRI scans taken at least nine months apart. Twenty-three subjects had manual segmentation of ICV on the T2-weighted sequence for comparison. Intraclass correlation coefficient (ICC) for intraobserver, interobserver, and intraobserver scan-rescan comparisons were 0.96, 0.97 and 0.95. Pearson correlation coefficients between ICV and ICA, averaging the cumulative 1, 2, 3, and 4 most midline slices, were 0.89, 0.94, 0.93, and 0.95. There was a significant marginal increase in explained variance of ICV by measuring two, rather than one, slices (P= 0.001). These data suggest that ICA, even measured without high-resolution imaging, is a reasonable substitute for ICV.
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.
Portable Device Slices Thermoplastic Prepregs
NASA Technical Reports Server (NTRS)
Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.
1993-01-01
Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.
Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing
NASA Astrophysics Data System (ADS)
Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi
2018-05-01
SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.
Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization. PMID:24621588
Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.
Super-resolved Parallel MRI by Spatiotemporal Encoding
Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio
2016-01-01
Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293
Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K
2016-11-01
In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.
Interpolation of 3D slice volume data for 3D printing
NASA Astrophysics Data System (ADS)
Littley, Samuel; Voiculescu, Irina
2017-03-01
Medical imaging from CT and MRI scans has become essential to clinicians for diagnosis, treatment planning and even prevention of a wide array of conditions. The presentation of image data volumes as 2D slice series provides some challenges with visualising internal structures. 3D reconstructions of organs and other tissue samples from data with low scan resolution leads to a `stepped' appearance. This paper demonstrates how to improve 3D visualisation of features and automated preparation for 3D printing from such low resolution data, using novel techniques for morphing from one slice to the next. The boundary of the starting contour is grown until it matches the boundary of the ending contour by adapting a variant of the Fast Marching Method (FMM). Our spoke based approach generates scalar speed field for FMM by estimating distances to boundaries with line segments connecting the two boundaries. These can be regularly spaced radial spokes or spokes at radial extrema. We introduce clamped FMM by running the algorithm outwards from the smaller boundary and inwards from the larger boundary and combining the two runs to achieve FMM growth stability near the two region boundaries. Our method inserts a series of uniformly distributed intermediate contours between each pair of consecutive slices from the scan volume thus creating smoother feature boundaries. Whilst hard to quantify, our overall results give clinicians an evidently improved tangible and tactile representation of the tissues, that they can examine more easily and even handle.
Chu, Alan; Noll, Douglas C
2016-10-01
Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks
NASA Astrophysics Data System (ADS)
Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.
2017-03-01
Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.
2013-01-01
Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration. PMID:23581570
Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C
2017-03-01
The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca
2014-06-01
A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. A 2D Euclidean distance-based metric of subjects' motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas
2014-06-15
Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo undermore » weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
So, Aaron, E-mail: aso@robarts.ca
Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisitionmore » protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Results: Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. Conclusions: The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.« less
Approaches to 3D printing teeth from X-ray microtomography.
Cresswell-Boyes, A J; Barber, A H; Mills, D; Tatla, A; Davis, G R
2018-06-28
Artificial teeth have several advantages in preclinical training. The aim of this study is to three-dimensionally (3D) print accurate artificial teeth using scans from X-ray microtomography (XMT). Extracted and artificial teeth were imaged at 90 kV and 40 kV, respectively, to create detailed high contrast scans. The dataset was visualised to produce internal and external meshes subsequently exported to 3D modelling software for modification before finally sending to a slicing program for printing. After appropriate parameter setting, the printer deposited material in specific locations layer by layer, to create a 3D physical model. Scans were manipulated to ensure a clean model was imported into the slicing software, where layer height replicated the high spatial resolution that was observed in the XMT scans. The model was then printed in two different materials (polylactic acid and thermoplastic elastomer). A multimaterial print was created to show the different physical characteristics between enamel and dentine. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction.
den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens
2015-01-01
Multispectral imaging (MSI) significantly reduces metal artifacts. Yet, especially in techniques that use gradient selection, such as slice encoding for metal artifact correction (SEMAC), a residual ripple artifact may be prominent. Here, an analysis is presented of the ripple artifact and of slice overlap as an approach to reduce the artifact. The ripple artifact was analyzed theoretically to clarify its cause. Slice overlap, conceptually similar to spectral bin overlap in multi-acquisition with variable resonances image combination (MAVRIC), was achieved by reducing the selection gradient and, thus, increasing the slice profile width. Time domain simulations and phantom experiments were performed to validate the analyses and proposed solution. Discontinuities between slices are aggravated by signal displacement in the frequency encoding direction in areas with deviating B0. Specifically, it was demonstrated that ripple artifacts appear only where B0 varies both in-plane and through-plane. Simulations and phantom studies of metal implants confirmed the efficacy of slice overlap to reduce the artifact. The ripple artifact is an important limitation of gradient selection based MSI techniques, and can be understood using the presented simulations. At a scan-time penalty, slice overlap effectively addressed the artifact, thereby improving image quality near metal implants. © 2014 Wiley Periodicals, Inc.
Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)
2006-09-01
experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly
Multiphase contrast medium injection for optimization of computed tomographic coronary angiography.
Budoff, Matthew Jay; Shinbane, Jerold S; Child, Janis; Carson, Sivi; Chau, Alex; Liu, Stephen H; Mao, SongShou
2006-02-01
Electron beam angiography is a minimally invasive imaging technique. Adequate vascular opacification throughout the study remains a critical issue for image quality. We hypothesized that vascular image opacification and uniformity of vascular enhancement between slices can be improved using multiphase contrast medium injection protocols. We enrolled 244 consecutive patients who were randomized to three different injection protocols: single-phase contrast medium injection (Group 1), dual-phase contrast medium injection with each phase at a different injection rate (Group 2), and a three-phase injection with two phases of contrast medium injection followed by a saline injection phase (Group 3). Parameters measured were aortic opacification based on Hounsfield units and uniformity of aortic enhancement at predetermined slices (locations from top [level 1] to base [level 60]). In Group 1, contrast opacification differed across seven predetermined locations (scan levels: 1st versus 60th, P < .05), demonstrating significant nonuniformity. In Group 2, there was more uniform vascular enhancement, with no significant differences between the first 50 slices (P > .05). In Group 3, there was greater uniformity of vascular enhancement and higher mean Hounsfield units value across all 60 images, from the aortic root to the base of the heart (P < .05). The three-phase injection protocol improved vascular opacification at the base of the heart, as well as uniformity of arterial enhancement throughout the study.
Two-photon imaging in living brain slices.
Mainen, Z F; Maletic-Savatic, M; Shi, S H; Hayashi, Y; Malinow, R; Svoboda, K
1999-06-01
Two-photon excitation laser scanning microscopy (TPLSM) has become the tool of choice for high-resolution fluorescence imaging in intact neural tissues. Compared with other optical techniques, TPLSM allows high-resolution imaging and efficient detection of fluorescence signal with minimal photobleaching and phototoxicity. The advantages of TPLSM are especially pronounced in highly scattering environments such as the brain slice. Here we describe our approaches to imaging various aspects of synaptic function in living brain slices. To combine several imaging modes together with patch-clamp electrophysiological recordings we found it advantageous to custom-build an upright microscope. Our design goals were primarily experimental convenience and efficient collection of fluorescence. We describe our TPLSM imaging system and its performance in detail. We present dynamic measurements of neuronal morphology of neurons expressing green fluorescent protein (GFP) and GFP fusion proteins as well as functional imaging of calcium dynamics in individual dendritic spines. Although our microscope is a custom instrument, its key advantages can be easily implemented as a modification of commercial laser scanning microscopes. Copyright 1999 Academic Press.
Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters
NASA Astrophysics Data System (ADS)
Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada
2011-01-01
We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.
Alleviating artifacts in 1H MRI thermometry by single scan spatiotemporal encoding.
Schmidt, Rita; Frydman, Lucio
2013-10-01
Recent years have seen an increased interest in combining MRI thermometry with devices capable of destroying malignancies by heat ablation. Expected from the MR protocols are accurate and fast thermal characterizations, providing real time feedback on restricted tissue volumes and/or rapidly moving organs like liver. This article explores the potential advantages of relying on spatiotemporally encoded (SPEN) sequences for retrieving real-time thermometric images based on the water's proton resonance frequency (PRF) shifts. Hybrid spatiotemporal/k-space encoding single-scan MRI experiments were implemented on animal and human scanners, and their abilities to deliver single- and multi-slice real-time thermometric measurements based on PRF-derived phase maps in phantoms and in vivo, were compared against echo planar imaging (EPI) and gradient-echo counterparts. Under comparable acquisition conditions, SPEN exhibited advantages vis-à-vis EPI in terms of dealing with inhomogeneous magnetic field distortions, with shifts arising due to changes in the central frequency offsets, with PRF distributions, and for zooming into restricted fields-of-view without special pulse sequence provisions. This work confirms the ability of SPEN sequences, particularly when implemented under fully-refocused conditions, to exploit their built-in robustness to shift- and field-derived inhomogeneities for monitoring thermal changes in real-time under in vitro and in vivo conditions.
Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor.
Li, Bei; Wang, Yao
2014-12-01
The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed statistical differences. However, no palatal alveolar bone widths showed any statistical differences. The width reduction of alveolar bone was 1.2, 1.6, and 2.7 mm at the deep, middle, and shallow layers, respectively. The height reduction of alveolar bone on labial and palatal sides of T both showed statistical differences, which was 1.9 and 1.1 mm, respectively.
The Characteristics of LTP Induced in Hippocampal Slices Are Dependent on Slice-Recovery Conditions
ERIC Educational Resources Information Center
Godaux, Emile; Ris, Laurence; Capron, Brigitte; Sindic, Christian
2006-01-01
In area CA1 of hippocampal slices which are allowed to recover from slicing "in interface" and where recordings are carried out in interface, a single 1-sec train of 100-Hz stimulation triggers a short-lasting long-term potentiation (S-LTP), which lasts 1-2 h, whereas multiple 1-sec trains induce a long-lasting LTP (L-LTP), which lasts several…
Kwee, Thomas C; Takahara, Taro; Koh, Dow-Mu; Nievelstein, Rutger A J; Luijten, Peter R
2008-11-01
To compare and determine the reproducibility of apparent diffusion coefficient (ADC) measurements of the normal liver parenchyma in breathhold, respiratory triggered, and free-breathing diffusion-weighted magnetic resonance imaging (DWI). Eleven healthy volunteers underwent three series of DWI. Each DWI series consisted of one breathhold, one respiratory triggered, and two free-breathing (thick and thin slice acquisition) scans of the liver, at b-values of 0 and 500 s/mm2. ADCs of the liver parenchyma were compared by using nonparametric tests. Reproducibility was assessed by the Bland-Altman method. Mean ADCs (in 10(-3) mm2/sec) in respiratory triggered DWI (2.07-2.27) were significantly higher than mean ADCs in breathhold DWI (1.57-1.62), thick slice free-breathing DWI (1.62-1.65), and thin slice free-breathing DWI (1.57-1.66) (P<0.005). Ranges of mean difference in ADC measurement+/-limits of agreement between two scans were -0.02-0.05+/-0.16-0.24 in breathhold DWI, -0.14-0.20+/-0.59-0.60 in respiratory triggered DWI, -0.03-0.03+/-0.20-0.29 in thick slice free-breathing DWI, and -0.01-0.09+/-0.21-0.29 in thin slice free-breathing DWI. ADC measurements of the normal liver parenchyma in respiratory triggered DWI are significantly higher and less reproducible than in breathhold and free-breathing DWI. Copyright (c) 2008 Wiley-Liss, Inc.
Four-dimensional MRI using an internal respiratory surrogate derived by dimensionality reduction
NASA Astrophysics Data System (ADS)
Uh, Jinsoo; Ayaz Khan, M.; Hua, Chiaho
2016-11-01
This study aimed to develop a practical and accurate 4-dimensional (4D) magnetic resonance imaging (MRI) method using a non-navigator, image-based internal respiratory surrogate derived by dimensionality reduction (DR). The use of DR has been previously suggested but not implemented for reconstructing 4D MRI, despite its practical advantages. We compared multiple image-acquisition schemes and refined a retrospective-sorting process to optimally implement a DR-derived surrogate. The comparison included an unconventional scheme that acquires paired slices alternately to mitigate the internal surrogate’s dependency on a specific slice location. We introduced ‘target-oriented sorting’, as opposed to conventional binning, to quantify the coherence in retrospectively sorted images, thereby determining the minimal scan time needed for sufficient coherence. This study focused on evaluating the proposed method using digital phantoms which provided unequivocal gold standard. The evaluation indicated that the DR-based respiratory surrogate is highly accurate: the error in amplitude percentile of the surrogate signal was less than 5% with the optimal scheme. Acquiring alternating paired slices was superior to the conventional scheme of acquiring individual slices; the advantage of the unconventional scheme was more pronounced when a substantial phase shift occurred across slice locations. The analysis of coherence across sorted images confirmed the advantage of higher sampling efficiencies in non-navigator respiratory surrogates. We determined that a scan time of 20 s per imaging slice was sufficient to achieve a mean coherence error of less than 1% for the tested respiratory patterns. The clinical applicability of the proposed 4D MRI has been demonstrated with volunteers and patients. The diaphragm motion in 4D MRI was consistent with that in dynamic 2D imaging which was regarded as the gold standard (difference within 1.8 mm on average).
Evaluation of a pulmonary strain model by registration of dynamic CT scans
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Liang, Zhengrong; Brehm, Anthony
2017-03-01
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that develops in adults without any known cause. It is an interstitial lung disease in which the lung tissue becomes scarred and stiffens, ultimately leading to respiratory failure. This disease currently has no cure with limited treatment options, leading to an average survival time of 3-5 years after diagnosis. In this paper we employ a mathematical model simulating the lung parenchyma as hexagons with elastic forces applied to connecting vertices and opposing vertices. Using an image registration algorithm, we obtain trajectories of 4D-CT scans of a healthy patient, and one suffering from IPF. Converting the image trajectories into a hexagonal lattice, we fit the model parameters to match the respiratory motion seen for both patients across multiple image slices. We found the model could decently describe the healthy lung slices, with a minimum average error between corresponding vertices to be 1.66 mm. For the fibrotic lung slices the model was less accurate, maintaining a higher average error across all slices. Using the optimized parameters, we apply the forces predicted from the model using the image trajectory positions for each phase. Although the error is large, the spring constant values determined for the fibrotic patient were not as high as we expected, and more often than not determined to be lower than corresponding healthy lung slices. However, the net force distribution for some of those slices was still found to be greater than the healthy lung counterparts. Other modifications to the model, including additional directional components and which vertices were receiving with the limited sample size available, a clear distinction between the healthy and fibrotic lung cannot yet be made by this model.
Nixdorff, Uwe; Feddersen, Isa; Voigt, Jens-Uwe; Flachskampf, Frank A
2005-01-01
Three-dimensional echocardiography (3DE) improves the accuracy of left ventricle (LV) volumetry compared with the two-dimensional echocardiography (2DE) approach because geometric assumptions in the algorithms may be eliminated. The relationship between accuracy of mode (short- versus long-axis planimetry) and the number of component images versus time required for analysis remains to be determined. Sixteen latex models simulating heterogeneously distorted (aneurysmatic) human LVs (56-303 ml; mean 182+/-82 ml) were scanned from an 'apical' position (simultaneous 2DE and 3DE). For 3DE volumetry, the slice thickness was varied for the short (C-scan) and long axes (B-scan) in 5-mm steps between 1 and 25 mm. The mean differences (true-echocardiographic volumes) were 16.5+/-44.3 ml in the 2DE approach (95% confidence intervals -27.8 to +60.8) and 0.6+/-4.0 ml (short axis; 95% confidence intervals -3.4 to +4.6) as well as 2.1+/-9.9 ml (long axis; 95% confidence intervals -7.8 to +12.0) in the 3DE approach (in both cases, the slice thickness was 1 mm). Above a slice thickness of 15 mm, the 95% confidence intervals increased steeply; in the short versus long axes, these were -6.5 to +8.5 versus -7.0 to +10.6 at 15 mm and -10.1 to +15.7 versus -11.3 to +10.9 at 20 mm. The intra-observer variance differed significantly (p<0.001) only above 15 mm (short axis). Time required for analysis derived by measuring short-axis slice thicknesses of 1, 15, and 25 mm was 58+/-16, 7+/-2 and 3+/-1 min, respectively. The most rational component image analysis for 3DE volumetry in the in vitro model uses short-axis slices with a thickness of 15 mm. Copyright (c) 2005 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin
2011-10-01
Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.
Accelerated Slice Encoding for Metal Artifact Correction
Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts
2010-01-01
Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445
Accelerated slice encoding for metal artifact correction.
Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts
2010-04-01
To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.
Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.
Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A
2014-01-01
Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple hippocampal tissue samples in order to construct a histologically informed MRI atlas of the hippocampal formation. © 2013 Elsevier Inc. All rights reserved.
Fabricating a Microcomputer on a Single Silicon Wafer
NASA Technical Reports Server (NTRS)
Evanchuk, V. L.
1983-01-01
Concept for "microcomputer on a slice" reduces microcomputer costs by eliminating scribing, wiring, and packaging of individual circuit chips. Low-cost microcomputer on silicon slice contains redundant components. All components-central processing unit, input/output circuitry, read-only memory, and random-access memory (CPU, I/O, ROM, and RAM) on placed on single silicon wafer.
Image reconstruction of x-ray tomography by using image J platform
NASA Astrophysics Data System (ADS)
Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.
2017-01-01
A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.
Edelman, Robert R; Giri, S; Pursnani, A; Botelho, M P F; Li, W; Koktzoglou, I
2015-11-23
Coronary magnetic resonance angiography (MRA) is usually obtained with a free-breathing navigator-gated 3D acquisition. Our aim was to develop an alternative breath-hold approach that would allow the coronary arteries to be evaluated in a much shorter time and without risk of degradation by respiratory motion artifacts. For this purpose, we implemented a breath-hold, non-contrast-enhanced, quiescent-interval slice-selective (QISS) 2D technique. Sequence performance was compared at 1.5 and 3 Tesla using both radial and Cartesian k-space trajectories. The left coronary circulation was imaged in six healthy subjects and two patients with coronary artery disease. Breath-hold QISS was compared with T2-prepared 2D balanced steady-state free-precession (bSSFP) and free-breathing, navigator-gated 3D bSSFP. Approximately 10 2.1-mm thick slices were acquired in a single ~20-s breath-hold using two-shot QISS. QISS contrast-to-noise ratio (CNR) was 1.5-fold higher at 3 Tesla than at 1.5 Tesla. Cartesian QISS provided the best coronary-to-myocardium CNR, whereas radial QISS provided the sharpest coronary images. QISS image quality exceeded that of free-breathing 3D coronary MRA with few artifacts at either field strength. Compared with T2-prepared 2D bSSFP, multi-slice capability was not restricted by the specific absorption rate at 3 Tesla and pericardial fluid signal was better suppressed. In addition to depicting the coronary arteries, QISS could image intra-cardiac structures, pericardium, and the aortic root in arbitrary slice orientations. Breath-hold QISS is a simple, versatile, and time-efficient method for coronary MRA that provides excellent image quality at both 1.5 and 3 Tesla. Image quality exceeded that of free-breathing, navigator-gated 3D MRA in a much shorter scan time. QISS also allowed rapid multi-slice bright-blood, diastolic phase imaging of the heart, which may have complementary value to multi-phase cine imaging. We conclude that, with further clinical validation, QISS might provide an efficient alternative to commonly used free-breathing coronary MRA techniques.
NASA Astrophysics Data System (ADS)
Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent
2016-03-01
Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.
NASA Astrophysics Data System (ADS)
Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake
2007-08-01
This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K
2015-12-01
To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.
NASA Astrophysics Data System (ADS)
Hadas, E.; Jozkow, G.; Walicka, A.; Borkowski, A.
2018-05-01
The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
Moulin, Kevin; Croisille, Pierre; Feiweier, Thorsten; Delattre, Benedicte M A; Wei, Hongjiang; Robert, Benjamin; Beuf, Olivier; Viallon, Magalie
2016-07-01
In this study, we proposed an efficient free-breathing strategy for rapid and improved cardiac diffusion-weighted imaging (DWI) acquisition using a single-shot spin-echo echo planar imaging (SE-EPI) sequence. A real-time slice-following technique during free-breathing was combined with a sliding acquisition-window strategy prior Principal Component Analysis temporal Maximum Intensity Projection (PCAtMIP) postprocessing of in-plane co-registered diffusion-weighted images. This methodology was applied to 10 volunteers to quantify the performance of the motion correction technique and the reproducibility of diffusion parameters. The slice-following technique offers a powerful head-foot respiratory motion management solution for SE-EPI cDWI with the advantage of a 100% duty cycle scanning efficiency. The level of co-registration was further improved using nonrigid motion corrections and was evaluated with a co-registration index. Vascular fraction f and the diffusion coefficients D and D* were determined to be 0.122 ± 0.013, 1.41 ± 0.09 × 10(-3) mm(2) /s and 43.6 ± 9.2 × 10(-3) mm(2) /s, respectively. From the multidirectional dataset, the measured mean diffusivity was 1.72 ± 0.09 × 10(-3) mm(2) /s and the fractional anisotropy was 0.36 ± 0.02. The slice-following DWI SE-EPI sequence is a promising solution for clinical implementation, offering a robust improved workflow for further evaluation of DWI in cardiology. Magn Reson Med 76:70-82, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.
White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A
2013-06-01
The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20 ± 0.17, close to the expected value of 1.11. The thorax-to-abdomen breathing ratio was 0.32 ± 0.24. The average Ση(i) was 0.26 ± 0.14 in the thorax and 0.93 ± 0.22 in the abdomen. In the scan datasets that encompassed only the thorax, the average Ση(i) was 0.21 ± 0.11. A method to quantify the relationship between abdomen and thoracic breathing was developed and characterized.
Off-resonance suppression for multispectral MR imaging near metallic implants.
den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens
2015-01-01
Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Flohr, T; Stierstorfer, K; Raupach, R; Ulzheimer, S; Bruder, H
2004-12-01
The meanwhile established generation of 16-slice CT systems enables routine sub-millimeter imaging at short breath-hold times. Clinical progress in the development of multidetector row CT (MDCT) technology beyond 16 slices can more likely be expected from further improvement in spatial and temporal resolution rather than from a mere increase in the speed of volume coverage. We present an evaluation of a recently introduced 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany), which uses a periodic motion of the focal spot in longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. This technique acquires 64 overlapping 0.6 mm slices per rotation. The sampling scheme corresponds to that of a 64 x 0.3 mm detector, with the goal of improved longitudinal resolution and reduced spiral artifacts. After an introduction to the detector design, we discuss the basics of z-flying focal spot technology (z-Sharp). We present phantom and specimen scans for performance evaluation. The measured full width at half maximum (FWHM) of the thinnest spiral slice is 0.65 mm. All spiral slice widths are almost independent of the pitch, with deviations of less than 0.1 mm from the nominal value. Using a high-resolution bar pattern phantom (CATPHAN, Phantom Laboratories, Salem, NY), the longitudinal resolution can be demonstrated to be up to 15 lp/cm at the isocenter independent of the pitch, corresponding to a bar diameter of 0.33 mm. Longitudinal resolution is only slightly degraded for off-center locations. At a distance of 100 mm from the isocenter, 14 lp/cm can be resolved in the z-direction, corresponding to a bar diameter of 0.36 mm. Spiral "windmill" artifacts presenting as hyper- and hypodense structures around osseous edges are effectively reduced by the z-flying focal spot technique. Cardiac scanning benefits from the short gantry rotation time of 0.33 s, providing up to 83 ms temporal resolution with 2-segment ECG-gated reconstruction.
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2017-03-01
For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.
NASA Astrophysics Data System (ADS)
Park, Subok; Zhang, George Z.; Zeng, Rongping; Myers, Kyle J.
2014-03-01
A task-based assessment of image quality1 for digital breast tomosynthesis (DBT) can be done in either the projected or reconstructed data space. As the choice of observer models and feature selection methods can vary depending on the type of task and data statistics, we previously investigated the performance of two channelized- Hotelling observer models in conjunction with 2D Laguerre-Gauss (LG) and two implementations of partial least squares (PLS) channels along with that of the Hotelling observer in binary detection tasks involving DBT projections.2, 3 The difference in these observers lies in how the spatial correlation in DBT angular projections is incorporated in the observer's strategy to perform the given task. In the current work, we extend our method to the reconstructed data space of DBT. We investigate how various model observers including the aforementioned compare for performing the binary detection of a spherical signal embedded in structured breast phantoms with the use of DBT slices reconstructed via filtered back projection. We explore how well the model observers incorporate the spatial correlation between different numbers of reconstructed DBT slices while varying the number of projections. For this, relatively small and large scan angles (24° and 96°) are used for comparison. Our results indicate that 1) given a particular scan angle, the number of projections needed to achieve the best performance for each observer is similar across all observer/channel combinations, i.e., Np = 25 for scan angle 96° and Np = 13 for scan angle 24°, and 2) given these sufficient numbers of projections, the number of slices for each observer to achieve the best performance differs depending on the channel/observer types, which is more pronounced in the narrow scan angle case.
Free-breathing cardiac MR stress perfusion with real-time slice tracking.
Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza
2014-09-01
To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.
A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.
Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim
2009-04-07
Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.
Digital adaptive optics line-scanning confocal imaging system.
Liu, Changgeng; Kim, Myung K
2015-01-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A.; Newell, John D.; Porteous, Mary; Diamond, Joshua M.
2017-01-01
Purpose Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Methods Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. Results The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. Conclusions This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume. PMID:28046024
Tong, Yubing; Udupa, Jayaram K; Torigian, Drew A; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A; Newell, John D; Porteous, Mary; Diamond, Joshua M; Christie, Jason D; Lederer, David J
2017-01-01
Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume.
A simple method for multiday imaging of slice cultures.
Seidl, Armin H; Rubel, Edwin W
2010-01-01
The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong
2017-12-01
Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.
Zhao, Ming-liang; Liu, Guo-long; Sui, Jian-feng; Ruan, Huai-zhen; Xiong, Ying
2007-05-01
To develop simple but reliable intracellular labelling method for high-resolution visualization of the fine structure of single neurons in brain slice with thickness of 500 microm. Biocytin was introduced into neurons in 500 microm-thickness brain slices while blind whole cell recording. Following processed for histochemistry using the avidin-biotin-complex method, stained slices were mounted in glycerol on special glass slides. Labelled cells were digital photomicrographed every 30 microm and reconstructed with Adobe Photoshop software. After histochemistry, limited background staining was produced. The resolution was so high that fine structure, including branching, termination of individual axons and even spines of neurons could be identified in exquisite detail with optic microscope. With the help of software, the neurons of interest could be reconstructed from a stack of photomicrographs. The modified method provides an easy and reliable approach to revealing the detailed morphological properties of single neurons in 500 microm-thickness brain slice. Without requisition of special equipment, it is suited to be broadly applied.
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy
NASA Astrophysics Data System (ADS)
Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver
2013-03-01
Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence distributions like those in intensity-modulated treatment plans or plans including dose painting. Since no water phantom is needed to perform measurements, the flat-panel detector investigated has high potential for use with gantries. Before the method can be used in the clinical routine, it has to be sufficiently tested for each detector-facility combination.
van Vugt, Jeroen L A; Levolger, Stef; Gharbharan, Arvind; Koek, Marcel; Niessen, Wiro J; Burger, Jacobus W A; Willemsen, Sten P; de Bruin, Ron W F; IJzermans, Jan N M
2017-04-01
The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single-slice computed tomography (CT)-based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter-observer, intra-observer, and inter-software correlation are unknown. Therefore, a comparative study was performed. Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross-sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter-software, intra-observer, and inter-observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra-class correlation coefficients (ICCs) and Bland-Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Bland-Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979-1.000, P < 0.001). All programmes adequately distinguished between the presence or absence of sarcopenia (κ = 0.88-0.96 for one observer and all κ = 1.00 for all comparisons of the other observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra-observer (ICC 0.999-1.000, P < 0.001) and inter-observer (ICC 0.998-0.999, P < 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter-observer and intra-observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
The rate of chemical weathering of pyrite on the surface of Venus
NASA Technical Reports Server (NTRS)
Fegley, B., Jr.; Lodders, K.
