Joint Identification of Genetic Variants for Physical Activity in Korean Population
Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung
2014-01-01
There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172
Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng
2014-01-15
Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.
Analysis of population structure and genetic history of cattle breeds based on high-density SNP data
USDA-ARS?s Scientific Manuscript database
Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...
Rong, E G; Yang, H; Zhang, Z W; Wang, Z P; Yan, X H; Li, H; Wang, N
2015-10-01
Methionine synthase (MTR) plays a crucial role in maintaining homeostasis of intracellular methionine, folate, and homocysteine, and its activity correlates with DNA methylation in many mammalian tissues. Our previous genomewide association study identified that 1 SNP located in the gene was associated with several wool production and quality traits in Chinese Merino. To confirm the potential involvement of the gene in sheep wool production and quality traits, we performed sheep tissue expression profiling, SNP detection, and association analysis with sheep wool production and quality traits. The semiquantitative reverse transcription PCR analysis showed that the gene was differentially expressed in skin from Merino and Kazak sheep. The sequencing analysis identified a total of 13 SNP in the gene from Chinese Merino sheep. Comparison of the allele frequencies revealed that these 13 identified SNP were significantly different among the 6 tested Chinese Merino strains ( < 0.001). Linkage disequilibrium analysis showed that SNP 3 to 11 were strongly linked in a single haplotype block in the tested population. Association analysis showed that SNP 2 to 11 were significantly associated with the average wool fiber diameter and the fineness SD and that SNP 4 to 11 were significantly associated with the CV of fiber diameter trait ( < 0.05). Single nucleotide polymorphism 2 and SNP 5 to 12 were weakly associated with wool crimp. Similarly, the haplotypes derived from these 13 identified SNP were also significantly associated with the average wool fiber diameter, fineness SD, and the CV of fiber diameter ( < 0.05). Our results suggest that is a candidate gene for sheep wool production and quality traits, and the identified SNP might be used in sheep breeding.
Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang
2008-01-01
Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146
Gardner, Shea N.; Hall, Barry G.
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125
Gardner, Shea N; Hall, Barry G
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.
Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei
2016-10-01
Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.
Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun
2015-01-01
Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283
Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo
2012-01-01
Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.
LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs
Chang, Hsueh-Wei; Chuang, Li-Yeh; Chang, Yan-Jhu; Cheng, Yu-Huei; Hung, Yu-Chen; Chen, Hsiang-Chi; Yang, Cheng-Hong
2009-01-01
Background Linkage disequilibrium (LD) mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. Results We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP) enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δQ, ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. Conclusion LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at . PMID:19500380
Single-feature polymorphism discovery in the barley transcriptome
Rostoks, Nils; Borevitz, Justin O; Hedley, Peter E; Russell, Joanne; Mudie, Sharon; Morris, Jenny; Cardle, Linda; Marshall, David F; Waugh, Robbie
2005-01-01
A probe-level model for analysis of GeneChip gene-expression data is presented which identified more than 10,000 single-feature polymorphisms (SFP) between two barley genotypes. The method has good sensitivity, as 67% of known single-nucleotide polymorphisms (SNP) were called as SFPs. This method is applicable to all oligonucleotide microarray data, accounts for SNP effects in gene-expression data and represents an efficient and versatile approach for highly parallel marker identification in large genomes. PMID:15960806
Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U
2013-11-01
Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Cohort analysis of a single nucleotide polymorphism on DNA chips.
Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F
2004-11-15
A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.
Babushok, Daria V.; Xie, Hongbo M.; Roth, Jacquelyn J.; Perdigones, Nieves; Olson, Timothy S.; Cockroft, Joshua D.; Gai, Xiaowu; Perin, Juan C.; Li, Yimei; Paessler, Michele E.; Hakonarson, Hakon; Podsakoff, Gregory M.; Mason, Philip J.; Biegel, Jaclyn A.; Bessler, Monica
2013-01-01
Summary The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12.2, p<0.01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. PMID:24116929
Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica
2014-01-01
The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.
Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene
Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen
2008-01-01
Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301
Discovery of 100K SNP array and its utilization in sugarcane
USDA-ARS?s Scientific Manuscript database
Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...
Haplotype-based approach to known MS-associated regions increases the amount of explained risk
Khankhanian, Pouya; Gourraud, Pierre-Antoine; Lizee, Antoine; Goodin, Douglas S
2015-01-01
Genome-wide association studies (GWAS), using single nucleotide polymorphisms (SNPs), have yielded 110 non-human leucocyte antigen genomic regions that are associated with multiple sclerosis (MS). Despite this large number of associations, however, only 28% of MS-heritability can currently be explained. Here we compare the use of multi-SNP-haplotypes to the use of single-SNPs as alternative methods to describe MS genetic risk. SNP-haplotypes (of various lengths from 1 up to 15 contiguous SNPs) were constructed at each of the 110 previously identified, MS-associated, genomic regions. Even after correcting for the larger number of statistical comparisons made when using the haplotype-method, in 32 of the regions, the SNP-haplotype based model was markedly more significant than the single-SNP based model. By contrast, in no region was the single-SNP based model similarly more significant than the SNP-haplotype based model. Moreover, when we included the 932 MS-associated SNP-haplotypes (that we identified from 102 regions) as independent variables into a logistic linear model, the amount of MS-heritability, as assessed by Nagelkerke's R-squared, was 38%, which was considerably better than 29%, which was obtained by using only single-SNPs. This study demonstrates that SNP-haplotypes can be used to fine-map the genetic associations within regions of interest previously identified by single-SNP GWAS. Moreover, the amount of the MS genetic risk explained by the SNP-haplotype associations in the 110 MS-associated genomic regions was considerably greater when using SNP-haplotypes than when using single-SNPs. Also, the use of SNP-haplotypes can lead to the discovery of new regions of interest, which have not been identified by a single-SNP GWAS. PMID:26185143
Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing
Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita
2014-01-01
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279
GrigoraSNPs: Optimized Analysis of SNPs for DNA Forensics.
Ricke, Darrell O; Shcherbina, Anna; Michaleas, Adam; Fremont-Smith, Philip
2018-04-16
High-throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) enables additional DNA forensic capabilities not attainable using traditional STR panels. However, the inclusion of sets of loci selected for mixture analysis, extended kinship, phenotype, biogeographic ancestry prediction, etc., can result in large panel sizes that are difficult to analyze in a rapid fashion. GrigoraSNP was developed to address the allele-calling bottleneck that was encountered when analyzing SNP panels with more than 5000 loci using HTS. GrigoraSNPs uses a MapReduce parallel data processing on multiple computational threads plus a novel locus-identification hashing strategy leveraging target sequence tags. This tool optimizes the SNP calling module of the DNA analysis pipeline with runtimes that scale linearly with the number of HTS reads. Results are compared with SNP analysis pipelines implemented with SAMtools and GATK. GrigoraSNPs removes a computational bottleneck for processing forensic samples with large HTS SNP panels. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi
2018-01-02
Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all the strains included in one complex on an MST or one cluster on a UPGMA were designated as the same genotype, the values of the Hunter-Gaston Discriminatory Power Index for the backbone SNP set of the mapping derived and common SNPs were higher than those of other SNP sets. In contrast, the mobile element SNP set could not robustly subdivide lineage I strains of tested O157 strains using both the mapping derived and common SNPs. These results suggested that the backbone SNP set were the most effective for analysis of WGS data for O157 in enabling an appropriation of its molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.
SNP discovery through de novo deep sequencing using the next generation of DNA sequencers
USDA-ARS?s Scientific Manuscript database
The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....
Analysis of genetic diversity using SNP markers in oat
USDA-ARS?s Scientific Manuscript database
A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...
Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia
2007-01-01
Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544
NASA Astrophysics Data System (ADS)
He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping
2010-12-01
Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.
HRM and SNaPshot as alternative forensic SNP genotyping methods.
Mehta, Bhavik; Daniel, Runa; McNevin, Dennis
2017-09-01
Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.
Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv
2018-06-05
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.
SNP-based genotyping in lentil: linking sequence information with phenotypes
USDA-ARS?s Scientific Manuscript database
Lentil (Lens culinaris) has been late to enter the world of high throughput molecular analysis due to a general lack of genomic resources. Using a 454 sequencing-based approach, SNPs have been identified in genes across the lentil genome. Several hundred have been turned into single SNP KASP assay...
Kato, Hideaki; Ohata, Aya; Samukawa, Sei; Ueda, Atsuhisa; Ishigatsubo, Yoshiaki
2016-04-01
To investigate the association between single nucleotide polymorphisms (SNPs) in the adiponectin-encoding gene ADIPOQ and changes in serum lipid levels in HIV-1-infected patients after antiretroviral therapy (ART). ART-naïve HIV-1-infected patients were recruited to this prospective analysis. SNP +45 and SNP +276 genotype was determined by direct sequencing. Multivariate linear regression analysis was performed to analyse the effects of genotype, and predisposing conditions on serum total cholesterol and triglyceride in the 4 months before and after ART initiation. The study enrolled 78 patients with HIV-1-infection (73 male, five female; age range 22-67 years). HIV-1 viral load ≥5 log10 copies/ml, baseline total cholesterol ≥160 mg/dl, and CD4(+) lymphocyte count <200/µl were associated with increased serum total cholesterol levels after ART initiation. Protease inhibitor treatment and body mass index ≥25 kg/m(2) were associated with increased triglyceride levels after ART initiation. There were no significant associations between SNP +45 or SNP +276 genotype and serum total cholesterol or triglyceride levels. SNP +45 and SNP +276 genotype is not associated with changes in serum total cholesterol or triglyceride levels after ART initiation. © The Author(s) 2016.
Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing
Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele
2007-01-01
Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300
Welderufael, B G; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L G; Fikse, W F
2018-01-01
Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t -test and a genome-wide significance level of P -value < 10 -4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2 ) and genes involved in macrophage recruitment and regulation of inflammations ( PDGFD and PTX3 ) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.
Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L.; Pasternak, Gavril W.; Klein, Robert J.; Cartegni, Luca
2014-01-01
Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction. PMID:25122903
DOE Office of Scientific and Technical Information (OSTI.GOV)
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less
Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei
2012-01-01
Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508
Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M
2016-07-01
It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.
Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.
2015-01-01
P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416
High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis
Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane
2012-01-01
Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596
Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc
2013-12-01
Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra
2016-06-09
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.
SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.
Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H
2014-02-26
Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.
Welderufael, B. G.; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L. G.; Fikse, W. F.
2018-01-01
Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to – but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to – or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to – and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to – and recoverability from mastitis. PMID:29755506
Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S; Jaing, C
2012-03-27
The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel
2009-01-01
Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel
2009-03-19
Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.
Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong
2016-01-01
Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455
Prioritizing individual genetic variants after kernel machine testing using variable selection.
He, Qianchuan; Cai, Tianxi; Liu, Yang; Zhao, Ni; Harmon, Quaker E; Almli, Lynn M; Binder, Elisabeth B; Engel, Stephanie M; Ressler, Kerry J; Conneely, Karen N; Lin, Xihong; Wu, Michael C
2016-12-01
Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been widely used to test associations between traits and genetic polymorphisms. In contrast to traditional single-SNP analysis methods, these methods are designed to examine the joint effect of a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing approaches, kernel machine testing can draw conclusion only at the SNP-set level, and does not directly inform on which one(s) of the identified SNP set is actually driving the associations. A recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general framework for incorporating variable selection into kernel machine methods. In this article, we focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to genetic association studies and propose an approach to identify driver SNPs after the application of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in SNP analysis, such as the linear kernel and the Identity by State (IBS) kernel. The proposed approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set analysis and biological functional studies. Both simulation studies and real data application are used to demonstrate the proposed approach. © 2016 WILEY PERIODICALS, INC.
Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A
2010-11-01
Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng
2015-01-01
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559
Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa
2017-03-01
In the present study, 150 accessions of worldwide originated durum wheat germplasm ( Triticum turgidum spp. durum ) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13 th , 20 th , 27 th and 34 th day-after germination. Biomass traits were measured at the 34 th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-01-01
Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-10-23
Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.
[Genetic analysis of two cases with Dandy-Walker deformed fetus].
Yao, Juan; Fang, Rong; Shen, Xueping; Shen, Guosong; Zhang, Su
2017-10-10
To explore the genetic etiology of two fetuses with Dandy-Walker malformation using single nucleotide polymorphism microarray (SNP-array). The fetuses and their parents were subjected to G banding karyotype analysis. The fetuses were also subjected to SNP-array analysis. The parents of both fetuses showed a normal karyotype. One fetus has a 46,X,?i(X)(q10), while for another conventional cell culture has failed. SNP-array showed that one fetus carried a 6p25.3p25.2 microdeletion, and another carried a Xp22.33p22.2 deletion and a Yq11.221q11 duplication. The abnormal fragments have involved FOXC1, SHOX and STS genes, which are associated with Dandy-Walker malformation. Alteration of 6p25.3p25.2, Xp22.33p22.2 copy numbers probably underlies the Dandy-Walker syndrome in the fetuses. The disorder may be attributed to abnormal expression of FOXC1, SHOX, and STS genes. SNP-array can provide an important supplement for prenatal diagnosis.
Mullen, M P; Berry, D P; Howard, D J; Diskin, M G; Lynch, C O; Berkowicz, E W; Magee, D A; MacHugh, D E; Waters, S M
2010-12-01
Growth hormone, produced in the anterior pituitary gland, stimulates the release of insulin-like growth factor-I from the liver and is of critical importance in the control of nutrient utilization and partitioning for lactogenesis, fertility, growth, and development in cattle. The aim of this study was to discover novel polymorphisms in the bovine growth hormone gene (GH1) and to quantify their association with performance using estimates of genetic merit on 848 Holstein-Friesian AI (artificial insemination) dairy sires. Associations with previously reported polymorphisms in the bovine GH1 gene were also undertaken. A total of 38 novel single nucleotide polymorphisms (SNP) were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, exonic, and 3' regulatory regions, encompassing approximately 7 kb of the GH1 gene. Following multiple regression analysis on all SNP, associations were identified between 11 SNP (2 novel and 9 previously identified) and milk fat and protein yield, milk composition, somatic cell score, survival, body condition score, and body size. The G allele of a previously identified SNP in exon 5 at position 2141 of the GH1 sequence, resulting in a nonsynonymous substitution, was associated with decreased milk protein yield. The C allele of a novel SNP, GH32, was associated with inferior carcass conformation. In addition, the T allele of a previously characterized SNP, GH35, was associated with decreased survival. Both GH24 (novel) and GH35 were independently associated with somatic cell count, and 3 SNP, GH21, 2291, and GH35, were independently associated with body depth. Furthermore, 2 SNP, GH24 and GH63, were independently associated with carcass fat. Results of this study further demonstrate the multifaceted influences of GH1 on milk production, fertility, and growth-related traits in cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.
Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning
2017-11-01
Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.
Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long
2016-07-01
SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.
Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.
Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A
2006-08-01
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.
Liu, Kaihua; Zhang, Bin; Teng, Zhaochun; Wang, Youtao; Dong, Guodong; Xu, Cong; Qin, Bo; Song, Chunlian; Chai, Jun; Li, Yang; Shi, Xianwei; Shu, Xianghua; Zhang, Yifang
2017-03-01
We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T
2017-02-01
To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.
Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C
2015-07-01
To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.
Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Saijo, Y; Namiki, M; Sengoku, K
2014-04-01
Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, ten novel genes involved in human spermatogenesis, including human LRWD1, have been identified by expression microarray analysis of human testictissue. The human LRWD1 protein mediates the origin recognition complex in chromatin, which is critical for the initiation of pre-replication complex assembly in G1 and chromatin organization in post-G1 cells. The Lrwd1 gene expression is specific to the testis in mice. Therefore, we hypothesized that mutation or polymorphisms of LRWD1 participate in male infertility, especially azoospermia. To investigate whether LRWD1 gene defects are associated with azoospermia caused by SCOS and meiotic arrest (MA), mutational analysis was performed in 100 and 30 Japanese patients by direct sequencing of the coding regions, respectively. Statistical analysis was performed for patients with SCOS and MA and in 100 healthy control men. No mutations were found in LRWD1; however, three coding single-nucleotide polymorphisms (SNP1-SNP3) could be detected in the patients. The genotype and allele frequencies in SNP1 and SNP2 were notably higher in the SCOS group than in the control group (P < 0.05). These results suggest the critical role of LRWD1 in human spermatogenesis. © 2013 Blackwell Verlag GmbH.
Phetsuksiri, Benjawan; Srisungngam, Sopa; Rudeeaneksin, Janisara; Bunchoo, Supranee; Lukebua, Atchariya; Wongtrungkapun, Ruch; Paitoon, Soontara; Sakamuri, Rama Murthy; Brennan, Patrick J; Vissa, Varalakshmi
2012-01-01
Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.
Genetic source tracking of an anthrax outbreak in Shaanxi province, China.