1993-01-01
This abstract reports results of an experimental study of the chemical weathering of pyrite (FeS2) under Venus-like conditions. This work, which extends the earlier study by Fegley and Treiman, is part of a long range research program to experimentally measure the rates of thermochemical gas-solid reactions important in the atmospheric-lithospheric sulfur cycle on Venus. The objectives of this research are (1) to measure the kinetics of thermochemical gas-solid reactions responsible for both the production (e.g., anhydrite formation) and destruction (e.g., pyrrhotite oxidation) of sulfur-bearing minerals on the surface of Venus and (2) to incorporate these and other constraints into holistic models of the chemical interactions between the atmosphere and surface of Venus. Experiments were done with single crystal cubes of natural pyrite (Navajun, Logrono, Spain) that were cut and polished into slices of known weight and surface area. The slices were isothermally heated at atmospheric pressure in 99.99 percent CO2 (Coleman Instrument Grade) at either 412 C (685 K) or 465 C (738 K) for time periods up to 10 days. These two isotherms correspond to temperatures at about 6 km and 0 km altitude, respectively, on Venus. The reaction rate was determined by measuring the weight loss of the reacted slices after removal from the furnace. The reaction products were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy on the SEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu
2014-11-01
Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less
Complementary equipment for controlling multiple laser beams on single scanner MPLSM systems
NASA Astrophysics Data System (ADS)
Helm, P. Johannes; Nase, Gabriele; Heggelund, Paul; Reppen, Trond
2010-02-01
Multi-Photon-Laser-Scanning-Microscopy (MPLSM) now stands as one of the most powerful experimental tools in biology. Specifically, MPLSM based in-vivo studies of structures and processes in the brains of small rodents and imaging in brain-slices have led to considerable progress in the field of neuroscience. Equipment allowing for independent control of two laser-beams, one for imaging and one for photochemical manipulation, strongly enhances any MPLSM platform. Some industrial MPLSM producers have introduced double scanner options in MPLSM systems. Here, we describe the upgrade of a single scanner MPLSM system with equipment that is suitable for independently controlling the beams of two Titanium Sapphire lasers. The upgrade is compatible with any actual MPLSM system and can be combined with any commercial or self assembled system. Making use of the pixel-clock, frame-active and line-active signals provided by the scanner-electronics of the MPLSM, the user can, by means of an external unit, select individual pixels or rectangular ROIs within the field of view of an overview-scan to be exposed, or not exposed, to the beam(s) of one or two lasers during subsequent scans. The switching processes of the laser-beams during the subsequent scans are performed by means of Electro-Optical-Modulators (EOMs). While this system does not provide the flexibility of two-scanner modules, it strongly enhances the experimental possibilities of one-scanner systems provided a second laser and two independent EOMs are available. Even multi-scanner-systems can profit from this development, which can be used to independently control any number of laser beams.
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Arias-Ramos, Nuria; Ferrer-Font, Laura; Lope-Piedrafita, Silvia; Mocioiu, Victor; Julià-Sapé, Margarida; Pumarola, Martí; Arús, Carles; Candiota, Ana Paula
2017-01-01
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected. PMID:28524099
Accelerated self-gated UTE MRI of the murine heart
NASA Astrophysics Data System (ADS)
Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.
2014-03-01
We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.
Liver metastases: imaging considerations for protocol development with Multislice CT (MSCT)
Silverman, Paul M
2006-01-01
Conventional, single-slice helical computed tomography (SSCT) allowed for scanning the majority of the liver during the critical portal venous phase. This was often referred to as the ‘optimal temporal window’. The introduction of current day multislice CT (MSCT) now allows us to acquire images in a much shorter time and more precisely than ever before. This yields increased conspicuity between low attenuation lesions and the enhanced normal liver parenchyma and optimal imaging for the vast majority of hepatic hypovascular metastases. Most importantly, these scanners, when compared to conventional non-helical scanners, avoid impinging upon the ‘equilibrium’ phase when tumors can become isodense/invisible. MSCT also allows for true multiphase scanning during the arterial and late arterial phases for detection of hypervascular metastases. The MSCT imaging speed has increased significantly over the past years with the introduction of 32- and 64-detector systems and will continue to increase in the future volumetric CT. This provides a number of important gains that are discussed in detail. PMID:17098650
Experimental investigation on selective laser melting of 17-4PH stainless steel
NASA Astrophysics Data System (ADS)
Hu, Zhiheng; Zhu, Haihong; Zhang, Hu; Zeng, Xiaoyan
2017-01-01
Selective laser melting (SLM) is an additive manufacturing (AM) technique that uses powders to fabricate 3Dparts directly. The objective of this paper is to perform an experimental investigation of selective laser melted 17-4PH stainless steel. The investigation involved the influence of separate processing parameters on the density, defect, microhardness and the influence of heat-treatment on the mechanical properties. The outcomes of this study show that scan velocity and slice thickness have significant effects on the density and the characteristics of pores of the SLMed parts. The effect of hatch spacing depends on scan velocity. The processing parameters, such as scan velocity, hatch spacing and slice thickness, have effect on microhardness. Compared to the samples with no heat-treatment, the yield strength of the heat-treated sample increases significantly and the elongation decreases due to the transformation of microstructure and the changes in the precipitation strengthening phases. By a combination of changes in composition and precipitation strengthening, microhardness improved.
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.
2015-01-01
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048
2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.
Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter
2014-01-01
3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.
Haberland, Ulrike; Klotz, Ernst; Abolmaali, Nasreddin
2010-07-01
Perfusion computed tomography is increasingly being used in diagnostic radiology. Axial coverage of the traditional approach is limited to the width of the detector. Using continuous periodic table movement coverage can be increased beyond this limit. In this study, we compared tissue flow values determined from scans with a periodic spiral implementation with variable pitch with ones determined from standard dynamic scan modes. A flow phantom (preserved porcine kidney) was scanned with 2 settings of a periodic spiral (Adaptive 4D Spiral) with a range of 100 and 148 mm and a temporal sampling of 1.5 seconds. Additionally, the whole phantom was scanned with the standard dynamic mode (detector width 38.4 mm, temporal sampling 1.0 seconds) at various overlapping positions as a reference. Scan parameters (80 kV, 140 mAs, 40s scan time) were selected similar to a typical brain perfusion study. All scans were repeated 5 times. Tissue flow was calculated with a dedicated deconvolution algorithm. In a center slice and 3 additional slices at various off center positions flow values were recorded in a total of 126 regions of interest (ROI). Reproducibility was determined from the variation of the repeat scans. Agreement between periodic spirals and standard mode was determined by Bland Altman plots and correlation analysis. The reproducibility of the tissue flow determination ranged from 2.7 to 4.4 mL/100 mL/min and was similar for all scan modes. The coefficient of variation ranged from 3.9% to 6.1%. Mean tissue flow in the 126 ROIs ranged from 35 to 121 mL/100 mL/min. There was excellent correlation between both periodic spiral ranges and the standard dynamic mode with a Pearson correlation coefficient of r = 0.97. The regression slope (intercept 0) for the 100 mm range was 1.01, for the 148 mm range it was 0.97. The absolute differences per ROI varied between 1.5 and 4.1 mL/100 mL/min, the relative differences between 1.9% and 6.5%. Differences did not depend on the slice location. Periodic spiral scan modes with variable pitch and a sampling rate of 1.5 seconds can be used for the quantitative determination of tissue flow. Their performance is equivalent to equidistant sampling with standard dynamic scan modes. The ranges of 100 and 148 mm investigated allow coverage of the whole brain or an entire organ for perfusion imaging.
Two-photon excited autofluorescence imaging of freshly isolated frog retinas.
Lu, Rong-Wen; Li, Yi-Chao; Ye, Tong; Strang, Christianne; Keyser, Kent; Curcio, Christine A; Yao, Xin-Cheng
2011-06-01
The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.
Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, Warren D.; Kwok, Young; Deyoung, Chad
2005-12-15
Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less
Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon
2017-05-01
Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, P; Wang, J; Zhong, H
Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, H; Wendt, R
2016-06-15
Purpose: To assess the effect of beam hardening on measured CT HU values. Methods: An anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 690 PET/CT scanner (120kVp, 300mAs, 40?0.625mm collimation, pitch=0.984, FOV=500mm, matrix=512?512) with four different scan setups, each of which induces different degrees of beam hardening by introducing additional attenuation media into the field of view. Homogeneous voxels representing “soft tissue” and “bone” were segmented by HU thresholding followed by a 3D morphological erosion operation which removes the non-homogenous voxels located on the interface of thresholded tissue mask. HU values of segmented “soft tissue”more » and “bone” were compared.Additionally, whole-body CT data with coverage from the skull apex to the end of toes were retrospectively retrieved from seven PET/CT exams to evaluate the effect of beam hardening in vivo. Homogeneous bone voxels were segmented with the same method previously described. Total In-Slice Attenuation (TISA) for each CT slice, defined as the summation of HU values over all voxels within a CT slice, was calculated for all slices of the seven whole-body CT datasets and evaluated against the mean HU values of homogeneous bone voxels within that slice. Results: HU values measured from the phantom showed that while “soft tissue” HU values were unaffected, added attenuation within the FOV caused noticeable decreases in the measured HU values of “bone” voxels. A linear relationship was observed between bone HU and TISA for slices of the torso and legs, but not of the skull. Conclusion: Beam hardening effect is not an issue of concern for voxels with HU in the soft tissue range, but should not be neglected for bone voxels. A linear relationship exists between bone HU and the associated TISA in non-skull CT slices, which can be exploited to develop a correction strategy.« less
64 slice MDCT generally underestimates coronary calcium scores as compared to EBT: A phantom study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greuter, M. J. W.; Dijkstra, H.; Groen, J. M.
The objective of our study was the determination of the influence of the sequential and spiral acquisition modes on the concordance and deviation of the calcium score on 64-slice multi-detector computed tomography (MDCT) scanners in comparison to electron beam tomography (EBT) as the gold standard. Our methods and materials were an anthropomorphic cardio CT phantom with different calcium inserts scanned in sequential and spiral acquisition modes on three identical 64-slice MDCT scanners of manufacturer A and on three identical 64-slice MDCT scanners of manufacturer B and on an EBT system. Every scan was repeated 30 times with and 15 timesmore » without a small random variation in the phantom position for both sequential and spiral modes. Significant differences were observed between EBT and 64-slice MDCT data for all inserts, both acquisition modes, and both manufacturers of MDCT systems. High regression coefficients (0.90-0.98) were found between the EBT and 64-slice MDCT data for both scoring methods and both systems with high correlation coefficients (R{sup 2}>0.94). System A showed more significant differences between spiral and sequential mode than system B. Almost no differences were observed in scanners of the same manufacturer for the Agatston score and no differences for the Volume score. The deviations of the Agatston and Volume scores showed regression dependencies approximately equal to the square root of the absolute score. The Agatston and Volume scores obtained with 64-slice MDCT imaging are highly correlated with EBT-obtained scores but are significantly underestimated (-10% to -2%) for both sequential and spiral acquisition modes. System B is more independent of acquisition mode to calcium score than system A. The Volume score shows no intramanufacturer dependency and its use is advocated versus the Agatston score. Using the same cut points for MDCT-based calcium scores as for EBT-based calcium scores can result in classifying individuals into a too low risk category. System information and scanprotocol is therefore needed for every calcium score procedure to ensure a correct clinical interpretation of the obtained calcium score results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugas, Alexandre; Therasse, Eric; Kauffmann, Claude
2012-08-15
Purpose: To compare different methods measuring abdominal aortic aneurysm (AAA) maximal diameter (Dmax) and its progression on multidetector computed tomography (MDCT) scan. Materials and Methods: Forty AAA patients with two MDCT scans acquired at different times (baseline and follow-up) were included. Three observers measured AAA diameters by seven different methods: on axial images (anteroposterior, transverse, maximal, and short-axis views) and on multiplanar reformation (MPR) images (coronal, sagittal, and orthogonal views). Diameter measurement and progression were compared over time for the seven methods. Reproducibility of measurement methods was assessed by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Results: Dmax, as measuredmore » on axial slices at baseline and follow-up (FU) MDCTs, was greater than that measured using the orthogonal method (p = 0.046 for baseline and 0.028 for FU), whereas Dmax measured with the orthogonal method was greater those using all other measurement methods (p-value range: <0.0001-0.03) but anteroposterior diameter (p = 0.18 baseline and 0.10 FU). The greatest interobserver ICCs were obtained for the orthogonal and transverse methods (0.972) at baseline and for the orthogonal and sagittal MPR images at FU (0.973 and 0.977). Interobserver ICC of the orthogonal method to document AAA progression was greater (ICC = 0.833) than measurements taken on axial images (ICC = 0.662-0.780) and single-plane MPR images (0.772-0.817). Conclusion: AAA Dmax measured on MDCT axial slices overestimates aneurysm size. Diameter as measured by the orthogonal method is more reproducible, especially to document AAA progression.« less
Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong
2017-03-01
To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P < 0.05). Mean ADC value of single-round ROI had the highest effect size (0.72) and the greatest areas under the curve (0.872). Three single-slice methods had good to excellent ICCs (0.67-0.89) and the whole-volume method fair to excellent ICCs (0.32-0.96). Minimum ADC values differed significantly between whole-volume and single-round ROI (P = 0.003) and, between whole-volume and five-round ROI (P = 0.001). The whole-volume method took significantly longer than all single-slice methods (all P < 0.001). ADC measurements are influenced by ROI determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.
Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber
NASA Astrophysics Data System (ADS)
Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur
2011-06-01
The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).
Hughes, Emer J.; Hutter, Jana; Price, Anthony N.; Hajnal, Joseph V.
2017-01-01
Purpose To introduce a methodology for the reconstruction of multi‐shot, multi‐slice magnetic resonance imaging able to cope with both within‐plane and through‐plane rigid motion and to describe its application in structural brain imaging. Theory and Methods The method alternates between motion estimation and reconstruction using a common objective function for both. Estimates of three‐dimensional motion states for each shot and slice are gradually refined by improving on the fit of current reconstructions to the partial k‐space information from multiple coils. Overlapped slices and super‐resolution allow recovery of through‐plane motion and outlier rejection discards artifacted shots. The method is applied to T 2 and T 1 brain scans acquired in different views. Results The procedure has greatly diminished artifacts in a database of 1883 neonatal image volumes, as assessed by image quality metrics and visual inspection. Examples showing the ability to correct for motion and robustness against damaged shots are provided. Combination of motion corrected reconstructions for different views has shown further artifact suppression and resolution recovery. Conclusion The proposed method addresses the problem of rigid motion in multi‐shot multi‐slice anatomical brain scans. Tests on a large collection of potentially corrupted datasets have shown a remarkable image quality improvement. Magn Reson Med 79:1365–1376, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28626962
A compact light-sheet microscope for the study of the mammalian central nervous system
Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan
2016-01-01
Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692
Budoff, Matthew J; Mao, Songshou; Lu, Bin; Takasu, Junichiro; Child, Janis; Carson, Sivi; Fisher, Hans
2002-01-01
To test the hypothesis that a calibration phantom would improve interpatient and interscan variability in coronary artery calcium (CAC) studies. We scanned 144 patients twice with or without the calibration phantom and then scanned 93 patients with a single calcific lesion twice and, finally, scanned a cork heart with calcific foci. There were no linear correlations in computed tomography Hounsfield unit (CT HU) and CT HU interscan variation between blood pool and phantom plugs at any slice level in patient groups (p > 0.05). The CT HU interscan variation in phantom plugs (2.11 HU) was less than that of the blood pool (3.47 HU; p < 0.05) and CAC lesion (20.39; p < 0.001). Comparing images with and without a calibration phantom, there was a significant decrease in CT HU as well as an increase in noise and peak values in patient studies and the cork phantom study. The CT HU attenuation variations of the interpatient and interscan blood pool, calibration phantom plug, and cork coronary arteries were not parallel. Therefore, the ability to adjust the CT HU variation of calcific lesions by a calibration phantom is problematic and may worsen the problem.
Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.
Denison, D M; Morgan, M D; Millar, A B
1986-08-01
This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.
Image domain propeller fast spin echo☆
Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland
2013-01-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683
Image domain propeller fast spin echo.
Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland
2013-04-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.
Action potentials reliably invade axonal arbors of rat neocortical neurons
Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel
2000-01-01
Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955
Biomechanical analysis of three tennis serve types using a markerless system.
Abrams, Geoffrey D; Harris, Alex H S; Andriacchi, Thomas P; Safran, Marc R
2014-02-01
The tennis serve is commonly associated with musculoskeletal injury. Advanced players are able to hit multiple serve types with different types of spin. No investigation has characterised the kinematics of all three serve types for the upper extremity and back. Seven NCAA Division I male tennis players performed three successful flat, kick and slice serves. Serves were recorded using an eight camera markerless motion capture system. Laser scanning was utilised to accurately collect body dimensions and data were computed using inverse kinematic methods. There was no significant difference in maximum back extension angle for the flat, kick or slice serves. The kick serve had a higher force magnitude at the back than the flat and slice as well as larger posteriorly directed shoulder forces. The flat serve had significantly greater maximum shoulder internal rotation velocity versus the slice serve. Force and torque magnitudes at the elbow and wrist were not significantly different between the serves. The kick serve places higher physical demands on the back and shoulder while the slice serve demonstrated lower overall kinetic forces. This information may have injury prevention and rehabilitation implications.
Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula
2016-07-01
To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.
Tung, Matthew K; Cameron, James D; Casan, Joshua M; Crossett, Marcus; Troupis, John M; Meredith, Ian T; Seneviratne, Sujith K
2013-01-01
Minimization of radiation exposure remains an important subject that occurs in parallel with advances in scanner technology. We report our experience of evolving radiation dose and its determinants after the introduction of 320-multidetector row cardiac CT within a single tertiary cardiology referral service. Four cohorts of consecutive patients (total 525 scans), who underwent cardiac CT at defined time points as early as 2008, are described. These include a cohort just after scanner installation, after 2 upgrades of the operating system, and after introduction of an adaptive iterative image reconstruction algorithm. The proportions of nondiagnostic coronary artery segments and studies with nondiagnostic segments were compared between cohorts. Significant reductions were observed in median radiation doses in all cohorts compared with the initial cohort (P < .001). Median dose-length product fell from 944 mGy · cm (interquartile range [IQR], 567.3-1426.5 mGy · cm) to 156 mGy · cm (IQR, 99.2-265.0 mGy · cm). Although the proportion of prospectively triggered scans has increased, reductions in radiation dose have occurred independently of distribution of scan formats. In multiple regression that combined all groups, determinants of dose-length product were tube output, the number of cardiac cycles scanned, tube voltage, scan length, scan format, body mass index, phase width, and heart rate (adjusted R(2) = 0.85, P < .001). The proportion of nondiagnostic coronary artery segments was slightly increased in group 4 (2.9%; P < .01). While maintaining diagnostic quality in 320-multidetector row cardiac CT, the radiation dose has decreased substantially because of a combination of dose-reduction protocols and technical improvements. Continued minimization of radiation dose will increase the potential for cardiac CT to expand as a cardiac imaging modality. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
[Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].
Kimura, Mikio; Usui, Junshi; Nozawa, Takeo
2007-03-20
In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.
Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian
2016-05-01
Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Somasundaram, Elanchezhian; Kaufman, Robert; Brady, Samuel
2017-03-01
The development of a random forests machine learning technique is presented for fully-automated neck, chest, abdomen, and pelvis tissue segmentation of CT images using Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation (TWS) plugin of FIJI (ImageJ, NIH). The use of a single classifier model to segment six tissue classes (lung, fat, muscle, solid organ, blood/contrast agent, bone) in the CT images is studied. An automated unbiased scheme to sample pixels from the training images and generate a balanced training dataset over the seven classes is also developed. Two independent training datasets are generated from a pool of 4 adult (>55 kg) and 3 pediatric patients (<=55 kg) with 7 manually contoured slices for each patient. Classifier training investigated 28 image filters comprising a total of 272 features. Highly correlated and insignificant features are eliminated using Correlated Feature Subset (CFS) selection with Best First Search (BFS) algorithms in WEKA. The 2 training models (from the 2 training datasets) had 74 and 71 input training features, respectively. The study also investigated the effect of varying the number of trees (25, 50, 100, and 200) in the random forest algorithm. The performance of the 2 classifier models are evaluated on inter-patient intra-slice, intrapatient inter-slice and inter-patient inter-slice test datasets. The Dice similarity coefficients (DSC) and confusion matrices are used to understand the performance of the classifiers across the tissue segments. The effect of number of features in the training input on the performance of the classifiers for tissue classes with less than optimal DSC values is also studied. The average DSC values for the two training models on the inter-patient intra-slice test data are: 0.98, 0.89, 0.87, 0.79, 0.68, and 0.84, for lung, fat, muscle, solid organ, blood/contrast agent, and bone, respectively. The study demonstrated that a robust segmentation accuracy for lung, muscle and fat tissue classes. For solid-organ, blood/contrast and bone, the performance of the segmentation pipeline improved significantly by using the advanced capabilities of WEKA. However, further improvements are needed to reduce the noise in the segmentation.
Use of computed tomography renal angiography for screening feline renal transplant donors.
Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark
2003-01-01
Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.
Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance
NASA Astrophysics Data System (ADS)
Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey
2016-03-01
Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.
Murphy, David J; McEvoy, Sinead H; Iyengar, Sri; Feuchtner, Gudrun; Cury, Ricardo C; Roobottom, Carl; Baumueller, Stephan; Alkadhi, Hatem; Dodd, Jonathan D
2014-08-01
To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P=0.001). Kappa analysis=0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥ 3.8 cm(2), 3.2 cm and 1.6mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P<0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54-1.0), 100%, 100% and 70% respectively. The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT features. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
1995-07-08
Marshall researchers, in the Astrionics lab, study rotating unbalanced mass devices. These require less power, and are lighter than current devices used for scanning images, a slice at a time. They have a wide range of space-based applications.
Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael
2015-03-01
Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.
Evaluation of portable CT scanners for otologic image-guided surgery
Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F
2011-01-01
Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768
2017-01-01
Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined. PMID:28177213
128 slice computed tomography dose profile measurement using thermoluminescent dosimeter
NASA Astrophysics Data System (ADS)
Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.
2017-05-01
The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.
Sirin, Yigit; Guven, Koray; Horasan, Sinan; Sencan, Sabri; Bakir, Baris; Barut, Oya; Tanyel, Cem; Aral, Ali; Firat, Deniz
2010-11-01
The objective of this study was to examine the diagnostic accuracy of the different secondary reconstruction slice thicknesses of cone beam computed tomography (CBCT) on artificially created mandibular condyle fractures. A total of 63 sheep heads with or without condylar fractures were scanned with a NewTom 3G CBCT scanner. Multiplanar reformatted (MPR) views in 0.2-mm, 1-mm, 2-mm, and 3-mm secondary reconstruction slice thicknesses were evaluated by 7 observers. Inter- and intraobserver agreements were calculated with weighted kappa statistics. The receiver operating characteristic (ROC) curve analysis was used to statistically compare the area under the curve (AUC) of each slice thickness. The kappa coefficients varied from fair and to excellent. The AUCs of 0.2-mm and 1-mm slice thicknesses were found to be significantly higher than those of 2 mm and 3 mm for some type of fractures. CBCT was found to be accurate in detecting all variants of fractures at 0.2 mm and 1 mm. However, 2-mm and 3-mm slices were not suitable to detect fissure, complete, and comminuted types of mandibular condyle fractures. Copyright © 2010 Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B; He, W; Cvetkovic, D
Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
Xiong, Guoxiang; Metheny, Hannah; Johnson, Brian N.; Cohen, Akiva S.
2017-01-01
The hippocampus plays a critical role in learning and memory and higher cognitive functions, and its dysfunction has been implicated in various neuropathological disorders. Electrophysiological recording undertaken in live brain slices is one of the most powerful tools for investigating hippocampal cellular and network activities. The plane for cutting the slices determines which afferent and/or efferent connections are best preserved, and there are three commonly used slices: hippocampal-entorhinal cortex (HEC), coronal and transverse. All three slices have been widely used for studying the major afferent hippocampal pathways including the perforant path (PP), the mossy fibers (MFs) and the Schaffer collaterals (SCs). Surprisingly, there has never been a systematic investigation of the anatomical and functional consequences of slicing at a particular angle. In the present study, we focused on how well fiber pathways are preserved from the entorhinal cortex (EC) to the hippocampus, and within the hippocampus, in slices generated by sectioning at different angles. The postmortem neural tract tracer 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate (DiI) was used to label afferent fibers to hippocampal principal neurons in fixed slices or whole brains. Laser scanning confocal microscopy was adopted for imaging DiI-labeled axons and terminals. We demonstrated that PP fibers were well preserved in HEC slices, MFs in both HEC and transverse slices and SCs in all three types of slices. Correspondingly, field excitatory postsynaptic potentials (fEPSPs) could be consistently evoked in HEC slices when stimulating PP fibers and recorded in stratum lacunosum-moleculare (sl-m) of area CA1, and when stimulating the dentate granule cell layer (gcl) and recording in stratum lucidum (sl) of area CA3. The MF evoked fEPSPs could not be recorded in CA3 from coronal slices. In contrast to our DiI-tracing data demonstrating severely truncated PP fibers in coronal slices, fEPSPs could still be recorded in CA1 sl-m in this plane, suggesting that an additional afferent fiber pathway other than PP might be involved. The present study increases our understanding of which hippocampal pathways are best preserved in the three most common brain slice preparations, and will help investigators determine the appropriate slices to use for physiological studies depending on the subregion of interest. PMID:29201002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardin, A; Avery, S; Ding, X
2014-06-15
Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less
A Novel Application for the Cavalieri Principle: A Stereological and Methodological Study
Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin
2009-01-01
Objective The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. Materials and Methods In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. Results There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). Conclusion This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method. PMID:25610077
A novel application for the cavalieri principle: a stereological and methodological study.
Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin
2009-08-01
The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method.
Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V
2014-05-01
To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadava, G; Imai, Y; Hsieh, J
2014-06-15
Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammexmore » Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of Iodine contrast enhancement and potential reduction in injected contrast without using dual-energy scanning. However, in general, dual-energy scanning has unique value in material characterization and quantification, and its value cannot be discounted. GE Healthcare Employee.« less
Hertanto, Agung; Zhang, Qinghui; Hu, Yu-Chi; Dzyubak, Oleksandr; Rimner, Andreas; Mageras, Gig S
2012-06-01
Respiration-correlated CT (RCCT) images produced with commonly used phase-based sorting of CT slices often exhibit discontinuity artifacts between CT slices, caused by cycle-to-cycle amplitude variations in respiration. Sorting based on the displacement of the respiratory signal yields slices at more consistent respiratory motion states and hence reduces artifacts, but missing image data (gaps) may occur. The authors report on the application of a respiratory motion model to produce an RCCT image set with reduced artifacts and without missing data. Input data consist of CT slices from a cine CT scan acquired while recording respiration by monitoring abdominal displacement. The model-based generation of RCCT images consists of four processing steps: (1) displacement-based sorting of CT slices to form volume images at 10 motion states over the cycle; (2) selection of a reference image without gaps and deformable registration between the reference image and each of the remaining images; (3) generation of the motion model by applying a principal component analysis to establish a relationship between displacement field and respiration signal at each motion state; (4) application of the motion model to deform the reference image into images at the 9 other motion states. Deformable image registration uses a modified fast free-form algorithm that excludes zero-intensity voxels, caused by missing data, from the image similarity term in the minimization function. In each iteration of the minimization, the displacement field in the gap regions is linearly interpolated from nearest neighbor nonzero intensity slices. Evaluation of the model-based RCCT examines three types of image sets: cine scans of a physical phantom programmed to move according to a patient respiratory signal, NURBS-based cardiac torso (NCAT) software phantom, and patient thoracic scans. Comparison in physical motion phantom shows that object distortion caused by variable motion amplitude in phase-based sorting is visibly reduced with model-based RCCT. Comparison of model-based RCCT to original NCAT images as ground truth shows best agreement at motion states whose displacement-sorted images have no missing slices, with mean and maximum discrepancies in lung of 1 and 3 mm, respectively. Larger discrepancies correlate with motion states having a larger number of missing slices in the displacement-sorted images. Artifacts in patient images at different motion states are also reduced. Comparison with displacement-sorted patient images as a ground truth shows that the model-based images closely reproduce the ground truth geometry at different motion states. Results in phantom and patient images indicate that the proposed method can produce RCCT image sets with reduced artifacts relative to phase-sorted images, without the gaps inherent in displacement-sorted images. The method requires a reference image at one motion state that has no missing data. Highly irregular breathing patterns can affect the method's performance, by introducing artifacts in the reference image (although reduced relative to phase-sorted images), or in decreased accuracy in the image prediction of motion states containing large regions of missing data. © 2012 American Association of Physicists in Medicine.
Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki
2014-01-01
The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Spiral CT angiography in practice].
Pavcec, Zlatko; Zokalj, Ivan; Rumboldt, Zoran; Pal, Andrej; Saghir, Hussein; Ozretić, David; Latin, Branko; Perhoć, Zeljka; Marotti, Miljenko
2005-01-01
Incidence of vascular diseases and development of new radiologic techniques in the last three decades has given strong impuls for introduction of non-invasive vascular diagnostic methods. Thanks to the introduction of Doppler ultrasound, new types of computed tomography (CT) and magnetic resonance (MR) scanners, non-invasive vascular diagnostic methods are replacing conventional invasive (catheter) angiographic methods. Computed tomographic angiography (CTA) is a noninvasive vascular diagnostic method based on continuous scanning with CT scanner during intravenous application of contrast material. Performing of CTA is possible after introduction of spiral CT technique whose characteristics are short imaging time and volumetric data acquisition. The main goal of this article, based on our experiences, is to review the role of CTA, performed on single-slice CT scanner, in managment of patients with vascular pathology.
Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M
2015-01-01
Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A New Program Structuring Mechanism Based on Layered Graphs.
1984-12-01
which is a single-page diagram. Diagrams are constructed from some 40 symbols , chiefly A- boxes, arrows and annotations. A single model specifies a...are identified and used in describing it. 20The symbol "G" derives from the original use of the term "group" for "object slice". Since Ŕ" is already an...overloaded mathematical symbol , retaining "G" seems as good as any alternative. 21The names object slices and views reflect the interpretation placed
NASA Astrophysics Data System (ADS)
Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.
2018-02-01
We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.
Timeframe of socket cortication after tooth extraction: A retrospective radiographic study.
Bertl, Kristina; Kukla, Edmund Benjamin; Albugami, Rajaa; Beck, Florian; Gahleitner, André; Stavropoulos, Andreas
2018-01-01
To assess the timeframe between tooth extraction and radiographically detectable socket cortication in humans. Two hundred and fifty patients with a CT scan ≤36 months after tooth extraction were included. First, three orthoradial multiplanar reconstruction slices, representing the major part of the extraction socket, were scored regarding the degree of bone healing as (i) healed, that is, complete/continuous cortication of the socket entrance, or (ii) non-healed. Thereafter, based on the results of all three slices, the stage of cortication of the extraction socket, as one unit, was classified as (i) non-corticated, that is, all three slices judged as non-healed, (ii) partially corticated, that is, 1 or 2 slices judged as non-healed, or (iii) completely corticated, that is, all three slices judged as healed. The possible effect of several independent parameters, that is, age, gender, timeframe between tooth extraction and CT scan, tooth type, extent of radiographic bone loss of the extracted tooth, tooth-gap type, smoking status, presence of any systemic disease, and medication intake, on cortication status was statistically evaluated. Three to 6 months after tooth extraction, 27% of the sockets were judged as non-corticated and 53% were judged as partially corticated. After 9-12 months, >80% of the sockets were corticated, while some incompletely corticated sockets were detected up to 15 months after extraction. Each additional month after tooth extraction contributed significantly to a higher likelihood of a more advanced stage of cortication, while radiographic bone loss ≥75% significantly prolonged cortication time; no other independent variable had a significant effect. The results indicate a considerably long timeframe until complete cortication of an extraction socket, that is, 3-6 months after tooth extraction 3 of 4 sockets were still not completely corticated, and only after 9-12 months, complete cortication was observed in about 80% of the sockets. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Massively parallel processor computer
NASA Technical Reports Server (NTRS)
Fung, L. W. (Inventor)
1983-01-01
An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.
Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y
2009-01-01
To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Sung, Kyunghyun; Nayak, Krishna S
2008-03-01
To measure and characterize variations in the transmitted radio frequency (RF) (B1+) field in cardiac magnetic resonance imaging (MRI) at 3 Tesla. Knowledge of the B1+ field is necessary for the calibration of pulse sequences, image-based quantitation, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) optimization. A variation of the saturated double-angle method for cardiac B1+ mapping is described. A total of eight healthy volunteers and two cardiac patients were scanned using six parallel short-axis slices spanning the left ventricle (LV). B1+ profiles were analyzed to determine the amount of variation and dominant patterns of variation across the LV. A total of five to 10 measurements were obtained in each volunteer to determine an upper bound of measurement repeatability. The amount of flip angle variation was found to be 23% to 48% over the LV in mid-short-axis slices and 32% to 63% over the entire LV volume. The standard deviation (SD) of multiple flip angle measurements was <1.4 degrees over the LV in all subjects, indicating excellent repeatability of the proposed measurement method. The pattern of in-plane flip angle variation was found to be primarily unidirectional across the LV, with a residual variation of < or =3% in all subjects. The in-plane B1+ variation over the LV at 3T with body-coil transmission is on the order of 32% to 63% and is predominantly unidirectional in short-axis slices. Reproducible B1+ measurements over the whole heart can be obtained in a single breathhold of 16 heartbeats.
Sensitivity and daily quality control of a mobile PET/CT scanner operating in 3-dimensional mode.
Belakhlef, Abdelfatihe; Church, Clifford; Fraser, Ron; Lakhanpal, Suresh
2007-12-01
This study investigated the stability of the sensitivity of a mobile PET/CT scanner and tested a phantom experiment to improve on the daily quality control recommendations of the manufacturer. Unlike in-house scanners, mobile PET/CT devices are subjected to a harsher, continuously changing environment that can alter their performance. The parameter of sensitivity was investigated because it reflects directly on standardized uptake value, a key factor in cancer evaluation. A (68)Ge phantom of known activity concentration was scanned 6 times a month for 11 consecutive months using a mobile PET/CT scanner that operates in 3-dimensional mode only. The scans were acquired as 2 contiguous bed positions, with raw data obtained and reconstructed using parameters identical to those used for oncology patients, including CT-extracted attenuation coefficients and decay, scatter, geometry, and randoms corrections. After visual inspection of all reconstructed images, identical regions of interest were drawn on each image to obtain the activity concentration of individual slices. The original activity concentration was then decay-corrected to the scanning day, and the percentage sensitivity of the slice was calculated and graphed. The daily average sensitivity of the scanner, over 11 consecutive months, was also obtained and used to evaluate the stability of sensitivity. Our particular scanner showed a daily average sensitivity ranging from -8.6% to 6.5% except for one instance, when the sensitivity dropped by an unacceptable degree, 34.8%. Our 11-mo follow-up of a mobile PET/CT scanner demonstrated that its sensitivity remained within acceptable clinical limits except for one instance, when the scanner had to be serviced before patients could be imaged. To enhance our confidence in the uniformity of sensitivity across slices, we added a phantom scan to the daily quality control recommendations of the manufacturer.
Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.
Bone, T Michael; Mowry, Sarah E
2016-09-01
Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Rosica, D; Agarwal, V
Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less
Slicing Method for curved façade and window extraction from point clouds
NASA Astrophysics Data System (ADS)
Iman Zolanvari, S. M.; Laefer, Debra F.
2016-09-01
Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.
Berkenblit, Robert; Hoenig, David; Lerer, Daniel; Moses, Melanie; Minsky, Lloyd
2013-02-01
CT has become a well-established modality in the evaluation of urinary calculi. The advent of multidetector CT (MDCT) scanners and submillimeter thick slice acquisitions has yielded CT images with even greater resolution. MDCT scanners allow for source data slice acquisition with submillimeter slice thickness. These source images can then be reconstructed to thicker slices for more convenient interpretation of the CT scan. Previous authors have looked at the effect of slice thickness on detection of urinary calculi. We investigated whether the thin slice source images yielded detection of additional stones and the potential significance of detecting these additional stones. Ninety-five consecutive patients who were referred to our outpatient imaging center for CT, with a clinical history placing them at risk for urinary calculi, were included in the study. In 49 (52%) of the 95 patients, more calculi were visualized using the 0.625-mm thick images than with the 5-mm thick images. In 34 (69%) of these 49 patients, the additional findings were thought to be "clinically significant," while in the remaining 15 (31%) patients, the additional findings were not thought to be clinically significant. In 46 (48%) of the 95 patients, there were no additional urinary calculi identified on the 0.625-mm thick images compared with that observed on 5-mm thick images. The results from this study encourage reviewing the thin slice source images of MDCTs in patients at risk for urinary calculi, because important clinical decisions may hinge on the additional findings made on these images.
Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling
2017-11-01
The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; P<0.01). The results of the present study indicate that CT scanning of the urinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.
Space-charge-limited solid-state triode
NASA Technical Reports Server (NTRS)
Shumka, A. (Inventor)
1975-01-01
A solid-state triode is provided from a wafer of nearinstrinsic semiconductor material sliced into filaments of rectangular cross section. Before slicing, emitter and collector regions are formed on the narrow sides of the filaments, and after slicing gate regions are formed in arrow strips extending longitudinally along the midsections of the wide sides of the filaments. Contacts are then formed on the emitter, collector and gate regions of each filament individually for a single filament device, or in parallel for an array of filament devices to increase load current.
NASA Astrophysics Data System (ADS)
Tüfekçi, Senem; Özkal, Sami Gökhan
2017-07-01
Effect of ultrasound application prior to hot air drying on drying and rehydration kinetics, rehydration ratio and microstructure of okra slices were investigated. For this purpose, the selected parameters are ultrasound pre-treatment time (10, 20 and 30 min), ultrasound amplitude (55 and 100%) and the temperature of drying air (60 and 70 °C). 5 mm thick cylindrical shaped okra slices were used in the experiments. The samples were immersed in water and ultrasonic pre-treatments were done in water with ultrasonic probe connected to an ultrasonic generator with 20 kHz frequency. Pre-treated samples were dried in a tray drier with a 0.3 m/s air velocity. Ultrasound pre-treatment affected the drying rate of the okra slices significantly. Drying time of okra slices was decreased by the application of ultrasound pre-treatment. Modified Page model found to be the most suitable model for describing the drying characteristics of okra slices. Improvements in rehydration properties of the dried samples were observed due to the ultrasound pre-treatment. The influence of the ultrasound pre-treatment on microstructure was clearly observed through scanning electron microscopy images of the dried samples. As the amplitude of ultrasound increased the changes in structure of the okra tissue increased.
Mulkern, Robert V.; Barnes, Agnieszka Szot; Haker, Steven J.; Hung, Yin P.; Rybicki, Frank J.; Maier, Stephan E.; Tempany, Clare M.C.
2006-01-01
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging exams at 1.5 T, a single 10 mm thick axial slice was scanned with a line scan diffusion imaging (LSDI) sequence in which 14 equally spaced b- factors from 5 to 3500 s/mm2 were sampled along three orthogonal diffusion sensitization directions in 6 minutes. Due to the combination of long scan time and limited volume coverage associated with the multi-b- factor, multi-directional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed non-cancerous regions of interest (ROI’s) within the central gland (CG) and peripheral zone (PZ). Histology from pre-scan biopsy (N = 9) and post-surgical resection (N = 4) was subsequently employed to help confirm that the ROIs sampled were non-cancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia (BPH) which is prevalent in this population. The water signal decays with b- factor from all ROI’s were clearly non-monoexponential and better served with bi- vs monoexponential fits, as tested using λ2 based F-test analyses. Fits to biexponential decay functions yielded inter-subject fast diffusion component fractions on the order of 0.73 ± 0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68 ± 0.39 and 2.52 ± 0.38 μm2/ms and slow diffusion coefficients of 0.44 ± 0.16 and 0.23 ± 0.16 um2/ms for CG and PZ ROI’s, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney non-parametric test (P < 0.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b- factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves. PMID:16735177
Velu, Juliëtte F; Groot Jebbink, Erik; de Vries, Jean-Paul Pm; van der Palen, Job Am; Slump, Cornelis H; Geelkerken, Robert H
2018-04-01
Objectives Correct sizing of endoprostheses used for the treatment of abdominal aortic aneurysms is important to prevent endoleaks and migration. Sizing requires several steps and each step introduces a possible sizing error. The goal of this study was to investigate the magnitude of these errors compared to the golden standard: a vessel phantom. This study focuses on the errors in sizing with three different brands of computed tomography angiography scanners in combination with three reconstruction software packages. Methods Three phantoms with a different diameter, altitude and azimuth were scanned with three computed tomography scanners: Toshiba Aquilion 64-slice, Philips Brilliance iCT 256-slice and Siemens Somatom Sensation 64-slice. The phantom diameters were determined in the stretched view after central lumen line reconstruction by three observers using Simbionix PROcedure Rehearsal Studio, 3mensio and TeraRecon planning software. The observers, all novices in sizing endoprostheses using planning software, measured 108 slices each. Two senior vascular surgeons set the tolerated error margin of sizing on ±1.0 mm. Results In total, 11.3% of the measurements (73/648) were outside the set margins of ±1.0 mm from the phantom diameter, with significant differences between the scanner types (14.8%, 12.1%, 6.9% for the Siemens scanner, Philips scanner and Toshiba scanner, respectively, p-value = 0.032), but not between the software packages (8.3%, 11.1%, 14.4%, p-value = 0.141) or the observers (10.6%, 9.7%, 13.4%, p-value = 0.448). Conclusions It can be concluded that the errors in sizing were independent of the used software packages, but the phantoms scanned with Siemens scanner were significantly more measured incorrectly than the phantoms scanned with the Toshiba scanner. Consequently, awareness on the type of computed tomography scanner and computed tomography scanner setting is necessary, especially in complex abdominal aortic aneurysms sizing for fenestrated or branched endovascular aneurysm repair if appropriate the sizing is of upmost importance.
NASA Astrophysics Data System (ADS)
Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2018-02-01
Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
Evaluation of the effect of low tube voltage on radiation dose and image quality
NASA Astrophysics Data System (ADS)
Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, A. T. Abdul
2017-05-01
Number of Computed Tomography (CT) examinations performed worldwide is increasing. In 2010, the FDA issued an initiative to reduce unnecessary radiation exposure from CT imaging. The aim of this study is to evaluate the effect of low tube voltage on radiation dose and image quality using CTDI phantom. The CTDI phantom was scanned with dual energy CT at 80 kV and 120 kV with the tube current from 150 mAs to 350 mAs. Pitch was 1.0 while slice thickness was 1 mm and 5 mm. Results show if mAs was increased, the SNR values also will be increased. The 5 mm slice thickness shows higher SNR value compared to 1 mm slice thickness. As the voltage and tube current increased, the amount of dose absorbed is also increased because current is proportional to photon flux.
Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes
Atalar, Ergin; McVeigh, Elliot R.
2007-01-01
With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900
Economics of ingot slicing with an internal diameter saw for low-cost solar cells
NASA Technical Reports Server (NTRS)
Daud, T.; Liu, J. K.; Fiegl, G.
1981-01-01
Slicing of silicon ingots using diamond impregnated internal diameter blade saws has been a standard technology of the semiconductor industry. This paper describes work on improvements to this technology for 10 cm diameter ingot slicing. Ingot rotation, dynamic blade edge control with feedback, mechanized blade dressing and development of thinner blades are the approaches tried. A comparison of the results for wafering with and without ingot rotation is also made. A sensitivity analysis of the major cost elements in wafering is performed for 10 cm diameter ingot and extended to the 15 cm diameter ingot case. Various parameter values such as machine cost, feed rate and consumable materials cost are identified both for single and multiple ingot slicing.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Mulkern, Robert V; Barnes, Agnieszka Szot; Haker, Steven J; Hung, Yin P; Rybicki, Frank J; Maier, Stephan E; Tempany, Clare M C
2006-06-01
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.
NASA Astrophysics Data System (ADS)
Laifa, Oumeima; Le Guillou-Buffello, Delphine; Racoceanu, Daniel
2017-11-01
The fundamental role of vascular supply in tumor growth makes the evaluation of the angiogenesis crucial in assessing effect of anti-angiogenic therapies. Since many years, such therapies are designed to inhibit the vascular endothelial growth factor (VEGF). To contribute to the assessment of anti-angiogenic agent (Pazopanib) effect on vascular and cellular structures, we acquired data from tumors extracted from a murine tumor model using Multi- Fluorescence Scanning. In this paper, we implemented an unsupervised algorithm combining the Watershed segmentation and Markov Random Field model (MRF). This algorithm allowed us to quantify the proportion of apoptotic endothelial cells and to generate maps according to cell density. Stronger association between apoptosis and endothelial cells was revealed in the tumors receiving anti-angiogenic therapy (n = 4) as compared to those receiving placebo (n = 4). A high percentage of apoptotic cells in the tumor area are endothelial. Lower density cells were detected in tumor slices presenting higher apoptotic endothelial areas.
Lin, Lu; Wang, Yi-Ning; Kong, Ling-Yan; Jin, Zheng-Yu; Lu, Guang-Ming; Zhang, Zhao-Qi; Cao, Jian; Li, Shuo; Song, Lan; Wang, Zhi-Wei; Zhou, Kang; Wang, Ming
2013-01-01
Objective To evaluate the image quality (IQ) and radiation dose of 128-slice dual-source computed tomography (DSCT) coronary angiography using prospectively electrocardiogram (ECG)-triggered sequential scan mode compared with ECG-gated spiral scan mode in a population with atrial fibrillation. Methods Thirty-two patients with suspected coronary artery disease and permanent atrial fibrillation referred for a second-generation 128-slice DSCT coronary angiography were included in the prospective study. Of them, 17 patients (sequential group) were randomly selected to use a prospectively ECG-triggered sequential scan, while the other 15 patients (spiral group) used a retrospectively ECG-gated spiral scan. The IQ was assessed by two readers independently, using a four-point grading scale from excel-lent (grade 1) to non-assessable (grade 4), based on the American Heart Association 15-segment model. IQ of each segment and effective dose of each patient were compared between the two groups. Results The mean heart rate (HR) of the sequential group was 96±27 beats per minute (bpm) with a variation range of 73±25 bpm, while the mean HR of the spiral group was 86±22 bpm with a variationrange of 65±24 bpm. Both of the mean HR (t=1.91, P=0.243) and HR variation range (t=0.950, P=0.350) had no significant difference between the two groups. In per-segment analysis, IQ of the sequential group vs. spiral group was rated as excellent (grade 1) in 190/244 (78%) vs. 177/217 (82%) by reader1 and 197/245 (80%) vs. 174/214 (81%) by reader2, as non-assessable (grade 4) in 4/244 (2%) vs. 2/217 (1%) by reader1 and 6/245 (2%) vs. 4/214 (2%) by reader2. Overall averaged IQ per-patient in the sequential and spiral group showed equally good (1.27±0.19 vs. 1.25±0.22, Z=-0.834, P=0.404). The effective radiation dose of the sequential group reduced significantly compared with the spiral group (4.88±1.77 mSv vs. 10.20±3.64 mSv; t=-5.372, P=0.000). Conclusion Compared with retrospectively ECG-gated spiral scan, prospectively ECG-triggered sequential DSCT coronary angiography provides similarly diagnostically valuable images in patients with atrial fibrillation and significantly reduces radiation dose.
Dewailly, Marion; Rémy-Jardin, Martine; Duhamel, Alain; Faivre, Jean-Baptiste; Pontana, François; Deken, Valérie; Bakai, Anne-Marie; Remy, Jacques
2010-01-01
To evaluate the performance of a computer-aided detection (CAD) system for diagnosing peripheral acute pulmonary embolism (PE) with a 64-slice multi-detector row computed tomography (CT). Two radiologists investigated the accuracy of a software aimed at detecting peripheral clots (PECAD prototype, version 7; Siemens Medical Systems, Forchheim, Germany) by applying this tool for the analysis of the pulmonary arterial bed of 74 CT angiograms obtained with 64-slice dual-source CT (Definition; Siemens Medical Systems). These cases were retrospectively selected from a database of CT studies performed on the same CT unit, with a similar collimation (64 x 0.6 mm) and similar injection protocols. Patient selection was based on a variety of (1) scanning conditions, namely, nongated (n = 30), electrocardiography-gated (n = 30), and dual-energy CT angiograms (n = 14), and (2) image quality (IQ), namely, scans of excellent IQ (n = 53) and lower IQ due to lower levels of arterial enhancement and/or presence of noise (n = 21). The standard of truth was based on the 2 radiologists' consensus reading and the results of CAD. The software detected 80 of 93 peripheral clots present in the 21 patients (42 segmental and 38 subsegmental clots). The overall sensitivity (95% confidence interval) of the CAD tool was 86% (77%-92%) for detecting peripheral clots, 78% (64.5%-88%) at the segmental level and 97% (85.5%-99.9%) at the subsegmental level. Assuming normal vascular anatomy with 20 segmental and 40 subsegmental arteries, overall specificity and positive and negative predictive values (95% confidence interval) of the software were 91.8% (91%-92.6%), 18.4% (15%-22.4%), and 99.7% (99.5%-99.8%), respectively. A mean of 5.4 false positives was found per patient (total, 354 false positives), mainly linked to the presence of perivascular connective tissue (n = 119; 34%) and perivascular airspace consolidation (n = 97; 27%). The sensitivities (95% confidence interval) for the CAD tool were 91% (69.8%-99.3%) for dual-energy, 87% (59.3%-93.2%) for electrocardiography-gated, and 87% (73.5%-95.3%) for nongated scans (P > 0.05). No significant difference was found in the sensitivity of the CAD software when comparing the scans according to the scanning conditions and image quality. The evaluated CAD software has a good sensitivity in detecting peripheral PE, which is not influenced by the scanning conditions or the overall image quality.
Looking for Martian True Polar Wander in mutually oriented slices of ALH84001
NASA Astrophysics Data System (ADS)
Buz, J.; Murphy, T. G.; Kirschvink, J. L.
2016-12-01
True polar wander (TPW) on Mars has been hypothesized based on a variety of observations including geoid instability [1], locations of apparent polar deposits [2], and locations of magnetic anomalies [3, 4]. A proposed driving force for TPW is redistribution of mass on the surface of the planet such as by extensive volcanism events [5]. The majority of TPW modeling research has been using orbital datasets and modeling. However, laboratory analyses of Martian samples should also be conducted to test for Martian TPW. The Martian meteorite, ALH84001, is a prime sample for observing Martian TPW because of its preservation of thermal remanent magnetization from Mars [6]. Previous work on the sample has demonstrated that the interior of the meteorite was not heated above 40 C during transport from Mars to Earth and that there is a heterogeneous magnetization within the meteorite [7]. Within the meteorite are a series of fracture-filling carbonate blebs which contain magnetite and pyrrhotite with original remanence. These carbonates are presumed to have precipitated onto the meteorite [8]. We have divided a fracture-containing portion of the meteorite into three sets of sequential, mutually oriented slices. Using an ultra-high resolution scanning SQuID magnetometer we are able to visualize the magnetization within each slice. We are able to model each magnetic scan as a series of discrete dipoles using a modification from Lima and Weiss [9]. Our results demonstrate that within one of our slice sequences the dipoles lie along a great circle path. Dipoles lying along an arc in a stereographic projection can be interpreted as resulting from TPW if there is a significant amount of time from start to end of magnetization. Our ongoing work includes continued analysis and scanning of our slices as well as statistical tests for confirming if the dipoles lie along an arc. [1] Sprenke, KF et al. 2005 Icarus 174(2) 486-9 [2] Perron, JT et al. 2007 Nature 447(7146) 840-3 [3] Kobayashi, D & Sprenke, KF 2010 Icarus 210(1) 37-42 [4] Boutin, D & Arkani-Hamed, J 2006 Icarus 181(1) 13-25 [5] Kite, ES et al. 2009 Earth Planet Sci Lett 280(1-4) 254-67 [6] Weiss, B et al. 2000 Science 290(5492) 791-5 [7] Weiss, BP et al. 2002 Earth Planet Sci Lett 201(3-4) 449-63 [8] Halevy, I et al. 2011 Proc Natl Acad Sci 108(41) 16895-9 [9] Lima, EA & Weiss, BP 2009 J Geophys Res 114(B6)
Lell, Michael M; May, Matthias; Deak, Paul; Alibek, Sedat; Kuefner, Michael; Kuettner, Axel; Köhler, Henrik; Achenbach, Stephan; Uder, Michael; Radkow, Tanja
2011-02-01
computed tomography (CT) is considered the method of choice in thoracic imaging for a variety of indications. Sedation is usually necessary to enable CT and to avoid deterioration of image quality because of patient movement in small children. We evaluated a new, subsecond high-pitch scan mode (HPM), which obviates the need of sedation and to hold the breath. a total of 60 patients were included in this study. 30 patients (mean age, 14 ± 17 month; range, 0-55 month) were examined with a dual source CT system in an HPM. Scan parameters were as follows: pitch = 3.0, 128 × 0.6 mm slice acquisition, 0.28 seconds gantry rotation time, ref. mAs adapted to the body weight (50-100 mAs) at 80 kV. Images were reconstructed with a slice thickness of 0.75 mm. None of the children was sedated for the CT examination and no breathing instructions were given. Image quality was assessed focusing on motion artifacts and delineation of the vascular structures and lung parenchyma. Thirty patients (mean age, 15 ± 17 month; range, 0-55 month) were examined under sedation on 2 different CT systems (10-slice CT, n = 18; 64-slice CT, n = 13 patients) in conventional pitch mode (CPM). Dose values were calculated from the dose length product provided in the patient protocol/dose reports, Monte Carlo simulations were performed to assess dose distribution for CPM and HPM. all scans were performed without complications. Image quality was superior with HPM, because of a significant reduction in motion artifacts, as compared to CPM with 10- and 64-slice CT. In the control group, artifacts were encountered at the level of the diaphragm (n = 30; 100%), the borders of the heart (n = 30; 100%), and the ribs (n = 20; 67%) and spine (n = 6; 20%), whereas motion artifacts were detected in the HPM-group only in 6 patients in the lung parenchyma next to the diaphragm or the heart (P < 0,001). Dose values were within the same range in the patient examinations (CPM, 1.9 ± 0.6 mSv; HPM, 1.9 ± 0.5 mSv; P = 0.95), although z-overscanning increased with the increase of detector width and pitch-value. high-pitch chest CT is a robust method to provide highest image quality making sedation or controlled ventilation for the examination of infants, small or uncooperative children unnecessary, whereas maintaining low radiation dose values.
Temporal resolution improvement using PICCS in MDCT cardiac imaging
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-01-01
The current paradigm for temporal resolution improvement is to add more source-detector units and∕or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120°, which is roughly 50% of the standard short-scan angular range (∼240° for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications. PMID:19610302
Temporal resolution improvement using PICCS in MDCT cardiac imaging.
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-06-01
The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications.
Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.
2018-01-01
Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666
Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).
Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan
2013-11-01
Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms, such that volumes quantified from scans of different reconstruction algorithms can be compared. The little difference found between the precision of FBP and iterative reconstructions could be a result of both iterative reconstruction's diminished noise reduction at the edge of the nodules as well as the loss of resolution at high noise levels with iterative reconstruction. The findings do not rule out potential advantage of IR that might be evident in a study that uses a larger number of nodules or repeated scans.
NASA Astrophysics Data System (ADS)
Crespo, Paulo; Reis, João; Couceiro, Miguel; Blanco, Alberto; Ferreira, Nuno C.; Marques, Rui Ferreira; Martins, Paulo; Fonte, Paulo
2012-06-01
A single-bed, whole-body positron emission tomograph based on resistive plate chambers has been proposed (RPC-PET). An RPC-PET system with an axial field-of-view (AFOV) of 2.4 m has been shown in simulation to have higher system sensitivity using the NEMA NU2-1994 protocol than commercial PET scanners. However, that protocol does not correlate directly with lesion detectability. The latter is better correlated with the planar (slice) sensitivity, obtained with a NEMA NU2-2001 line-source phantom. After validation with published data for the GE Advance, Siemens TruePoint and TrueV, we study by simulation their axial sensitivity profiles, comparing results with RPC-PET. Planar sensitivities indicate that RPC-PET is expected to outperform 16-cm (22-cm) AFOV scanners by a factor 5.8 (3.0) for 70-cm-long scans. For 1.5-m scans (head to mid-legs), the sensitivity gain increases to 11.7 (6.7). Yet, PET systems with large AFOV provide larger coverage but also larger attenuation in the object. We studied these competing effects with both spherical- and line-sources immersed in a 27-cm-diameter water cylinder. For 1.5-m-long scans, the planar sensitivity drops one order of magnitude in all scanners, with RPC-PET outperforming 16-cm (22-cm) AFOV scanners by a factor 9.2 (5.3) without considering the TOF benefit. A gain in the effective sensitivity is expected with TOF iterative reconstruction. Finally, object scatter in an anthropomorphic phantom is similar for RPC-PET and modern, scintillator-based scanners, although RPC-PET benefits further if its TOF information is utilized to exclude scatter events occurring outside the anthropomorphic phantom.
Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Pagonidis, Kostas; Papadakis, Antonios E; Damilakis, John
2013-10-15
This study provides data on the cumulative life attributable risk (LAR) of radiation-induced cancer from the combination of coronary CT angiography (CCTA), dynamic CT perfusion (CTP) and delayed enhancement (DE) CT scans, required for reliable risk-benefit analysis of the one-stop-shop CCTA + CTP + DECT cardiac examination. Monte Carlo simulation of the dynamic CTP and DECT exposures on 62 adult individuals was employed to determine radiation absorbed dose to exposed radiosensitive organs. Corresponding data for CCTA were derived using patient chest circumference and previously published data. Individual-specific LARs of cancer were estimated using organ/tissue-specific radiogenic cancer risk factors. Total LAR from CCTA + CTP + DECT scans' sequence were estimated and compared to nominal intrinsic risk of cancer. The main contribution, up to 80%, to cumulative radiation burden from CCTA + CTP + DECT scan-sequence was found to originate from the CTP scan. The total LAR from CCTA + CTP + DECT for females was found 4-6 times higher, compared to males. The mean cumulative risk of radiogenic cancer associated with the complete CCTA + CTP + DECT scan sequence was found to marginally increase the intrinsic risk for cancer induction by less than 0.6% and 0.1% for females and males, respectively. The radiation risk from the 256-slice CCTA + CTP + DECT scan sequence may be considered low and should not constitute an obstacle for the clinical endorsement of the one-stop-shop cardiac CT examination, given that its clinical value has been well verified. Nevertheless, every effort should be made towards optimization of the dynamic CTP component which is the main contributor to patient radiation burden. © 2013.