Liu, Dong-Li; Wei, Jian-Chun; Chen, Qiu-Lan; Guo, Xue-Jun; Zhang, En-Min; He, Li; Liang, Xu-Dong; Ma, Guo-Zhu; Zhou, Ti-Cao; Yin, Wen-Wu; Liu, Wei; Liu, Kai; Shi, Yi; Ji, Jian-Jun; Zhang, Hui-Juan; Ma, Lin; Zhang, Fa-Xin; Zhang, Zhi-Kai; Zhou, Hang; Yu, Hong-Jie; Kan, Biao; Xu, Jian-Guo; Liu, Feng; Li, Wei
2017-01-17
Anthrax is an acute zoonotic infectious disease caused by the bacterium known as Bacillus anthracis. From 26 July to 8 August 2015, an outbreak with 20 suspected cutaneous anthrax cases was reported in Ganquan County, Shaanxi province in China. The genetic source tracking analysis of the anthrax outbreak was performed by molecular epidemiological methods in this study. Three molecular typing methods, namely canonical single nucleotide polymorphisms (canSNP), multiple-locus variable-number tandem repeat analysis (MLVA), and single nucleotide repeat (SNR) analysis, were used to investigate the possible source of transmission and identify the genetic relationship among the strains isolated from human cases and diseased animals during the outbreak. Five strains isolated from diseased mules were clustered together with patients' isolates using canSNP typing and MLVA. The causative B. anthracis lineages in this outbreak belonged to the A.Br.001/002 canSNP subgroup and the MLVA15-31 genotype (the 31 genotype in MLVA15 scheme). Because nine isolates from another four provinces in China were clustered together with outbreak-related strains by the canSNP (A.Br.001/002 subgroup) and MLVA15 method (MLVA15-31 genotype), still another SNR analysis (CL10, CL12, CL33, and CL35) was used to source track the outbreak, and the results suggesting that these patients in the anthrax outbreak were probably infected by the same pathogen clone. It was deduced that the anthrax outbreak occurred in Shaanxi province, China in 2015 was a local occurrence.
Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad
2016-03-01
The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
Brown, C M; Rea, T J; Hamon, S C; Hixson, J E; Boerwinkle, E; Clark, A G; Sing, C F
2006-07-01
Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype-genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African-American (N=1,858) and European-American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race-gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.
Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S
2012-11-10
We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.
Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias
2015-01-01
Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.
Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David
2006-01-01
We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065
Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior
2010-08-01
Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.
Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease.
Martin, E R; Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Ribble, R C; Booze, M W; Rogala, A; Hauser, M A; Zhang, F; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Pericak-Vance, M A; Vance, J M
2001-11-14
The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. To investigate whether the tau gene is involved in idiopathic PD. Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Family-based tests of association, calculated using asymptotic distributions. Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P =.03; SNP 9i, P =.04; and SNP 11, P =.04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P =.11, and SNP 9iii, P =.87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P =.009) and a negative association with another haplotype (P =.007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3, 9i, 9ii, and 11). This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD.
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Andrews, Kimberly R; Adams, Jennifer R; Cassirer, E Frances; Plowright, Raina K; Gardner, Colby; Dwire, Maggie; Hohenlohe, Paul A; Waits, Lisette P
2018-06-05
The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with >95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP genotyping assays for parentage analysis with relatively small numbers of loci. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.
Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M
2012-01-01
The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.
Liu, X; Guo, X Y; Xu, X Z; Wu, M; Zhang, X; Li, Q; Ma, P P; Zhang, Y; Wang, C Y; Geng, F J; Qin, C H; Liu, L; Shi, W H; Wang, Y C; Yu, Y
2012-08-16
DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.
SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations
van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.
2011-01-01
To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea; Slezak, Tom
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. Themore » SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.« less
DNAzyme based gap-LCR detection of single-nucleotide polymorphism.
Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo
2013-07-15
Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.
Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal
2014-12-01
Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.
Selection and Management of DNA Markers for Use in Genomic Evaluation
USDA-ARS?s Scientific Manuscript database
A database was constructed to store genotypes for 50,972 single-nucleotide polymorphisms (SNP) from the Illumina BovineSNP50 BeadChip for over 30,000 animals. The database allows storage of multiple samples per animal and stores all SNP genotypes for a sample in a single row. An indicator specifies ...
BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.
Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro; Gregori, Silvia; Bacchetta, Rosa
2014-11-01
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants-other than HLA class I and II-associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R(2)=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10(-8); and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.
Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne
2015-01-01
PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.
Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro
2014-01-01
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT. PMID:25111513
Steinbacher, Peter; Feichtinger, René G.; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M.; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne
2015-01-01
PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation. PMID:25886402
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-08-19
Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-01-01
Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585
Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra
2018-05-01
DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1 ng and 10 ng exhibited >90% reportable SNPs. Finally, two-person male-male mixtures were tested at 10 ng in contributor varying ratios. Overall, 85-100% of alleles unique to the minor contributor were observed at all mixture ratios. Results from these studies using the SNP probe capture NGS system demonstrates proof of concept for application to forensically relevant degraded and mixed DNA samples. Copyright © 2018 Elsevier B.V. All rights reserved.
[Prenatal genetic diagnosis for a fetus with atypical neurofibromatosis type 1 microdeletion].
Lin, Shaobin; Wu, Jianzhu; Zhang, Zhiqiang; Ji, Yuanjun; Fang, Qun; Chen, Baojiang; Luo, Yanmin
2016-04-01
To analyze the correlation between atypical neurofibromatosis type 1(NF1) microdeletion and fetal phenotype. Fetal blood sampling was carried out for a woman bearing a fetus with talipes equinovarus. G-banded karyotyping and single nucleotide polymorphism array (SNP-array) were performed on the fetal blood sample. Fluorescence in situ hybridization (FISH) was used to confirm the result of SNP array analysis. FISH assay was also carried out on peripheral blood specimens from the parents to ascertain the origin of mutation. The karyotype of fetus was found to be 46, XY by G-banding analysis. However, a 3.132 Mb microdeletion was detected in chromosome region 17q11.2 by SNP array, which overlaped with the region of NF1 microdeletion syndrome. Analyzing of the specimens from the fetus and its parents with FISH has confirmed it to be a de novo deletion. Talipes equinovarus may be an abnormal sonographic feature of fetus with atypical NF1 microdeletion which can be accurately diagnosed with SNP array.
Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds.
Dimauro, Corrado; Cellesi, Massimo; Gaspa, Giustino; Ajmone-Marsan, Paolo; Steri, Roberto; Marras, Gabriele; Macciotta, Nicolò P P
2013-06-05
The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.
Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent
2011-02-20
From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.
Dynamic variable selection in SNP genotype autocalling from APEX microarray data.
Podder, Mohua; Welch, William J; Zamar, Ruben H; Tebbutt, Scott J
2006-11-30
Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide--adenine (A), thymine (T), cytosine (C) or guanine (G)--is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA) using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU) of St. Paul's Hospital (plus one negative PCR control sample). Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our model-based genotype calling algorithm captures the redundancy in the system considering all the underlying probe features of a particular SNP, automatically down-weighting any 'bad data' corresponding to image artifacts on the microarray slide or failure of a specific chemistry. In this regard, our method is able to automatically select the probes which work well and reduce the effect of other so-called bad performing probes in a sample-specific manner, for any number of SNPs.
Chen, Ying; Zhang, Zhijun; Xu, Zhi; Pu, Mengjia; Geng, Leiyu
2015-12-01
To explore the influence of interleukin-1 beta (IL1B) gene polymorphism and childhood maltreatment on antidepressant treatment. Two hundred and four patients with major depressive disorder (MDD) have received treatment with single antidepressant drugs and were followed up for 8 weeks. Hamilton depression scale-17 (HAMD-17) was used to evaluate the severity of depressive symptoms and therapeutic effect. Childhood maltreatment was assessed using Childhood Trauma Questionnaire, a 28-item Short Form (CTQ-SF). Single nucleotide polymorphism (SNP) of the IL1B gene was determined using a SNaPshot method. Correlation of rs16944 gene polymorphism with response to treatment was analyzed using Unphased 3.0.13 software. The main and interactive effects of SNP and childhood maltreatment on the antidepressant treatment were analyzed using Logistic regression analysis. No significant difference of gender, age, year of education, family history, episode time, and antidepressant agents was detected between the remitters and non-remitters. Association analysis has found that the SNP rs16944 in the IL1B AA genotype carriers antidepressant response was poorer (χ2=3.931, P=0.047). No significant difference was detected in the CTQ scores between the two groups. Genetic and environmental interaction analysis has demonstrated a significant correlation between rs16944 AA genotype and childhood maltreatment and poorer response to antidepressant treatment. The SNP rs16944 in the IL1B gene and its interaction with childhood maltreatment may influence the effect of antidepressant treatment for patients with MDD.
Evans, Daniel S.; Avery, Christy L.; Nalls, Mike A.; Li, Guo; Barnard, John; Smith, Erin N.; Tanaka, Toshiko; Butler, Anne M.; Buxbaum, Sarah G.; Alonso, Alvaro; Arking, Dan E.; Berenson, Gerald S.; Bis, Joshua C.; Buyske, Steven; Carty, Cara L.; Chen, Wei; Chung, Mina K.; Cummings, Steven R.; Deo, Rajat; Eaton, Charles B.; Fox, Ervin R.; Heckbert, Susan R.; Heiss, Gerardo; Hindorff, Lucia A.; Hsueh, Wen-Chi; Isaacs, Aaron; Jamshidi, Yalda; Kerr, Kathleen F.; Liu, Felix; Liu, Yongmei; Lohman, Kurt K.; Magnani, Jared W.; Maher, Joseph F.; Mehra, Reena; Meng, Yan A.; Musani, Solomon K.; Newton-Cheh, Christopher; North, Kari E.; Psaty, Bruce M.; Redline, Susan; Rotter, Jerome I.; Schnabel, Renate B.; Schork, Nicholas J.; Shohet, Ralph V.; Singleton, Andrew B.; Smith, Jonathan D.; Soliman, Elsayed Z.; Srinivasan, Sathanur R.; Taylor, Herman A.; Van Wagoner, David R.; Wilson, James G.; Young, Taylor; Zhang, Zhu-Ming; Zonderman, Alan B.; Evans, Michele K.; Ferrucci, Luigi; Murray, Sarah S.; Tranah, Gregory J.; Whitsel, Eric A.; Reiner, Alex P.; Sotoodehnia, Nona
2016-01-01
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10−14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10−4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10−8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10−9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10−7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS–SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved. PMID:27577874
Evans, Daniel S; Avery, Christy L; Nalls, Mike A; Li, Guo; Barnard, John; Smith, Erin N; Tanaka, Toshiko; Butler, Anne M; Buxbaum, Sarah G; Alonso, Alvaro; Arking, Dan E; Berenson, Gerald S; Bis, Joshua C; Buyske, Steven; Carty, Cara L; Chen, Wei; Chung, Mina K; Cummings, Steven R; Deo, Rajat; Eaton, Charles B; Fox, Ervin R; Heckbert, Susan R; Heiss, Gerardo; Hindorff, Lucia A; Hsueh, Wen-Chi; Isaacs, Aaron; Jamshidi, Yalda; Kerr, Kathleen F; Liu, Felix; Liu, Yongmei; Lohman, Kurt K; Magnani, Jared W; Maher, Joseph F; Mehra, Reena; Meng, Yan A; Musani, Solomon K; Newton-Cheh, Christopher; North, Kari E; Psaty, Bruce M; Redline, Susan; Rotter, Jerome I; Schnabel, Renate B; Schork, Nicholas J; Shohet, Ralph V; Singleton, Andrew B; Smith, Jonathan D; Soliman, Elsayed Z; Srinivasan, Sathanur R; Taylor, Herman A; Van Wagoner, David R; Wilson, James G; Young, Taylor; Zhang, Zhu-Ming; Zonderman, Alan B; Evans, Michele K; Ferrucci, Luigi; Murray, Sarah S; Tranah, Gregory J; Whitsel, Eric A; Reiner, Alex P; Sotoodehnia, Nona
2016-10-01
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10 -14 ) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10 -4 ). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10 -8 ) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10 -9 ). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10 -7 ), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bias due to two-stage residual-outcome regression analysis in genetic association studies.
Demissie, Serkalem; Cupples, L Adrienne
2011-11-01
Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.
Analysis of single nucleotide polymorphisms in case-control studies.
Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer
2011-01-01
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.
Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh
2013-01-01
Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635
Loughlin, J; Sinsheimer, J S; Mustafa, Z; Carr, A J; Clipsham, K; Bloomfield, V A; Chitnavis, J; Bailey, A; Sykes, B; Chapman, K
2000-03-01
Evidence has accumulated supporting a role for genes in the etiology of osteoarthritis (OA). Several candidates have been targeted as potential susceptibility loci including genes that are involved in the regulation of bone density. Genetic association analysis has suggested a role for the vitamin D receptor gene (VDR) and the estrogen receptor gene (ER) in susceptibility. Such findings must be tested in additional independent cohorts. We tested for association of these 2 genes, plus a third gene implicated in bone density, COL1A1, with idiopathic OA. A case-control cohort of 371 affected probands and 369 unaffected spouses was used. Association was tested using 4 intragenic single nucleotide polymorphisms (SNP), one each for the VDR and COL1A1 genes, and 2 for the ER gene. The VDR and ER SNP are the same SNP that have been associated with OA. All 4 SNP affect restriction enzyme sites and were genotyped using polymerase chain reaction and enzyme digestion. Allele and genotype distributions for each SNP were compared between cases and controls and analyzed using Fisher's exact test. There was no evidence of association of the VDR or the ER gene SNP to OA. There was weak evidence of association of the COL1A1 SNP in female cases (p = 0.017), reflected by a difference in the distribution of genotypes at this SNP between female cases and controls (p = 0.027). However, when corrected for multiple testing, these results were not significant. If the VDR, ER, or COL1A1 genes do encode predisposition to OA then the 4 SNP tested are not associated with major susceptibility alleles at these 3 loci.
2010-01-01
Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788
Genetic and clinical risk factors of root resorption associated with orthodontic treatment.
Guo, Yujiao; He, Shushu; Gu, Tian; Liu, Yi; Chen, Song
2016-08-01
External apical root resorption (EARR) is a common complication in orthodontic treatment. Despite many studies on EARR, great controversies remain with regard to its risk factors. The objective of this study was to explore the relationship among sex, root movement, IL-1RN single nucleotide polymorphism (SNP) rs419598, IL-6 SNP rs1800796, and EARR associated with orthodontic treatment. Altogether 174 patients (with 174 maxillary left central incisors) were selected for this study. Cone-beam computed tomography was performed before the start of the treatment and at the end of the treatment. Cone-beam computed tomography data were used to reconstruct a 3-dimensional image of each tooth; the volume and the root resorption volume of each tooth were calculated. Three-dimensional matching was used to measure the amount of movement of each root. Genomic DNA was extracted from buccal swabs, and genotypes of SNP rs419598 and SNP rs1800796 of each subject were determined using TaqMan polymerase chain reaction genotyping (Applied Biosystems, Foster City, Calif). The data were analyzed with multiple linear regression analysis. The statistical analysis indicated no relationship between sex, tooth movement amount, and IL-1RN SNP rs419598 with EARR. The IL-6 SNP rs1800796 GC was associated with EARR, and root resorption differed significantly between SNP rs1800796 GC and CC. IL-6 SNP rs1800796 GC is a risk factor for EARR. The amount of root movement, IL-1RN SNP rs419598, and sex as risk factors for EARR need further study. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.
Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A
2012-12-01
The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.
Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo
2013-01-01
We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238
Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie
2018-04-01
Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.
Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan
2017-08-17
Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.
Espin-Garcia, Osvaldo; Craiu, Radu V; Bull, Shelley B
2018-02-01
We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. © 2017 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.
Genomic analysis of cow mortality and milk production using a threshold-linear model.
Tsuruta, S; Lourenco, D A L; Misztal, I; Lawlor, T J
2017-09-01
The objective of this study was to investigate the feasibility of genomic evaluation for cow mortality and milk production using a single-step methodology. Genomic relationships between cow mortality and milk production were also analyzed. Data included 883,887 (866,700) first-parity, 733,904 (711,211) second-parity, and 516,256 (492,026) third-parity records on cow mortality (305-d milk yields) of Holsteins from Northeast states in the United States. The pedigree consisted of up to 1,690,481 animals including 34,481 bulls genotyped with 36,951 SNP markers. Analyses were conducted with a bivariate threshold-linear model for each parity separately. Genomic information was incorporated as a genomic relationship matrix in the single-step BLUP. Traditional and genomic estimated breeding values (GEBV) were obtained with Gibbs sampling using fixed variances, whereas reliabilities were calculated from variances of GEBV samples. Genomic EBV were then converted into single nucleotide polymorphism (SNP) marker effects. Those SNP effects were categorized according to values corresponding to 1 to 4 standard deviations. Moving averages and variances of SNP effects were calculated for windows of 30 adjacent SNP, and Manhattan plots were created for SNP variances with the same window size. Using Gibbs sampling, the reliability for genotyped bulls for cow mortality was 28 to 30% in EBV and 70 to 72% in GEBV. The reliability for genotyped bulls for 305-d milk yields was 53 to 65% to 81 to 85% in GEBV. Correlations of SNP effects between mortality and 305-d milk yields within categories were the highest with the largest SNP effects and reached >0.7 at 4 standard deviations. All SNP regions explained less than 0.6% of the genetic variance for both traits, except regions close to the DGAT1 gene, which explained up to 2.5% for cow mortality and 4% for 305-d milk yields. Reliability for GEBV with a moderate number of genotyped animals can be calculated by Gibbs samples. Genomic information can greatly increase the reliability of predictions not only for milk but also for mortality. The existence of a common region on Bos taurus autosome 14 affecting both traits may indicate a major gene with a pleiotropic effect on milk and mortality. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai
2017-07-07
As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.