Kokkinos, Vasileios; Kallifatidis, Alexandros; Kapsalaki, Eftychia Z; Papanikolaou, Nikolaos; Garganis, Kyriakos
2017-05-01
The transmantle sign is a distinctive imaging marker of focal cortical dysplasia (FCD) type II in frontal lobe epilepsy (FLE), which is revealed predominantly by fluid-attenuation inversion recovery (FLAIR) sequences. Although the transmantle sign detection yield is high by routine imaging protocols for epilepsy at 3T, most centers around the world have access to 1.5T MR technology and FLE patients often receive negative imaging reports. This study investigates the optimization of transmantle detection yield at 1.5T by introducing a 3D thin-slice isotropic FLAIR sequence in the epilepsy imaging protocol. Twenty FLE patients underwent diagnostic imaging for epilepsy with typical 2D thick-slice (3.0mm) coronal FLAIR sequences and a 3D thin-slice (1.0mm) isotropic FLAIR sequences at 1.5T, and transmantle sign detection yields and thickness measurements were derived. The 2D thick-slice FLAIR detected a transmantle sign in seven (35.0%) patients. The 3D isotropic thin-slice FLAIR detected a transmantle sign in eleven (55.0%) patients, thereby increasing the transmantle sign detection yield by 57.4%. The mean transmantle sign thickness by thick images was 12.3mm, by thin images was 8.9mm, and in the patients undetected by thick FLAIR was 3.5mm. This study showed that the extratemporal transmantle sign in FLE patients can be thin enough to be missed by thick-slice FLAIR sequences at 1.5T. By introducing 3D thin-slice isotropic FLAIR, false-negative reports can be reduced without reference for higher MR field structural scanning or other modalities, and more FLE patients can benefit from epilepsy surgery candidacy. Copyright © 2017 Elsevier B.V. All rights reserved.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François
2014-01-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711
Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer
2009-01-01
pelvis phantom was also imaged, consisting of a partial skeleton ranging from the L1 lumbar vertebra through the mid femur, embedded in lucite formed...been applied in the pelvis phantom scan to see the correction effects for a more realistic case, and the results are displayed in Fig. 5. 10 33 (a) (b...c) Figure 5: Transverse slice images of the reconstructed pelvis phantom scanned with Cu1-filter are displayed; (a) No correction, (b) scatter
Development of a novel cell sorting method that samples population diversity in flow cytometry.
Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L
2015-11-01
Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.
[Research strategies in standard decoction of medicinal slices].
Chen, Shi-Lin; Liu, An; Li, Qi; Toru, Sugita; Zhu, Guang-Wei; Sun, Yi; Dai, Yun-Tao; Zhang, Jun; Zhang, Tie-Jun; Takehisa, Tomoda; Liu, Chang-Xiao
2016-04-01
This paper discusses the research situation of the standard decoction of medicinal slices at home and abroad. Combined with the experimental data, the author proposes that the standard decoction of medicinal slices is made of single herb using standard process which should be guided by the theory of traditional Chinese medicine, based on clinical practice and referred to modern extraction method with a standard process. And the author also proposes the principles of establishing the specification of process parameters and quality standards and established the basis of drug efficacy material and biological reference. As a standard material and standard system, the standard decoction of medicinal slices can provide standards for clinical medication, standardize the use of the new type of medicinal slices especially for dispensing granules, which were widely used in clinical. It can ensure the accuracy of drugs and consistency of dose, and to solve current supervision difficulties. Moreover the study of standard decoction of medicinal slices will provide the research on dispensing granules, traditional Chinese medicine prescription standard decoction and couplet medicines standard decoction a useful reference. Copyright© by the Chinese Pharmaceutical Association.
Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han
2010-01-01
The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714
Long-Term Tissue Culture of Adult Brain and Spleen Slices on Nanostructured Scaffolds.
Kallendrusch, Sonja; Merz, Felicitas; Bechmann, Ingo; Mayr, Stefan G; Zink, Mareike
2017-05-01
Long-term tissue culture of adult mammalian organs is a highly promising approach to bridge the gap between single cell cultures and animal experiments, and bears the potential to reduce in vivo studies. Novel biomimetic materials open up new possibilities to maintain the complex tissue structure in vitro; however, survival times of adult tissues ex vivo are still limited to a few days with established state-of-the-art techniques. Here, it is demonstrated that TiO 2 nanotube scaffolds with specific tissue-tailored characteristics can serve as superior substrates for long-term adult brain and spleen tissue culture. High viability of the explants for at least two weeks is achieved and compared to tissues cultured on standard polytetrafluoroethylene (PTFE) membranes. Histological and immunohistochemical staining and live imaging are used to investigate tissue condition after 5 and 14 d in vitro, while environmental scanning electron microscopy qualifies the interaction with the underlying scaffold. In contrast to tissues cultured on PTFE membranes, enhanced tissue morphology is detected in spleen slices, as well as minor cell death in neuronal tissue, both cultured on nanotube scaffolds. This novel biomimetic tissue model will prove to be useful to address fundamental biological and medical questions from tissue regeneration up to tumor progression and therapeutic approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applicability of three-dimensional imaging techniques in fetal medicine*
Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson
2016-01-01
Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540
Goldberg, J A; Bradnam, M S; Kerr, D J; McKillop, J H; Bessent, R G; McArdle, C S; Willmott, N; George, W D
1987-12-01
As intra-arterial chemotherapy for liver metastases of colorectal origin becomes accepted, methods of further improving drug delivery to the tumour have been devised. Degradable microspheres have been shown to reduce regional blood flow by transient arteriolar capillary block, thereby improving uptake of a co-administered drug, when injected into the hepatic artery. In our study of five patients, we combined hepatic arterial perfusion scintigraphy (HAPS) and SPECT to assess the localization of approximately 1 X 10(5) labelled microspheres of human serum albumin (99Tcm MSA) in tumour. In addition, in three patients, we assessed the effect of an intra-arterial infusion of the vasoactive agent angiotension II during HAPS. Results were interpreted by comparing transaxial slices with corresponding slices of a tin colloid liver-spleen scan. Two of five patients showed good localization of 99Tcm MSA in tumour without an angiotensin II infusion. Of the three patients receiving angiotensin II, all showed good tumour targetting with the vasoconstrictor compared with only one of these three before its use. Thus, hepatic arterial infusion of angiotensin II greatly improves microsphere localization in tumour in some patients with colorectal liver metastases. This technique may be useful in the assessment of tumour targetting before and during locoregional therapy.
Automated Generation of 3D Volcanic Gas Plume Models for Geobrowsers
NASA Astrophysics Data System (ADS)
Wright, T. E.; Burton, M.; Pyle, D. M.
2007-12-01
A network of five UV spectrometers on Etna automatically gathers column amounts of SO2 during daylight hours. Near-simultaneous scans from adjacent spectrometers, comprising 210 column amounts in total, are then converted to 2D slices showing the spatial distribution of the gas by tomographic reconstruction. The trajectory of the plume is computed using an automatically-submitted query to NOAA's HYSPLIT Trajectory Model. This also provides local estimates of air temperature, which are used to determine the atmospheric stability and therefore the degree to which the plume is dispersed by turbulence. This information is sufficient to construct an animated sequence of models which show how the plume is advected and diffused over time. These models are automatically generated in the Collada Digital Asset Exchange format and combined into a single file which displays the evolution of the plume in Google Earth. These models are useful for visualising and predicting the shape and distribution of the plume for civil defence, to assist field campaigns and as a means of communicating some of the work of volcano observatories to the public. The Simultaneous Algebraic Reconstruction Technique is used to create the 2D slices. This is a well-known method, based on iteratively updating a forward model (from 2D distribution to column amounts). Because it is based on a forward model, it also provides a simple way to quantify errors.
Heart deformation analysis: measuring regional myocardial velocity with MR imaging.
Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C
2016-07-01
The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure.
What are the potential advantages and disadvantages of volumetric CT scanning?
Voros, Szilard
2009-01-01
After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.
Assessment of prostate cancer detection with a visual-search human model observer
NASA Astrophysics Data System (ADS)
Sen, Anando; Kalantari, Faraz; Gifford, Howard C.
2014-03-01
Early staging of prostate cancer (PC) is a significant challenge, in part because of the small tumor sizes in- volved. Our long-term goal is to determine realistic diagnostic task performance benchmarks for standard PC imaging with single photon emission computed tomography (SPECT). This paper reports on a localization receiver operator characteristic (LROC) validation study comparing human and model observers. The study made use of a digital anthropomorphic phantom and one-cm tumors within the prostate and pelvic lymph nodes. Uptake values were consistent with data obtained from clinical In-111 ProstaScint scans. The SPECT simulation modeled a parallel-hole imaging geometry with medium-energy collimators. Nonuniform attenua- tion and distance-dependent detector response were accounted for both in the imaging and the ordered-subset expectation-maximization (OSEM) iterative reconstruction. The observer study made use of 2D slices extracted from reconstructed volumes. All observers were informed about the prostate and nodal locations in an image. Iteration number and the level of postreconstruction smoothing were study parameters. The results show that a visual-search (VS) model observer correlates better with the average detection performance of human observers than does a scanning channelized nonprewhitening (CNPW) model observer.
Zivkovic, Irena; Scheffler, Klaus
2015-08-01
We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.
A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.
Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang
2013-02-01
The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Yuan, Jing; Wang, Luxin
2018-06-19
Kiwifruit (Actinidia deliciosa) is a high-acidity fruit, with two varieties available on the market. One is the green-fleshed, fuzzy, sweet but tangy-tasting kiwifruit, and the other is the yellow-fleshed variety called "golden" kiwifruit. While the whole kiwifruit is sold at room temperature at grocery stores, sliced kiwifruit is usually sold as a part of fruit salad in the refrigerated section. The survival of a five-strain Escherichia coli O157:H7 cocktail, a five-strain Salmonella cocktail, and a five-strain Listeria monocytogenes cocktail was evaluated on whole and sliced green and golden kiwifruit. Two inoculation levels were tested (∼7 and ∼4 Log colony-forming unit (CFU)/kiwi). A significantly higher amount of wet inoculum was attached to the green kiwifruit than to the golden kiwifruit (p < 0.05). The scanning electron microscope examination showed that pathogens can attach on both the surface and the hair structure of green kiwi skin. At room temperature, all three pathogens survived for 30 days on whole kiwifruit. Although the pH of sliced kiwifruit was low (∼3.5), all three pathogens survived on sliced kiwifruit for 7 days when stored at 4°C. These results highlight the importance of preventing contamination of fresh fruit during the preharvest and processing stages.
A dual-view digital tomosynthesis imaging technique for improved chest imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng
Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of themore » reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values computed using the digital chest phantom or the CBCT images as the reference in the simulation and experimental study, respectively. High-contrast wires with vertical, oblique, and horizontal orientations in a PA view plane were also imaged to investigate the spatial resolutions and how the wire signals spread in the PA view and lateral view slice images. Results: Both the digital phantom images (simulated) and the anthropomorphic phantom images (experimentally generated) demonstrated that the dual-view DTS technique resulted in improved spatial resolution in the depth (PA) direction, more accurate representation of the anatomy, and significantly reduced artifacts. The RMSD values corroborate well with visual observations with substantially lower RMSD values measured for the dual-view DTS images as compared to those measured for the single-view DTS images. The imaging experiment with the high-contrast wires shows that while the vertical and oblique wires could be resolved in the lateral view in both single- and dual-view DTS images, the horizontal wire could only be resolved in the dual-view DTS images. This indicates that with single-view DTS, the wire signals spread liberally to off-fulcrum planes and generated wire shadow there. Conclusions: The authors have demonstrated both visually and quantitatively that the dual-view DTS technique can be used to achieve more accurate rendition of the anatomy and to obtain slice images with improved resolution and reduced artifacts as compared to the single-view DTS technique, thus allowing the 3D image data to be viewed in views other than the PA view. These advantages could make the dual-view DTS technique useful in situations where better separation of the objects-of-interest from the off-fulcrum structures or more accurate 3D rendition of the anatomy are required while a regular CT examination is undesirable due to radiation dose considerations.« less
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1998-04-01
A combined long-term measurement and recording system for neurotransmission research of brain slices is presented in this study. This system, based on the IBM PC or compatible computer, is capable of simultaneously measuring and recording both single-unit neural electropotential signals and the electrochemical signals of neurotransmitter efflux from the same neuron in a brain slice for long periods of time (time limited largely by hard disk capacity, 100 h or more not being unreasonable with contemporary hardware) using a single carbon microelectrode for both measurements. The combined long-term recording system uses a simple switching circuit to switch periodically the single microelectrode between two data acquisition subsystems, one for electrochemical data and one for electrophysiological data. The simple switching circuit separates the electrophysiological signals and electrochemical signals, overcoming the traditional interference problem caused by the two different measuring techniques. Software designed for the proposed system allows easy reconstruction of the full time course of the compressed measured data and easy, simultaneous display of both types of signals on the same time scale. On-line and recorded displays are available. Test results of a practical implementation of the proposed system verify that the combined long-term recording system meets actual requirements for electrophysiological and neurochemical research.
Park, Jong Kang; Rowlands, Christopher J; So, Peter T C
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484
Navigation-supported diagnosis of the substantia nigra by matching midbrain sonography and MRI
NASA Astrophysics Data System (ADS)
Salah, Zein; Weise, David; Preim, Bernhard; Classen, Joseph; Rose, Georg
2012-03-01
Transcranial sonography (TCS) is a well-established neuroimaging technique that allows for visualizing several brainstem structures, including the substantia nigra, and helps for the diagnosis and differential diagnosis of various movement disorders, especially in Parkinsonian syndromes. However, proximate brainstem anatomy can hardly be recognized due to the limited image quality of B-scans. In this paper, a visualization system for the diagnosis of the substantia nigra is presented, which utilizes neuronavigated TCS to reconstruct tomographical slices from registered MRI datasets and visualizes them simultaneously with corresponding TCS planes in realtime. To generate MRI tomographical slices, the tracking data of the calibrated ultrasound probe are passed to an optimized slicing algorithm, which computes cross sections at arbitrary positions and orientations from the registered MRI dataset. The extracted MRI cross sections are finally fused with the region of interest from the ultrasound image. The system allows for the computation and visualization of slices at a near real-time rate. Primary tests of the system show an added value to the pure sonographic imaging. The system also allows for reconstructing volumetric (3D) ultrasonic data of the region of interest, and thus contributes to enhancing the diagnostic yield of midbrain sonography.
Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-02-26
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.
Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method
Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-01-01
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J
2011-10-07
Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.
Noninvasive coronary artery angiography using electron beam computed tomography
NASA Astrophysics Data System (ADS)
Rumberger, John A.; Rensing, Benno J.; Reed, Judd E.; Ritman, Erik L.; Sheedy, Patrick F., II
1996-04-01
Electron beam computed tomography (EBCT), also known as ultrafast-CT or cine-CT, uses a unique scanning architecture which allows for multiple high spatial resolution electrocardiographic triggered images of the beating heart. A recent study has demonstrated the feasibility of qualitative comparisons between EBCT derived 3D coronary angiograms and invasive angiography. Stenoses of the proximal portions of the left anterior descending and right coronary arteries were readily identified, but description of atherosclerotic narrowing in the left circumflex artery (and distal epicardial disease) was not possible with any degree of confidence. Although these preliminary studies support the notion that this approach has potential, the images overall were suboptimal for clinical application as an adjunct to invasive angiography. Furthermore, these studies did not examine different methods of EBCT scan acquisition, tomographic slice thicknesses, extent of scan overlap, or other segmentation, thresholding, and interpolation algorithms. Our laboratory has initiated investigation of these aspects and limitations of EBCT coronary angiography. Specific areas of research include defining effects of cardiac orientation; defining the effects of tomographic slice thickness and intensity (gradient) versus positional (shaped based) interpolation; and defining applicability of imaging each of the major epicardial coronary arteries for quantitative definition of vessel size, cross-sectional area, taper, and discrete vessel narrowing.
Reproducibility of radiomics for deciphering tumor phenotype with imaging
NASA Astrophysics Data System (ADS)
Zhao, Binsheng; Tan, Yongqiang; Tsai, Wei-Yann; Qi, Jing; Xie, Chuanmiao; Lu, Lin; Schwartz, Lawrence H.
2016-03-01
Radiomics (radiogenomics) characterizes tumor phenotypes based on quantitative image features derived from routine radiologic imaging to improve cancer diagnosis, prognosis, prediction and response to therapy. Although radiomic features must be reproducible to qualify as biomarkers for clinical care, little is known about how routine imaging acquisition techniques/parameters affect reproducibility. To begin to fill this knowledge gap, we assessed the reproducibility of a comprehensive, commonly-used set of radiomic features using a unique, same-day repeat computed tomography data set from lung cancer patients. Each scan was reconstructed at 6 imaging settings, varying slice thicknesses (1.25 mm, 2.5 mm and 5 mm) and reconstruction algorithms (sharp, smooth). Reproducibility was assessed using the repeat scans reconstructed at identical imaging setting (6 settings in total). In separate analyses, we explored differences in radiomic features due to different imaging parameters by assessing the agreement of these radiomic features extracted from the repeat scans reconstructed at the same slice thickness but different algorithms (3 settings in total). Our data suggest that radiomic features are reproducible over a wide range of imaging settings. However, smooth and sharp reconstruction algorithms should not be used interchangeably. These findings will raise awareness of the importance of properly setting imaging acquisition parameters in radiomics/radiogenomics research.
Petrović, Kosta; Turkalj, Ivan; Stojanović, Sanja; Vucaj-Cirilović, Viktorija; Nikolić, Olivera; Stojiljković, Dragana
2013-08-01
Computerized tomography (CT), especially multidetector CT (MDCT), has had a revolutionary impact in diagnostic in traumatized patients. The aim of the study was to identify and compare the frequency of injuries to bone structures of the thorax displayed with 5-mm-thick axial CT slices and thin-slice (MDCT) examination with the use of 3D reconstructions, primarily multiplanar reformations (MPR). This prospective study included 61 patients with blunt trauma submitted to CT scan of the thorax as initial assessment. The two experienced radiologists inde pendently and separately described the findings for 5-mm-thick axial CT slices (5 mm CT) as in monoslice CT examination; MPR and other 3D reconstructions along with thin-slice axial sections which were available in modern MDCT technologies. After describing thin-slice examination in case of disagreement in the findings, the examiners redescribed thin-slice examination together which was ultimately considered as a real, true finding. No statistically significant difference in interobserver evaluation of 5 mm CT examination was recorded (p > 0.05). Evaluation of fractures of sternum with 5 mm CT and MDCT showed a statistically significant difference (p < 0.05) in favor of better display of injury by MDCT examination. MDCT is a powerful diagnostic tool that can describe higher number of bone fractures of the chest in traumatized patients compared to 5 mm CT, especially in the region of sternum for which a statistical significance was obtained using MPR. Moreover, the importance of MDCT is also set by easier and more accurate determination of the level of bone injury.
Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.
Hammel, Ilan; Anaby, Debbie
2007-09-01
The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.
2012-01-01
Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247
Permeability of Dental Adhesives – A SEM Assessment
Malacarne-Zanon, Juliana; de Andrade e Silva, Safira M.; Wang, Linda; de Goes, Mario F.; Martins, Adriano Luis; Narvaes-Romani, Eliene O.; Anido-Anido, Andrea; Carrilho, Marcela R. O.
2010-01-01
Objectives: To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. Methods: Seven adhesive systems were evaluated: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond – SE); three two-step etch-and-rinse systems (Single Bond 2 – SB; Excite – EX; One-Step – OS); and two single-step self-etching adhesives (Adper Prompt – AP; One-Up Bond F – OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. Results: MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, “water-trees” were observed all over the specimens. Conclusions: Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones. PMID:20922163
Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng
2012-06-18
By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels.
Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2016-01-01
Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.
Quantification of dental prostheses on cone‐beam CT images by the Taguchi method
Kuo, Rong‐Fu; Fang, Kwang‐Ming; TY, Wong
2016-01-01
The gray values accuracy of dental cone‐beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone‐beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis‐free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis‐free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1–9 were below 12% and gray value differences for ROIs 13–18 away from prostheses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant‐supported titanium prosthesis, and between 46% and 59% for regions between double implant‐supported, nickel‐chromium alloys (Ni‐Cr) prostheses. Quantification of the effect of prostheses and scanning parameters on dental CBCT gray values was assessed. PACS numbers: 87.59.bd, 87.57Q PMID:26894354
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
Contactless optical scanning of fingerprints with 180 degrees view.
Palma, J; Liessner, C; Mil'shtein, S
2006-01-01
Fingerprint recognition technology is an integral part of criminal investigations. It is the basis for the design of numerous security systems in both the private and public sectors. In a recent study emulating the fingerprinting procedure with widely used optical scanners, it was found that, on average, the distance between ridges decreases about 20% when a finger is positioned on a scanner. Using calibrated silicon pressure sensors, the authors scanned the distribution of pressure across a finger, pixel by pixel, and also generated maps of the average pressure distribution during fingerprinting. Controlled loading of a finger demonstrated that it is impossible to reproduce the same distribution of pressure across a given finger during repeated fingerprinting procedures. Based on this study, a novel method of scanning the fingerprint with more than a 180 degrees view was developed. Using a camera rotated around the finger, small slices of the entire image of the finger were acquired. Equal sized slices of the image were processed with a special program assembling a more than 180 degrees view of the finger. Comparison of two images of the same fingerprint, namely the registered and actual images, could be performed by a new algorithm based on the symmetry of the correlation function. The novel method is the first contactless optical scanning technique to view 180 degrees of a fingerprint without moving the finger. In a machine which is under design, it is expected that the full view of one finger would be acquired in about a second.
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Wu, Caiyun; Christie, Jason; Lederer, David J.
2016-03-01
Chest fat estimation is important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of this paper is to seek answers to the following questions related to chest fat quantification on single slice versus whole volume CT, which have not been addressed in the literature. What level of correlation exists between total chest fat volume and fat areas measured on single abdominal and thigh slices? What is the anatomic location in the chest where maximal correlation of fat area with fat volume can be expected? Do the components of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have the same area-to-volume correlative behavior or do they differ? The SAS approach includes two steps: calibration followed by transformation which will map the patient slice locations non-linearly to SAS. The optimal slice locations found for SAT and VAT based on SAS are different and at the mid-level of the T8 vertebral body for SAT and mid-level of the T7 vertebral body for VAT. Fat volume and area on optimal slices for SAT and VAT are correlated with Pearson correlation coefficients of 0.97 and 0.86, respectively. The correlation of chest fat volume with abdominal and thigh fat areas is weak to modest.
Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A
2017-11-01
The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk
2010-05-01
Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.
An overview of 5G network slicing architecture
NASA Astrophysics Data System (ADS)
Chen, Qiang; Wang, Xiaolei; Lv, Yingying
2018-05-01
With the development of mobile communication technology, the traditional single network model has been unable to meet the needs of users, and the demand for differentiated services is increasing. In order to solve this problem, the fifth generation of mobile communication technology came into being, and as one of the key technologies of 5G, network slice is the core technology of network virtualization and software defined network, enabling network slices to flexibly provide one or more network services according to users' needs[1]. Each slice can independently tailor the network functions according to the requirements of the business scene and the traffic model and manage the layout of the corresponding network resources, to improve the flexibility of network services and the utilization of resources, and enhance the robustness and reliability of the whole network [2].
Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersemans, Mathias, E-mail: Mathias.Kersemans@UGent.be; Lammens, Nicolas; Degrieck, Joris
2015-12-07
We report on the conversion of ultrasound into light by the process of piezo-luminescence in epoxy with embedded BaSi{sub 2}O{sub 2}N{sub 2}:Eu as active component. We exploit this acoustically induced piezo-luminescence to visualize several cross-sectional slices of the radiation field of an ultrasonic piston transducer (f = 3.3 MHz) in both the near-field and the far-field. Simply combining multiple slices then leads to a fast representation of the 3D spatial radiation field. We have confronted the luminescent results with both scanning hydrophone experiments and digital acoustic holography results, and obtained a good correlation between the different approaches.
Visualisation of the temporary cavity by computed tomography using contrast material.
Schyma, Christian; Hagemeier, Lars; Greschus, Susanne; Schild, Hans; Madea, Burkhard
2012-01-01
The temporary cavity of a missile produces radial tears in ordnance gelatine, which correlate to the energy transfer. Computed tomography is a useful and non-destructive method to examine gelatine blocks. However, the tears give only few radiocontrast by air filling, which decreases with the time past shooting. Therefore, systematically, a radiocontrast material was searched to enhance the contrast. Different contrast materials were amalgamated to acryl paint, and about 7 g was sealed in a foil bag, which was integrated in the front of a standard 10% gelatine cylinder. Shots with Action-5 expanding bullets were performed from a 5-m distance. Gelatine was scanned by multi-slice computed tomography. The multiplanar reconstructed images were compared to mechanically cut slices of 1 cm thickness. It was shown experimentally that iodine containing water-soluble contrast material did not give sufficient contrast and caused diffusion artefacts. Best results were obtained by barium sulphate emulsion. The amount of acryl paint was sufficient to colour the tears for optical scanning. The radiocontrast of barium leads to satisfying imaging of tears and allowed the creation of a three-dimensional reconstruction of the temporary cavity. Comparison of optical and radiological results showed an excellent correlation, but absolute measures in computed tomographic (CT) images remained lower compared with optically gathered values in the gelatine slices. Combination of paint and contrast material for CT examination will facilitate the evaluation of complex ballistic models and increase accuracy.
NASA Astrophysics Data System (ADS)
Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma
2012-03-01
Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.
Munshi, Anusheel; Paul, Sayan; Sarkar, Biplab; Bala, Pinkey; Ganesh, Tharmar; Sen, Ishita B; Pant, Vineet; Mohanti, Bidhu K
2016-01-01
The use of positron emission tomography (PET) for radiotherapy planning purposes has become increasingly important in the last few years.In the current study, we compared the SUV values of images at the PET CT console to the SUV values obtained at the RT planning workstation. The PET-CT cylindrical body phantom was filled with a uniform 18F solution of 5.3. ± 0.27 kBq/mL radioactivity concentration. PET-CT scans were performed on a16 slice Time of Flight system. On a single day, the three consecutive scans were done at three time points 15 minutes apart to generate time points image data sets titled T1, T2, and T3. SUV calculations were performed by drawing region of interest. (ROI) encompassing the entire hot spot on each slice on the PET-CT console and the iPlan workstation. Minimum SUV, Maximum SUV and the Mean SUV were recorded. Statistical analysis was done using the SPSS software. (SPSS Inc.) (Version 18). The absolute difference in average max SUV values i.e. Max (PET-CT) - Max (iPlan) for the time points T1, T2 and T3 were -0.168 (SD 0.175), -0.172 (SD 0.172) and -0.178 (SD 0.169). The difference in the minimum SUV values were -0.513 (SD 0.428), -0.311 (SD 0.358) and -0.303 (SD 0.322), respectively. Finally, the difference in the mean SUV values were -0.107 (SD 0.040), -0.096 (SD 0.067) and -0.072 (SD 0.044), respectively. Our study found out that the average difference in the two systems for maximum SUV values was < 0.2 absolute units.Our study suggests good reproducibility of SUV between the two systems. The relevance of these findings would be of seminal importance in current and future SUV-based PET-CT-based contouring in treatment planning systems.
NASA Astrophysics Data System (ADS)
Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi
2016-03-01
Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.
Ekizoglu, Oguzhan; Inci, Ercan; Hocaoglu, Elif; Sayin, Ibrahim; Kayhan, Fatma Tulin; Can, Ismail Ozgur
2014-05-01
Gender determination is an important step in identification. For gender determination, anthropometric evaluation is one of the main forensic evaluations. In the present study, morphometric analysis of maxillary sinuses was performed to determine gender. For morphometric analysis, coronal and axial paranasal sinus computed tomography (CT) scan with 1-mm slice thickness was used. For this study, 140 subjects (70 women and 70 men) were enrolled (age ranged between 18 and 63). The size of each subject's maxillary sinuses was measured in anteroposterior, transverse, cephalocaudal, and volume directions. In each measurement, the size of the maxillary sinus is significantly small in female gender (P < 0.001). When discrimination analysis was performed, the accuracy rate was detected as 80% for women and 74.3% for men with an overall rate of 77.15%. With the use of 1-mm slice thickness CT, morphometric analysis of maxillary sinuses will be helpful for gender determination.
Geometry Processing of Conventionally Produced Mouse Brain Slice Images.
Agarwal, Nitin; Xu, Xiangmin; Gopi, M
2018-04-21
Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene-Donnelly, K; Ogden, K
Purpose: To evaluate the impact of commercially available extension plates on Hounsfield Unit (HU) values in the ACR CT accreditation phantom (Model 464, Gammex Inc., Middleton, Wi). The extension plates are intended to improve water HU values in scanners where the traditional solution involves scanning the phantom with an adjacent water or CTDI phantom. Methods: The Model 464 phantom was scanned on 9 different CT scanners at 8 separate sites representing 16 and 64 slice MDCT technology from four CT manufacturers. The phantom was scanned with and without the extension plates (Gammex 464 EXTPLT-KIT) in helical and axial modes. Amore » water phantom was also scanned to verify water HU calibration. Technique was 120 kV tube potential, 350 mAs, and 210 mm display field of view. Slice thickness and reconstruction algorithm were based on site clinical protocols. The widest available beam collimation was used. Regions of interest were drawn on the HU test objects in Module 1 of the phantom and mean values recorded. Results: For all axial mode scans, water HU values were within limits with or without the extension plates. For two scanners (both Lightspeed VCT, GE Medical Systems, Waukesha WI), axial mode bone HU values were above the specified range both with and without the extension plates though they were closer to the specified range with the plates installed. In helical scan mode, two scanners (both GE Lightspeed VCT) had water HU values above the specified range without the plates installed. With the plates installed, the water HU values were within range for all scanners in all scan modes. Conclusion: Using the plates, the Lightspeed VCT scanners passed the water HU test when scanning in helical mode. The benefit of the extension plates was evident in helical mode scanning with GE scanners using a nominal 4 cm beam. Disclosure: The extension plates evaluated in this work were provided free of charge to the authors. The authors have no other financial interest in Gammex Inc.« less
Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A
2017-04-01
To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the gravitational direction. Repeatability for three volunteers was within 0.7% for T1 and 1.9% for T2*. 3D T1 and T2* maps of the entire lung can be obtained in a single scan of ∼10 min with a resolution of 2.5 × 2.5 × 6 mm 3 . 2 J. Magn. Reson. Imaging 2017;45:1097-1104. 2016 International Society for Magnetic Resonance in Medicine.
Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Duker, Jay S; Fujimoto, James G; Schuman, Joel S; Rehg, James M
2011-10-21
To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module.
Griessenauer, Christoph J.; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Garris, Paul A.; Lee, Kendall H.
2010-01-01
Object We previously reported the development of a Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation (DBS)-related neuromodulatory effects on neurotransmitter systems. WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, we incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring. Methods FSCV optimized for the detection of serotonin consisted of an N-shaped waveform scanned linearly from a resting potential of, in V, +0.2 to +1.0, then to −0.1 and back to +0.2 at a rate of 1000 V/s. Proof of principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices. Results Flow cell injection analysis demonstrated that the N waveform applied at a scan rate of 1000 V/s significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected sub-second serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation. Conclusion WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of DBS for psychiatric disease. PMID:20415521
Liu, Yu-Ying; Chen, Mei; Wollstein, Gadi; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.; Rehg, James M.
2011-01-01
Purpose. To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. Methods. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. Results. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. Conclusions. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module. PMID:21911579
A method for smoothing segmented lung boundary in chest CT images
NASA Astrophysics Data System (ADS)
Yim, Yeny; Hong, Helen
2007-03-01
To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.
High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.
Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E
2012-01-01
To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.
Direct single-layered fabrication of 3D concavo convex patterns in nano-stereolithography
NASA Astrophysics Data System (ADS)
Lim, T. W.; Park, S. H.; Yang, D. Y.; Kong, H. J.; Lee, K. S.
2006-09-01
A nano-surfacing process (NSP) is proposed to directly fabricate three-dimensional (3D) concavo convex-shaped microstructures such as micro-lens arrays using two-photon polymerization (TPP), a promising technique for fabricating arbitrary 3D highly functional micro-devices. In TPP, commonly utilized methods for fabricating complex 3D microstructures to date are based on a layer-by-layer accumulating technique employing two-dimensional sliced data derived from 3D computer-aided design data. As such, this approach requires much time and effort for precise fabrication. In this work, a novel single-layer exposure method is proposed in order to improve the fabricating efficiency for 3D concavo convex-shaped microstructures. In the NSP, 3D microstructures are divided into 13 sub-regions horizontally with consideration of the heights. Those sub-regions are then expressed as 13 characteristic colors, after which a multi-voxel matrix (MVM) is composed with the characteristic colors. Voxels with various heights and diameters are generated to construct 3D structures using a MVM scanning method. Some 3D concavo convex-shaped microstructures were fabricated to estimate the usefulness of the NSP, and the results show that it readily enables the fabrication of single-layered 3D microstructures.
Matta, Ragai E; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan
2012-10-01
Techniques currently applied to determine the marginal accuracy of dental crown restorations yield inadequate information. This investigation aimed to test a new virtual approach for determining the precision of fit of single-crown copings. Zirconia single crown copings were manufactured on 10 gypsum, single-tooth master casts with two different established computer-aided design/computer-assisted manufacture (CAD/CAM) systems (groups A and B). After cementation, the circumferential fit was assessed with an industrial noncontact scanner and virtual 3D analysis, following a triple-scan protocol. Marginal fit was determined by virtual sectioning; each abutment-coping complex was digitally sliced in 360 vertical sections (1 degree per section). Standardized measurement distances for analyzing the marginal fit (z, xy, xyz) were selected, and a crosshair alignment was utilized to determine whether crowns were horizontally and/or vertically too large or small. The Mann-Whitney test was applied to test for differences between groups. Significant differences in the xy direction (P = .008) were measured between groups. Group A showed a greater number of horizontally overextended margins and a higher frequency of xy distances greater than 150 Μm, in addition to a tendency for excessive z distances (P = .095). The mean marginal gap values were clinically acceptable in the present investigation; however, a full circumferential analysis revealed significant differences in marginal coping quality.
An automatic approach for 3D registration of CT scans
NASA Astrophysics Data System (ADS)
Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas
2012-03-01
CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Z; Reyhan, M; Huang, Q
Purpose: The calibration of the Hounsfield units (HU) to relative proton stopping powers (RSP) is a crucial component in assuring the accurate delivery of proton therapy dose distributions to patients. The purpose of this work is to assess the uncertainty of CT calibration considering the impact of CT slice thickness, position of the plug within the phantom and phantom sizes. Methods: Stoichiometric calibration method was employed to develop the CT calibration curve. Gammex 467 tissue characterization phantom was scanned in Tomotherapy Cheese phantom and Gammex 451 phantom by using a GE CT scanner. Each plug was individually inserted into themore » same position of inner and outer ring of phantoms at each time, respectively. 1.25 mm and 2.5 mm slice thickness were used. Other parameters were same. Results: HU of selected human tissues were calculated based on fitted coefficient (Kph, Kcoh and KKN), and RSP were calculated according to the Bethe-Bloch equation. The calibration curve was obtained by fitting cheese phantom data with 1.25 mm thickness. There is no significant difference if the slice thickness, phantom size, position of plug changed in soft tissue. For boney structure, RSP increases up to 1% if the phantom size and the position of plug changed but keep the slice thickness the same. However, if the slice thickness varied from the one in the calibration curve, 0.5%–3% deviation would be expected depending on the plug position. The Inner position shows the obvious deviation (averagely about 2.5%). Conclusion: RSP shows a clinical insignificant deviation in soft tissue region. Special attention may be required when using a different slice thickness from the calibration curve for boney structure. It is clinically practical to address 3% deviation due to different thickness in the definition of clinical margins.« less
Optimal slice thickness for cone-beam CT with on-board imager
Seet, KYT; Barghi, A; Yartsev, S; Van Dyk, J
2010-01-01
Purpose: To find the optimal slice thickness (Δτ) setting for patient registration with kilovoltage cone-beam CT (kVCBCT) on the Varian On Board Imager (OBI) system by investigating the relationship of slice thickness to automatic registration accuracy and contrast-to-noise ratio. Materials and method: Automatic registration was performed on kVCBCT studies of the head and pelvis of a RANDO anthropomorphic phantom. Images were reconstructed with 1.0 ≤ Δτ (mm) ≤ 5.0 at 1.0 mm increments. The phantoms were offset by a known amount, and the suggested shifts were compared to the known shifts by calculating the residual error. A uniform cylindrical phantom with cylindrical inserts of various known CT numbers was scanned with kVCBCT at 1.0 ≤ Δτ (mm) ≤ 5.0 at increments of 0.5 mm. The contrast-to-noise ratios for the inserts were measured at each Δτ. Results: For the planning CT slice thickness used in this study, there was no significant difference in residual error below a threshold equal to the planning CT slice thickness. For Δτ > 3.0 mm, residual error increased for both the head and pelvis phantom studies. The contrast-to-noise ratio is proportional to slice thickness until Δτ = 2.5 mm. Beyond this point, the contrast-to-noise ratio was not affected by Δτ. Conclusion: Automatic registration accuracy is greatest when 1.0 ≤ Δτ (mm) ≤ 3.0 is used. Contrast-to-noise ratio is optimal for the 2.5 ≤ Δτ (mm) ≤ 5.0 range. Therefore 2.5 ≤ Δτ (mm) ≤ 3.0 is recommended for kVCBCT patient registration where the planning CT is 3.0 mm. PMID:21611047
Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing
2005-10-01
To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.
Generalized Fourier slice theorem for cone-beam image reconstruction.
Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang
2015-01-01
The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is
Single step synthesis of high-purity CoO nanocrystals.
Yang, Huaming; Ouyang, Jing; Tang, Aidong
2007-07-19
Both octahedral and slice-shaped cubic cobalt monoxide (CoO) nanocrystals with narrow size distributions have been successfully synthesized by a simple solvothermal route. It was found that conditions of the solvothermal treatment showed obvious effects on the formation and purity of the as-synthesized CoO nanocrystals, only when cobalt acetate was used as the cobalt source and when temperature reached 190 degrees C could CoO be produced; also, freeze-drying was necessary for obtaining pure CoO. Size of the CoO nanocrystals varied from 30 to 130 nm. Morphology of the products could be controlled by simply changing the type of surfactant in solvent, and the octahedral CoO nanocrystals showed rounded turns. Purity of the products was detected by intensive X-ray photoelectron spectroscopy (XPS) investigation and Fourier transform infrared spectroscopy (FTIR) combined with differential scanning calorimetry/thermal gravity (DSC/TG). The results indicated an absence of unexpected trivalence cobalt series on surface of the samples, thanks to the protection of the surface by trace amount of carbonate ions, adsorbed hydroxylation, and surfactant with a maximum thickness of 2 nm, which were proved by high-resolution transmission electron microscopy (HRTEM). The as-synthesized CoO nanoparticles were added into positive electrode of Ni/MH batteries, and discharge/charge cycling tests were performed under different rates from 0.1C to 5.0C. The results indicated that the specific capacities of batteries with addition of 5% octahedral or slice CoO nanocrystals at 0.1C were 393.3 and 318.1 mAh/g, respectively, which were higher than that without CoO (269.2mAh/g). Specific capacity of battery with addition of 5% octahedral CoO nanocrystals was 40% higher than that without CoO at 5.0C. Octahedral CoO nanocrystals show better electrochemical activity than slice CoO and indicate interesting potential in the field of electrochemical application.
Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data.
Shin, Hoen-Oh; Falck, Christian V; Galanski, Michael
2004-02-01
To cope with the increasing amount of CT data, there is growing interest in direct volume-rendering techniques (VRT) as a diagnostic tool. The aim of this phantom study was to analyze the low-contrast detectability (LCD) of VRT compared with multi-planar reformations (MPR). Soft tissue lesions were simulated by spheres of different diameters (3-8 mm). The average lesion density was 15 HU compared with a background density of 35 HU. Two different CT protocols with 40 and 150 mAs were performed on a multi-detector row CT. The scanning parameters were as following: 140 kV; 2x0.5-mm slice collimation; pitch 2 (table movement per rotation/single slice collimation), and reconstruction with 0.5-mm slice thickness at 0.5-mm interval. A B30 kernel was used for reconstruction. The VRT was performed by mapping Hounsfield values to gray levels equal to a CT window (center: 60 HU; window: 370 HU ). A linear ramp was applied for the opacity transfer function varying the maximum opacity between 0.1 and 1.0. A statistical method based on the Rose model was used to calculate the detection threshold depending on lesion size and image noise. Additionally, clinical data of 2 patients with three liver lesions of different sizes and density were evaluated. In VRT, LCD was most dependent on object size. Regarding lesions larger than 5 mm, VRT is significantly superior to MPR (p<0.05) for all opacity settings. In lesions sized 3-5 mm a maximum opacity level approximately 40-50% showed a near equivalent detectability in VRT and MPR. For higher opacity levels VRT was superior to MPR. Only for 3-mm lesions MPR performed slightly better in low-contrast detectability (p<0.05). Compared with MPR, VRT shows similar performance in LCD. Due to noise suppression effects, it is suited for visualization of data with high noise content.
NASA Astrophysics Data System (ADS)
Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried
2010-02-01
Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.
Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.
1999-01-01
Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000
CT Scans of Soil Specimen Processed in Space
NASA Technical Reports Server (NTRS)
1998-01-01
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
CT Scans of Soil Specimen Processed in Space
NASA Technical Reports Server (NTRS)
1998-01-01
CT scans of the specimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from three orthogonal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: Los Alamos National Laboratory and the University of Colorado at Boulder).
CT Scans of Soil Specimen Processed in Space
NASA Technical Reports Server (NTRS)
1998-01-01
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view depict horizontal slices from top to bottom of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
CT Scans of Soil Specimen Processed in Space
NASA Technical Reports Server (NTRS)
1998-01-01
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. These views depict vertical slices from side to middle of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
Digital forensic osteology--possibilities in cooperation with the Virtopsy project.
Verhoff, Marcel A; Ramsthaler, Frank; Krähahn, Jonathan; Deml, Ulf; Gille, Ralf J; Grabherr, Silke; Thali, Michael J; Kreutz, Kerstin
2008-01-30
The present study was carried out to check whether classic osteometric parameters can be determined from the 3D reconstructions of MSCT (multislice computed tomography) scans acquired in the context of the Virtopsy project. To this end, four isolated and macerated skulls were examined by six examiners. First the skulls were conventionally (manually) measured using 32 internationally accepted linear measurements. Then the skulls were scanned by the use of MSCT with slice thicknesses of 1.25 mm and 0.63 mm, and the 33 measurements were virtually determined on the digital 3D reconstructions of the skulls. The results of the traditional and the digital measurements were compared for each examiner to figure out variations. Furthermore, several parameters were measured on the cranium and postcranium during an autopsy and compared to the values that had been measured on a 3D reconstruction from a previously acquired postmortem MSCT scan. The results indicate that equivalent osteometric values can be obtained from digital 3D reconstructions from MSCT scans using a slice thickness of 1.25 mm, and from conventional manual examinations. The measurements taken from a corpse during an autopsy could also be validated with the methods used for the digital 3D reconstructions in the context of the Virtopsy project. Future aims are the assessment and biostatistical evaluation in respect to sex, age and stature of all data sets stored in the Virtopsy project so far, as well as of future data sets. Furthermore, a definition of new parameters, only measurable with the aid of MSCT data would be conceivable.
Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulin, Kenneth; Urie, Marcia M., E-mail: murie@qarc.or; Cherlow, Joel M.
2010-08-01
Purpose: Variability in computed tomography/magnetic resonance imaging (CT/MR) cranial image registration was assessed using a benchmark case developed by the Quality Assurance Review Center to credential institutions for participation in Children's Oncology Group Protocol ACNS0221 for treatment of pediatric low-grade glioma. Methods and Materials: Two DICOM image sets, an MR and a CT of the same patient, were provided to each institution. A small target in the posterior occipital lobe was readily visible on two slices of the MR scan and not visible on the CT scan. Each institution registered the two scans using whatever software system and method itmore » ordinarily uses for such a case. The target volume was then contoured on the two MR slices, and the coordinates of the center of the corresponding target in the CT coordinate system were reported. The average of all submissions was used to determine the true center of the target. Results: Results are reported from 51 submissions representing 45 institutions and 11 software systems. The average error in the position of the center of the target was 1.8 mm (1 standard deviation = 2.2 mm). The least variation in position was in the lateral direction. Manual registration gave significantly better results than did automatic registration (p = 0.02). Conclusion: When MR and CT scans of the head are registered with currently available software, there is inherent uncertainty of approximately 2 mm (1 standard deviation), which should be considered when defining planning target volumes and PRVs for organs at risk on registered image sets.« less
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks
Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni
2015-01-01
Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298
Bilevel thresholding of sliced image of sludge floc.
Chu, C P; Lee, D J
2004-02-15
This work examined the feasibility of employing various thresholding algorithms to determining the optimal bilevel thresholding value for estimating the geometric parameters of sludge flocs from the microtome sliced images and from the confocal laser scanning microscope images. Morphological information extracted from images depends on the bilevel thresholding value. According to the evaluation on the luminescence-inverted images and fractal curves (quadric Koch curve and Sierpinski carpet), Otsu's method yields more stable performance than other histogram-based algorithms and is chosen to obtain the porosity. The maximum convex perimeter method, however, can probe the shapes and spatial distribution of the pores among the biomass granules in real sludge flocs. A combined algorithm is recommended for probing the sludge floc structure.
Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana
2015-01-01
Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.
2017-01-01
Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878
Randall, David; Joosten, Frank; ten Broek, Richard; Gillott, Richard; Bardhan, Karna Dev; Strik, Chema; Prins, Wiesje; van Goor, Harry; Fenner, John
2017-07-14
A non-invasive diagnostic technique for abdominal adhesions is not currently available. Capture of abdominal motion due to respiration in cine-MRI has shown promise, but is difficult to interpret. This article explores the value of a complimentary diagnostic aid to facilitate the non-invasive detection of abdominal adhesions using cine-MRI. An image processing technique was developed to quantify the amount of sliding that occurs between the organs of the abdomen and the abdominal wall in sagittal cine-MRI slices. The technique produces a 'sheargram' which depicts the amount of sliding which has occurred over 1-3 respiratory cycles. A retrospective cohort of 52 patients, scanned for suspected adhesions, made 281 cine-MRI sagittal slices available for processing. The resulting sheargrams were reported by two operators and compared to expert clinical judgement of the cine-MRI scans. The sheargram matched clinical judgement in 84% of all sagittal slices and 93-96% of positive adhesions were identified on the sheargram. The sheargram displayed a slight skew towards sensitivity over specificity, with a high positive adhesion detection rate but at the expense of false positives. Good correlation between sheargram and absence/presence of inferred adhesions indicates quantification of sliding motion has potential to aid adhesion detection in cine-MRI. Advances in Knowledge: This is the first attempt to clinically evaluate a novel image processing technique quantifying the sliding motion of the abdominal contents against the abdominal wall. The results of this pilot study reveal its potential as a diagnostic aid for detection of abdominal adhesions.
Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.
Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias
2015-06-01
To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.
Walsh, Paul L.; Petrovic, Jelena
2011-01-01
Electrical stimulation is an indispensible tool in studying electrically excitable tissues in neurobiology and neuroendocrinology. In this work, the consequences of high-intensity electrical stimulation on the release of catecholamines from adrenal gland slices were examined with fast-scan cyclic voltammetry at carbon fiber microelectrodes. A biphasic signal, consisting of a fast and slow phase, was observed when electrical stimulations typically used in tissue slices (10 Hz, 350 μA biphasic, 2.0 ms/phase pulse width) were applied to bipolar tungsten-stimulating electrodes. This signal was found to be stimulation dependent, and the slow phase of the signal was abolished when smaller (≤250 μA) and shorter (1 ms/phase) stimulations were used. The slow phase of the biphasic signal was found to be tetrodotoxin and hexamethonium independent, while the fast phase was greatly reduced using these pharmacological agents. Two different types of calcium responses were observed, where the fast phase was abolished by perfusion with a low-calcium buffer while both the fast and slow phases could be modulated when Ca2+ was completely excluded from the solution using EGTA. Perfusion with nifedipine resulted in the reduction of the slow catecholamine release to 29% of the original signal, while the fast phase was only decreased to 74% of predrug values. From these results, it was determined that high-intensity stimulations of the adrenal medulla result in depolarizing not only the splanchnic nerves, but also the chromaffin cells themselves resulting in a biphasic catecholamine release. PMID:21048165
Colorectal cancer screening with virtual colonoscopy
NASA Astrophysics Data System (ADS)
Ge, Yaorong; Vining, David J.; Ahn, David K.; Stelts, David R.
1999-05-01
Early detection and removal of colorectal polyps have been proven to reduce mortality from colorectal carcinoma (CRC), the second leading cause of cancer deaths in the United States. Unfortunately, traditional techniques for CRC examination (i.e., barium enema, sigmoidoscopy, and colonoscopy) are unsuitable for mass screening because of either low accuracy or poor public acceptance, costs, and risks. Virtual colonoscopy (VC) is a minimally invasive alternative that is based on tomographic scanning of the colon. After a patient's bowel is optimally cleansed and distended with gas, a fast tomographic scan, typically helical computed tomography (CT), of the abdomen is performed during a single breath-hold acquisition. Two-dimensional (2D) slices and three-dimensional (3D) rendered views of the colon lumen generated from the tomographic data are then examined for colorectal polyps. Recent clinical studies conducted at several institutions including ours have shown great potential for this technology to be an effective CRC screening tool. In this paper, we describe new methods to improve bowel preparation, colon lumen visualization, colon segmentation, and polyp detection. Our initial results show that VC with the new bowel preparation and imaging protocol is capable of achieving accuracy comparable to conventional colonoscopy and our new algorithms for image analysis contribute to increased accuracy and efficiency in VC examinations.
Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang
2015-01-01
Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.
Two-Photon Imaging with Diffractive Optical Elements
Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael
2009-01-01
Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390
"Textural analysis of multiparametric MRI detects transition zone prostate cancer".
Sidhu, Harbir S; Benigno, Salvatore; Ganeshan, Balaji; Dikaios, Nikos; Johnston, Edward W; Allen, Clare; Kirkham, Alex; Groves, Ashley M; Ahmed, Hashim U; Emberton, Mark; Taylor, Stuart A; Halligan, Steve; Punwani, Shonit
2017-06-01
To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. ADC kurtosis was significantly lower (p < 0.001) in TZ containing significant tumour with ROC-AUC 0.80 (LOO-AUC 0.78); the difference became non-significant following exclusion of significant tumour from single-slice whole TZ-ROI (p = 0.23). T1-entropy was significantly lower (p = 0.004) in TZ containing significant tumour with ROC-AUC 0.70 (LOO-AUC 0.66) and was unaffected by excluding significant tumour from TZ-ROI (p = 0.004). Combining these parameters yielded ROC-AUC 0.86 (LOO-AUC 0.83). Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. • MR textural features of prostate transition zone may discriminate significant prostatic cancer. • Transition zone (TZ) containing significant tumour demonstrates a less peaked ADC histogram. • TZ containing significant tumour reveals higher post-contrast T1-weighted homogeneity. • The utility of MR texture analysis in prostate cancer merits further investigation.
Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.
2012-01-01
WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994
Optimization in modeling the ribs-bounded contour from computer tomography scan
NASA Astrophysics Data System (ADS)
Bilinskas, M. J.; Dzemyda, G.
2016-10-01
In this paper a method for analyzing transversal plane images from computer tomography scans is presented. A mathematical model that describes the ribs-bounded contour was created and the problem of approximation is solved by finding out the optimal parameters of the model in the least-squares sense. Such model would be useful in registration of images independently on the patient position on the bed and on the radio-contrast agent injection. We consider the slices, where ribs are visible, because many important internal organs are located here: liver, heart, stomach, pancreas, lung, etc.
Utility of a scanning densitometer in analyzing remotely sensed imagery
NASA Technical Reports Server (NTRS)
Dooley, J. T.
1976-01-01
The utility of a scanning densitometer for analyzing imagery in the NASA Lewis Research Center's regional remote sensing program was evaluated. Uses studied include: (1) quick-look screening of imagery by means of density slicing, magnification, color coding, and edge enhancement; (2) preliminary category classification of both low- and high-resolution data bases; and (3) quantitative measurement of the extent of features within selected areas. The densitometer was capable of providing fast, convenient, and relatively inexpensive preliminary analysis of aerial and satellite photography and scanner imagery involving land cover, water quality, strip mining, and energy conservation.
Influence of CT automatic tube current modulation on uncertainty in effective dose.
Sookpeng, S; Martin, C J; Gentle, D J
2016-01-01
Computed tomography (CT) scanners are equipped with automatic tube current modulation (ATCM) systems that adjust the current to compensate for variations in patient attenuation. CT dosimetry variables are not defined for ATCM situations and, thus, only the averaged values are displayed and analysed. The patient effective dose (E), which is derived from a weighted sum of organ equivalent doses, will be modified by the ATCM. Values for E for chest-abdomen-pelvis CT scans have been calculated using the ImPACT spreadsheet for patients on five CT scanners. Values for E resulting from the z-axis modulation under ATCM have been compared with results assessed using the same effective mAs values with constant tube currents. Mean values for E under ATCM were within ±10 % of those for fixed tube currents for all scanners. Cumulative dose distributions under ATCM have been simulated for two patient scans using single-slice dose profiles measured in elliptical and cylindrical phantoms on one scanner. Contributions to the effective dose from organs in the upper thorax under ATCM are 30-35 % lower for superficial tissues (e.g. breast) and 15-20 % lower for deeper organs (e.g. lungs). The effect on doses to organs in the abdomen depends on body shape, and they can be 10-22 % higher for larger patients. Results indicate that scan dosimetry parameters, dose-length product and effective mAs averaged over the whole scan can provide an assessment in terms of E that is sufficiently accurate to quantify relative risk for routine patient exposures under ATCM. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas
2015-01-01
Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186
Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas
2015-01-01
To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.
Jia, Ru; Lu, Yi; Yang, Chang-Wei; Luo, Xiao; Han, Ying
2014-10-01
Dentine hypersensitivity is a type of clinical oral disease, which is highly prevalent worldwide. Although there are many materials to treat dentine hypersensitivity, their long-term therapeutic effects are not satisfactory. Therefore, the aim of this research was to observe and identify the biological mineralization of the generation 4.0 polyamidoamine dendrimer on the demineralized dentinal tubules at different time points. 2mm-thick slices were obtained from the cemento-enamel junction of 36 third molar teeth that simulated the condition of sensitivity with acid etching. Slices were treated with generation 4.0 polyamidoamine dendrimer and peptide bond condensing agent, while no treatment was applied on the slices of the control group. Following immersion in artificial saliva for 2, 4, 6, and 8 weeks respectively, the mineralization condition of dentine slices was observed using the scanning electron microscope (SEM). In addition, the differences in the samples of dental slices between the 2 groups were also detected using the microhardness test. SEM results showed that the average diameter and density of the dentinal tubules in the experimental group were significantly lower than those in the control group (P<0.001). The microhardness test exhibited a similar result, which suggested that the microhardness of the experimental group was significantly higher than the control group (P<0.001). Generation 4.0 polyamidoamine dendrimer promotes the biomineralization of demineralized dentinal tubules. Moreover, this result also suggests that the 4.0th generation polyamidoamine dendrimer has the potential value for dentine hypersensitivity treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gradient-free MCMC methods for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2015-03-14
Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less
NASA Astrophysics Data System (ADS)
Kinnard, Lisa M.; Gavrielides, Marios A.; Myers, Kyle J.; Zeng, Rongping; Peregoy, Jennifer; Pritchard, William; Karanian, John W.; Petrick, Nicholas
2008-03-01
High-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that it is impacted by characteristics of the patient, the software tool and the CT system. The overall goal of this research is to quantify the various sources of measurement error and, when possible, minimize their effects. In the current study, we estimated nodule volume from ten repeat scans of an anthropomorphic phantom containing two synthetic spherical lung nodules (diameters: 5 and 10 mm; density: -630 HU), using a 16-slice Philips CT with 20, 50, 100 and 200 mAs exposures and 0.8 and 3.0 mm slice thicknesses. True volume was estimated from an average of diameter measurements, made using digital calipers. We report variance and bias results for volume measurements as a function of slice thickness, nodule diameter, and X-ray exposure.
SU-E-I-98: Dose Comparison for Pulmonary Embolism CT Studies: Single Energy Vs. Dual Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, U; Erdi, Y
Purpose: The purpose of this study was to assess and compare the size specific dose estimate (SSDE), dose length product (DLP) and noise relationship for pulmonary embolism studies evaluated by single source dual energy computed tomography (DECT) against conventional CT (CCT) studies in a busy cancer center and to determine the dose savings provided by DECT. Methods: An IRB-approved retrospective study was performed to determine the CTDIvol and DLP from a subset of patients scanned with both DECT and CCT over the past five years. We were able to identify 30 breast cancer patients (6 male, 24 female, age rangemore » 24 to 81) who had both DECT and CCT studies performed. DECT scans were performed with a GE HD 750 scanner (140/80 kVp, 480 mAs and 40 mm) and CCT scans were performed with a GE Lightspeed 16 slice scanner (120 kVp, 352 mAs, 20 mm). Image noise was measured by placing an ROI and recording the standard deviation of the mean HU along the descending aorta. Results: The average DECT patient size specific dose estimate was to be 14.2 ± 1.7 mGy as compared to 22.4 ± 2.7 mGy from CCT PE studies, which is a 37% reduction in the SSDE. The average DECT DLP was 721.8 ± 84.6 mGy-cm as compared to 981.8 ± 106.1 mGy-cm for CCT, which is a 26% decrease. Compared to CCT the image noise was found to decrease by 19% when using DECT for PE studies. Conclusion: DECT SSDE and DLP measurements indicate dose savings and image noise reduction when compared to CCT. In an environment that heavily debates CT patient doses, this study confirms the effectiveness of DECT in PE imaging.« less
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard
2016-04-01
Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of KARESZ project for whole Budapest. BSz contributed as an Alexander von Humboldt Research Fellow.