2014-01-01
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618
Wang, Yi-Ting; Sung, Pei-Yuan; Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua
2015-05-15
Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set. We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value=2.5×10(-6)). Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.
DoGSD: the dog and wolf genome SNP database.
Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping
2015-01-01
The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan
2016-01-01
Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.
Fragomeni, Breno de Oliveira; Misztal, Ignacy; Lourenco, Daniela Lino; Aguilar, Ignacio; Okimoto, Ronald; Muir, William M
2014-01-01
The purpose of this study was to determine if the set of genomic regions inferred as accounting for the majority of genetic variation in quantitative traits remain stable over multiple generations of selection. The data set contained phenotypes for five generations of broiler chicken for body weight, breast meat, and leg score. The population consisted of 294,632 animals over five generations and also included genotypes of 41,036 single nucleotide polymorphism (SNP) for 4,866 animals, after quality control. The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP approach for generations 1-3, 2-4, 3-5, and 1-5. Variances were calculated for windows of 20 SNP. The top ten windows for each trait that explained the largest fraction of the genetic variance across generations were examined. Across generations, the top 10 windows explained more than 0.5% but less than 1% of the total variance. Also, the pattern of the windows was not consistent across generations. The windows that explained the greatest variance changed greatly among the combinations of generations, with a few exceptions. In many cases, a window identified as top for one combination, explained less than 0.1% for the other combinations. We conclude that identification of top SNP windows for a population may have little predictive power for genetic selection in the following generations for the traits here evaluated.
Maximization of Markers Linked in Coupling for Tetraploid Potatoes via Monoparental Haploids
Bartkiewicz, Annette M.; Chilla, Friederike; Terefe-Ayana, Diro; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Linde, Marcus; Debener, Thomas
2018-01-01
Haploid potato populations derived from a single tetraploid donor constitute an efficient strategy to analyze markers segregating from a single donor genotype. Analysis of marker segregation in populations derived from crosses between polysomic tetraploids is complicated by a maximum of eight segregating alleles, multiple dosages of the markers and problems related to linkage analysis of marker segregation in repulsion. Here, we present data on two monoparental haploid populations generated by prickle pollination of two tetraploid cultivars with Solanum phureja and genotyped with the 12.8 k SolCAP single nucleotide polymorphism (SNP) array. We show that in a population of monoparental haploids, the number of biallelic SNP markers segregating in linkage to loci from the tetraploid donor genotype is much larger than in putative crosses of this genotype to a diverse selection of 125 tetraploid cultivars. Although this strategy is more laborious than conventional breeding, the generation of haploid progeny for efficient marker analysis is straightforward if morphological markers and flow cytometry are utilized to select true haploid progeny. The level of introgressed fragments from S. phureja, the haploid inducer, is very low, supporting its suitability for genetic analysis. Mapping with single-dose markers allowed the analysis of quantitative trait loci (QTL) for four phenotypic traits. PMID:29868076
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron
2017-11-01
Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele content might be an additional option. As this depends on sampling across species being reasonably even and a random distribution of non-informative instances of missing data, however, further exploration of this approach is needed. Properly chosen data summary approaches to inferring species trees from SNP data may represent a potential alternative to currently available individual-level coalescent analyses especially for quick data exploration and when dealing with computationally demanding or patchy datasets. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.
2015-01-01
ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133
High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease
Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.
2013-01-01
Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889
Dar, Sajad Ahmad; Akhter, Naseem; Haque, Shafiul; Singh, Taru; Mandal, Raju Kumar; Ramachandran, Vishnampettai Ganapathysubramanian; Bhattacharya, Sambit Nath; Banerjee, Basu Dev; Das, Shukla
2016-01-01
Pemphigus is an autoimmune blistering disorder of skin and/or mucosal surfaces characterized by intraepithelial lesions and immunoglobulin-G autoantibodies against desmogleins (proteins critical in cell-to-cell adhesion). Genetic, immunological, hormonal, and environmental factors are known to contribute to its etiology. Tumor necrosis factor-alpha (TNF-α) which plays a key role in pathogenesis of many infectious and inflammatory diseases has been found in high levels in lesional skin and sera of pemphigus patients. However, studies on association of single nucleotide polymorphism (SNP) in promoter region of TNF-α at position -308 affecting G to A transition with pemphigus has been scarce. This study was conducted to evaluate the TNF-α -308G/A SNP distribution in North Indian cohort, and to define the association between the TNF-α -308G/A SNP distribution and pemphigus, globally, by means of meta-analysis. TNF-α -308G/A SNP in pemphigus patients was investigated by cytokine genotyping using genomic DNA by PCR with sequence-specific primers. Meta-analysis of the data, including four previously published studies from other populations, was performed to generate a meaningful relationship. The results of our case-control study indicate non-significant differences between patients and controls in TNF-α -308G/A SNP. The meta-analysis also revealed that TNF-α -308G/A SNP is not associated with pemphigus risk in population at large; however, it may be contributing towards autoimmune phenomenon in pemphigus by being a part of its multi-factorial etiology. This study provides evidence that the TNF-α -308G/A polymorphism is not associated with overall pemphigus susceptibility. Nevertheless, further studies on specific ethnicity and pemphigus variants are necessary to validate the findings.
Pyne, Robert; Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James
2017-01-01
Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37-55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21-28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5-16% and 4-18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome.
Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James
2017-01-01
Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37–55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21–28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5–16% and 4–18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome. PMID:28922359
Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan
Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan
2006-01-01
Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694
Telfer, Emily J; Stovold, Grahame T; Li, Yongjun; Silva-Junior, Orzenil B; Grattapaglia, Dario G; Dungey, Heidi S
2015-01-01
Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.
Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo
2015-03-01
In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, 'Iwainodaichi' (Kyushu), 'Junreikomugi' (Kinki-Chugoku-Shikoku), 'Kinuhime' (Kanto-Tokai), 'Nebarigoshi' (Tohoku-Hokuriku), and 'Kitamoe' (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for 'Kitamoe', were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.
SNP ID-info: SNP ID searching and visualization platform.
Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei
2008-09-01
Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.
Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers
2010-01-01
Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP. PMID:20950478
A novel approach to analyzing fMRI and SNP data via parallel independent component analysis
NASA Astrophysics Data System (ADS)
Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas
2007-03-01
There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.
Zhang, RuiJie; Li, Xia; Jiang, YongShuai; Liu, GuiYou; Li, ChuanXing; Zhang, Fan; Xiao, Yun; Gong, BinSheng
2009-02-01
High-throughout single nucleotide polymorphism detection technology and the existing knowledge provide strong support for mining the disease-related haplotypes and genes. In this study, first, we apply four kinds of haplotype identification methods (Confidence Intervals, Four Gamete Tests, Solid Spine of LD and fusing method of haplotype block) into high-throughout SNP genotype data to identify blocks, then use cluster analysis to verify the effectiveness of the four methods, and select the alcoholism-related SNP haplotypes through risk analysis. Second, we establish a mapping from haplotypes to alcoholism-related genes. Third, we inquire NCBI SNP and gene databases to locate the blocks and identify the candidate genes. In the end, we make gene function annotation by KEGG, Biocarta, and GO database. We find 159 haplotype blocks, which relate to the alcoholism most possibly on chromosome 1 approximately 22, including 227 haplotypes, of which 102 SNP haplotypes may increase the risk of alcoholism. We get 121 alcoholism-related genes and verify their reliability by the functional annotation of biology. In a word, we not only can handle the SNP data easily, but also can locate the disease-related genes precisely by combining our novel strategies of mining alcoholism-related haplotypes and genes with existing knowledge framework.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
NASA Astrophysics Data System (ADS)
Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng
2017-02-01
Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.
Translational genomics for analysis of complex traits in peanut and sorghum
USDA-ARS?s Scientific Manuscript database
The integration of sequencing and genotype data from natural variation studies (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) facilitated the development of DNA markers in the form of single nucleotide polymorphic (SNP)...
High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei.
Girault, G; Wattiau, P; Saqib, M; Martin, B; Vorimore, F; Singha, H; Engelsma, M; Roest, H J; Spicic, S; Grunow, R; Vicari, N; De Keersmaecker, S C J; Roosens, N H C; Fabbi, M; Tripathi, B N; Zientara, S; Madani, N; Laroucau, K
2018-05-08
Burkholderia (B.) mallei is the causative agent of glanders. A previous work conducted on single-nucleotide polymorphisms (SNP) extracted from the whole genome sequences of 45 B. mallei isolates identified 3 lineages for this species. In this study, we designed a high-resolution melting (HRM) method for the screening of 15 phylogenetically informative SNPs within the genome of B. mallei that subtype the species into 3 lineages and 12 branches/sub-branches/groups. The present results demonstrate that SNP-based genotyping represent an interesting approach for the molecular epidemiology analysis of B. mallei. Copyright © 2018 Elsevier B.V. All rights reserved.
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.
Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina
2018-04-10
This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.
Scurrah, Katrina J; Lamantia, Angela; Ellis, Justine A; Harrap, Stephen B
2017-06-01
Renin-angiotensin-aldosterone system genes have been inconsistently associated with blood pressure, possibly because of unrecognized influences of sex-dependent genetic effects or gene-gene interactions (epistasis). We tested association of systolic blood pressure with single-nucleotide polymorphisms (SNPs) at renin ( REN ), angiotensinogen ( AGT ), angiotensin-converting enzyme ( ACE ), angiotensin II type 1 receptor ( AGTR1 ), and aldosterone synthase ( CYP11B2 ), including sex-SNP or SNP-SNP interactions. Eighty-eight tagSNPs were tested in 2872 white individuals in 809 pedigrees from the Victorian Family Heart Study using variance components models. Three SNPs (rs8075924 and rs4277404 at ACE and rs12721297 at AGTR1 ) were individually associated with lower systolic blood pressure with significant ( P <0.00076) effect sizes ≈1.7 to 2.5 mm Hg. Sex-specific associations were seen for 3 SNPs in men (rs2468523 and rs2478544 at AGT and rs11658531 at ACE ) and 1 SNP in women (rs12451328 at ACE ). SNP-SNP interaction was suggested ( P <0.005) for 14 SNP pairs, none of which had shown individual association with systolic blood pressure. Four SNP pairs were at the same gene (2 for REN , 1 for AGT , and 1 for AGTR1 ). The SNP rs3097 at CYP11B2 was represented in 5 separate pairs. SNPs at key renin-angiotensin-aldosterone system genes associate with systolic blood pressure individually in both sexes, individually in one sex only and only when combined with another SNP. Analyses that incorporate sex-dependent and epistatic effects could reconcile past inconsistencies and account for some of the missing heritability of blood pressure and are generally relevant to SNP association studies for any phenotype. © 2017 American Heart Association, Inc.
Yang, Zhe; Zhou, Lin; Wu, Li-Ming; Xie, Hai-Yang; Zhang, Feng; Zheng, Shu-Sen
2010-12-01
Histone deacetylases (HDACs) have been reported to be poor prognostic indicators in patients with cancer. However, no data are available for the role of single nucleotide polymorphism (SNP) of class I HDAC in hepato-cellular carcinoma (HCC). Therefore, we investigated the association of class I HDAC isoforms genomic polymorphisms with risk of HCC and tumor recurrence following liver transplantation (LT). One hundred and ninety-six Chinese subjects consisting of 97 HCC patients and 99 controls were enrolled in this study. Nine polymorphisms of the HDAC1, HDAC2, and HDAC3 gene (rs2530223, rs1741981, rs2547547, rs13204445, rs6568819, rs10499080, rs11741808, rs2475631, rs11391) were examined using Applied Biosystems SNaP-Shot and TaqMan technology. We found no significant difference in genotype frequencies between the HCC cases and controls. In terms of tumor recurrence following LT, patients carrying the T allele of HDAC1 SNP rs1741981 showed a favorable outcome for recurrence free survival when compared with patients homozygous for CC. In addition, the same significant trend was observed in HDAC3 SNP rs2547547. Kaplan-Meier analysis showed that the combination of the T variant allele (CT+TT) of HDAC1 SNP rs1741981 and the homozygous TT variant allele of HDAC3 SNP rs2547547 was the most favorable prognostic factor. The risk for postoperative tumor recurrence was about 2.2-fold lower for patients with this genotype combination compared with carriers of the HDAC1 SNP rs1741981 CC and HDAC3 SNP rs2547547 CT genotype combination (hazard ratio: 2.235, p=0.003). Our data suggest that combined analysis of HDAC1 SNP rs1741981 and HDAC3 SNP rs2547547 may be a potential genetic marker for HCC recurrence in LT patients.
Wu, Xiaoping; Guldbrandtsen, Bernt; Lund, Mogens Sandø; Sahana, Goutam
2016-09-01
Identification of genetic variants associated with feet and legs disorders (FLD) will aid in the genetic improvement of these traits by providing knowledge on genes that influence trait variations. In Denmark, FLD in cattle has been recorded since the 1990s. In this report, we used deregressed breeding values as response variables for a genome-wide association study. Bulls (5,334 Danish Holstein, 4,237 Nordic Red Dairy Cattle, and 1,180 Danish Jersey) with deregressed estimated breeding values were genotyped with the Illumina Bovine 54k single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants, and then 22,751,039 SNP on 29 autosomes were used for an association analysis. A modified linear mixed-model approach (efficient mixed-model association eXpedited, EMMAX) and a linear mixed model were used for association analysis. We identified 5 (3,854 SNP), 3 (13,642 SNP), and 0 quantitative trait locus (QTL) regions associated with the FLD index in Danish Holstein, Nordic Red Dairy Cattle, and Danish Jersey populations, respectively. We did not identify any QTL that were common among the 3 breeds. In a meta-analysis of the 3 breeds, 4 QTL regions were significant, but no additional QTL region was identified compared with within-breed analyses. Comparison between top SNP locations within these QTL regions and known genes suggested that RASGRP1, LCORL, MOS, and MITF may be candidate genes for FLD in dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H
2011-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
Forensic validation of the SNPforID 52-plex assay.
Musgrave-Brown, Esther; Ballard, David; Balogh, Kinga; Bender, Klaus; Berger, Burkhard; Bogus, Magdalena; Børsting, Claus; Brion, María; Fondevila, Manuel; Harrison, Cheryl; Oguzturun, Ceylan; Parson, Walther; Phillips, Chris; Proff, Carsten; Ramos-Luis, Eva; Sanchez, Juan J; Sánchez Diz, Paula; Sobrino Rey, Bea; Stradmann-Bellinghausen, Beate; Thacker, Catherine; Carracedo, Angel; Morling, Niels; Scheithauer, Richard; Schneider, Peter M; Syndercombe Court, Denise
2007-06-01
The advantages of single nucleotide polymorphism (SNP) typing in forensic genetics are well known and include a wider choice of high-throughput typing platforms, lower mutation rates, and improved analysis of degraded samples. However, if SNPs are to become a realistic supplement to current short tandem repeat (STR) typing methods, they must be shown to successfully and reliably analyse the challenging samples commonly encountered in casework situations. The European SNPforID consortium, supported by the EU GROWTH programme, has developed a multiplex of 52 SNPs for forensic analysis, with the amplification of all 52 loci in a single reaction followed by two single base extension (SBE) reactions which are detected with capillary electrophoresis. In order to validate this assay, a variety of DNA extracts were chosen to represent problems such as low copy number and degradation that are commonly seen in forensic casework. A total of 40 extracts were used in the study, each of which was sent to two of the five participating laboratories for typing in duplicate or triplicate. Laboratories were instructed to carry out their analyses as if they were dealing with normal casework samples. Results were reported back to the coordinating laboratory and compared with those obtained from traditional STR typing of the same extracts using Powerplex 16 (Promega). These results indicate that, although the ability to successfully type good quality, low copy number extracts is lower, the 52-plex SNP assay performed better than STR typing on degraded samples, and also on samples that were both degraded and of limited quantity, suggesting that SNP analysis can provide advantages over STR analysis in forensically relevant circumstances. However, there were also additional problems arising from contamination and primer quality issues and these are discussed.
Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae
2012-01-01
Background Seven pandemics of cholera have been recorded since 1817, with the current and ongoing pandemic affecting almost every continent. Cholera remains endemic in developing countries and is still a significant public health issue. In this study we use multilocus variable number of tandem repeats (VNTRs) analysis (MLVA) to discriminate between isolates of the 7th pandemic clone of Vibrio cholerae. Results MLVA of six VNTRs selected from previously published data distinguished 66 V. cholerae isolates collected between 1961–1999 into 60 unique MLVA profiles. Only 4 MLVA profiles consisted of more than 2 isolates. The discriminatory power was 0.995. Phylogenetic analysis showed that, except for the closely related profiles, the relationships derived from MLVA profiles were in conflict with that inferred from Single Nucleotide Polymorphism (SNP) typing. The six SNP groups share consensus VNTR patterns and two SNP groups contained isolates which differed by only one VNTR locus. Conclusions MLVA is highly discriminatory in differentiating 7th pandemic V. cholerae isolates and MLVA data was most useful in resolving the genetic relationships among isolates within groups previously defined by SNPs. Thus MLVA is best used in conjunction with SNP typing in order to best determine the evolutionary relationships among the 7th pandemic V. cholerae isolates and for longer term epidemiological typing. PMID:22624829
Increasing the number of single nucleotide polymorphisms used in genomic evaluations of dairy cattle
USDA-ARS?s Scientific Manuscript database
A small increase in the accuracy of genomic evaluations of dairy cattle was achieved by increasing the number of SNP used to 61,013. All the 45,195 SNP used previously were retained, and 15,818 SNP were selected from higher density genotyping chips if the magnitude of the SNP effect was among the to...
Wang, Lin; Liu, Simin; Niu, Tianhua; Xu, Xin
2005-03-18
Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at http://www.hsph.harvard.edu/ppg/software.htm
New genetic variants associated with prostate cancer
Researchers have newly identified 23 common genetic variants -- one-letter changes in DNA known as single-nucleotide polymorphisms or SNPs -- that are associated with risk of prostate cancer. These results come from an analysis of more than 10 million SNP
Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo
2015-01-01
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region. PMID:25931984
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing.
Wosula, Everlyne N; Chen, Wenbo; Fei, Zhangjun; Legg, James P
2017-11-01
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Haugum, K; Brandal, L T; Løbersli, I; Kapperud, G; Lindstedt, B-A
2011-06-01
To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1-3 and 8). We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over-representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic-uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2(EDL933) or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993-2008. We observed that the tir-255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. The detection of virulence clade-specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali
2016-09-15
Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.
Streit, M; Reinhardt, F; Thaller, G; Bennewitz, J
2013-01-01
Genotype by environment interaction (G × E) has been widely reported in dairy cattle. If the environment can be measured on a continuous scale, reaction norms can be applied to study G × E. The average herd milk production level has frequently been used as an environmental descriptor because it is influenced by the level of feeding or the feeding regimen. Another important environmental factor is the level of udder health and hygiene, for which the average herd somatic cell count might be a descriptor. In the present study, we conducted a genome-wide association analysis to identify single nucleotide polymorphisms (SNP) that affect intercept and slope of milk protein yield reaction norms when using the average herd test-day solution for somatic cell score as an environmental descriptor. Sire estimates for intercept and slope of the reaction norms were calculated from around 12 million daughter records, using linear reaction norm models. Sires were genotyped for ~54,000 SNP. The sire estimates were used as observations in the association analysis, using 1,797 sires. Significant SNP were confirmed in an independent validation set consisting of 500 sires. A known major gene affecting protein yield was included as a covariable in the statistical model. Sixty (21) SNP were confirmed for intercept with P ≤ 0.01 (P ≤ 0.001) in the validation set, and 28 and 11 SNP, respectively, were confirmed for slope. Most but not all SNP affecting slope also affected intercept. Comparison with an earlier study revealed that SNP affecting slope were, in general, also significant for slope when the environment was modeled by the average herd milk production level, although the two environmental descriptors were poorly correlated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nakajima, Ayaka; Kawaguchi, Fuki; Uemoto, Yoshinobu; Fukushima, Moriyuki; Yoshida, Emi; Iwamoto, Eiji; Akiyama, Takayuki; Kohama, Namiko; Kobayashi, Eiji; Honda, Takeshi; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji
2018-05-01
The objective of this study was to identify genomic regions associated with fat-related traits using a Japanese Black cattle population in Hyogo. From 1836 animals, those with high or low values were selected on the basis of corrected phenotype and then pooled into high and low groups (n = 100 each), respectively. DNA pool-based genome-wide association study (GWAS) was performed using Illumina BovineSNP50 BeadChip v2 with three replicate assays for each pooled sample. GWAS detected that two single nucleotide polymorphisms (SNPs) on BTA7 (ARS-BFGL-NGS-35463 and Hapmap23838-BTA-163815) and one SNP on BTA12 (ARS-BFGL-NGS-2915) significantly affected fat percentage (FAR). The significance of ARS-BFGL-NGS-35463 on BTA7 was confirmed by individual genotyping in all pooled samples. Moreover, association analysis between SNP and FAR in 803 Japanese Black cattle revealed a significant effect of SNP on FAR. Thus, further investigation of these regions is required to identify FAR-associated genes and mutations, which can lead to the development of DNA markers for marker-assisted selection for the genetic improvement of beef quality. © 2018 Japanese Society of Animal Science.
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith
2011-01-01
Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363
Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila
2017-04-01
Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.
2015-01-01
Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250
USDA-ARS?s Scientific Manuscript database
Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...
Medintz, Igor; Wong, Wendy W.; Berti, Lorenzo; Shiow, Lawrence; Tom, Jennifer; Scherer, James; Sensabaugh, George; Mathies, Richard A.
2001-01-01
An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population. PMID:11230165
Development and Applications of a Bovine 50,000 SNP Chip
USDA-ARS?s Scientific Manuscript database
To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...
Genomic selection in dairy cattle: the USDA experience
USDA-ARS?s Scientific Manuscript database
Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single nucleotide polymorphisms (SNP) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNP in December 2007. Over 15,000 ...
High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.
Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I; Padyukov, Leonid; Toes, Rene E M; Huizinga, Tom W J; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I W; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert M; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane
2012-12-01
Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.
Li, Hong; Sun, Gui-Rong; Tian, Ya-Dong; Han, Rui-Li; Li, Guo-Xi; Kang, Xiang-Tao
2013-05-01
In the present study, a total of 860 chickens from a Gushi-Anka F2 resource population were used to evaluate the genetic effect of the gga-miR-1614-3p gene. A novel, silent, single nucleotide polymorphism (SNP, +5 C>T) was detected in the gga-miR-1614-3p gene seed region through AvaII polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR products sequencing methods. Associations between the SNP and chicken growth, meat quality and carcass traits were performed by association analysis. The results showed that the SNP was significantly associated with breast muscle shear force and leg muscle water loss rate, wing weight, liver weight and heart weight (p<0.05), and highly significantly associated with the weight of the abdominal fat (p<0.01). The secondary structure of gga-miR-1614 and the free energy were altered due to the variation predicted by the M-fold program.
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David
2018-04-11
Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.
Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki
2015-01-01
Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP-SNP interaction, SNP-environment interaction, and SNP-clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS.
Molecular Diagnostics in Transfusion Medicine: In Capillary, on a Chip, in Silico, or in Flight?
Garritsen, Henk S.P.; Xiu-Cheng Fan, Alex; Lenz, Daniela; Hannig, Horst; Yan Zhong, Xiao; Geffers, Robert; Lindenmaier, Werner; Dittmar, Kurt E.J.; Wörmann, Bernhard
2009-01-01
Summary Serology, defined as antibody-based diagnostics, has been regarded as the diagnostic gold standard in transfusion medicine. Nowadays however the impact of molecular diagnostics in transfusion medicine is rapidly growing. Molecular diagnostics can improve tissue typing (HLA typing), increase safety of blood products (NAT testing of infectious diseases), and enable blood group typing in difficult situations (after transfusion of blood products or prenatal non-invasive RhD typing). Most of the molecular testing involves the determination of the presence of single nucleotide polymorphisms (SNPs). Antigens (e.g. blood group antigens) mostly result from single nucleotide differences in critical positions. However, most blood group systems cannot be determined by looking at a single SNP. To identify members of a blood group system a number of critical SNPs have to be taken into account. The platforms which are currently used to perform molecular diagnostics are mostly gel-based, requiring time-consuming multiple manual steps. To implement molecular methods in transfusion medicine in the future the development of higher-throughput SNP genotyping non-gel-based platforms which allow a rapid, cost-effective screening are essential. Because of its potential for automation, high throughput and cost effectiveness the special focus of this paper is a relative new technique: SNP genotyping by MALDI-TOF MS analysis. PMID:21113259
GESPA: classifying nsSNPs to predict disease association.
Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee
2015-07-25
Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.
Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W
2014-09-01
A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.
Lutkowska, Anna; Roszak, Andrzej; Lianeri, Margarita; Sowińska, Anna; Sotiri, Emianka; Jagodziński, Pawel P
2017-04-01
We studied the role of the NC_000017.10:g.38051348A>G (rs8067378) single nucleotide polymorphism (SNP) located 9.5 kb downstream of gasdermin B (GSDMB), in the development and progression of cervical squamous cell carcinomas (SCC). Using high-resolution melting curve analysis, we genotyped this SNP in patients with cervical SCC (n = 486) and controls (n = 511) from the Polish Caucasian population. Logistic regression analysis was used to adjust for the effect of confounders such as age, parity, oral contraceptive use, tobacco smoking, and menopausal status. The effect of this SNP on the expression of GSDMB was studied by reverse transcription and quantitative real-time polymerase chain reaction analysis of GSDMB transcript levels in SCC tissues. For all patients with SCC, the p trend value calculated for rs8067378 was statistically significant (p trend = 0.0019). The adjusted odds ratio for the G/G vs. A/A genotype was 1.304 (95% confidence interval 1.080-1.574, p = 0.0057) and the adjusted odds ratio for the G/A + G/G vs. A/A genotype was 1.444 (95% confidence interval 1.064-1.959, p = 0.0181). We also found a significant association of the rs8067378 SNP with tumor stages III, IV, and grade of differentiation G3, and with parity, oral contraceptive use, smoking, and women of postmenopausal age. We found increased GSDMB1 isoform transcripts in the cancerous and non-cancerous tissues from carriers of the G allele vs. carriers of the A/A genotype. The rs8067378 SNP variants may increase the expression of GSDMB and the risk of the development and progression of cervical SCC.
A kernel regression approach to gene-gene interaction detection for case-control studies.
Larson, Nicholas B; Schaid, Daniel J
2013-11-01
Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.
Röper, Andrea; Reichert, Walter; Mattern, Rainer
2007-01-01
In the field of forensic DNA typing, the analysis of Short Tandem Repeats (STRs) can fail in cases of degraded DNA. The typing of coding region Single Nucleotide Polymorphisms (SNPs) of the mitochondrial genome provides an approach to acquire additional information. In the examined case of aggravated theft, both suspects could be excluded of having left the analyzed hair on the crime scene by SNP typing. This conclusion was not possible subsequent to STR typing. SNP typing of the trace on the torch light left on the crime scene increased the likelihood for suspect no. 2 to be the origin of this trace. This finding was already indicated by STR analysis. Suspect no. 1 was excluded for being the origin of this trace by SNP typing which was also indicated by STR analysis. A limiting factor for the analysis of SNPs is the maternal inheritance of mitochondrial DNA. Individualisation is not possible. In conclusion, it can be said that in the case of traces which cause problems with conventional STR typing the supplementary analysis of coding region SNPs from the mitochondrial genome is very reasonable and greatly contributes to the refinement of analysis methods in the field of forensic genetics.
SNP-VISTA: An interactive SNP visualization tool
Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L
2005-01-01
Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID:16336665
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
Tang, Shaohua; Lv, Jiaojiao; Chen, Xiangnan; Bai, Lili; Li, Huanzheng; Chen, Chong; Wang, Ping; Xu, Xueqin; Lu, Jianxin
2016-01-01
To evaluate the usefulness of single-nucleotide polymorphism (SNP) array for prenatal genetic diagnosis of congenital heart defect (CHD), we used this approach to detect clinically significant copy number variants (CNVs) in fetuses with CHDs. A HumanCytoSNP-12 array was used to detect genomic samples obtained from 39 fetuses that exhibited cardiovascular abnormalities on ultrasound and had a normal karyotype. The relationship between CNVs and CHDs was identified by using genotype-phenotype comparisons and searching of chromosomal databases. All clinically significant CNVs were confirmed by real-time PCR. CNVs were detected in 38/39 (97.4%) fetuses: variants of unknown significance were detected in 2/39 (5.1%), and clinically significant CNVs were identified in 7/39 (17.9%). In 3 of the 7 fetuses with clinically significant CNVs, 3 rare and previously undescribed CNVs were detected, and these CNVs encompassed the CHD candidate genes FLNA (Xq28 dup), BCOR (Xp11.4 dup), and RBL2 (16q12.2 del). Compared with conventional cytogenetic genomics, SNP array analysis provides significantly improved detection of submicroscopic genomic aberrations in pregnancies with CHDs. Based on these results, we propose that genomic SNP array is an effective method which could be used in the prenatal diagnostic test to assist genetic counseling for pregnancies with CHDs. © 2015 S. Karger AG, Basel.
Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart
2016-01-01
Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810
High-throughput SNP-genotyping analysis of the relationships among Ponto-Caspian sturgeon species
Rastorguev, Sergey M; Nedoluzhko, Artem V; Mazur, Alexander M; Gruzdeva, Natalia M; Volkov, Alexander A; Barmintseva, Anna E; Mugue, Nikolai S; Prokhortchouk, Egor B
2013-01-01
Abstract Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested. PMID:24567827
Yao, Yao; Wen, Yueqiang; Du, Tingfu; Sun, Ning; Deng, Hong; Ryan, Joanne; Rao, Shuquan
2016-03-15
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses with heritability of up to 38%. The fat mass- and obesity-associated (FTO) gene, in particular the single nucleotide polymorphism (SNP) rs9939609, has been identified as a genetic risk loci associated with MDD. However, most prior studies have involved European and American populations. Whether rs9939609 is an true risk SNP for MDD in Asian populations remains inconclusive. In the present study, we conducted a meta-analysis of the association between rs9939609 and MDD in Asian populations by combining 5 available case-control samples totaling 6531 cases and 12,359 controls. Our meta-analysis suggests that rs9939609 is not a risk SNP for MDD in Asian populations by fixed effect model (Z=1.04, P=0.30, OR=0.96, 95% CI=0.90-1.03). The age distribution and gender ratios were not matched well in the combined samples of cases and controls. Publication bias might be also considered with only a relatively small number of association studies of FTO rs9939609 with MDD in Asian populations. The absence of association of rs9939609 with MDD in our Asian populations suggests a potential genetic heterogeneity in the susceptibility of MDD on this locus. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...
N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Zhou, Fei; Wang, Yanru; Liu, Hongliang; Ready, Neal; Han, Younghun; Hung, Rayjean J; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S; Caporaso, Neil; Landi, Maria Teresa; Brüske, Irene; Risch, Angela; Ye, Yuanqing; Wu, Xifeng; Christiani, David C; Goodman, Gary; Chen, Chu; Amos, Christopher I; Wei, Qingyi
2017-04-01
mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities involved in mRNA degradation genes were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants in the general mRNA degradation pathway in lung cancer risk. Meta-analyses were conducted using summary data from six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. This pathway-based analysis included 6816 single nucleotide polymorphisms (SNP) in 68 genes in 14 463 lung cancer cases and 44 188 controls. In the single-locus analysis, we found that 20 SNPs were associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score "1f" was chosen as the tagSNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio = 1.11, 95% confidence interval = 1.04-1.18) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
[Association between single-nucleotide polymorphisms in the IRAK-4 gene and allergic rhinitis].
Zhang, Yuan; Xi, Lin; Zhao, Yan-ming; Zhao, Li-ping; Zhang, Luo
2012-06-01
To investigate the genetic association pattern between single-nucleotide polymorphisms (SNP) in the interleukin-1 receptor-associated kinase 4 (IRAK-4) gene and allergic rhinitis (AR). A population of 379 patients with the diagnosis of AR and 333 healthy controls who lived in Beijing region was recruited. A total of 8 reprehensive marker SNP which were in IRAK-4 gene region were selected according to the Beijing people database from Hapmap website. The individual genotyping was performed by MassARRAY platform. SPSS 13.0 software was used for statistic analysis. Subgroup analysis for the presence of different allergen sensitivities displayed associations only in the house dust mite-allergic cohorts (rs3794262: P = 0.0034, OR = 1.7388; rs4251481: P = 0.0023, OR = 2.6593), but not in subjects who were allergic to pollens as well as mix allergens. The potential genetic contribution of the IRAK-4 gene to AR demonstrated an allergen-dependant association pattern in Chinese population.
Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin
2006-11-01
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.
Association of HSP70 and its co-chaperones with Alzheimer’s Disease
Broer, Linda; Ikram, Mohammad Arfan; Schuur, Maaike; DeStefano, Anita L.; Bis, Joshua C.; Liu, Fan; Rivadeneira, Fernando; Uitterlinden, Andre G.; Beiser, Alexa S.; Longstreth, William T.; Hofman, Albert; Aulchenko, Yurii; Seshadri, Sudha; Fitzpatrick, Annette L.; Oostra, Ben A.; Breteler, Monique M.B.; van Duijn, Cornelia M.