Reconstituted Three-Dimensional Interactive Imaging
NASA Technical Reports Server (NTRS)
Hamilton, Joseph; Foley, Theodore; Duncavage, Thomas; Mayes, Terrence
2010-01-01
A method combines two-dimensional images, enhancing the images as well as rendering a 3D, enhanced, interactive computer image or visual model. Any advanced compiler can be used in conjunction with any graphics library package for this method, which is intended to take digitized images and virtually stack them so that they can be interactively viewed as a set of slices. This innovation can take multiple image sources (film or digital) and create a "transparent" image with higher densities in the image being less transparent. The images are then stacked such that an apparent 3D object is created in virtual space for interactive review of the set of images. This innovation can be used with any application where 3D images are taken as slices of a larger object. These could include machines, materials for inspection, geological objects, or human scanning. Illuminous values were stacked into planes with different transparency levels of tissues. These transparency levels can use multiple energy levels, such as density of CT scans or radioactive density. A desktop computer with enough video memory to produce the image is capable of this work. The memory changes with the size and resolution of the desired images to be stacked and viewed.
NASA Astrophysics Data System (ADS)
Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.
2016-03-01
The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.
Interactive Volumetry Of Liver Ablation Zones.
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-10-20
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.
Interactive Volumetry Of Liver Ablation Zones
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-01-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818
Interactive Volumetry Of Liver Ablation Zones
NASA Astrophysics Data System (ADS)
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-10-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.
SU-F-I-59: Quality Assurance Phantom for PET/CT Alignment and Attenuation Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T; Hamacher, K
2016-06-15
Purpose: This study utilizes a commercial PET/CT phantom to investigate two specific properties of a PET/CT system: the alignment accuracy of PET images with those from CT used for attenuation correction and the accuracy of this correction in PET images. Methods: A commercial PET/CT phantom consisting of three aluminum rods, two long central cylinders containing uniform activity, and attenuating materials such as air, water, bone and iodine contrast was scanned using a standard PET/CT protocol. Images reconstructed with 2 mm slice thickness and a 512 by 512 matrix were obtained. The center of each aluminum rod in the PET andmore » CT images was compared to evaluate alignment accuracy. ROIs were drawn on transaxial images of the central rods at each section of attenuating material to determine the corrected activity (in BQML). BQML values were graphed as a function of slice number to provide a visual representation of the attenuation-correction throughout the whole phantom. Results: Alignment accuracy is high between the PET and CT images. The maximum deviation between the two in the axial plane is less than 1.5 mm, which is less than the width of a single pixel. BQML values measured along different sections of the large central rods are similar among the different attenuating materials except iodine contrast. Deviation of BQML values in the air and bone sections from the water section is less than 1%. Conclusion: Accurate alignment of PET and CT images is critical to ensure proper calculation and application of CT-based attenuation correction. This study presents a simple and quick method to evaluate the two with a single acquisition. As the phantom also includes spheres of increasing diameter, this could serve as a straightforward means to annually evaluate the status of a modern PET/CT system.« less
Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo
2017-12-01
Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve nanomedicine delivery for tumor therapy. As captopril has already been extensively used clinically, such a strategy has great therapeutic potential. Copyright © 2017. Published by Elsevier B.V.
Alkondon, Manickavasagom; Albuquerque, Edson X.; Pereira, Edna F.R.
2013-01-01
The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2 μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100 nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24 h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20–100 ms) inter-event intervals. Donepezil’s effects were suppressed significantly in presence of 10 μM mecamylamine or 10 nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman. PMID:23511125
Maas, M; Akkerman, E M; Venema, H W; Stoker, J; Den Heeten, G J
2001-01-01
The purpose of this work was to explore the reproducibility of fat-fraction measurements using Dixon quantitative chemical shift imaging (QCSI) in the lumbar spine (L3, L4, and L5) of healthy volunteers. Sixteen healthy volunteers were examined at 1.5 T two times to obtain a repeated measurement in the same slice and a third time in three parallel slices. Single slice, two point Dixon SE (TR/TE 2,500/22.3) sequences were used, from which fat-fraction images were calculated. The fat-fraction results are presented as averages over regions of interest, which were derived from the contours of the vertebrae. Reproducibility measures related to repeated measurements on different days, slice position, and contour drawing were calculated. The mean fat fraction was 0.37 (SD 0.08). The SD due to repeated measurement was small (sigmaR = 0.013-0.032), almost all of which can be explained by slice-(re)-positioning errors. When used to evaluate the same person longitudinally in time, Dixon QCSI fat-fraction measurement has an excellent reproducibility. It is a powerful noninvasive tool in the evaluation of bone marrow composition.
Plexiform neurofibroma tissue classification
NASA Astrophysics Data System (ADS)
Weizman, L.; Hoch, L.; Ben Sira, L.; Joskowicz, L.; Pratt, L.; Constantini, S.; Ben Bashat, D.
2011-03-01
Plexiform Neurofibroma (PN) is a major complication of NeuroFibromatosis-1 (NF1), a common genetic disease that involving the nervous system. PNs are peripheral nerve sheath tumors extending along the length of the nerve in various parts of the body. Treatment decision is based on tumor volume assessment using MRI, which is currently time consuming and error prone, with limited semi-automatic segmentation support. We present in this paper a new method for the segmentation and tumor mass quantification of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically detects the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets yield a mean volume overlap difference of 25% as compared to manual segmentation by expert radiologist with a mean computation and interaction time of 12 minutes vs. over an hour for manual annotation. Since the user interaction in the segmentation process is minimal, our method has the potential to successfully become part of the clinical workflow.
Visual-search model observer for assessing mass detection in CT
NASA Astrophysics Data System (ADS)
Karbaschi, Zohreh; Gifford, Howard C.
2017-03-01
Our aim is to devise model observers (MOs) to evaluate acquisition protocols in medical imaging. To optimize protocols for human observers, an MO must reliably interpret images containing quantum and anatomical noise under aliasing conditions. In this study of sampling parameters for simulated lung CT, the lesion-detection performance of human observers was compared with that of visual-search (VS) observers, a channelized nonprewhitening (CNPW) observer, and a channelized Hoteling (CH) observer. Scans of a mathematical torso phantom modeled single-slice parallel-hole CT with varying numbers of detector pixels and angular projections. Circular lung lesions had a fixed radius. Twodimensional FBP reconstructions were performed. A localization ROC study was conducted with the VS, CNPW and human observers, while the CH observer was applied in a location-known ROC study. Changing the sampling parameters had negligible effect on the CNPW and CH observers, whereas several VS observers demonstrated a sensitivity to sampling artifacts that was in agreement with how the humans performed.
Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.
2016-01-01
The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317
Voltage-gated calcium channel autoimmune cerebellar degeneration
McKasson, Marilyn; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Carlson, Noel; Bromberg, Mark; Greenlee, John E.
2016-01-01
Objectives: To describe response to treatment in a patient with autoantibodies against voltage-gated calcium channels (VGCCs) who presented with autoimmune cerebellar degeneration and subsequently developed Lambert-Eaton myasthenic syndrome (LEMS), and to study the effect of the patient's autoantibodies on Purkinje cells in rat cerebellar slice cultures. Methods: Case report and study of rat cerebellar slice cultures incubated with patient VGCC autoantibodies. Results: A 53-year-old man developed progressive incoordination with ataxic speech. Laboratory evaluation revealed VGCC autoantibodies without other antineuronal autoantibodies. Whole-body PET scans 6 and 12 months after presentation detected no malignancy. The patient improved significantly with IV immunoglobulin G (IgG), prednisone, and mycophenolate mofetil, but worsened after IV IgG was halted secondary to aseptic meningitis. He subsequently developed weakness with electrodiagnostic evidence of LEMS. The patient's IgG bound to Purkinje cells in rat cerebellar slice cultures, followed by neuronal death. Reactivity of the patient's autoantibodies with VGCCs was confirmed by blocking studies with defined VGCC antibodies. Conclusions: Autoimmune cerebellar degeneration associated with VGCC autoantibodies may precede onset of LEMS and may improve with immunosuppressive treatment. Binding of anti-VGCC antibodies to Purkinje cells in cerebellar slice cultures may be followed by cell death. Patients with anti-VGCC autoantibodies may be at risk of irreversible neurologic injury over time, and treatment should be initiated early. PMID:27088118
An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.
Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique
2015-01-01
This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya
2005-04-01
The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.
A prototype table-top inverse-geometry volumetric CT system.
Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J
2006-06-01
A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.
Gradient-free MCMC methods for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2015-05-15
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fan beam image reconstruction with generalized Fourier slice theorem.
Zhao, Shuangren; Yang, Kang; Yang, Kevin
2014-01-01
For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N
De Tobel, Jannick; Hillewig, Elke; Bogaert, Stephanie; Deblaere, Karel; Verstraete, Koenraad
2017-03-01
Established dental age estimation methods in sub-adults study the development of third molar root apices on radiographs. In living individuals, however, avoiding ionising radiation is expedient. Studying dental development with magnetic resonance imaging complies with this requirement, adding the advantage of imaging in three dimensions. To elaborate the development of an MRI protocol to visualise all third molars for forensic age estimation, with particular attention to the development of the root apex. Ex vivo scans of porcine jaws and in vivo scans of 10 volunteers aged 17-25 years were performed to select adequate sequences. Studied parameters were T1 vs T2 weighting, ultrashort echo time (UTE), fat suppression, in plane resolution, slice thickness, 3D imaging, signal-to-noise ratio, and acquisition time. A bilateral four-channel flexible surface coil was used. Two observers evaluated the suitability of the images. T2-weighted images were preferred to T1-weighted images. To clearly distinguish root apices in (almost) fully developed third molars an in plane resolution of 0.33 × 0.33 mm 2 was deemed necessary. Taking acquisition time limits into account, only a T2 FSE sequence with slice thickness of 2 mm generated images with sufficient resolution and contrast. UTE, thinner slice T2 FSE and T2 3D FSE sequences could not generate the desired resolution within 6.5 minutes. Three Tesla MRI of the third molars is a feasible technique for forensic age estimation, in which a T2 FSE sequence can provide the desired in plane resolution within a clinically acceptable acquisition time.
FIB-SEM tomography in biology.
Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M
2014-01-01
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping
Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.
Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.
2012-01-01
Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259
De Nardi, Frédéric; Lefort, Claudie; Bréard, Dimitri; Richomme, Pascal; Legros, Christian; Guérineau, Nathalie C.
2017-01-01
Catecholamine (CA) secretion from the adrenal medullary tissue is a key step of the adaptive response triggered by an organism to cope with stress. Whereas molecular and cellular secretory processes have been extensively studied at the single chromaffin cell level, data available for the whole gland level are much scarcer. We tackled this issue in rat by developing an easy to implement experimental strategy combining the adrenal acute slice supernatant collection with a high-performance liquid chromatography-based epinephrine and norepinephrine (NE) assay. This technique affords a convenient method for measuring basal and stimulated CA release from single acute slices, allowing thus to individually address the secretory function of the left and right glands. Our data point that the two glands are equally competent to secrete epinephrine and NE, exhibiting an equivalent epinephrine:NE ratio, both at rest and in response to a cholinergic stimulation. Nicotine is, however, more efficient than acetylcholine to evoke NE release. A pharmacological challenge with hexamethonium, an α3-containing nicotinic acetylcholine receptor antagonist, disclosed that epinephrine- and NE-secreting chromaffin cells distinctly expressed α3 nicotinic receptors, with a dominant contribution in NE cells. As such, beyond the novelty of CA assays from acute slice supernatants, our study contributes at refining the secretory behavior of the rat adrenal medullary tissue, and opens new perspectives for monitoring the release of other hormones and transmitters, especially those involved in the stress response. PMID:28993760
SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmekawy, A; Ewell, L; Butuceanu, C
2014-06-01
Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measuredmore » as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzibak, A; Safigholi, H; Soliman, A
2015-06-15
Purpose: To examine CT metal image artifact from a novel direction-modulated brachytherapy (DMBT) tandem applicator (95% tungsten) for cervical cancer using a commercially available orthopedic metal artifact reduction (O-MAR) algorithm. Comparison to a conventional stainless steel applicator is also performed. Methods: Each applicator was placed in a water-filled phantom resembling the female pelvis and scanned in a Philips Brilliance 16-slice CT scanner using two pelvis protocols: a typical clinical protocol (120kVp, 16×0.75mm collimation, 0.692 pitch, 1.0s rotation, 350mm field of view (FOV), 600mAs, 1.5mm slices) and a protocol with a higher kVp and mAs setting useful for larger patients (140kVp,more » 16×0.75mm collimation, 0.688 pitch, 1.5s rotation, 350mm FOV, 870mAs, 1.5mm slices). Images of each tandem were acquired with and without the application of the O-MAR algorithm. Baseline scans of the phantom (no applicator) were also collected. CT numbers were quantified at distances from 5 to 30 mm away from the applicator’s edge (in increments of 5mm) using measurements at eight angles around the applicator, on three consecutive slices. Results: While the presence of both applicators degraded image quality, the DMBT applicator resulted in larger streaking artifacts and dark areas in the image compared to the stainless steel applicator. Application of the O-MAR algorithm improved all acquired images, both visually and quantitatively. The use of low and high kVp and mAs settings (120 kVp/600mAs and 140 kVp/870mAs) in conjunction with the O-MAR algorithm lead to similar CT numbers in the vicinity of the applicator and a similar reduction of the induced metal artifact. Conclusion: This work indicated that metal artifacts induced by the DMBT and the stainless steel applicator are greatly reduced when using the O-MAR algorithm, leading to better quality phantom images. The use of a high dose protocol provided similar improvements in metal artifacts compared to the clinical protocol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, D; Mutic, S; Hu, Y
2014-06-01
Purpose: To develop an imaging technique that enables us to acquire T2- weighted 4D Magnetic Resonance Imaging (4DMRI) with sufficient spatial coverage, temporal resolution and spatial resolution for clinical evaluation. Methods: T2-weighed 4DMRI images were acquired from a healthy volunteer using a respiratory amplitude triggered T2-weighted Turbo Spin Echo sequence. 10 respiratory states were used to equally sample the respiratory range based on amplitude (0%, 20%i, 40%i, 60%i, 80%i, 100%, 80%e, 60%e, 40%e and 20%e). To avoid frequent scanning halts, a methodology was devised that split 10 respiratory states into two packages in an interleaved manner and packages were acquiredmore » separately. Sixty 3mm sagittal slices at 1.5mm in-plane spatial resolution were acquired to offer good spatial coverage and reasonable spatial resolution. The in-plane field of view was 375mm × 260mm with nominal scan time of 3 minutes 42 seconds. Acquired 2D images at the same respiratory state were combined to form the 3D image set corresponding to that respiratory state and reconstructed in the coronal view to evaluate whether all slices were at the same respiratory state. 3D image sets of 10 respiratory states represented a complete 4D MRI image set. Results: T2-weighted 4DMRI image were acquired in 10 minutes which was within clinical acceptable range. Qualitatively, the acquired MRI images had good image quality for delineation purposes. There were no abrupt position changes in reconstructed coronal images which confirmed that all sagittal slices were in the same respiratory state. Conclusion: We demonstrated it was feasible to acquire T2-weighted 4DMRI image set within a practical amount of time (10 minutes) that had good temporal resolution (10 respiratory states), spatial resolution (1.5mm × 1.5mm × 3.0mm) and spatial coverage (60 slices) for future clinical evaluation.« less
The Evolution of 3D Microimaging Techniques in Geosciences
NASA Astrophysics Data System (ADS)
Sahagian, D.; Proussevitch, A.
2009-05-01
In the analysis of geomaterials, it is essential to be able to analyze internal structures on a quantitative basis. Techniques have evolved from rough qualitative methods to highly accurate quantitative methods coupled with 3-D numerical analysis. The earliest primitive method for "seeing'" what was inside a rock was multiple sectioning to produce a series of image slices. This technique typically completely destroyed the sample being analyzed. Another destructive method was developed to give more detailed quantitative information by forming plastic casts of internal voids in sedimentary and volcanic rocks. For this, void were filled with plastic and the rock dissolved away with HF to reveal plastic casts of internal vesicles. Later, new approaches to stereology were developed to extract 3D information from 2D cross-sectional images. This has long been possible for spheres because the probability distribution for cutting a sphere along any small circle is known analytically (greatest probability is near the equator). However, large numbers of objects are required for statistical validity, and geomaterials are seldom spherical, so crystals, vesicles, and other inclusions would need a more sophisticated approach. Consequently, probability distributions were developed using numerical techniques for rectangular solids and various ellipsoids so that stereological techniques could be applied to these. The "holy grail" has always been to obtain 3D quantitative images non-destructively. A key method is Computed X-ray Tomography (CXT), in which attenuation of X-rays is recorded as a function of angular position in a cylindrical sample, providing a 2D "slice" of the interior. When a series of these "slices" is stacked (in increments equivalent with the resolution of the X-ray to make cubic voxels), a 3D image results with quantitative information regarding internal structure, particle/void volumes, nearest neighbors, coordination numbers, preferred orientations, etc. CXT can be done at three basic levels of resolution, with "normal" x-rays providing tens of microns resolution, synchrotron sources providing single to few microns, and emerging XuM techniques providing a practical 300 nm and theoretical 60 nm. The main challenges in CXT imaging have been in segmentation, which delineates material boundaries, and object recognition (registration), in which the individual objects within a material are identified. The former is critical in quantifying object volume, while the latter is essential for preventing the false appearance of individual objects as a continuous structure. Additional, new techniques are now being developed to enhance resolution and provide more detailed analysis without the complex infrastructure needed for CXT. One such method is Laser Scanning Confocal Microscopy, in which a laser is reflected from individual interior surfaces of a fluorescing material, providing a series of sharp images of internal slices with quantitative information available, just as in x-ray tomography, after "z-stacking" of planes of pixels. Another novel approach is the use of Stereo Scanning Electron Microscopy to create digital elevation models of 3D surficial features such as partial bubble margins on the surfaces of fine volcanic ash particles. As other novel techniques emerge, new opportunities will be presented to the geological research community to obtain ever more detailed and accurate information regarding the interior structure of geomaterials.
Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M
2017-08-01
Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.
NASA Astrophysics Data System (ADS)
Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.
2017-06-01
A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.
Breast segmentation in MR images using three-dimensional spiral scanning and dynamic programming
NASA Astrophysics Data System (ADS)
Jiang, Luan; Lian, Yanyun; Gu, Yajia; Li, Qiang
2013-03-01
Magnetic resonance (MR) imaging has been widely used for risk assessment and diagnosis of breast cancer in clinic. To develop a computer-aided diagnosis (CAD) system, breast segmentation is the first important and challenging task. The accuracy of subsequent quantitative measurement of breast density and abnormalities depends on accurate definition of the breast area in the images. The purpose of this study is to develop and evaluate a fully automated method for accurate segmentation of breast in three-dimensional (3-D) MR images. A fast method was developed to identify bounding box, i.e., the volume of interest (VOI), for breasts. A 3-D spiral scanning method was used to transform the VOI of each breast into a single two-dimensional (2-D) generalized polar-coordinate image. Dynamic programming technique was applied to the transformed 2-D image for delineating the "optimal" contour of the breast. The contour of the breast in the transformed 2-D image was utilized to reconstruct the segmentation results in the 3-D MR images using interpolation and lookup table. The preliminary results on 17 cases show that the proposed method can obtain accurate segmentation of the breast based on subjective observation. By comparing with the manually delineated region of 16 breasts in 8 cases, an overlap index of 87.6% +/- 3.8% (mean +/- SD), and a volume agreement of 93.4% +/- 4.5% (mean +/- SD) were achieved, respectively. It took approximately 3 minutes for our method to segment the breast in an MR scan of 256 slices.
Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging
NASA Astrophysics Data System (ADS)
Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.
2014-06-01
To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, S; Kraus, J; Lin, L
2015-06-15
Purpose: To evaluate the accuracy of monoexponential normalization in a new class of commercial, reusable, human-soft-tissue-equivalent, radiochromic polymer gel dosimeters for patient-specific QA in proton therapy. Methods: Eight formulations of the dosimeter (sealed in glass spheres of 166 mm OD), were exposed to a 150 MeV proton beam (5 cm x 5 cm square field, range 15 cm, modulation10 cm), with max dose ranging from 2.5 Gy to 20 Gy, depending on formulation. Exposed dosimeters were promptly placed in the commercial OCTOPUS™ laser CT scanner which was programmed to scan the central slice every 5 minutes for 20 hours (15more » seconds per slice scan). This procedure was repeated several times. Reconstructed data were analyzed using the log-lin scale to determine the time range over which a monoexponential relaxation model could be applied. Next, a simple test plan was devised and delivered to each dosimeter. The OCTOPUS™ was programmed to rescan the central slice at the end of each volume scan, for signal relaxation reference. Monoexponential normalization was applied to sinograms before FBP reconstruction. Dose calibration was based on a volume-lookup table built within the central spherical volume of 12 cm diameter. 3D gamma and sigma passing rates were measured at 3%/3mm criteria down to 50% isodose. Results: Approximately monoexponential signal relaxation time ranges from 25 minutes to 3.5 hours, depending on formulation, followed by a slower-relaxation component. Noise in reconstructed OD/cm images is less than 0.5%. Dose calibration accuracy is better than 99%. Measured proton PDDs demonstrate absence of Bragg-peak quenching. Estimated number of useful cycles is at least 20, with a theoretical limit above 100. 3D gamma and sigma passing rates exceed 95%. Conclusion: Monoexponential normalization was found to yield adequate dosimetric accuracy in the new class of commercial radiochromic polymer gel dosimeters for patient QA in proton therapy.« less
[The effect of root canal re-wetting on push-out bond strength and durability of fiber post].
Yao, Ke; Song, Jie-wen; Li, Yan
2011-02-01
To analyze the push-out bond strength of fiber post and the durability of interface between dentin and composite resin during over drying and re-wetting of root canal. Thirty-six extracted human maxillary central incisors were randomly divided into three groups: Group A for the process of over drying, Group B for re-wetting, Group C for control. All teeth were sliced into several thin discs with thickness of 1.0 mm for micro push-out test and scanning electron microscope(SEM) observation. Push-out shear strengths of fiber post immediately after bonding in group A, B and C were (5.97 ± 1.97), (7.67 ± 2.19) and (8.46 ± 2.35) MPa. Push-out strengths of fiber post two months after water storage were (2.08 ± 1.67), (2.99 ± 1.48) and (3.22 ± 1.43) MPa. There was significantly difference in push-out strength between Group A and Group B (P < 0.05). Significantly difference in push-out strength was also found between Group A and Group C. In the condition of immediate testing, there was also significantly difference between push-out strength of cervical slice and middle slice, and between cervical slice and apical slice (P < 0.05). The water storage time has significant effect on the push-out bond strength of fiber posts (P < 0.05). Inappropriate condensation air blowing operation can cause extracted teeth root canal dentin over dry. Dehydration can destroy the formation of general structure of interface between composite resin and dentin. The over dry dentin can be turned back to wetting stage by water pouring, which can help fiber-reinforced composite post regain its normal retention strength and original adhesive durability.
SU-E-T-669: Radiosurgery Failure for Trigeminal Neuralgia: A Study of Radiographic Spatial Fidelity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, J; Spalding, A
Purpose: Management of Trigeminal Neuralgia with radiosurgery is well established, but often met with limited success. Recent advancements in imaging afford improvements in target localization for radiosurgery. Methods: A Trigeminal Neuralgia radiosurgery specific protocol was established for MR enhancement of the trigeminal nerve using a CISS scan with slice spacing of 0.7mm. Computed Tomography simulation was performed using axial slices on a 40 slice CT with slice spacing of 0.6mm. These datasets were registered using a mutual information algorithm and localized in a stereotactic coordinate system. Image registration between the MR and CT was evaluated for each patient by amore » Medical Physicist to ensure accuracy. The dorsal root entry zone target was defined on the CISS MR by a Neurosurgeon and dose calculations performed on the localized CT. Treatment plans were reviewed and approved by a Radiation Oncologist and Neurosurgeon. Image guided radiosurgery was delivered using positioning tolerance of 0.5mm and 1°. Eight patients with Trigeminal Neuralgia were treated with this protocol. Results: Seven patients reported a favorable response to treatment with average Barrow Neurological Index pain score of four before treatment and one following treatment. Only one patient had a BNI>1 following treatment and review of the treatment plan revealed that the CISS MR was registered to the CT via a low resolution (5mm slice spacing) T2 MR. All other patients had CISS MR registered directly with the localized CT. This patient was retreated 6 months later using direct registration between CISS MR and localized CT and subsequently responded to treatment with a BNI of one. Conclusion: Frameless radiosurgery offers an effective solution to Trigeminal Neuralgia management provided appropriate technology and imaging protocols (utilizing submillimeter imaging) are established and maintained.« less
Bizarro, Cristina; Eide, Marta; Hitchcock, Daniel J; Goksøyr, Anders; Ortiz-Zarragoitia, Maren
2016-08-01
The low concentrations of most contaminants in the aquatic environment individually may not affect the normal function of the organisms on their own. However, when combined, complex mixtures may provoke unexpected effects even at low amounts. Selected aquatic micropollutants such as chlorpyrifos, bis-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoic acid (PFOA) and 17α-ethinylestradiol (EE2) were tested singly and in mixtures at nM to μM concentrations using precision-cut liver slices (PCLS) of Atlantic cod (Gadus morhua). Fish liver is a target organ for contaminants due to its crucial role in detoxification processes. In order to understand the effects on distinct key liver metabolic pathways, transcription levels of various genes were measured, including cyp1a1 and cyp3a, involved in the metabolism of organic compounds, including toxic ones, and the catabolism of bile acids and steroid hormones; cyp7a1, fabp and hmg-CoA, involved in lipid and cholesterol homeostasis; cyp24a1, involved in vitamin D metabolism; and vtg, a key gene in xenoestrogenic response. Only EE2 had significant effects on gene expression in cod liver slices when exposed singly at the concentrations tested. However, when exposed in combinations, effects not detected in single exposure conditions arose, suggesting complex interactions between studied pollutants that could not be predicted from the results of individual exposure scenarios. Thus, the present work highlights the importance of assessing mixtures when describing the toxic effects of micropollutants to fish liver metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.
Horie, Tomohiko; Takahara, Tarou; Ogino, Tetsuo; Okuaki, Tomoyuki; Honda, Masatoshi; Okumura, Yasuhiro; Kajihara, Nao; Usui, Keisuke; Muro, Isao; Imai, Yutaka
2008-09-20
In recent years, the utility of body diffusion weighted imaging as represented by diffusion weighted whole body imaging with background body signal suppression (DWIBS), the DWIBS method, is very high. However, there was a problem in the DWIBS method involving the artifact corresponding to the distance of the diaphragm. To provide a solution, the respiratory trigger (RT) method and the navigator echo method were used together. A problem was that scan time extended to the compensation and did not predict the extension rate, although both artifacts were reduced. If we used only navigator real time slice tracking (NRST) from the findings obtained by the DWIBS method, we presumed the artifacts would be ameliorable without the extension of scan time. Thus, the TRacking Only Navigator (TRON) method was developed, and a basic examination was carried out for the liver. An important feature of the TRON method is the lack of the navigator gating window (NGW) and addition of the method of linear interpolation prior to NRST. The method required the passing speed and the distance from the volunteer's diaphragm. The estimated error from the 2D-selective RF pulse (2DSRP) of the TRON method to slice excitation was calculated. The condition of 2D SRP, which did not influence the accuracy of NRST, was required by the movement phantom. The volunteer was scanned, and the evaluation and actual scan time of the image quality were compared with the RT and DWIBS methods. Diaphragm displacement speed and the quantity of displacement were determined in the head and foot directions, and the result was 9 mm/sec, and 15 mm. The estimated error was within 2.5 mm in b-factor 1000 sec/mm(2). The FA of 2DSRP was 15 degrees, and the navigator echo length was 120 mm, which was excellent. In the TRON method, the accuracy of NRST was steady because of line interpolation. The TRON method obtained image quality equal to that of the RT method with the b-factor in the volunteer scanning at short actual scan time. The TRON method can obtain image quality equal to that of the RT method in body diffusion weighted imaging within a short time. Moreover, because scan time during planning becomes actual scan time, inspection can be efficiently executed.