2012-01-01
The heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer’s disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected participants derived from the Rotterdam Study, a population-based study including 7983 persons aged 55 years and older. We genotyped a total of 12,053 Single Nucleotide Polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. Replication was performed in two independent cohort studies, the Framingham Heart study (FHS; N=806) and Cardiovascular Health Study (CHS; N=2150). When adjusting for multiple testing, we found a small but consistent, though not significant effect of rs12118313 located 32kb from PFDN2, with an OR of 1.19 (p-value from meta-analysis =0.003). However this SNP was in the intron of another gene, suggesting it is unlikely this SNP reflects the effect of PFDN2. In a formal pathway analysis we found nominally significant evidence for an association of BAG, DNAJA and prefoldin with AD. These findings corroborate with those of a study of 2032 AD patients and 5328 controls, in which several members of the prefoldin family showed evidence for association to AD. Our study did not reveal evidence for a genetic variant if the HSP70 family with a major effect on AD. However, our findings of the single SNP analysis and pathway analysis suggest that multiple genetic variants in prefoldin are associated with AD. PMID:21403392
Tong, B; Li, G P; Sasaki, S; Muramatsu, Y; Ohta, T; Kose, H; Yamada, T
2015-04-01
Growth performance, as well as marbling, is the main breeding objective in Japanese Black (JB) cattle, the major beef breed in Japan. The septin 7 (CDC10) gene, involved in cellular proliferation, is located within a genomic region of a quantitative trait locus for growth-related traits. In this study, we first showed that the expression levels of the CDC10 gene in the skeletal muscle were higher in JB steers with extremely high growth performance than in JB steers with extremely low growth, using real-time PCR. Further, a single nucleotide polymorphism (SNP), NC_007302.5:g.63264949G>C, was detected in the promoter region of the CDC10 gene and genotyped in three Japanese cattle breeds (known as 'Wagyu' in Japan) and the Brown Swiss dairy cattle breed. All four cattle populations showed a moderate genetic diversity at the SNP of the CDC10 gene. An association analysis indicated that the SNP was associated with growth-related traits in JB cattle. These findings suggest possible effects of the expression levels in the skeletal muscle and the SNP of the CDC10 gene on growth-related traits in JB cattle. The CDC10 SNP may be useful for effective marker-assisted selection to increase beef productivity in JB beef cattle. © 2015 Stichting International Foundation for Animal Genetics.
Xu, C; Yang, X; Wang, Y; Ding, N; Han, R; Sun, Y; Wang, Y
2017-07-01
Frequencies of two glucose transporter 1 (GLUT1) single-nucleotide polymorphisms (SNPs) (XbaI G>T and HaeIII T>C) were studied with urothelial cell carcinomas of the bladder (UCC) and 204 normal persons. And the expression of the p53, Ki67 and GLUT1 was assayed by immunohistochemistry. The frequency of the TT genotype and T allele of the XbaI G>T SNP was decreased in the patients with UCC. The frequency of the CC genotype and C allele of the HaeIII T>C SNP was decreased in the patients with UCC. The GLUT1 XbaI genotype GG was more frequent in higher tumor stage and higher tumor grade patients. In the XbaI G>T SNP, the GG genotype was significantly related to higher Remmele immunoreactive score (IRS) of Ki67 and higher IRS of GLUT1. In conclusion, the TT genotype in XbaI G>T SNP and CC genotype of HaeIII T>C SNP may have protective effect in the carcinogenesis process of UCC. In the XbaI G>T SNP, the GG genotype of was positively related to tumor proliferation, glucose metabolism, tumor grade and stage. Therefore, the variant might become a possible proliferation-related prognostic factor for UCC.
Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza
2018-02-28
Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays. The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.
Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian
2012-10-01
Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat
Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua
2015-01-01
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271
Gorkhali, Neena Amatya; Dong, Kunzhe; Yang, Min; Song, Shen; Kader, Adiljian; Shrestha, Bhola Shankar; He, Xiaohong; Zhao, Qianjun; Pu, Yabin; Li, Xiangchen; Kijas, James; Guan, Weijun; Han, Jianlin; Jiang, Lin; Ma, Yuehui
2016-07-22
Sheep has successfully adapted to the extreme high-altitude Himalayan region. To identify genes underlying such adaptation, we genotyped genome-wide single nucleotide polymorphisms (SNPs) of four major sheep breeds living at different altitudes in Nepal and downloaded SNP array data from additional Asian and Middle East breeds. Using a di value-based genomic comparison between four high-altitude and eight lowland Asian breeds, we discovered the most differentiated variants at the locus of FGF-7 (Keratinocyte growth factor-7), which was previously reported as a good protective candidate for pulmonary injuries. We further found a SNP upstream of FGF-7 that appears to contribute to the divergence signature. First, the SNP occurred at an extremely conserved site. Second, the SNP showed an increasing allele frequency with the elevated altitude in Nepalese sheep. Third, the electrophoretic mobility shift assays (EMSA) analysis using human lung cancer cells revealed the allele-specific DNA-protein interactions. We thus hypothesized that FGF-7 gene potentially enhances lung function by regulating its expression level in high-altitude sheep through altering its binding of specific transcription factors. Especially, FGF-7 gene was not implicated in previous studies of other high-altitude species, suggesting a potential novel adaptive mechanism to high altitude in sheep at the Himalayas.
Xiao, Liang; Quan, Mingyang; Du, Qingzhang; Chen, Jinhui; Xie, Jianbo; Zhang, Deqiang
2017-01-01
MicroRNAs (miRNAs) play crucial roles in plant growth and development, but few studies have illuminated the allelic interactions among miRNAs and their targets in perennial plants. Here, we combined analysis of expression patterns and single-nucleotide polymorphism (SNP)-based association studies to explore the interactions between Pto-MIR475b and its four target genes (Pto-PPR1, Pto-PPR2, Pto-PPR3, and Pto-PPR4) in 435 unrelated individuals of Populus tomentosa. Expression patterns showed a significant negative correlation (r = -0.447 to -0.411, P < 0.01) between Pto-MIR475b and its four targets in eight tissues of P. tomentosa, suggesting that Pto-miR475b may negatively regulate the four targets. Single SNP-based association studies identified 93 significant associations (P < 0.01, Q < 0.1) representing associations of 80 unique SNPs in Pto-MIR475b and its four targets with nine traits, revealing their potential roles in tree growth and wood formation. Moreover, one common SNP in the precursor region significantly altered the secondary structure of the pre-Pto-miR475b and changed the expression level of Pto-MIR475b. Analysis of epistatic interactions identified 115 significant SNP–SNP associations (P < 0.01) representing 45 unique SNPs from Pto-MIR475b and its four targets for 10 traits, revealing that genetic interactions between Pto-MIR475b and its targets influence quantitative traits of perennial plants. Our study provided a feasible strategy to study population genetics in forest trees and enhanced our understanding of miRNAs by dissecting the allelic interactions between this miRNA and its targets in P. tomentosa. PMID:28680433
Association Analysis of the Ephrin-B2 Gene in African-Americans with End-Stage Renal Disease
Hicks, Pamela J.; Staten, Jennifer L.; Palmer, Nicholette D.; Langefeld, Carl D.; Ziegler, Julie T.; Keene, Keith L.; Sale, Michele M.; Bowden, Donald W.; Freedman, Barry I.
2008-01-01
Background Genome scans in African-Americans with end-stage renal disease (ESRD) identified linkage on chromosome 13q33 in the region containing the ephrin-B2 ligand (EFNB2) genes. Interactions between the ephrin-B2 receptor and ephrin-B2 ligand play essential roles in renal angiogenesis, blood vessel maturation, and kidney disease. Methods The EFNB2 gene was evaluated as a positional candidate for non-diabetic and diabetic ESRD susceptibility in 1,071 unrelated African-American subjects; 316 with non-diabetic etiologies of ESRD, 394 with type 2 diabetes-associated ESRD and 361 healthy controls. Single nucleotide polymorphism (SNP) genotyping was performed on the Sequenom Mass Array System. Statistical analyses were computed using Dandelion version 1.26, Snpaddmix version 1.4 and Haploview version 3.32. Results Twenty-eight HapMap tag SNPs were genotyped spanning the 39 kilobases (kb) of the EFNB2 coding region, with average spacing of 1.43 kb. Analysis of 710 ESRD patient samples and 361 controls provided no evidence of single SNP associations in either diabetic or non-diabetic ESRD; although nominal evidence of association with all-cause ESRD was observed with a two SNP (p = 0.022) and three SNP (p = 0.023) haplotype, both containing SNPs rs7490924 and rs2391335 in intron 1. Conclusions Although an attractive positional candidate gene, polymorphisms in the EFNB2 gene do not appear to contribute in a substantial way to non-diabetic, diabetic or all-cause ESRD susceptibility in African-Americans. Additional genes within the chromosome 13q33 linkage interval are likely contributors to African-American non-diabetic ESRD. PMID:18580054
Bourret, Vincent; Kent, Matthew P; Primmer, Craig R; Vasemägi, Anti; Karlsson, Sten; Hindar, Kjetil; McGinnity, Philip; Verspoor, Eric; Bernatchez, Louis; Lien, Sigbjørn
2013-02-01
Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations. Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies. In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing. The array was used in the most extensive assessment of population genetic structure performed to date in this species. A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range. Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis. We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups. In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal. A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others. We also discuss the potential future applications of the SNP array for conservation, management and aquaculture. © 2012 Blackwell Publishing Ltd.
Gene- and pathway-based association tests for multiple traits with GWAS summary statistics.
Kwak, Il-Youp; Pan, Wei
2017-01-01
To identify novel genetic variants associated with complex traits and to shed new insights on underlying biology, in addition to the most popular single SNP-single trait association analysis, it would be useful to explore multiple correlated (intermediate) traits at the gene- or pathway-level by mining existing single GWAS or meta-analyzed GWAS data. For this purpose, we present an adaptive gene-based test and a pathway-based test for association analysis of multiple traits with GWAS summary statistics. The proposed tests are adaptive at both the SNP- and trait-levels; that is, they account for possibly varying association patterns (e.g. signal sparsity levels) across SNPs and traits, thus maintaining high power across a wide range of situations. Furthermore, the proposed methods are general: they can be applied to mixed types of traits, and to Z-statistics or P-values as summary statistics obtained from either a single GWAS or a meta-analysis of multiple GWAS. Our numerical studies with simulated and real data demonstrated the promising performance of the proposed methods. The methods are implemented in R package aSPU, freely and publicly available at: https://cran.r-project.org/web/packages/aSPU/ CONTACT: weip@biostat.umn.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu
2017-01-01
RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.
Shih, P Betty; Manzi, Susan; Shaw, Penny; Kenney, Margaret; Kao, Amy H; Bontempo, Franklin; Barmada, M Michael; Kammerer, Candace; Kamboh, M Ilyas
2008-11-01
The gene coding for C-reactive protein (CRP) is located on chromosome 1q23.2, which falls within a linkage region thought to harbor a systemic lupus erythematosus (SLE) susceptibility gene. Recently, 2 single-nucleotide polymorphisms (SNP) in the CRP gene (+838, +2043) have been shown to be associated with CRP concentrations and/or SLE risk in a British family-based cohort. Our study was done to confirm the reported association in an independent population-based case-control cohort, and also to investigate the influence of 3 additional CRP tagSNP (-861, -390, +90) on SLE risk and serum CRP concentrations. DNA from 337 Caucasian women who met the American College of Rheumatology criteria for definite (n = 324) or probable (n = 13) SLE and 448 Caucasian healthy female controls was genotyped for 5 CRP tagSNP (-861, -390, +90, +838, +2043). Genotyping was performed using restriction fragment length polymorphism-polymerase chain reaction, pyrosequencing, or TaqMan assays. Serum CRP levels were measured using ELISA. Association studies were performed using the chi-squared distribution, Z-test, Fisher's exact test, and analysis of variance. Haplotype analysis was performed using EH software and the haplo.stats package in R 2.1.2. While none of the SNP were found to be associated with SLE risk individually, there was an association with the 5 SNP haplotypes (p < 0.001). Three SNP (-861, -390, +90) were found to significantly influence serum CRP level in SLE cases, both independently and as haplotypes. Our data suggest that unique haplotype combinations in the CRP gene may modify the risk of developing SLE and influence circulating CRP levels.
Familiality and SNP heritability of age at onset and episodicity in major depressive disorder.
Ferentinos, P; Koukounari, A; Power, R; Rivera, M; Uher, R; Craddock, N; Owen, M J; Korszun, A; Jones, L; Jones, I; Gill, M; Rice, J P; Ising, M; Maier, W; Mors, O; Rietschel, M; Preisig, M; Binder, E B; Aitchison, K J; Mendlewicz, J; Souery, D; Hauser, J; Henigsberg, N; Breen, G; Craig, I W; Farmer, A E; Müller-Myhsok, B; McGuffin, P; Lewis, C M
2015-07-01
Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.
Tumor Touch Imprints as Source for Whole Genome Analysis of Neuroblastoma Tumors
Brunner, Clemens; Brunner-Herglotz, Bettina; Ziegler, Andrea; Frech, Christian; Amann, Gabriele; Ladenstein, Ruth; Ambros, Inge M.; Ambros, Peter F.
2016-01-01
Introduction Tumor touch imprints (TTIs) are routinely used for the molecular diagnosis of neuroblastomas by interphase fluorescence in-situ hybridization (I-FISH). However, in order to facilitate a comprehensive, up-to-date molecular diagnosis of neuroblastomas and to identify new markers to refine risk and therapy stratification methods, whole genome approaches are needed. We examined the applicability of an ultra-high density SNP array platform that identifies copy number changes of varying sizes down to a few exons for the detection of genomic changes in tumor DNA extracted from TTIs. Material and Methods DNAs were extracted from TTIs of 46 neuroblastoma and 4 other pediatric tumors. The DNAs were analyzed on the Cytoscan HD SNP array platform to evaluate numerical and structural genomic aberrations. The quality of the data obtained from TTIs was compared to that from randomly chosen fresh or fresh frozen solid tumors (n = 212) and I-FISH validation was performed. Results SNP array profiles were obtained from 48 (out of 50) TTI DNAs of which 47 showed genomic aberrations. The high marker density allowed for single gene analysis, e.g. loss of nine exons in the ATRX gene and the visualization of chromothripsis. Data quality was comparable to fresh or fresh frozen tumor SNP profiles. SNP array results were confirmed by I-FISH. Conclusion TTIs are an excellent source for SNP array processing with the advantage of simple handling, distribution and storage of tumor tissue on glass slides. The minimal amount of tumor tissue needed to analyze whole genomes makes TTIs an economic surrogate source in the molecular diagnostic work up of tumor samples. PMID:27560999
Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo
2014-09-28
Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.
2017-01-01
Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065
Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F
2015-02-01
Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies
Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity. PMID:27454301
Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity.
Characterization of genetic variability of Venezuelan equine encephalitis viruses
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.; ...
2016-04-07
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
A functional polymorphism of the TNF-{alpha} gene that is associated with type 2 DM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Shinji; Daimon, Makoto; Sakabe, Jun-Ichi
2008-05-09
To examine the association of the tumor necrosis factor-{alpha} (TNF-{alpha}) gene region with type 2 diabetes (DM), 11 single-nucleotide polymorphisms (SNPs) of the region were analyzed. The initial study using a sample set (148 cases vs. 227 controls) showed a significant association of the SNP IVS1G + 123A of the TNF-{alpha} gene with DM (p = 0.0056). Multiple logistic regression analysis using an enlarged sample set (225 vs. 716) revealed the significant association of the SNP with DM independently of any clinical traits examined (OR: 1.49, p = 0.014). The functional relevance of the SNP were examined by the electrophoreticmore » mobility shift assays using nuclear extracts from the U937 and NIH3T3 cells and luciferase assays in these cells with Simian virus 40 promoter- and TNF-{alpha} promoter-reporter gene constructs. The functional analyses showed that YY1 transcription factor bound allele-specifically to the SNP region and, the IVS1 + 123A allele had an increase in luciferase expression compared with the G allele.« less
Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker
2017-01-01
Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176
Shimosako, Nana; Kerr, Jonathan R
2014-12-01
We have reported gene expression changes in patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and the fact that such gene expression data can be used to identify subtypes of CFS/ME with distinct clinical phenotypes. Due to the difficulties in using a comparative gene expression method as an aid to CFS/ME disease and subtype-specific diagnosis, we have attempted to develop such a method based on single-nucleotide polymorphism (SNP) analysis. To identify SNP allele associations with CFS/ME and CFS/ME subtypes, we tested genomic DNA of patients with CFS/ME (n=108), patients with endogenous depression (n=17) and normal blood donors (n=68) for 504 human SNP alleles located within 88 CFS-associated human genes using the SNP Genotyping GoldenGate Assay (Illumina, San Diego, California, USA). 360 ancestry informative markers (AIM) were also examined. 21 SNPs were significantly associated with CFS/ME compared with depression and normal groups. 148 SNP alleles had a significant association with one or more CFS/ME subtypes. For each subtype, associated SNPs tended to be grouped together within particular genes. AIM SNPs indicated that 4 subjects were of Asian origin while the remainder were Caucasian. Hierarchical clustering of AIM data revealed the relatedness between 2 couples of patients with CFS only and confirmed the overall heterogeneity of all subjects. This study provides evidence that human SNPs located within CFS/ME associated genes are associated with particular genomic subtypes of CFS/ME. Further work is required to develop this into a clinically useful subtype-specific diagnostic test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping
2015-12-15
Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-19
Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-01
Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808
Rajkumar, Thangarajan; Samson, Mani; Rama, Ranganathan; Sridevi, Veluswami; Mahji, Urmila; Swaminathan, Rajaraman; Nancy, Nirmala K
2008-11-01
The breast cancer incidence has been increasing in the south Indian women. A case (n=250)-control (n=500) study was undertaken to investigate the role of Single Nucleotide Polymorphisms (SNP's) in GSTM1 (Present/Null); GSTP1 (Ile105Val), p53 (Arg72Pro), TGFbeta1 (Leu10Pro), c-erbB2 (Ile655Val), and GSTT1 (Null/Present) in breast cancer. In addition, the value of the SNP's in predicting primary tumor's pathologic response following neo-adjuvant chemo-radiotherapy was assessed. Genotyping was done using PCR (GSTM1, GSTT1), Taqman Allelic discrimination assay (GSTP1, c-erbB2) and PCR-CTPP (p53 and TGFbeta1). None of the gene SNP's studied were associated with a statistically significant increased risk for the breast cancer. However, combined analysis of the SNP's showed that p53 (Arg/Arg and Arg/Pro) with TGFbeta1 (Pro/Pro and Leu/Pro) were associated with greater than 2 fold increased risk for breast cancer in Univariate (P=0.01) and Multivariate (P=0.003) analysis. There was no statistically significant association for the GST family members with the breast cancer risk. TGFbeta1 (Pro/Pro) allele was found to predict complete pathologic response in the primary tumour following neo-adjuvant chemo-radiotherapy (OR=6.53 and 10.53 in Univariate and Multivariate analysis respectively) (P=0.004) and was independent of stage. This study suggests that SNP's can help predict breast cancer risk in south Indian women and that TGFbeta1 (Pro/Pro) allele is associated with a better pCR in the primary tumour.
Harker, Mark; Carvell, Ann-Marie; Marti, Vernon P J; Riazanskaia, Svetlana; Kelso, Hailey; Taylor, David; Grimshaw, Sally; Arnold, David S; Zillmer, Ruediger; Shaw, Jane; Kirk, Jayne M; Alcasid, Zee M; Gonzales-Tanon, Sheila; Chan, Gertrude P; Rosing, Egge A E; Smith, Adrian M
2014-01-01
A single nucleotide polymorphism (SNP), 538G→A, leading to a G180R substitution in the ABCC11 gene results in reduced concentrations of apocrine derived axillary odour precursors. Determine the axillary odour levels in the SNP ABCC11 genotype variants and to investigate if other parameters associated with odour production are affected. Axillary odour was assessed by subjective quantification and gas chromatography headspace analysis. Metabolite profiles, microbiome diversity and personal hygiene habits were also assessed. Axillary odour in the A/A homozygotes was significantly lower compared to the G/A and G/G genotypes. However, the perception-based measures still detected appreciable levels of axillary odour in the A/A subjects. Metabolomic analysis highlighted significant differences in axillary skin metabolites between A/A subjects compared to those carrying the G allele. These differences resulted in A/A subjects lacking specific volatile odourants in the axillary headspace, but all genotypes produced odoriferous short chain fatty acids. Microbiomic analysis revealed differences in the relative abundance of key bacterial genera associated with odour generation between the different genotypes. Deodorant usage indicated a high level of self awareness of axillary odour levels with A/A individuals less likely to adopt personal hygiene habits designed to eradicate/mask its presence. The SNP in the ABCC11 gene results in lower levels of axillary odour in the A/A homozygotes compared to those carrying the G allele, but A/A subjects still produce noticeable amounts of axillary odour. Differences in axillary skin metabolites, bacterial genera and personal hygiene behaviours also appear to be influenced by this SNP. Copyright © 2013. Published by Elsevier Ireland Ltd.
Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine
2014-01-01
We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n = 146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P < 0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients. PMID:24659740
Renneville, Aline; Abdelali, Raouf Ben; Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine; Dombret, Hervé; Castaigne, Sylvie; Preudhomme, Claude
2014-02-28
We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n=146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P <0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients.
USDA-ARS?s Scientific Manuscript database
Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...
Demirci, F Yesim K; Manzi, Susan; Ramsey-Goldman, Rosalind; Kenney, Margaret; Shaw, Penny S; Dunlop-Thomas, Charmayne M; Kao, Amy H; Rhew, Elisa Y; Bontempo, Franklin; Kammerer, Candace; Kamboh, M Ilyas
2007-08-01
Toll-like receptors (TLR) play an important role in both adaptive and innate immunity. Variations in TLR genes have been shown to be associated with various infectious and inflammatory diseases. We investigated the association of TLR5 (Arg392Stop, rs5744168) and TLR9 (-1237T-->C, rs5743836) single nucleotide polymorphisms (SNP) with systemic lupus erythematosus (SLE) in Caucasian American subjects. We performed a case-control association study and genotyped 409 Caucasian women with SLE and 509 Caucasian healthy female controls using TaqMan allelic discrimination (rs5744168) or polymerase chain reaction-restriction fragment length polymorphism analysis (rs5743836). None of the 2 TLR SNP showed a statistically significant association with SLE risk in our cohort. Our results do not indicate a major influence of these putative functional TLR SNP on the susceptibility to (or protection from) SLE.
SNPit: a federated data integration system for the purpose of functional SNP annotation.
Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter
2009-08-01
Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies.
Espin‐Garcia, Osvaldo; Craiu, Radu V.
2017-01-01
ABSTRACT We evaluate two‐phase designs to follow‐up findings from genome‐wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation‐maximization‐based inference under a semiparametric maximum likelihood formulation tailored for post‐GWAS inference. A GWAS‐SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT‐SNP‐dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme‐QT strata yields significant power improvements compared to marginal QT‐ or SNP‐based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. PMID:29239496
Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand
2009-07-01
In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.
Sulovari, Arvis; Li, Dawei
2014-07-19
Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep-sequencing, particularly for data from the dbGaP and other public databases. http://www.uvm.edu/genomics/software/gact.
NASA Astrophysics Data System (ADS)
Su, L.; Chen, Y.; Zhang, G. N.; Wang, L. H.; Shen, A. G.; Zhou, X. D.; Wang, X. H.; Hu, J. M.
2013-04-01
Raman spectroscopy is capable of studying time-resolved information of selected biomolecular distributions inside individual cells without labeling. In this study, Raman spectroscopy was for the first time utilized to in vivo and in situ monitor the cellular response to nitric oxide (NO) in single oral squamous cell carcinoma (OSCC) cells over a period of 24 h. Sodium nitroprusside (SNP) was chosen as a NO donor to be incubated with the OSCC cell line (TCA8113) for certain time intervals. In vivo and in situ Raman analysis revealed that the degradation and conformational changes of nucleic acids, lipids and proteins could be directly observed by changes in the characteristic Raman bands. In comparison with conventional flow cytometric analysis, Raman spectroscopy not only detected more subtle NO-induced chemical changes of cells, where the SNP concentration could be even less than 1 mM, but also provided a full view of the whole chemical components of single cells. Raman spectroscopy therefore is an important candidate for label-free, nondestructive and in situ monitoring of cellular changes in response to chemotherapeutic agents, which could potentially be used in rapid screening of novel drugs.
Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers.
Pan, Jin; Wang, Baosheng; Pei, Zhi-Yong; Zhao, Wei; Gao, Jie; Mao, Jian-Feng; Wang, Xiao-Ru
2015-07-01
Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking. © 2014 John Wiley & Sons Ltd.
Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay
Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt
2003-01-01
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378
Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv
2018-01-01
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Technical note: Equivalent genomic models with a residual polygenic effect.
Liu, Z; Goddard, M E; Hayes, B J; Reinhardt, F; Reents, R
2016-03-01
Routine genomic evaluations in animal breeding are usually based on either a BLUP with genomic relationship matrix (GBLUP) or single nucleotide polymorphism (SNP) BLUP model. For a multi-step genomic evaluation, these 2 alternative genomic models were proven to give equivalent predictions for genomic reference animals. The model equivalence was verified also for young genotyped animals without phenotypes. Due to incomplete linkage disequilibrium of SNP markers to genes or causal mutations responsible for genetic inheritance of quantitative traits, SNP markers cannot explain all the genetic variance. A residual polygenic effect is normally fitted in the genomic model to account for the incomplete linkage disequilibrium. In this study, we start by showing the proof that the multi-step GBLUP and SNP BLUP models are equivalent for the reference animals, when they have a residual polygenic effect included. Second, the equivalence of both multi-step genomic models with a residual polygenic effect was also verified for young genotyped animals without phenotypes. Additionally, we derived formulas to convert genomic estimated breeding values of the GBLUP model to its components, direct genomic values and residual polygenic effect. Third, we made a proof that the equivalence of these 2 genomic models with a residual polygenic effect holds also for single-step genomic evaluation. Both the single-step GBLUP and SNP BLUP models lead to equal prediction for genotyped animals with phenotypes (e.g., reference animals), as well as for (young) genotyped animals without phenotypes. Finally, these 2 single-step genomic models with a residual polygenic effect were proven to be equivalent for estimation of SNP effects, too. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
Szental, Joshua A; Baird, Paul N; Richardson, Andrea J; Islam, F M Amirul; Scholl, Hendrik P N; Charbel Issa, Peter; Holz, Frank G; Gillies, Mark; Guymer, Robyn H
2010-12-01
Recent imaging studies have suggested that macular pigment is decreased centrally in macular telangiectasia type 2 (MT2). The uptake of xanthophyll pigment into the macula is thought to be facilitated by a xanthophyll-binding protein (XBP). The Pi isoform of glutathione S-transferase (GSTP1) represents one such XBP with high binding affinity. This case-control study aimed to determine whether two common single-nucleotide polymorphisms (SNPs) of GSTP1 were associated with MT2. DNA samples from 39 cases and 21 controls were collected. Two polymorphic sites of Ile105Val and Ala114Val in exons 5 and 6 respectively, of the GSTP1 gene were analysed. Comparison of alleles and genotypes between cases and controls indicated that there were no statistically significant differences for either the Ile105Val SNP (P=0.43) or the Ala114Val SNP (P=0.85), or for any combinations; however, the homozygous at-risk genotype (GG) of the Ile105Val SNP was present in 8% of cases but absent in controls. This study found no statistically significant association between two common GSTP1 SNPs and MT2; however, a trend towards a greater frequency of the GG genotype of the Ile105Val SNP in cases is of great interest. The biological plausibility of disturbed macular pigment uptake in MT2 makes GSTP1 an excellent candidate gene. Further investigation is warranted in future studies of MT2.
Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.
Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C
2003-09-30
Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.
Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?
Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F
2006-06-01
Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.
Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi
2014-11-24
Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter region.
2012-01-01
Background Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic information into a single-stage genomic evaluation. Methods An algorithm was developed for imputation of genotypes in pedigreed populations that allows imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation analysis. Results Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25 000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored. Conclusions The developed imputation algorithm and software and the resulting single-stage genomic evaluation method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations. PMID:22462519
Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki
2015-01-01
Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP—SNP interaction, SNP—environment interaction, and SNP—clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS. PMID:25646961
Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle
2013-01-01
Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet-dependent associations between SNPs and feed efficiency suggest that further refinement of variant panels require the consideration of the breed and management practices. The unique genomic variants associated with the one- and two-step indicators suggest that both types of indicators offer complementary description of feed efficiency that can be exploited for genome-enabled selection purposes. PMID:24066663
Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A
2013-01-01
Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658
MTHFR gene polymorphism and risk of myeloid leukemia: a meta-analysis.
Dong, Song; Liu, Yueling; Chen, Jieping
2014-09-01
An increasing body of evidence has shown that the amino acid changes at position 1298 might eliminate methylenetetrahydrofolate reductase (MTHFR) enzyme activity, leading to insufficient folic acid and subsequent human chromosome breakage. Epidemiological studies have linked MTHFR single-nucleotide polymorphism (SNP) rs1801131 to myeloid leukemia risk, with considerable discrepancy in their results. We therefore were prompted to clarify this issue by use of a meta-analysis. The search terms were used to cover the possible reports in the MEDLINE, Web of Knowledge, and China National Knowledge Infrastructure (CNKI) databases. Odds ratios were estimated to assess the association of SNP rs1801131 with myeloid leukemia risk. Statistical heterogeneity was detected using the Q-statistic and I (2) metric. Subgroup analysis was performed by ethnicity, histological subtype, and Hardy-Weinberg equilibrium (HWE). This meta-analysis of eight publications with a total of 1,114 cases and 3,227 controls revealed no global association. Nor did the subgroup analysis according to histological subtype and HWE show any significant associations. However, Asian individuals who harbored the CC genotype were found to have 1.66-fold higher risk of myeloid leukemia (odds ratio, 1.66; 95 % confidence interval, 1.10 to 2.49; P h = 0.342; I (2) = 0.114). Our meta-analysis has presented evidence supporting a possible association between the CC genotype of MTHFR SNP rs1801131 and myeloid leukemia in Asian populations.
Goodin, Douglas S.; Khankhanian, Pouya
2014-01-01
Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that the SNP-string method is more accurate across the entire region. Conclusions/Significance Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby improving a GWAS’s power, even for those published previously. PMID:24727690
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu
2017-01-01
Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. Conclusions This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments. PMID:28234981
Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F
2015-01-01
There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Diana, Mariana C; Peres, Fernanda F; Justi, Veronica; Bressan, Rodrigo A; Lacerda, Acioly L T; Crippa, José Alexandre; Hallak, Jaime E C; Abilio, Vanesssa Costhek
2018-04-14
The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia. © 2018 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...
Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology
Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N.; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu
2016-01-01
Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits. PMID:27606429
Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.
Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu
2016-01-01
Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits.
Investigation of TbMn2O5 by polarized neutron diffraction
NASA Astrophysics Data System (ADS)
Zobkalo, I. A.; Gavrilov, S. V.; Sazonov, A.; Hutanu, V.
2018-05-01
In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of ‘right’ and ‘left’ helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5.
Investigation of TbMn2O5 by polarized neutron diffraction.
Zobkalo, I A; Gavrilov, S V; Sazonov, A; Hutanu, V
2018-05-23
In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn 2 O 5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn 2 O 5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of 'right' and 'left' helix domains in all magnetically ordered phases of TbMn 2 O 5 , was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn 2 O 5 .
Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.
2016-01-01
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945
A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie
2011-06-15
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Identification and SNP association analysis of a novel gene in chicken.
Mei, Xingxing; Kang, Xiangtao; Liu, Xiaojun; Jia, Lijuan; Li, Hong; Li, Zhuanjian; Jiang, Ruirui
2016-02-01
A novel gene that was predicted to encode a long noncoding RNA (lncRNA) transcript was identified in a previous study that aimed to detect candidate genes related to growth rate differences between Chinese local breed Gushi chickens and Anka broilers. To characterise the biological function of the lncRNA, we cloned and sequenced the complete open reading frame of the gene. We performed quantitative real-time polymerase chain reaction (qPCR) to analyse the expression patterns of the lncRNA in different tissues of chicken at different development stages. The qPCR data showed that the novel lncRNA gene was expressed extensively, with the highest abundance in spleen and lung and the lowest abundance in pectoralis and leg muscle. Additionally, we identified a single nucleotide polymorphism (SNP) at the 5'-end of the gene and studied the association between the SNP and chicken growth traits using data from an F2 resource population of Gushi chickens and Anka broilers. The association analysis showed that the SNP was significantly (P < 0.05) associated with leg muscle weight, chest breadth, sternal length and body weight in chickens at 1 day, 4 weeks and 6 weeks of age. We concluded that the novel lncRNA gene, which we designated pouBW1, may play an important role in regulating chicken growth. © 2015 Stichting International Foundation for Animal Genetics.
Klaften, Matthias; Hrabé de Angelis, Martin
2005-07-01
Genome-wide mapping in the identification of novel candidate genes has always been the standard method in genetics and genomics to correlate a clinically interesting phenotypic trait with a genotype. However, the performance of a mapping experiment using classical microsatellite approaches can be very time consuming. The high-throughput analysis of single-nucleotide polymorphisms (SNPs) has the potential of being the successor of microsatellite analysis routinely used for these mapping approaches, where one of the major obstacles is the design of the appropriate SNP marker set itself. Here we report on ARTS, an advanced retrieval tool for SNPs, which allows researchers to comb freely the public mouse dbSNP database for multiple reference and test strains. Several filters can be applied in order to improve the sensitivity and the specificity of the search results. By employing the panel generator function of this program, it is possible to abbreviate the extraction of reliable sequence data for a large marker panel including several different mouse strains from days to minutes. The concept of ARTS is easily adaptable to other species for which SNP databases are available, making it a versatile tool for the use of SNPs as markers for genotyping. The web interface is accessible at http://andromeda.gsf.de/arts.