NASA Astrophysics Data System (ADS)
Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma
2012-02-01
Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and feasibility for an automated scoring method that reduces the subjectivity and reproducibility error inherent with manual clinical calcium scoring.
Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schick, F.
1996-01-01
A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage andmore » muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.« less
Using affordable LED arrays for photo-stimulation of neurons.
Valley, Matthew; Wagner, Sebastian; Gallarda, Benjamin W; Lledo, Pierre-Marie
2011-11-15
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations(1,2). With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channel rhodopsin-2 (ChR2) allows researchers to activate neurons with light(3,4). By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
3-dimensional imaging at nanometer resolutions
Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.
2010-03-09
An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.
Antunes, M L; Seldin, D W; Wall, R M; Johnson, L L
1989-04-01
Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean 48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro
2015-09-01
We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for patients with right ventricles of various sizes and shapes is not required.
Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Wei; Ge Wooping; Zeng Shaoqun
2007-01-19
Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dyemore » in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance.« less
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
Three-dimensional imaging of porous media using confocal laser scanning microscopy.
Shah, S M; Crawshaw, J P; Boek, E S
2017-02-01
In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Helical 4D CT and Comparison with Cine 4D CT
NASA Astrophysics Data System (ADS)
Pan, Tinsu
4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.
SMALL ANGLE SCATTERING OF X-RAYS BY PLASTICALLY DEFORMED SINGLE CRYSTALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, W.H.; Smoluchowski, R.
1959-05-01
The small-angle scattering of x rays from single crystals of magnesium plastically deformed by simple shear was measured in the angular range of 4' to 5 deg . The crystals were subjected to both unidirectional and cyclic shear stresses applied along the STAl 1 2-bar 0! direction. Thin slices of the deformed single crystals were prepared using strainfree cutting and polishing techniques. The thin slices had orientations such that the slip direction was either parallel or perpendicular to the incident x-ray beam in order to observe any anisotropy in the scattering that might be due to dislocations. It was foundmore » that those samples which contained deformation twins within the irradiated volume produced rather large scattered intensity. This scattered intensity is interpreted as being due to double Bragg scattering. The scattered intensity from other specimens was attributed to surface scattering. No evidence for small angle scattering by dislocations was found. (auth)« less
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin
2017-03-01
Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.
Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.
Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi
2012-11-08
A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.
An iterative reconstruction method for high-pitch helical luggage CT
NASA Astrophysics Data System (ADS)
Xue, Hui; Zhang, Li; Chen, Zhiqiang; Jin, Xin
2012-10-01
X-ray luggage CT is widely used in airports and railway stations for the purpose of detecting contrabands and dangerous goods that may be potential threaten to public safety, playing an important role in homeland security. An X-ray luggage CT is usually in a helical trajectory with a high pitch for achieving a high passing speed of the luggage. The disadvantage of high pitch is that conventional filtered back-projection (FBP) requires a very large slice thickness, leading to bad axial resolution and helical artifacts. Especially when severe data inconsistencies are present in the z-direction, like the ends of a scanning object, the partial volume effect leads to inaccuracy value and may cause a wrong identification. In this paper, an iterative reconstruction method is developed to improve the image quality and accuracy for a large-spacing multi-detector high-pitch helical luggage CT system. In this method, the slice thickness is set to be much smaller than the pitch. Each slice involves projection data collected in a rather small angular range, being an ill-conditioned limited-angle problem. Firstly a low-resolution reconstruction is employed to obtain images, which are used as prior images in the following process. Then iterative reconstruction is performed to obtain high-resolution images. This method enables a high volume coverage speed and a thin reconstruction slice for the helical luggage CT. We validate this method with data collected in a commercial X-ray luggage CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, M; Rane-Levandovsky, S; Andre, J
Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employedmore » to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal pulse sequence modifications and no additional scan time, improving ASL’s clinical applicability.« less
SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Czito, B; Palta, M
Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D imagesmore » were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21CA165384-01A1.« less
Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia
2016-04-01
Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model's template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, [Formula: see text], was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using [Formula: see text] from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO.
Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia
2016-01-01
Abstract. Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model’s template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, Az, was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using Az from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO. PMID:27284547
Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei
2015-09-01
To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2014-03-01
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2016-01-01
Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.
2014-06-15
Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, andmore » B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.« less
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.
2013-03-01
Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.
NASA Astrophysics Data System (ADS)
Stock, Michala K.; Stull, Kyra E.; Garvin, Heather M.; Klales, Alexandra R.
2016-10-01
Forensic anthropologists are routinely asked to estimate a biological profile (i.e., age, sex, ancestry and stature) from a set of unidentified remains. In contrast to the abundance of collections and techniques associated with adult skeletons, there is a paucity of modern, documented subadult skeletal material, which limits the creation and validation of appropriate forensic standards. Many are forced to use antiquated methods derived from small sample sizes, which given documented secular changes in the growth and development of children, are not appropriate for application in the medico-legal setting. Therefore, the aim of this project is to use multi-slice computed tomography (MSCT) data from a large, diverse sample of modern subadults to develop new methods to estimate subadult age and sex for practical forensic applications. The research sample will consist of over 1,500 full-body MSCT scans of modern subadult individuals (aged birth to 20 years) obtained from two U.S. medical examiner's offices. Statistical analysis of epiphyseal union scores, long bone osteometrics, and os coxae landmark data will be used to develop modern subadult age and sex estimation standards. This project will result in a database of information gathered from the MSCT scans, as well as the creation of modern, statistically rigorous standards for skeletal age and sex estimation in subadults. Furthermore, the research and methods developed in this project will be applicable to dry bone specimens, MSCT scans, and radiographic images, thus providing both tools and continued access to data for forensic practitioners in a variety of settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi-Xiang J., E-mail: yi-xiang.wang@astrazeneca.com; Kuribayashi, Hideto; Wagberg, Maria
Purpose. The Watanabe Heritable Hyperlipidemic (WHHL) rabbit provides an important model of spontaneous atherosclerosis. With a strain of WHHL rabbits which do not develop abdominal aorta lumen stenosis even with advanced atherosclerosis, we studied the MRI-histology correlation, and the natural progression of atherosclerosis in the abdominal aorta. In addition, intra-reader segmentation repeatability and scan-rescan reproducibility were assessed. Methods. Two batches of female WHHL rabbits were used. The first batch of 6 rabbits was scanned at 20 weeks old. A second batch of 17 rabbits was scanned at 50 weeks old and then randomly divided into two subgroups: 8 were killedmore » for histologic investigation; 9 were kept alive for follow-up, with repeat scanning a week later to assess scan-rescan reproducibility, and again at 73 weeks old to assess disease progression. MR images were acquired at 4.7 T using a chemical shift selective fat suppression gradient echo with a saturation band suppressing blood signal within the aortic lumen. Five slices per animal were acquired, centered around the renal artery region of the abdominal aorta, with in-plane resolution of 0.195 mm and slice thickness of 3 mm. Results. The coefficient of variation for intra-reader reproducibility for aortic wall thickness measurements was 2.5% for repeat segmentations of the same scans on the same day, but segmentations of these same scans made 8 months later showed a systematic change, suggesting that intra-reader bias as well as increased variability could compromise assessments made over time. Comparative analyses were therefore performed in one postprocessing session. The coefficient of variation for scan-rescan reproducibility for aortic wall thickness was 5.5% for nine pairs of scans acquired a week apart and segmented on the same day. Good MRI-histology correlation was obtained. The MRI-measured mean aortic wall thickness of animals at 20 weeks of age was 76% that of animals at 50 weeks of age (p < 0.001). There was a small increase in aortic wall thickness between 50 and 73 weeks of age, but this was not significant (p > 0.05). The corresponding differences in lumen cross-sectional areas at 20, 50, and 73 weeks of age were not significant. These results were consistent with in-house historical histology data on this strain of rabbits. Conclusions. High-resolution gradient echo MRI can follow disease progression in the WHHL rabbit spontaneous atherosclerosis disease model.« less
Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian
2010-03-01
To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.
Saade, Charbel; El-Merhi, Fadi; El-Achkar, Bassam; Kerek, Racha; Vogl, Thomas J; Maroun, Gilbert Georges; Jamjoom, Lamia; Al-Mohiy, Hussain; Naffaa, Lena
Caudocranial scan direction and contrast injection timing based on measured patient vessel dynamics can significantly improve arterial and aneurysmal opacification and reduce both contrast and radiation dose in the assessment of thoracic aortic aneurysms (TAA) using helical thoracic computed tomography angiography (CTA). To investigate opacification of the thoracic aorta and TAA using a caudocranial scan direction and a patient-specific contrast protocol. Thoracic aortic CTA was performed in 160 consecutive patients with suspected TAA using a 256-slice computed tomography scanner and a dual barrel contrast injector. Patients were subjected in equal numbers to one of two contrast protocols. Patient age and sex were equally distributed across both groups. Protocol A, the department's standard protocol, consisted of a craniocaudal scan direction with 100 mL of contrast, intravenously injected at a flow rate of 4.5 mL/s. Protocol B involved a caudocranial scan direction and a novel contrast formula based on patient cardiovascular dynamics, followed by 100 mL of saline at 4.5 mL/s. Each scan acquisition comprised of 120 kVp, 200 mA with modulation, temporal resolution 0.27 seconds, and pitch 0.889:1. The dose length product was measured between each protocol and data generated were compared using Mann-Whitney U nonparametric statistics. Receiver operating characteristic analysis, visual grading characteristic (VGC), and κ analyses were performed. Mean opacification in the thoracic aorta and aneurysm measured was 24 % and 55%, respectively. The mean contrast volume was significantly lower in protocol B (73 ± 10 mL) compared with A (100 ± 1 mL) (P<0.001). The contrast-to-noise ratio demonstrated significant differences between the protocols (protocol A, 18.2 ± 12.9; protocol B, 29.7 ± 0.61; P < 0.003). Mean effective dose in protocol B (2.6 ± 0.4 mSv) was reduced by 19% compared with A (3.2 ± 0.8 mSv) (P < 0.004). Aneurysmal detectability demonstrated significant increases by receiver operating characteristic and visual grading characteristic analysis for protocol B compared with A (P < 0.02), and reader agreement increased from poor to excellent. Significant increase in the visualization of TAAs following a caudocranial scan direction during helical thoracic CTA can be achieved using low-contrast volume based on patient-specific contrast formula.
Characterization of LiBC by phase-contrast scanning transmission electron microscopy.
Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard
2014-08-01
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.
Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol
2018-02-01
In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures. © 2017 American Association of Physicists in Medicine.
Pole-Like Road Furniture Detection in Sparse and Unevenly Distributed Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Li, F.; Lehtomäki, M.; Oude Elberink, S.; Vosselman, G.; Puttonen, E.; Kukko, A.; Hyyppä, J.
2018-05-01
Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms.
CT and MRI slice separation evaluation by LabView developed software.
Acri, Giuseppe; Testagrossa, Barbara; Sestito, Angela; Bonanno, Lilla; Vermiglio, Giuseppe
2018-02-01
The efficient use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice separation, during multislices acquisition, requires scan exploration of phantoms containing test objects. To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination the midpoint of full width at half maximum (FWHM) in real time while the distance from the profile midpoint of two progressive images is evaluated and measured. The results were compared with those obtained by processing the same phantom images with commercial software. To validate the proposed methodology the Fisher test was conducted on the resulting data sets. In all cases, there was no statistically significant variation between the commercial procedure and the LabView one, which can be used on any CT and MRI diagnostic devices. Copyright © 2017. Published by Elsevier GmbH.
Anatomic study of cranial nerve emergence and associated skull foramina in cats using CT and MRI.
Gomes, Eymeric; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique
2009-01-01
Magnetic resonance (MR) images of the brain of four normal cats were reviewed retrospectively to assess the emergence and course of the cranial nerves (CNs). Two-millimeter-thick images were obtained in transverse, sagittal, and dorsal planes using a 1.5 T unit. CN skull foramina, as anatomic landmarks for MR imaging, were identified by computed tomography performed on an isolated cat skull using thin wire within each skull foramen. Thin slice (1 mm slice thickness) images were obtained with a high-resolution bone filter scan protocol. The origins of CNs II, V, VII, and VIII and the group of IX, X, XI, and XII could be identified. The pathway and proximal divisions of CNs V were described. CNs III, IV, and VI were not distinguished from each other but could be seen together in the orbital fissure. CN V was characterized by slight contrast enhancement.
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Vicente, Esther M; Lodge, Martin A; Rowe, Steven P; Wahl, Richard L; Frey, Eric C
2017-05-01
We investigated the feasibility of using simpler methods than manual whole-organ volume-of-interest (VOI) definition to estimate the organ activity concentration in single photon emission computed tomography (SPECT) in cases where the activity in the organ can be assumed to be uniformly distributed on the scale of the voxel size. In particular, we investigated an anatomic region-of-interest (ROI) defined in a single transaxial slice, and a single sphere placed inside the organ boundaries. The evaluation was carried out using Monte Carlo simulations based on patient indium 111 In pentetreotide SPECT and computed tomography (CT) images. We modeled constant activity concentrations in each organ, validating this assumption by comparing the distribution of voxel values inside the organ VOIs of the simulated data with the patient data. We simulated projection data corresponding to 100, 50, and 25% of the clinical count level to study the effects of noise level due to shortened acquisition time. Images were reconstructed using a previously validated quantitative SPECT reconstruction method. The evaluation was performed in terms of the accuracy and precision of the activity concentration estimates. The results demonstrated that the non-uniform image intensity observed in the reconstructed images in the organs with normal uptake was consistent with uniform activity concentration in the organs on the scale of the voxel size; observed non-uniformities in image intensity were due to a combination of partial-volume effects at the boundaries of the organ, artifacts in the reconstructed image due to collimator-detector response compensation, and noise. Using an ROI defined in a single transaxial slice produced similar biases compared to the three-dimensional (3D) whole-organ VOIs, provided that the transaxial slice was near the central plane of the organ and that the pixels from the organ boundaries were not included in the ROI. Although this slice method was sensitive to noise, biases were less than 10% for all the noise levels studied. The use of spherical VOIs was more sensitive to noise. The method was more accurate for larger spheres and larger organs such as the liver in comparison to the kidneys. Biases lower than 7% were found in the liver when using large enough spheres (radius ≥ 28 mm), regardless of the position, of the VOI inside the organ even with shortened acquisition times. The biases were more position-dependent for smaller organs. Both of the simpler methods provided suitable surrogates in terms of accuracy and precision. The results suggested that a spherical VOI was more appropriate for estimating the activity concentration in larger organs such as the liver, regardless of the position of the sphere inside the organ. Larger spheres resulted in better estimates. A single-slice ROI was more suitable for activity estimation in smaller organs such as the kidneys, providing that the transaxial slice selected was near the central plane of the organ and that voxels from the organ boundaries were excluded. Under those conditions, activity concentrations with biases lower than 5% were observed for all the studied count levels and coefficients of variation were less than 9% and 5% for the 25% and 100% count levels, respectively. © 2017 American Association of Physicists in Medicine.
Chrzanowski, Stephen M; Baligand, Celine; Willcocks, Rebecca J; Deol, Jasjit; Schmalfuss, Ilona; Lott, Donovan J; Daniels, Michael J; Senesac, Claudia; Walter, Glenn A; Vandenborne, Krista
2017-09-01
Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. Cross sectional T 1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.
NASA Astrophysics Data System (ADS)
Pandremmenou, K.; Tziortziotis, N.; Paluri, S.; Zhang, W.; Blekas, K.; Kondi, L. P.; Kumar, S.
2015-03-01
We propose the use of the Least Absolute Shrinkage and Selection Operator (LASSO) regression method in order to predict the Cumulative Mean Squared Error (CMSE), incurred by the loss of individual slices in video transmission. We extract a number of quality-relevant features from the H.264/AVC video sequences, which are given as input to the LASSO. This method has the benefit of not only keeping a subset of the features that have the strongest effects towards video quality, but also produces accurate CMSE predictions. Particularly, we study the LASSO regression through two different architectures; the Global LASSO (G.LASSO) and Local LASSO (L.LASSO). In G.LASSO, a single regression model is trained for all slice types together, while in L.LASSO, motivated by the fact that the values for some features are closely dependent on the considered slice type, each slice type has its own regression model, in an e ort to improve LASSO's prediction capability. Based on the predicted CMSE values, we group the video slices into four priority classes. Additionally, we consider a video transmission scenario over a noisy channel, where Unequal Error Protection (UEP) is applied to all prioritized slices. The provided results demonstrate the efficiency of LASSO in estimating CMSE with high accuracy, using only a few features. les that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a le system, user interface and applications through an web architecture.
Thin-slice vision: inference of confidence measure from perceptual video quality
NASA Astrophysics Data System (ADS)
Hameed, Abdul; Balas, Benjamin; Dai, Rui
2016-11-01
There has been considerable research on thin-slice judgments, but no study has demonstrated the predictive validity of confidence measures when assessors watch videos acquired from communication systems, in which the perceptual quality of videos could be degraded by limited bandwidth and unreliable network conditions. This paper studies the relationship between high-level thin-slice judgments of human behavior and factors that contribute to perceptual video quality. Based on a large number of subjective test results, it has been found that the confidence of a single individual present in all the videos, called speaker's confidence (SC), could be predicted by a list of features that contribute to perceptual video quality. Two prediction models, one based on artificial neural network and the other based on a decision tree, were built to predict SC. Experimental results have shown that both prediction models can result in high correlation measures.
Fabrication of patterned single-crystal SrTiO3 thin films by ion slicing and anodic bonding
NASA Astrophysics Data System (ADS)
Lee, Yoo Seung; Djukic, Djordje; Roth, Ryan M.; Laibowitz, Robert; Izuhara, Tomoyuki; Osgood, Richard M.; Bakhru, Sasha; Bakhru, Hassaram; Si, Weidong; Welch, David
2006-09-01
A new technique for directly fabricating patterned thin films (<1μm thick) of fully single-crystal strontium titanate uses deep H+ implantation into the oxide sample, followed by anodic bonding of the sample to a Pyrex or Pyrex-on-Si substrate. The dielectric properties and crystal structure of such thin films are characterized and are found to be essentially those of the bulk single crystal.
Niu, Zhitao; Pan, Jiajia; Xue, Qingyun; Zhu, Shuying; Liu, Wei; Ding, Xiaoyu
2018-05-01
Dendrobium species and their corresponding medicinal slices have been extensively used as traditional Chinese medicine (TCM) in many Asian countries. However, it is extremely difficult to identify Dendrobium species based on their morphological and chemical features. In this study, the plastomes of D. huoshanense were used as a model system to investigate the hypothesis that plastomic mutational hotspot regions could provide a useful single nucleotide variants (SNVs) resource for authentication studies. We surveyed the plastomes of 17 Dendrobium species, including the newly sequenced plastome of D. huoshanense . A total of 19 SNVs that could be used for the authentication of D. huoshanense were detected. On the basis of this comprehensive comparison, we identified the four most informative hotspot regions in the Dendrobium plastome that encompass ccsA to ndhF , matK to 3'trnG , rpoB to psbD, and trnT to rbcL . Furthermore, to established a simple and accurate method for the authentication of D. huoshanense and its medicinal slices, a total of 127 samples from 20 Dendrobium species including their corresponding medicinal slices (Fengdous) were used in this study. Our results suggest that D. huoshanense and its medicinal slices can be rapidly and unequivocally identified using this method that combines real-time PCR with the amplification refractory mutation system (ARMS).
Carminati, M Chiara; Boniotti, Cinzia; Fusini, Laura; Andreini, Daniele; Pontone, Gianluca; Pepi, Mauro; Caiani, Enrico G
2016-05-01
The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches.
Development of a Multileaf Collimator for Proton Radiotherapy
2006-06-01
voxel size and slice thickness can be adjusted and determine the resolution. Each voxel is assigned a CT Number, in Hounsfield units , which is a...measure of the linear attenuation of the material in that voxel. The Hounsfield unit is a comparison of the linear attenuation coefficient of some...a header, which contains relevant patient and scan information, and the data, which is a sequential listing of the Hounsfield units of each voxel
Low-dose CT for quantitative analysis in acute respiratory distress syndrome
2013-08-31
noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Aydın, Zeliha Uğur; Özyürek, Taha; Keskin, Büşra; Baran, Talat
2018-04-12
The aim of the present study was to compare the effect of chitosan nanoparticle, QMix, and 17% EDTA on the penetrability of a calcium silicate-based sealer into dentinal tubules using a confocal laser scanning microscope (CLSM). Sixty mandibular premolar teeth were selected and randomly divided into three groups (n = 20) before root canal preparation according to the solution used in the final rinse protocol: chitosan, QMix, and EDTA groups. Twenty teeth of each group were filled with a TotalFill BC sealers' single gutta-percha cone and with 0.1% rhodamine B. The specimens were horizontally sectioned at 3 and 5 mm from the apex, and the slices were analyzed in CLSM (4×). Total percentage and maximum depth of sealer penetration were measured using confocal laser scanning microscopy with using Image J analysis software. Dentinal tubule's penetration depth, percentage, and area were measured using imaging software. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 5%. Results of Kruskal-Wallis analysis showed that there was a significant difference in the percentage and depth of sealer penetration among all groups at 3 and 5 mm level sections (P < 0.05). Within the groups, the minimum sealer penetration depth was recorded for chitosan nanoparticle group. Greater depth of sealer penetration was recorded at 5 mm as compared to 3 mm in all the groups. Within the limitation of the present study, it can be concluded that QMix and EDTA promoted sealer penetration superior to that achieved by chitosan nanoparticle.
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Wilkins, Bryce; Page, Kathleen A.; Singh, Manbir
2012-03-01
A novel MRI protocol has been developed to investigate the differential effects of glucose or fructose consumption on whole-brain functional brain connectivity. A previous study has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the hypothalamus following glucose ingestion, but due to technical limitations, was restricted to a single slice covering the hypothalamus, and thus unable to detect whole-brain connectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI data following food intake, but only after restricting image acquisition to an MR sampling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40 contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity analysis. Human data were acquired first with ingestion of water only, followed by a glucose or fructose drink within the scanner, without interrupting the scanning. Whole-brain connectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range. The correlation coefficient differences between fructose and glucose ingestion among targeted regions were converted to t-scores using the water-only correlation coefficients as a null condition. Results show a dramatic increase in the hypothalamic connectivity to the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over glucose. As these regions are known to be key components of the feeding and reward brain circuits, these results suggest a preference for fructose ingestion.
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
Varughese, J K; Wentzel-Larsen, T; Vassbotn, F; Moen, G; Lund-Johansen, M
2010-04-01
In this volumetric study of the vestibular schwannoma, we evaluated the accuracy and reliability of several approximation methods that are in use, and determined the minimum volume difference that needs to be measured for it to be attributable to an actual difference rather than a retest error. We also found empirical proportionality coefficients for the different methods. DESIGN/SETTING AND PARTICIPANTS: Methodological study with investigation of three different VS measurement methods compared to a reference method that was based on serial slice volume estimates. These volume estimates were based on: (i) one single diameter, (ii) three orthogonal diameters or (iii) the maximal slice area. Altogether 252 T1-weighted MRI images with gadolinium contrast, from 139 VS patients, were examined. The retest errors, in terms of relative percentages, were determined by undertaking repeated measurements on 63 scans for each method. Intraclass correlation coefficients were used to assess the agreement between each of the approximation methods and the reference method. The tendency for approximation methods to systematically overestimate/underestimate different-sized tumours was also assessed, with the help of Bland-Altman plots. The most commonly used approximation method, the maximum diameter, was the least reliable measurement method and has inherent weaknesses that need to be considered. This includes greater retest errors than area-based measurements (25% and 15%, respectively), and that it was the only approximation method that could not easily be converted into volumetric units. Area-based measurements can furthermore be more reliable for smaller volume differences than diameter-based measurements. All our findings suggest that the maximum diameter should not be used as an approximation method. We propose the use of measurement modalities that take into account growth in multiple dimensions instead.
Unsupervised fuzzy segmentation of 3D magnetic resonance brain images
NASA Astrophysics Data System (ADS)
Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.
1993-07-01
Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.
Composite germanium monochromators - Results for the TriCS single-crystal diffractometer at SINQ
NASA Astrophysics Data System (ADS)
Schefer, J.; Fischer, S.; Böhm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P.
Composite germanium monochromators are foremost in application in neutron diffraction due to their good scattering properties, low absorption values and the diamond structure which avoids second-order contamination when using hhk reflections (all odd). Our slices for the monochromator are built from 24 wafers, each 0.4 mm thick. The alignment of the wafers within the final composite wafer package has been improved by adding tin for the soldering process with a sputtering method instead of foils. Nine slices, each 12.5 mm high, are mounted on separate miniature goniometer heads to the focusing monochromator. The focusing angle is controlled by only one motor/digitizer by using a sophisticated mechanism. Turning the monochromator by 9° around overlineω allow access of the 311 (primary) and 511 (secondary) reflection. We also show the importance of permanent quality control with neutrons. The monochromator will be used on the single-crystal diffractometer TriCS at SINQ.
A LANDSAT study of ephemeral and perennial rangeland vegetation and soils
NASA Technical Reports Server (NTRS)
Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.
1976-01-01
The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.
Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.
Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick
2010-09-01
To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzetic, S; Weldon, M; Noa, K
Purpose: This study compares the newly released MaxFOV Revision 1 EFOV reconstruction algorithm for GE RT590 to the older WideView EFOV algorithm. Two radiotherapy overlays from Q-fix and Diacor, are included in our analysis. Hounsfield Units (HU) generated with the WideView algorithm varied in the extended field (beyond 50cm) and the scanned object’s border varied from slice to slice. A validation of HU consistency between the two reconstruction algorithms is performed. Methods: A CatPhan 504 and CIRS062 Electron Density Phantom were scanned on a GE RT590 CT-Simulator. The phantoms were positioned in multiple locations within the scan field of viewmore » so some of the density plugs were outside the 50cm reconstruction circle. Images were reconstructed using both the WideView and MaxFOV algorithms. The HU for each scan were characterized both in average over a volume and in profile. Results: HU values are consistent between the two algorithms. Low-density material will have a slight increase in HU value and high-density material will have a slight decrease in HU value as the distance from the sweet spot increases. Border inconsistencies and shading artifacts are still present with the MaxFOV reconstruction on the Q-fix overlay but not the Diacor overlay (It should be noted that the Q-fix overlay is not currently GE-certified). HU values for water outside the 50cm FOV are within 40HU of reconstructions at the sweet spot of the scanner. CatPhan HU profiles show improvement with the MaxFOV algorithm as it approaches the scanner edge. Conclusion: The new MaxFOV algorithm improves the contour border for objects outside of the standard FOV when using a GE-approved tabletop. Air cavities outside of the standard FOV create inconsistent object borders. HU consistency is within GE specifications and the accuracy of the phantom edge improves. Further adjustments to the algorithm are being investigated by GE.« less
Yunus, Mahira
2012-11-01
To study the use of helical computed tomography 2-D and 3-D images, and virtual endoscopy in the evaluation of airway disease in neonates, infants and children and its value in lesion detection, characterisation and extension. Conducted at Al-Noor Hospital, Makkah, Saudi Arabia, from January 1 to June 30, 2006, the study comprised of 40 patients with strider, having various causes of airway obstruction. They were examined by helical CT scan with 2-D and 3-D reconstructions and virtual endoscopy. The level and characterisation of lesions were carried out and results were compared with actual endoscopic findings. Conventional endoscopy was chosen as the gold standard, and the evaluation of endoscopy was done in terms of sensitivity and specificity of the procedure. For statistical purposes, SPSS version 10 was used. All CT methods detected airway stenosis or obstruction. Accuracy was 98% (n=40) for virtual endoscopy, 96% (n=48) for 3-D external rendering, 90% (n=45) for multiplanar reconstructions and 86% (n=43) for axial images. Comparing the results of 3-D internal and external volume rendering images with conventional endoscopy for detection and grading of stenosis were closer than with 2-D minimum intensity multiplanar reconstruction and axial CT slices. Even high-grade stenosis could be evaluated with virtual endoscope through which conventional endoscope cannot be passed. A case of 4-year-old patient with tracheomalacia could not be diagnosed by helical CT scan and virtual bronchoscopy which was diagriosed on conventional endoscopy and needed CT scan in inspiration and expiration. Virtual endoscopy [VE] enabled better assessment of stenosis compared to the reading of 3-D external rendering, 2-D multiplanar reconstruction [MPR] or axial slices. It can replace conventional endoscopy in the assessment of airway disease without any additional risk.
Grating-based X-ray Dark-field Computed Tomography of Living Mice.
Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F
2015-10-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.
Grating-based X-ray Dark-field Computed Tomography of Living Mice
Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.
2015-01-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545
Fuchs, Tobias A; Stehli, Julia; Fiechter, Michael; Dougoud, Svetlana; Sah, Bert-Ram; Gebhard, Cathérine; Bull, Sacha; Gaemperli, Oliver; Kaufmann, Philipp A
2013-08-01
The aim of this study was to compare image quality characteristics from 64-slice high definition (HDCT) versus 64-slice standard definition CT (SDCT) for coronary stent imaging. In twenty-five stents of 14 patients, undergoing contrast-enhanced CCTA both on 64-slice SDCT (LightSpeedVCT, GE Healthcare) and HDCT (Discovery HD750, GE Healthcare), radiation dose, contrast, noise and stent characteristics were assessed. Two blinded observers graded stent image quality (score 1 = no, 2 = mild, 3 = moderate, and 4 = severe artefacts). All scans were reconstructed with increasing contributions of adaptive statistical iterative reconstruction (ASIR) blending (0, 20, 40, 60, 80 and 100 %). Image quality was significantly superior in HDCT versus SDCT (score 1.7 ± 0.5 vs. 2.7 ± 0.7; p < 0.05). Image noise was significantly higher in HDCT compared to SDCT irrespective of ASIR contributions (p < 0.05). Addition of 40 % ASIR or more reduced image noise significantly in both HDCT and SDCT. In HDCT in-stent luminal attenuation was significantly lower and mean measured in-stent luminal diameter was significantly larger (1.2 ± 0.4 mm vs. 0.8 ± 0.4 mm; p < 0.05) compared to SDCT. Radiation dose from HDCT was comparable to SDCT (1.8 ± 0.7 mSv vs. 1.7 ± 0.7 mSv; p = ns). Use of HDCT for coronary stent imaging reduces partial volume artefacts from stents yielding improved image quality versus SDCT at a comparable radiation dose.
Spatial mapping of humeral head bone density.
Alidousti, Hamidreza; Giles, Joshua W; Emery, Roger J H; Jeffers, Jonathan
2017-09-01
Short-stem humeral replacements achieve fixation by anchoring to the metaphyseal trabecular bone. Fixing the implant in high-density bone can provide strong fixation and reduce the risk of loosening. However, there is a lack of data mapping the bone density distribution in the proximal humerus. The aim of the study was to investigate the bone density in proximal humerus. Eight computed tomography scans of healthy cadaveric humeri were used to map bone density distribution in the humeral head. The proximal humeral head was divided into 12 slices parallel to the humeral anatomic neck. Each slice was then divided into 4 concentric circles. The slices below the anatomic neck, where short-stem implants have their fixation features, were further divided into radial sectors. The average bone density for each of these regions was calculated, and regions of interest were compared using a repeated-measures analysis of variance with significance set at P < .05. Average apparent bone density was found to decrease from proximal to distal regions, with the majority of higher bone density proximal to the anatomic neck of the humerus (P < .05). Below the anatomic neck, bone density increases from central to peripheral regions, where cortical bone eventually occupies the space (P < .05). In distal slices below the anatomic neck, a higher bone density distribution in the medial calcar region was also observed. This study indicates that it is advantageous with respect to implant fixation to preserve some bone above the anatomic neck and epiphyseal plate and to use the denser bone at the periphery. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse
Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui
2016-01-01
Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186
Liu, K H; Chan, Y L; Chan, J C N; Chan, W B; Kong, M O; Poon, M Y
2005-09-01
Magnetic Resonance Imaging (MRI) is a well-accepted non-invasive method in the quantification of visceral adipose tissue. However, a standard method of measurement has not yet been universally agreed. The objectives of the present study were 2-fold, firstly, to identify the imaging plane in the Chinese population which gives the best correlation with total visceral adipose tissue volume and cardiovascular risk factors; and secondly to compare the correlations between single-slice and multiple-slice approach with cardiovascular risk factors. Thirty-seven Chinese subjects with no known medical history underwent MRI examination for quantifying total visceral adipose tissue volume. The visceral adipose tissue area at five axial imaging levels within abdomen and pelvis were determined. All subjects had blood pressure measured and fasting blood taken for analysis of cardiovascular risk factors. Framingham risk score for each subject was calculated. The imaging plane at the level of 'lower costal margin' (LCM) in both men and women had the highest correlation with total visceral adipose tissue volume (r = 0.97 and 0.99 respectively). The visceral adipose tissue area at specific imaging levels showed higher correlations with various cardiovascular risk factors and Framingham risk score than total visceral adipose tissue volume. The visceral adipose tissue area at 'umbilicus' (UMB) level in men (r = 0.88) and LCM level in women (r = 0.70) showed the best correlation with Framingham risk score. The imaging plane at the level of LCM is preferred for reflecting total visceral adipose tissue volume in Chinese subjects. For investigating the association of cardiovascular risk with visceral adipose tissue in MRI-obesity research, the single-slice approach is superior to the multiple-slice approach, with the level of UMB in men and LCM in women as the preferred imaging planes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp; Notohara, Daisuke; Sakai, Takihito
2014-11-01
Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitchedmore » images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance from the IFP increased. A visual evaluation of the spatial resolution using the x-ray test pattern indicated that the resolution was 1.8 lp/mm at the IFP and 1.2 lp/mm at heights of −100 and 100 mm from the IFP. The authors demonstrated that a spatial resolution of 1.2–1.8 lp/mm could be obtained within heights of 200 mm of the IFP. The slice sensitivity varied between 11.1 and 13.8 mm for heights between −50 and 100 mm, and there was no critical change in the slice sensitivity within a height range of 150 mm around the IFP. The phantom results demonstrated that tomosynthesis and long-view images could be reconstructed. Conclusions: PS-TS-F provides tomosynthesis images while using low-cost systems that have no tomographic scanning function, such as tableside-controlled universal R/F systems or universal radiographic systems.« less
NASA Astrophysics Data System (ADS)
Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.
1993-07-01
We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.
Shields, Richard K.; Dudley-Javoroski, Shauna; Boaldin, Kathryn M.; Corey, Trent A.; Fog, Daniel B.; Ruen, Jacquelyn M.
2012-01-01
Objectives To determine (1) the error attributable to external tibia-length measurements by using peripheral quantitative computed tomography (pQCT) and (2) the effect these errors have on scan location and tibia trabecular bone mineral density (BMD) after spinal cord injury (SCI). Design Blinded comparison and criterion standard in matched cohorts. Setting Primary care university hospital. Participants Eight able-bodied subjects underwent tibia length measurement. A separate cohort of 7 men with SCI and 7 able-bodied age-matched male controls underwent pQCT analysis. Interventions Not applicable. Main Outcome Measures The projected worst-case tibia-length–measurement error translated into a pQCT slice placement error of ±3mm. We collected pQCT slices at the distal 4% tibia site, 3mm proximal and 3mm distal to that site, and then quantified BMD error attributable to slice placement. Results Absolute BMD error was greater for able-bodied than for SCI subjects (5.87mg/cm3 vs 4.5mg/cm3). However, the percentage error in BMD was larger for SCI than able-bodied subjects (4.56% vs 2.23%). Conclusions During cross-sectional studies of various populations, BMD differences up to 5% may be attributable to variation in limb-length–measurement error. PMID:17023249
Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout.
Li, Zhiqiang; Wang, Dinghui; Robison, Ryan K; Zwart, Nicholas R; Schär, Michael; Karis, John P; Pipe, James G
2016-02-01
T2 -weighted imaging is of great diagnostic value in neuroimaging. Three-dimensional (3D) Cartesian turbo spin echo (TSE) scans provide high signal-to-noise ratio (SNR) and contiguous slice coverage. The purpose of this preliminary work is to implement a novel 3D spiral TSE technique with image quality comparable to 2D/3D Cartesian TSE. The proposed technique uses multislab 3D TSE imaging. To mitigate the slice boundary artifacts, a sliding-slab method is extended to spiral imaging. A spiral-in/out readout is adopted to minimize the artifacts that may be present with the conventional spiral-out readout. Phase errors induced by B0 eddy currents are measured and compensated to allow for the combination of the spiral-in and spiral-out images. A nonuniform slice encoding scheme is used to reduce the truncation artifacts while preserving the SNR performance. Preliminary results show that each of the individual measures contributes to the overall performance, and the image quality of the results obtained with the proposed technique is, in general, comparable to that of 2D or 3D Cartesian TSE. 3D sliding-slab TSE with a spiral-in/out readout provides good-quality T2 -weighted images, and, therefore, may become a promising alternative to Cartesian TSE. © 2015 Wiley Periodicals, Inc.
Levolger, Stef; Gharbharan, Arvind; Koek, Marcel; Niessen, Wiro J.; Burger, Jacobus W.A.; Willemsen, Sten P.; de Bruin, Ron W.F.
2016-01-01
Abstract Background The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single‐slice computed tomography (CT)‐based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter‐observer, intra‐observer, and inter‐software correlation are unknown. Therefore, a comparative study was performed. Methods Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross‐sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter‐software, intra‐observer, and inter‐observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra‐class correlation coefficients (ICCs) and Bland–Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Results Bland–Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979–1.000, P < 0.001). All programmes adequately distinguished between the presence or absence of sarcopenia (κ = 0.88–0.96 for one observer and all κ = 1.00 for all comparisons of the other observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra‐observer (ICC 0.999–1.000, P < 0.001) and inter‐observer (ICC 0.998–0.999, P < 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). Conclusions FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter‐observer and intra‐observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared. PMID:27897414
Hingerl, Lukas; Moser, Philipp; Považan, Michal; Hangel, Gilbert; Heckova, Eva; Gruber, Stephan; Trattnig, Siegfried; Strasser, Bernhard
2017-01-01
Purpose Full‐slice magnetic resonance spectroscopic imaging at ≥7 T is especially vulnerable to lipid contaminations arising from regions close to the skull. This contamination can be mitigated by improving the point spread function via higher spatial resolution sampling and k‐space filtering, but this prolongs scan times and reduces the signal‐to‐noise ratio (SNR) efficiency. Currently applied parallel imaging methods accelerate magnetic resonance spectroscopic imaging scans at 7T, but increase lipid artifacts and lower SNR‐efficiency further. In this study, we propose an SNR‐efficient spatial‐spectral sampling scheme using concentric circle echo planar trajectories (CONCEPT), which was adapted to intrinsically acquire a Hamming‐weighted k‐space, thus termed density‐weighted‐CONCEPT. This minimizes voxel bleeding, while preserving an optimal SNR. Theory and Methods Trajectories were theoretically derived and verified in phantoms as well as in the human brain via measurements of five volunteers (single‐slice, field‐of‐view 220 × 220 mm2, matrix 64 × 64, scan time 6 min) with free induction decay magnetic resonance spectroscopic imaging. Density‐weighted‐CONCEPT was compared to (a) the originally proposed CONCEPT with equidistant circles (here termed e‐CONCEPT), (b) elliptical phase‐encoding, and (c) 5‐fold Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase‐encoding. Results By intrinsically sampling a Hamming‐weighted k‐space, density‐weighted‐CONCEPT removed Gibbs‐ringing artifacts and had in vivo +9.5%, +24.4%, and +39.7% higher SNR than e‐CONCEPT, elliptical phase‐encoding, and the Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase‐encoding (all P < 0.05), respectively, which lead to improved metabolic maps. Conclusion Density‐weighted‐CONCEPT provides clinically attractive full‐slice high‐resolution magnetic resonance spectroscopic imaging with optimal SNR at 7T. Magn Reson Med 79:2874–2885, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29106742
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Ortiz-Montalvo, D. L.
2017-12-01
In the remote sensing of atmospheric aerosols, coarse-mode dust particles are often modeled optically as a collection of spheroids. However, atmospheric particles rarely resemble simplified shapes such as spheroids. Moreover, individual particles often have a heterogenous composition and may not be sufficiently modeled as a single material. In this work, we determine the optical properties of dust particles based on 3-dimensional models of individual particles from focused ion-beam (FIB) tomography. We compare the optical properties of the actual particles with the particles as simplified shapes including one or more spheres, an ellipsoid, cube, rectangular prism, or tetrahedron. FIB tomography is performed with a scanning electron microscope equipped with an ion-beam column. The ion beam slices through the particle incrementally as the electron beam images each slice. Element maps of the particle may be acquired with energy-dispersive x-ray spectroscopy. The images and maps are used to create the 3-D spatial model, from which the discrete dipole approximation method is used to calculate extinction, single scattering albedo, asymmetry parameter, and the phase function. Models of urban dust show that shape is generally more important than accounting for composition heterogeneity. However, if a particle has material phases with widely-varying refractive indexes, a geometric model may be insufficient if it does not incorporate heterogeneity. Models of Asian dust show that geometric models generally exhibit lower extinction efficiencies than the actual particles suggesting that simplified models do not adequately account for particle surface roughness. Nevertheless, in most cases the extinction from the tetrahedron model comes closest to that of the actual particles suggesting that accounting for particle angularity is important. The phase function from the tetrahedron model is comparable to the ellipsoid model and generally close to the actual particle, particularly in the backscatter direction (90° to 180°). Current work focuses on optical models of particles with a strongly-absorbing soot phase attached to a scattering mineral phase.
Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump.
Carroll, Lee; Friedli, Peter; Lerch, Philippe; Schneider, Jörg; Treyer, Daniel; Hunziker, Stephan; Stutz, Stefan; Sigg, Hans
2011-06-01
Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 μm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 μm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump-induced absorption and inversion processes present at the direct-gap energy. © 2011 American Institute of Physics
Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain
NASA Astrophysics Data System (ADS)
Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain
2012-11-01
The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.
Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.
Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J
2015-01-01
Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.
Evaluation of techniques for slice sensitivity profile measurement and analysis
Greene, Travis C.
2014-01-01
The purpose of this study was to compare the resulting full width at half maximum of slice sensitivity profiles (SSP) generated by several commercially available point response phantoms, and determine an appropriate imaging technique and analysis method. Four CT phantoms containing point response objects designed to produce a delta impulse signal used in this study: a Fluke CT‐SSP phantom, a Gammex 464, a CatPhan 600, and a Kagaku Micro Disc phantom. Each phantom was imaged using 120 kVp, 325 mAs, head scan field of view, 32×0.625 mm helical scan with a 20 mm beam width and a pitch of 0.969. The acquired images were then reconstructed into all available slice thicknesses (0.625 mm−5.0 mm). A computer program was developed to analyze the images of each dataset for generating a SSP from which the full width at half maximum (FWHM) was determined. Two methods for generating SSPs were evaluated and compared by choosing the mean vs. maximum value in the ROI, along with two methods for evaluating the FWHM of the SSP, linear interpolation and Gaussian curve fitting. FWHMs were compared with the manufacturer's specifications using percent error and z‐test with a significance value of p<0.05. The FWHMs from each phantom were not significantly different (p≥0.089) with an average error of 3.5%. The FWHMs from SSPs generated from the mean value were statistically different (p≤3.99×1013). The FWHMs from the different FWHM methods were not statistically different (p≤0.499). Evaluation of the SSP is dependent on the ROI value used. The maximum value from the ROI should be used to generate the SSP whenever possible. SSP measurement is independent of the phantoms used in this study. PACS number: 87. PMID:24710429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaballa, H; O’Brien, M; Riegel, A
Purpose: To develop a daily quality assurance (QA) device that can test the 6DoF (degrees of freedom) couch repositioning accuracy, prior to SBRT treatment deliveries, with an accuracy of ±0.3 degrees and ±0.3 mm. Methods: A daily QA phantom is designed with a focus on the derived center of projections of its markers, rather than tracking its individual markers one at a time. This approach can be the most favorable to address the intended machining accuracy of the QA phantom and the CBCT spatial resolution limitations, primarily 1 mm min slice thickness, simultaneously. With the current design, ±0.1 mm congruencemore » of the resultant center of gravity of the markers with reference CT (0.6 mm minimum slice thickness) vs CBCT (1.0 mm minimum slice thickness) can be achieved. If successful, the QA device should be qualified to test 6DoF couch performance with a gauged accuracy of ±0.3 degrees/±0.3 mm. Testing is performed for the Varian True Beam 2.0 6DoF system. Results: Once the QA phantom is constructed and tested, agreement of the center of gravity of the reference CT scan and the CBCT scan of ±0.1 mm is achieved. This has translated into a consistent 3D-3D match on the treatment machine, CT vs CBCT, with a repetitive ±0.1 mm variation, thus exceeding our expectations. We have deployed the phantom for daily QA on one of our accelerators, and found that the QA time has increased by only 10 minutes. Conclusion: A 6DoF phantom has been designed (patent pending) and built with a realistic work flow in mind where the daily couch accuracy QA checks taking less than 10 minutes. Current developments include integration with the Varian’s Machine Performance Check consistency module.« less
Automatic thoracic body region localization
NASA Astrophysics Data System (ADS)
Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.
2017-03-01
Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
Schuurmann, Richte C L; Overeem, Simon P; van Noort, Kim; de Vries, Bastiaan A; Slump, Cornelis H; de Vries, Jean-Paul P M
2018-04-01
To validate a novel methodology employing regular postoperative computed tomography angiography (CTA) scans to assess essential factors contributing to durable endovascular aneurysm repair (EVAR), including endograft deployment accuracy, neck adaptation to radial forces, and effective apposition of the fabric within the aortic neck. Semiautomatic calculation of the apposition surface between the endograft and the infrarenal aortic neck was validated in vitro by comparing the calculated surfaces over a cylindrical silicon model with known dimensions on CTA reconstructions with various slice thicknesses. Interobserver variabilities were assessed for calculating endograft position, apposition, and expansion in a retrospective series of 24 elective EVAR patients using the repeatability coefficient (RC) and the intraclass correlation coefficient (ICC). The variability of these calculations was compared with variability of neck length and diameter measurements on centerline reconstructions of the preoperative and first postoperative CTA scans. In vitro validation showed accurate calculation of apposition, with deviation of 2.8% from the true surface for scans with 1-mm slice thickness. Excellent agreement was achieved for calculation of the endograft dimensions (ICC 0.909 to 0.996). Variability was low for calculation of endograft diameter (RC 2.3 mm), fabric distances (RC 5.2 to 5.7 mm), and shortest apposition length (RC 4.1 mm), which was the same as variability of regular neck diameter (RC 0.9 to 1.1 mm) and length (RC 4.0 to 8.0 mm) measurements. This retrospective validation study showed that apposition surfaces between an endograft and the infrarenal neck can be calculated accurately and with low variability. Determination of the (ap)position of the endograft in the aortic neck and detection of subtle changes during follow-up are crucial to determining eventual failure after EVAR.
Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments.
Giarmarco, Michelle M; Cleghorn, Whitney M; Hurley, James B; Brockerhoff, Susan E
2018-05-09
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca 2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca 2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca 2+ , and energy homeostasis.
Kim, Hyunjeong; Kim, Eosu; Park, Minsun; Lee, Eun; Namkoong, Kee
2013-03-05
One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
Standardized anatomic space for abdominal fat quantification
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.
2014-03-01
The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.
Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei
2015-11-01
Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.
NASA Astrophysics Data System (ADS)
Bostaph, Ekaterina
This research aimed to study the potential for breaking through object size limitations of current X-ray computed tomography (CT) systems by implementing a limited angle scanning technique. CT stands out among other industrial nondestructive inspection (NDI) methods due to its unique ability to perform 3D volumetric inspection, unmatched micro-focus resolution, and objectivity that allows for automated result interpretation. This work attempts to advance NDI technique to enable microstructural material characterization and structural diagnostics of composite structures, where object sizes often prohibit the application of full 360° CT. Even in situations where the objects can be accommodated within existing micro-CT configuration, achieving sufficient magnification along with full rotation may not be viable. An effort was therefore made to achieve high-resolution scans from projection datasets with limited angular coverage (less than 180°) by developing effective reconstruction algorithms in conjunction with robust scan acquisition procedures. Internal features of inspected objects barely distinguishable in a 2D X-ray radiograph can be enhanced by additional projections that are reconstructed to a stack of slices, dramatically improving depth perception, a technique referred to as digital tomosynthesis. Building on the success of state-of-the-art medical tomosynthesis systems, this work sought to explore the feasibility of this technique for composite structures in aerospace applications. The challenge lies in the fact that the slices generated in medical tomosynthesis are too thick for relevant industrial applications. In order to adapt this concept to composite structures, reconstruction algorithms were expanded by implementation of optimized iterative stochastic methods (capable of reducing noise and refining scan quality) which resulted in better depth perception. The optimal scan acquisition procedure paired with the improved reconstruction algorithm facilitated higher in-plane and depth resolution compared to the clinical application. The developed limited angle tomography technique was demonstrated to be able to detect practically significant manufacturing defects (voids) and structural damage (delaminations) critical to structural integrity of composite parts. Keeping in mind the intended real-world aerospace applications where objects often have virtually unlimited in-plane dimensions, the developed technique of partial scanning could potentially extend the versatility of CT-based inspection and enable game changing NDI systems.
NASA Astrophysics Data System (ADS)
Bizyuk, S. A.; Istomin, Yu. P.; Dzhagarov, B. M.
2006-07-01
We have developed a procedure for analysis of the functional status of blood vessels in tumor tissues using computer-assisted color scanning of tumor slices and also for a quantitative assessment of the effectiveness of photoinduced destruction of tumor tissues in animal experiments. Its major advantage is direct determination of the size of the tumor necrosis zone. The procedure has been tested in an experiment on three strains of malignant tumors with different morphologies.
Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin
2017-02-01
We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.
NASA Astrophysics Data System (ADS)
Kowalski, William J.; Teslovich, Nikola C.; Chen, Chia-Yuan; Keller, Bradley B.; Pekkan, Kerem
2014-03-01
Experimental and clinical data indicate that hemodynamic forces within the embryo provide critical biomechanical cues for cardiovascular morphogenesis, growth, and remodeling and that perturbed flow is a major etiology of congenital heart disease. However, embryonic flow-growth relationships are largely qualitative and poorly defined. In this work, we provide a quantitative analysis of in vivo flow and growth trends in the chick embryo using optical coherence tomography (OCT) to acquire simultaneous velocity and structural data of the right vitelline artery continuously over a ten hour period beginning at stage 16 (hour 54). We obtained 3D vessel volumes (15 μm lateral, 4.3 μm axial resolutions, 6 μm slice spacing) at 60 minute intervals, taking a B-scan time series totaling one cardiac cycle at each slice. Embryos were maintained at a constant 37°C and 60% humidity during the entire acquisition period through an inhouse built chamber. The 3D vessel lumen geometries were reconstructed manually to assess growth. Blood flow velocity was computed from the central B-scan using red blood cell particle image velocimetry. The use of extended OCT imaging as a non-invasive method for continuous and simultaneous flow and structural data can enhance our understanding of the biomechanical regulation of critical events in morphogenesis. Data acquired will be useful to validate predictive finite-element 3D growth models.
Segmentation of the whole breast from low-dose chest CT images
NASA Astrophysics Data System (ADS)
Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.
2015-03-01
The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.
1998-01-25
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. These views depict vertical slices from side to middle of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
1998-01-25
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view depict horizontal slices from top to bottom of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
1998-01-25
CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.
Huang, Zheng; Chen, Zhi
2013-10-01
This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was -0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.
Slice profile and B1 corrections in 2D magnetic resonance fingerprinting.
Ma, Dan; Coppo, Simone; Chen, Yong; McGivney, Debra F; Jiang, Yun; Pahwa, Shivani; Gulani, Vikas; Griswold, Mark A
2017-11-01
The goal of this study is to characterize and improve the accuracy of 2D magnetic resonance fingerprinting (MRF) scans in the presence of slice profile (SP) and B 1 imperfections, which are two main factors that affect quantitative results in MRF. The SP and B 1 imperfections are characterized and corrected separately. The SP effect is corrected by simulating the radiofrequency pulse in the dictionary, and the B 1 is corrected by acquiring a B 1 map using the Bloch-Siegert method before each scan. The accuracy, precision, and repeatability of the proposed method are evaluated in phantom studies. The effects of both SP and B 1 imperfections are also illustrated and corrected in the in vivo studies. The SP and B 1 corrections improve the accuracy of the T 1 and T 2 values, independent of the shape of the radiofrequency pulse. The T 1 and T 2 values obtained from different excitation patterns become more consistent after corrections, which leads to an improvement of the robustness of the MRF design. This study demonstrates that MRF is sensitive to both SP and B 1 effects, and that corrections can be made to improve the accuracy of MRF with only a 2-s increase in acquisition time. Magn Reson Med 78:1781-1789, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
1998-01-25
CT scans of the specimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from three orthogonal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: Los Alamos National Laboratory and the University of Colorado at Boulder).
Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John
2012-04-01
The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.
Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David
2016-07-01
The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.
[Radiation exposure during spiral-CT of the paranasal sinuses].
Dammann, F; Momino-Traserra, E; Remy, C; Pereira, P L; Baumann, I; Koitschev, A; Claussen, C D
2000-03-01
Determination of the radiation doses in spiral CT of the paranasal sinuses using a variety of mAs values and scan protocols. CT examinations of the paranasal sinuses were performed using an Alderson-Rando phantom. Radiation dose was determined by LiF-TLD at the level of high risk organs in the head and neck region for combinations of different scan parameters (2/3, 3/3, 3/4 mm) and decreasing charges (200, 150, 100, 50, 25 mAs) on a spiral CT. Additional measurements were performed on three other CT scanners using the 2/3 mm protocol at 50 mAs, and a single slice technique (5/5 mm) on one scanner. The lowest dose values found were 1.88 mGy for the eye lenses, 1.35 mGy for the parotid gland, 0.03 mGy for the thyroid gland and 0.1 mGy for the medulla oblongata using 2 mm collimation and 3 mm table feed at 25 mAs. Maximal dose values resulted using the 3/3 mm protocol at 200 mAs (31.00 mGy for the eye lense, 0.65 mGy for the thyroid gland). There were no significant differences found between the different CT scanners. Using up-to-date CT scanners, radiation exposure may be reduced by a factor of 15-20 compared to that of conventional CT technique. Thus, the exposure of the eye lens comes to only a thousandth of the value supposedly inducing a cataract, as published by the ICRP.
PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner.
Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2017-11-01
MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.
Emerging imaging tools for use with traumatic brain injury research.
Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A
2012-03-01
This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.
PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.
2017-11-01
MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.
Thermoacoustic imaging of prostate cancer: comparison to histology
NASA Astrophysics Data System (ADS)
Patch, S. K.; Griep, S. K.; Jacobsohn, K.; See, W. A.; Hull, D.
2014-03-01
Ex vivo imaging of fresh prostate specimens was performed to test the hypothesis that the thermoacoustic (TA) contrast mechanism generated with very high frequency electromagnetic (EM) irradiation is sensitive to prostate cancer. Ex vivo imaging was performed immediately after radical prostatectomy, performed as part of normal care. Irradiation pulsewidth was 700 ns and duty cycle was extremely low. Typical specific absorption rate (SAR) throughout the prostate was 70-90 kW/kg during pulsing, but time-averaged SAR was below 2 W/kg. TA pressure pulses generated by rapid heating due to EM energy deposition were detected using single element transducers. 15g/L glycine powder mixed into DI water served as acoustic couplant, which was chilled to prevent autolysis. Spatial encoding was performed by scanning in tomographic "step-and-shoot" mode, with 3 mm translation between slices and 1.8-degree rotation between tomographic views. Histology slides for 3 cases scanned with 2.25 MHz transducers were marked for comparison to TA reconstructions. These three cases showed little, moderate, and severe involvement in the histology levels surrounding the verumontanum. TA signal strength decreased with percent cancerous involvement. When VHF is used for tissue heating, the TA contrast mechanism is driven by ionic content and we observed suppressed TA signal from diseased prostate tissue in the peripheral zone. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity.
Wickham, Robert J; Park, Jinwoo; Nunes, Eric J; Addy, Nii A
2015-08-12
Rapid, phasic dopamine (DA) release in the mammalian brain plays a critical role in reward processing, reinforcement learning, and motivational control. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique with high spatial and temporal (sub-second) resolution that has been utilized to examine phasic DA release in several types of preparations. In vitro experiments in single-cells and brain slices and in vivo experiments in anesthetized rodents have been used to identify mechanisms that mediate dopamine release and uptake under normal conditions and in disease models. Over the last 20 years, in vivo FSCV experiments in awake, freely moving rodents have also provided insight of dopaminergic mechanisms in reward processing and reward learning. One major advantage of the awake, freely moving preparation is the ability to examine rapid DA fluctuations that are time-locked to specific behavioral events or to reward or cue presentation. However, one limitation of combined behavior and voltammetry experiments is the difficulty of dissociating DA effects that are specific to primary rewarding or aversive stimuli from co-occurring DA fluctuations that mediate reward-directed or other motor behaviors. Here, we describe a combined method using in vivo FSCV and intra-oral infusion in an awake rat to directly investigate DA responses to oral tastants. In these experiments, oral tastants are infused directly to the palate of the rat--bypassing reward-directed behavior and voluntary drinking behavior--allowing for direct examination of DA responses to tastant stimuli.
Juswardy, Budi; Xiao, Feng; Alameh, Kamal
2009-03-16
This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America
Key frame extraction based on spatiotemporal motion trajectory
NASA Astrophysics Data System (ADS)
Zhang, Yunzuo; Tao, Ran; Zhang, Feng
2015-05-01
Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.
Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images
Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.
2009-01-01
Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415
Variation of quantitative emphysema measurements from CT scans
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.
2008-03-01
Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Yin, F; Wang, C
Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less