Novel approach for deriving genome wide SNP analysis data from archived blood spots
2012-01-01
Background The ability to transport and store DNA at room temperature in low volumes has the advantage of optimising cost, time and storage space. Blood spots on adapted filter papers are popular for this, with FTA (Flinders Technology Associates) Whatman™TM technology being one of the most recent. Plant material, plasmids, viral particles, bacteria and animal blood have been stored and transported successfully using this technology, however the method of porcine DNA extraction from FTA Whatman™TM cards is a relatively new approach, allowing nucleic acids to be ready for downstream applications such as PCR, whole genome amplification, sequencing and subsequent application to single nucleotide polymorphism microarrays has hitherto been under-explored. Findings DNA was extracted from FTA Whatman™TM cards (following adaptations of the manufacturer’s instructions), whole genome amplified and subsequently analysed to validate the integrity of the DNA for downstream SNP analysis. DNA was successfully extracted from 288/288 samples and amplified by WGA. Allele dropout post WGA, was observed in less than 2% of samples and there was no clear evidence of amplification bias nor contamination. Acceptable call rates on porcine SNP chips were also achieved using DNA extracted and amplified in this way. Conclusions DNA extracted from FTA Whatman cards is of a high enough quality and quantity following whole genomic amplification to perform meaningful SNP chip studies. PMID:22974252
Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M
2016-10-02
Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic diagnosis rate of the patients with unexplained ID or DD. Combined use of these technologies can serve as a useful examinational method in assisting differential diagnosis of children with unexplained ID or DD.
Amirian, E Susan; Scheurer, Michael E; Liu, Yanhong; D'Amelio, Anthony M; Houlston, Richard S; Etzel, Carol J; Shete, Sanjay; Swerdlow, Anthony J; Schoemaker, Minouk J; McKinney, Patricia A; Fleming, Sarah J; Muir, Kenneth R; Lophatananon, Artitaya; Bondy, Melissa L
2011-08-01
Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology. ©2011 AACR.
Erdoğan, Onur; Aydin Son, Yeşim
2014-01-01
Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.
Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de
2015-01-01
Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834
USDA-ARS?s Scientific Manuscript database
Fusarium spp. cause severe damage in many agricultural crops including sugar beet. Sugar beet needs to be protected from these soil borne pathogens to guarantee an optimal sugar yield in the field. The genetic control is the key to overcoming this disease. Identification of single nucleotide polymor...
Diverse Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn Disease
Wang, Kai; Zhang, Haitao; Kugathasan, Subra; Annese, Vito; Bradfield, Jonathan P.; Russell, Richard K.; Sleiman, Patrick M.A.; Imielinski, Marcin; Glessner, Joseph; Hou, Cuiping; Wilson, David C.; Walters, Thomas; Kim, Cecilia; Frackelton, Edward C.; Lionetti, Paolo; Barabino, Arrigo; Van Limbergen, Johan; Guthery, Stephen; Denson, Lee; Piccoli, David; Li, Mingyao; Dubinsky, Marla; Silverberg, Mark; Griffiths, Anne; Grant, Struan F.A.; Satsangi, Jack; Baldassano, Robert; Hakonarson, Hakon
2009-01-01
Previous genome-wide association (GWA) studies typically focus on single-locus analysis, which may not have the power to detect the majority of genuinely associated loci. Here, we applied pathway analysis using Affymetrix SNP genotype data from the Wellcome Trust Case Control Consortium (WTCCC) and uncovered significant association between Crohn Disease (CD) and the IL12/IL23 pathway, harboring 20 genes (p = 8 × 10−5). Interestingly, the pathway contains multiple genes (IL12B and JAK2) or homologs of genes (STAT3 and CCR6) that were recently identified as genuine susceptibility genes only through meta-analysis of several GWA studies. In addition, the pathway contains other susceptibility genes for CD, including IL18R1, JUN, IL12RB1, and TYK2, which do not reach genome-wide significance by single-marker association tests. The observed pathway-specific association signal was subsequently replicated in three additional GWA studies of European and African American ancestry generated on the Illumina HumanHap550 platform. Our study suggests that examination beyond individual SNP hits, by focusing on genetic networks and pathways, is important to unleashing the true power of GWA studies. PMID:19249008
Talbert, Matthew E; Langefeld, Carl D; Ziegler, Julie; Mychaleckyj, Josyf C; Haffner, Steven M; Norris, Jill M; Bowden, Donald W
2009-01-01
The SOCS3 gene product participates in the feedback inhibition of a range of cytokine signals. Most notably, SOCS3 inhibits the functioning of leptin and downstream steps in insulin signaling after being expressed by terminal transcription factors, such as STAT3 and c-fos. The SOCS3 gene is located in the chromosome region 17q24–17q25, previously linked to body mass index (BMI), visceral adipose tissue (VAT), and waist circumference (WAIST) in Hispanic families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). A high density map of 1536 single nucleotide polymorphisms (SNPs) was constructed to cover a portion of the 17q linkage interval in DNA samples from 1425 Hispanic subjects from 90 extended families in IRASFS. Analysis of this dense SNP map data revealed evidence of association of rs9914220 (located 10 kb 5’ of the SOCS3 gene) with BMI, VAT, and WAIST (P-value ranging from 0 003 to 0.017). Using a tagging SNP approach, rs9914220 and 22 additional SOCS3 SNPs were genotyped for genetic association analysis with measures of adiposity and glucose homeostasis. The adiposity phenotypes utilized in association analyses included BMI, WAIST, waist to hip ratio (WHR), subcutaneous adipose tissue (SAT), VAT, and visceral to subcutaneous ratio (VSR). Linkage disequilibrium (LD) calculations revealed three haplotype blocks near SOCS3. Haplotype Block 1 (5’ of SOCS3) contained SNPs consistently associated with BMI, WAIST, WHR, and VAT (P-values ranging from 2.00x10−4 to .036). Haplotype Block 3 contained single-SNPs that were associated with most adiposity traits except for VSR (P-values ranging from 0.002 to 0.047). When trait associated SNPs were included in linkage analyses as covariates, a reduction of VAT LOD score from 1.26 to .76 above the SOCS3 locus (110 cM) was observed. Multi-SNP haplotype testing using the quantitative pedigree disequilibrium test (QPDT) was broadly consistent with the single-SNP associations. In conclusion, these results support a role for SOCS3 genetic variants in human obesity. PMID:19083014
SNPdbe: constructing an nsSNP functional impacts database.
Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana
2012-02-15
Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.
Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls
Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean
2013-01-01
Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction. PMID:24236035
- 174 G>C IL-6 polymorphism and primary iron overload in male patients.
Tetzlaff, Walter F; Meroño, Tomás; Botta, Eliana E; Martín, Maximiliano E; Sorroche, Patricia B; Boero, Laura E; Castro, Marcelo; Frechtel, Gustavo D; Rey, Jorge; Daruich, Jorge; Cerrone, Gloria E; Brites, Fernando
2018-04-14
Primary iron overload (IO) is commonly associated with mutations in the hereditary hemochromatosis gene (HFE). Nonetheless, other genetic variants may influence the development of IO beyond HFE mutations. There is a single nucleotide polymorphism (SNP) at - 174 G>C of the interleukin (IL)-6 gene which might be associated with primary IO. Our aim was to study the association between the SNP - 174 G>C gene promoter of IL-6 and primary IO in middle-aged male patients. We studied 37 men with primary IO diagnosed by liver histology. Controls were age-matched male volunteers (n = 37). HFE mutations and the SNP - 174 G>C gene promoter of IL-6 were evaluated by PCR-RFLP. Logistic regression was used to evaluate the association between primary IO and SNP - 174 G>C gene promoter of IL-6. Patients and control subjects were in Hardy-Weinberg equilibrium for the SNP - 174 G>C gene promoter of IL-6 (p = 0.17). Significantly different genotype frequencies were observed between patients (43% CC, 43% CG, and 14% GG) and control subjects (10% CC, 41% CG, and 49% GG) (OR = 4.09, 95% CI = 2.06-8.13; p < 0.0001). The multiple logistic regression analysis showed that IO was significantly associated with CC homozygosis in the SNP - 174 G>C gene promoter of IL-6 (OR = 6.3, 95% CI = 1.9-21.4; p < 0.005) in a model adjusted by age and body mass index. In conclusion, CC homozygosis in the SNP - 174 G>C gene promoter of IL-6 can be proposed as one of the gene variants influencing iron accumulation in male adults with HFE mutations. Studies in larger cohorts are warranted.
Haile, Jemanesh K.; Cory, Aron T.; Clarke, Fran R.; Clarke, John M.; Knox, Ron E.; Pozniak, Curtis J.
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat. PMID:28135299
2013-01-01
Background The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. Methods Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. Results Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. Conclusions The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. PMID:24168700
Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen
2014-01-01
A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186
Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F
2014-01-01
We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.
Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing
2015-07-07
The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.
Gan, W; Song, Q; Zhang, N N; Xiong, X P; Wang, D M C; Li, L
2015-06-18
The fat mass and obesity-associated gene (FTO) is an excellent candidate gene that affects energy metabolism. Single nucleotide polymorphisms (SNPs) in FTO are associated with carcass and meat quality traits in pigs, cattle, and rabbits. The aim of this study was to investigate the association between novel SNPs in the FTO coding region and carcass and meat quality traits in 95 crossbred ducks, using DNA sequencing. We found two transitions G/A (SNP 387 and 473) within exon 3. SNP 387 was a synonymous mutation, whereas SNP 473 was a missense mutation. Association analysis suggested that SNP g.387G>A was significantly associated with all of the carcass traits measured, the intramuscular fat content (IMF), cooking yield (CY), pH values 45 min after slaughter (pH45m), drip losses from the breast muscle, and the leg muscle (P < 0.05). For SNP g.473G>A, the genotype AA exhibited greater leg muscle weight than the genotypes GG or AG (P < 0.05). The D value suggested that the two SNPs exhibited strong linkage disequilibrium. Three haplotypes (G1G2, G1A2, and A1A2) were significantly associated with IMF, CY, the a* value, and all of the carcass traits measured (P < 0.05). The results suggest that FTO is a candidate locus that affects carcass and meat quality traits in ducks.
SNP Discovery and Linkage Map Construction in Cultivated Tomato
Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi
2010-01-01
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984
Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism
Watanabe, Takamitsu; Otowa, Takeshi; Abe, Osamu; Kuwabara, Hitoshi; Aoki, Yuta; Natsubori, Tatsunobu; Takao, Hidemasa; Kakiuchi, Chihiro; Kondo, Kenji; Ikeda, Masashi; Iwata, Nakao; Kasai, Kiyoto; Sasaki, Tsukasa
2017-01-01
Abstract Oxytocin appears beneficial for autism spectrum disorder (ASD), and more than 20 single-nucleotide polymorphisms (SNPs) in oxytocin receptor (OXTR) are relevant to ASD. However, neither biological functions of OXTR SNPs in ASD nor critical OXTR SNPs that determine oxytocin’s effects on ASD remains known. Here, using a machine-learning algorithm that was designed to evaluate collective effects of multiple SNPs and automatically identify most informative SNPs, we examined relationships between 27 representative OXTR SNPs and six types of behavioral/neural response to oxytocin in ASD individuals. The oxytocin effects were extracted from our previous placebo-controlled within-participant clinical trial administering single-dose intranasal oxytocin to 38 high-functioning adult Japanese ASD males. Consequently, we identified six different SNP sets that could accurately predict the six different oxytocin efficacies, and confirmed the robustness of these SNP selections against variations of the datasets and analysis parameters. Moreover, major alleles of several prominent OXTR SNPs—including rs53576 and rs2254298—were found to have dissociable effects on the oxytocin efficacies. These findings suggest biological functions of the OXTR SNP variants on autistic oxytocin responses, and implied that clinical oxytocin efficacy may be genetically predicted before its actual administration, which would contribute to establishment of future precision medicines for ASD. PMID:27798253
2011-09-01
Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication
Genome-wide association analysis of seedling root development in maize (Zea mays L.).
Pace, Jordon; Gardner, Candice; Romay, Cinta; Ganapathysubramanian, Baskar; Lübberstedt, Thomas
2015-02-05
Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10(-7)). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.
Identification of SNP Haplotypes and Prospects of Association Mapping in Watermelon
USDA-ARS?s Scientific Manuscript database
Watermelon is the fifth most economically important vegetable crop cultivated world-wide. Implementing Single Nucleotide Polymorphism (SNP) marker technology in watermelon breeding and germplasm evaluation programs holds a key to improve horticulturally important traits. Next-generation sequencing...
Henshall, John M; Dierens, Leanne; Sellars, Melony J
2014-09-02
While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are sufficiently accurate to provide useful information for a breeding program. Treating genotypes as quantitative values is an alternative to perturbing genotypes using an assumed error distribution, but can produce very different results. An understanding of the distribution of the error is required for SNP genotyping platforms.
The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.
Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang
2018-05-15
Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR: short tandem repeat; TE: trophectoderm; WGA: whole-genome amplification.
Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J
2018-01-15
Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.
Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François
2015-01-01
Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486
Trampush, J W; Yang, M L Z; Yu, J; Knowles, E; Davies, G; Liewald, D C; Starr, J M; Djurovic, S; Melle, I; Sundet, K; Christoforou, A; Reinvang, I; DeRosse, P; Lundervold, A J; Steen, V M; Espeseth, T; Räikkönen, K; Widen, E; Palotie, A; Eriksson, J G; Giegling, I; Konte, B; Roussos, P; Giakoumaki, S; Burdick, K E; Payton, A; Ollier, W; Horan, M; Chiba-Falek, O; Attix, D K; Need, A C; Cirulli, E T; Voineskos, A N; Stefanis, N C; Avramopoulos, D; Hatzimanolis, A; Arking, D E; Smyrnis, N; Bilder, R M; Freimer, N A; Cannon, T D; London, E; Poldrack, R A; Sabb, F W; Congdon, E; Conley, E D; Scult, M A; Dickinson, D; Straub, R E; Donohoe, G; Morris, D; Corvin, A; Gill, M; Hariri, A R; Weinberger, D R; Pendleton, N; Bitsios, P; Rujescu, D; Lahti, J; Le Hellard, S; Keller, M C; Andreassen, O A; Deary, I J; Glahn, D C; Malhotra, A K; Lencz, T
2017-03-01
The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10 -8 ). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness.
Trampush, J W; Yang, M L Z; Yu, J; Knowles, E; Davies, G; Liewald, D C; Starr, J M; Djurovic, S; Melle, I; Sundet, K; Christoforou, A; Reinvang, I; DeRosse, P; Lundervold, A J; Steen, V M; Espeseth, T; Räikkönen, K; Widen, E; Palotie, A; Eriksson, J G; Giegling, I; Konte, B; Roussos, P; Giakoumaki, S; Burdick, K E; Payton, A; Ollier, W; Horan, M; Chiba-Falek, O; Attix, D K; Need, A C; Cirulli, E T; Voineskos, A N; Stefanis, N C; Avramopoulos, D; Hatzimanolis, A; Arking, D E; Smyrnis, N; Bilder, R M; Freimer, N A; Cannon, T D; London, E; Poldrack, R A; Sabb, F W; Congdon, E; Conley, E D; Scult, M A; Dickinson, D; Straub, R E; Donohoe, G; Morris, D; Corvin, A; Gill, M; Hariri, A R; Weinberger, D R; Pendleton, N; Bitsios, P; Rujescu, D; Lahti, J; Le Hellard, S; Keller, M C; Andreassen, O A; Deary, I J; Glahn, D C; Malhotra, A K; Lencz, T
2017-01-01
The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10−8). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness. PMID:28093568
Li, X; Buitenhuis, A J; Lund, M S; Li, C; Sun, D; Zhang, Q; Poulsen, N A; Su, G
2015-11-01
The identification of causal genes or genomic regions associated with fatty acids (FA) will enhance our understanding of the pathways underlying FA synthesis and provide opportunities for changing milk fat composition through a genetic approach. The linkage disequilibrium between adjacent markers is highly consistent between the Chinese and Danish Holstein populations, such that a joint genome-wide association study (GWAS) can be performed. In this study, a joint GWAS was performed for 16 milk FA traits based on data of 784 Chinese and 371 Danish Holstein cows genotyped by a high-density bovine single nucleotide polymorphism (SNP) array. A total of 486,464 SNP markers on 29 bovine autosomes were used. Bonferroni corrections were applied to adjust the significance thresholds for multiple testing at the genome- and chromosome-wide levels. According to the analysis of either the Chinese or Danish data individually, the total numbers of overlapping SNP that were significant at the chromosome level were 94 for C14:1, 208 for the C14 index, and 1 for C18:0. Joint analysis using the combined data of the 2 populations detected greater numbers of significant SNP compared with either of the individual populations alone for 7 and 10 traits at the genome- and chromosome-wide significance levels, respectively. Greater numbers of significant SNP were detected for C18:0 and the C18 index in the Chinese population compared with the joint analysis. Sixty-five significant SNP across all traits had significantly different effects in the 2 populations. Ten FA were influenced by a quantitative trait loci (QTL) region including DGAT1. Both C14:1 and the C14 index were influenced by a QTL region including SCD1 in the combined population. Other QTL regions also showed significant associations with the studied FA. A large region (14.9-24.9 Mbp) in BTA26 significantly influenced C14:1 and the C14 index in both populations, mostly likely due to the SNP in SCD1. A QTL region (69.97-73.69 Mbp) on BTA9 showed a significantly different effect on C18:0 between the 2 populations. Detection of these important SNP and the corresponding QTL regions will be helpful for follow-up studies to identify causal mutations and their interaction with environments for milk FA in dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama
2014-01-01
Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for future large scale association studies in naturally exposed sheep populations. PMID:24533078
Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).
Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair
2014-02-06
Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.
Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)
2014-01-01
Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection. PMID:24524230
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder
Prasad, Aparna; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wei, John; Lionel, Anath C.; Sato, Daisuke; Rickaby, Jessica; Lu, Chao; Szatmari, Peter; Roberts, Wendy; Fernandez, Bridget A.; Marshall, Christian R.; Hatchwell, Eli; Eis, Peggy S.; Scherer, Stephen W.
2012-01-01
The identification of rare inherited and de novo copy number variations (CNVs) in human subjects has proven a productive approach to highlight risk genes for autism spectrum disorder (ASD). A variety of microarrays are available to detect CNVs, including single-nucleotide polymorphism (SNP) arrays and comparative genomic hybridization (CGH) arrays. Here, we examine a cohort of 696 unrelated ASD cases using a high-resolution one-million feature CGH microarray, the majority of which were previously genotyped with SNP arrays. Our objective was to discover new CNVs in ASD cases that were not detected by SNP microarray analysis and to delineate novel ASD risk loci via combined analysis of CGH and SNP array data sets on the ASD cohort and CGH data on an additional 1000 control samples. Of the 615 ASD cases analyzed on both SNP and CGH arrays, we found that 13,572 of 21,346 (64%) of the CNVs were exclusively detected by the CGH array. Several of the CGH-specific CNVs are rare in population frequency and impact previously reported ASD genes (e.g., NRXN1, GRM8, DPYD), as well as novel ASD candidate genes (e.g., CIB2, DAPP1, SAE1), and all were inherited except for a de novo CNV in the GPHN gene. A functional enrichment test of gene-sets in ASD cases over controls revealed nucleotide metabolism as a potential novel pathway involved in ASD, which includes several candidate genes for follow-up (e.g., DPYD, UPB1, UPP1, TYMP). Finally, this extensively phenotyped and genotyped ASD clinical cohort serves as an invaluable resource for the next step of genome sequencing for complete genetic variation detection. PMID:23275889
UCHL1 S18Y variant is a risk factor for Parkinson’s disease in Japan
2012-01-01
Background A recent meta-analysis on the UCHL1 S18Y variant and Parkinson’s disease (PD) showed a significant inverse association between the Y allele and PD; the individual studies included in that meta-analysis, however, have produced conflicting results. We examined the relationship between UCHL1 S18Y single nucleotide polymorphism (SNP) and sporadic PD in Japan. Methods Included were 229 cases within 6 years of onset of PD, defined according to the UK PD Society Brain Bank clinical diagnostic criteria. Controls were 357 inpatients and outpatients without neurodegenerative disease. Adjustment was made for sex, age, region of residence, smoking, and caffeine intake. Results Compared with subjects with the CC or CA genotype of UCHL1 S18Y SNP, those with the AA genotype had a significantly increased risk of sporadic PD: the adjusted OR was 1.57 (95 % CI: 1.06 − 2.31). Compared with subjects with the CC or CA genotype of UCHL1 S18Y and the CC or CT genotype of SNCA SNP rs356220, those with the AA genotype of UCHL1 S18Y and the TT genotype of SNP rs356220 had a significantly increased risk of sporadic PD; the interaction, however, was not significant. Our previous investigation found significant inverse relationships between smoking and caffeine intake and PD in this population. There were no significant interactions between UCHL1 S18Y and smoking or caffeine intake affecting sporadic PD. Conclusions This study reveals that the UCHL1 S18Y variant is a risk factor for sporadic PD. We could not find evidence for interactions affecting sporadic PD between UCHL1 S18Y and SNCA SNP rs356220, smoking, or caffeine intake. PMID:22839974
Miyake, Yoshihiro; Hitsumoto, Shinichi; Tanaka, Keiko; Arakawa, Masashi
2015-08-01
We examined the association between thymic stromal lymphopoietin (TSLP) single nucleotide polymorphisms (SNPs) and eczema in young adult Japanese women. Cases were 188 women who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Controls were 565 women without eczema according to the ISAAC criteria, who had not been diagnosed with asthma, atopic eczema, and/or allergic rhinitis by a doctor and who had no asthma as defined by the European Community Respiratory Health Survey criteria and no rhinoconjunctivitis according to the ISAAC criteria. Compared with women with the TT genotype of SNP rs1837253, those with the TC or CC genotype had a significantly increased risk of eczema after adjustment for age and smoking, although this association was not significant in crude analysis. There were no relationships between SNP rs3806933 or rs2289276 and eczema. The TC and CC genotypes combined of SNP rs1837253 may be significantly positively associated with eczema.
SNPit: a federated data integration system for the purpose of functional SNP annotation
Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter
2009-01-01
Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies. PMID:19327864
Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E
2013-06-25
Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.
Jiménez-Jiménez, Félix Javier; García-Martín, Elena; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A G
2017-03-01
A recent meta-analysis suggests an association between the rs11558538 single nucleotide polymorphism in the histamine-N-methyl-transferase (HNMT) gene and the risk for Parkinson's disease. Based on the possible relationship between PD and restless legs syndrome (RLS), we tried to establish whether rs11558538 SNP is associated with the risk for RLS. We studied the genotype and allelic variant frequencies of HNMT rs11558538 SNP 205 RLS patients and 410 healthy controls using a TaqMan assay. The frequencies of the HNMT rs11558538 genotypes allelic variants were similar between RLS patients and controls, and were not influenced by gender, family history of RLS, or RLS severity. RLS patients carrying the genotype rs11558538TT had an earlier age at onset, but this finding was based on three subjects only. These results suggest a lack of major association between HNMT rs11558538 SNP and the risk for RLS.
Pan, Zhi-Wen; Lou, Jintu; Luo, Chunfen; Yu, Linjun; Li, Ji-Cheng
2011-10-01
Hirschsprung disease (HSCR, Online Mendelian Inheritance in Man 142623) is a typical developmental disorder of the enteric nervous system in which ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. SOX10 gene is involved in the normal development of the enteric nervous system. Heterozygous SOX10 mutations have been identified in patients with syndromic HSCR. However, no mutations have been reported to date to be associated to isolated HSCR patient. We thus sought to investigate whether mutations in the SOX10 are associated with isolated HSCR in the Chinese population. Polymerase chain reaction amplification and direct sequencing were used to screen 4 exons of the SOX10 gene for mutations and polymorphisms in 104 patients with sporadic HSCR and 96 ethnically matched controls in Han Chinese populations. In this study, 4 single nucleotide polymorphisms (SNPs) were identified: SNP1: c.18C>T (GAC→GAT) in exon 2; SNP2: c.122G>T (GGC→GTC) in exon 2; SNP3: IVS2+10 (C→G) in intron 2; and SNP4: c.927T>C (CAT→CAC) in exon 4. SNP1 and SNP2 were novel described polymorphisms in the Chinese population. No SOX10 mutations were found in Han Chinese with isolated HSCR. Our results revealed that there was no association between the 4 SNPs of the SOX10 gene and HSCR. This study showed that the SOX10 gene is unlikely to be a major HSCR gene in the Chinese Han population. Copyright © 2011. Published by Elsevier Inc.
Sabourin, Jeremy; Nobel, Andrew B.; Valdar, William
2014-01-01
Genomewide association studies sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple SNPs simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights; it estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing a SNP prioritization that best identifies underlying true signals, we show that: our method easily outperforms a single marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and, when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation. PMID:25417853
Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai
2014-01-01
The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies. PMID:24498047
Yin, Jiajun; Jia, Ningren; Liu, Yansong; Jin, Chunhui; Zhang, Fuquan; Yu, Shui; Wang, Jun; Yuan, Jianmin
2018-04-01
Schizophrenia (SCZ) is a severe and heritable psychiatric disorder, and previous studies have shown that regulation of the forkhead-box P2 gene (FOXP2) may play a role in schizophrenia. Moreover, just a few studies have identified a single nucleotide polymorphism (SNP) rs10447760 within the gene that was a risk variant for SCZ in the Chinese Han population. To examine whether the variant in the FOXP2 gene contributes toward SCZ susceptibility, we carried out an association analysis of the SNP rs10447760 of the FOXP2 gene in a case-control study (1405 cases, 1137 controls) from China. We identified no association of rs10447760 in the FOXP2 gene with SCZ (all P>0.05). In addition, a meta-analysis indicated that the SNP rs10447760 was not associated with susceptibility to SCZ in Han Chinese populations (pooled odds ratio=1.44, 95% confidence interval: 0.63-3.31, P=0.39). Thus, our results did not support the association between FOXP2 rs10447760 and schizophrenia in a Chinese Han population, and large-scale genetic replication studies with different racial and geographic origins are required in the future.
[Phenotype-genotype correlation analysis of 12 cases with Angelman/Prader-Willi syndrome].
Chen, Chen; Peng, Ying; Xia, Yan; Li, Haoxian; Zhu, Huimin; Pan, Qian; Yin, Fei; Wu, Lingqian
2014-12-01
To investigate the genotype-phenotype correlation in patients with Angelman syndrome/Prader-Willi syndrome (AS/PWS) and assess the application value of high-resolution single nucleotide polymorphism microarrays (SNP array) for such diseases. Twelve AS/PWS patients were diagnosed through SNP array, fluorescence in situ hybridization (FISH) and karyotype analysis. Clinical characteristics were analyzed. Deletions ranging from 4.8 Mb to 7.0 Mb on chromosome 15q11.2-13 were detected in 11 patients. Uniparental disomy (UPD) was detected in only 1 patient. Patients with deletions could be divided into 2 groups, including 7 cases with class I and 4 with class II. The two groups however had no significant phenotypic difference. The UPD patient had relatively better development and language ability. Deletions of 6 patients were confirmed by FISH to be of de novo in origin. The risk to their sibs was determined to be less than 1%. The phenotypic differences between AS/PWS patients with class I and class II deletion need to be further studied. SNP array is useful in detecting and distinguishing of patients with deletion or UPD. This method may be applied for studying the genotype-phenotype association and the mechanism underlying AS/PWS.
Liley, James; Wallace, Chris
2015-02-01
Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.
Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong
2016-10-01
Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cowpea (Vigna unguiculata (L) Walp.) is an important legume and the antioxidants in cowpea seeds have been recognized as health-promoting compounds for human. The objectives of this study were to analyze the population structure of cowpea collections using single nucleotide polymorphism (SNP) and to...
USDA-ARS?s Scientific Manuscript database
Tea [Camellia sinensis (L.) O Kuntze] is an economically important crop cultivated in more than 50 countries. Production and marketing of premium specialty tea products provides opportunities for tea growers, the tea industry and consumers. Rapid market segmentation in the tea industry has resulted ...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such ...
Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J
2011-12-01
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation of genomic alterations and mosaic distribution of clones can be used to assess apparent clonal evolution via analysis of clonal diversity. Since clonal evolution in CLL is strongly correlated with disease progression, whole genome SNP microarray analysis provides a new comprehensive and reliable prognostic tool for CLL patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J
2018-06-02
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.
Leyva-Corona, Jose C; Reyna-Granados, Javier R; Zamorano-Algandar, Ricardo; Sanchez-Castro, Miguel A; Thomas, Milton G; Enns, R Mark; Speidel, Scott E; Medrano, Juan F; Rincon, Gonzalo; Luna-Nevarez, Pablo
2018-06-20
Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.
Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra
2015-04-10
In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.
TNF-308 G/A polymorphism and risk of systemic lupus erythematosus in the Polish population.
Piotrowski, Piotr; Wudarski, Mariusz; Sowińska, Anna; Olesińska, Marzena; Jagodziński, Paweł P
2015-09-01
Numerous studies have been performed with TNF-α-308 G/A (rs1800629) single nuclear polymorphism (SNP) to evaluate the risk of SLE in various ethnicities. However, the significance of TNF-α-308 G/A in both clinical and laboratory studies of the disease remains unclear. Using a high-resolution melting curve analysis, we assessed the prevalence of TNF-α-308 G/A SNP in SLE patients (n = 262) and controls (n = 528) in a Polish population. We also assessed the contribution of this SNP to various clinical symptoms and the presence of autoantibodies in SLE patients. The p-value obtained using a χ(2) test for the trend of TNF-α-308 G/A was statistically significant (ptrend = 0.0297). However, using logistic regression analysis for the presence of the HLA-DRB1*03:01 haplotype, we observed that the TNF-α-308 G/A SNP may be the DRB1*03:01-dependent risk factor of SLE in the Polish population. There was a significant contribution of TNF-α-308 A/A and A/G genotypes to arthritis OR = [2.692 (1.503-4.822, p = 0.0007, pcorr = 0.0119)] as well as renal SLE manifestation OR = [2.632 (1.575-4.397, p = 0.0002, pcorr = 0.0034)]. There was a significant association between TNF-α-308 A/A and A/G genotypes and the presence of anti-Ro antibodies (Ab) OR = 3.375(1.711-6.658, p = 0.0003, pcorr = 0.0051). However, the logistic regression analysis revealed that only renal manifestations and the presence of anti-anti-Ro antibodies remained significant after adjustment to the presence of the HLA-DRB1*03:01 haplotype. Our studies indicate that the TNF-α-308 G/A polymorphism may be a DRB1*03:01 haplotype-dependent genetic risk factor for SLE. However, this SNP was independently associated with renal manifestations and production of anti-Ro Ab.
Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe
2018-06-01
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J
2013-12-01
The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Ling, Kai-Shu; Harris, Karen R; Meyer, Jenelle D F; Levi, Amnon; Guner, Nihat; Wehner, Todd C; Bendahmane, Abdelhafid; Havey, Michael J
2009-12-01
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.
Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.
Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun
2017-07-01
Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.
Kwon, Ji-Sun; Kim, Jihye; Nam, Dougu; Kim, Sangsoo
2012-06-01
Gene set analysis (GSA) is useful in interpreting a genome-wide association study (GWAS) result in terms of biological mechanism. We compared the performance of two different GSA implementations that accept GWAS p-values of single nucleotide polymorphisms (SNPs) or gene-by-gene summaries thereof, GSA-SNP and i-GSEA4GWAS, under the same settings of inputs and parameters. GSA runs were made with two sets of p-values from a Korean type 2 diabetes mellitus GWAS study: 259,188 and 1,152,947 SNPs of the original and imputed genotype datasets, respectively. When Gene Ontology terms were used as gene sets, i-GSEA4GWAS produced 283 and 1,070 hits for the unimputed and imputed datasets, respectively. On the other hand, GSA-SNP reported 94 and 38 hits, respectively, for both datasets. Similar, but to a lesser degree, trends were observed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets as well. The huge number of hits by i-GSEA4GWAS for the imputed dataset was probably an artifact due to the scaling step in the algorithm. The decrease in hits by GSA-SNP for the imputed dataset may be due to the fact that it relies on Z-statistics, which is sensitive to variations in the background level of associations. Judicious evaluation of the GSA outcomes, perhaps based on multiple programs, is recommended.
Maternal grandsire confirmation and discovery in dairy cattle
USDA-ARS?s Scientific Manuscript database
Accurate pedigree information is essential for selecting dairy animals to improve economically important traits. Two methods of maternal grandsire (MGS) discovery were compared. The first compared one single nucleotide polymorphism (SNP) at a time using a genotype from one or both parents (SNP metho...
Lipphardt, Mark F; Deryal, Mustafa; Ong, Mei Fang; Schmidt, Werner; Mahlknecht, Ulrich
2013-01-01
Estrogen and progesterone hormones are key regulators of a wide variety of biological processes. In addition to their influence on reproduction, cell differentiation and apoptosis, they affect inflammatory response, cell metabolism and most importantly, they regulate physiological breast tissue proliferation and differentiation as well as the development and progression of breast cancer. In order to assess whether genetic variants in the steroid hormone receptor gene ESR1 (estrogen receptor alpha) had an effect on sporadic breast cancer susceptibility, we assessed 7 ESR1 single nucleotide polymorphisms (SNPs) for associations with breast cancer susceptibility and clinical parameters in 221 breast cancer patients and 221 controls, respectively. We identified ESR1 intron SNP +2464 C/T (rs3020314) and ESR1 intron SNP -4576 A/C (rs1514348) to correlate with breast cancer susceptibility and progesterone receptor expression status. Patients genotyped CT for ESR1 intron SNP +2464 (rs3020314) (p ≤ 0.045) or genotyped AC for ESR1 intron SNP -4576 (rs1514348) (p ≤ 0.000026) were identified to carry a significant risk as to the development of breast cancer in the Central European Caucasian population (both together: p ≤ 0.000488). Our study could confirm previous associations and revealed new associations of SNP rs1514348 with susceptibility to breast cancer and clinical outcome, which might be used as new additional SNP markers.
Knüppel, Sven; Meidtner, Karina; Arregui, Maria; Holzhütter, Hermann-Georg; Boeing, Heiner
2015-07-01
Analyzing multiple single nucleotide polymorphisms (SNPs) is a promising approach to finding genetic effects beyond single-locus associations. We proposed the use of multilocus stepwise regression (MSR) to screen for allele combinations as a method to model joint effects, and compared the results with the often used genetic risk score (GRS), conventional stepwise selection, and the shrinkage method LASSO. In contrast to MSR, the GRS, conventional stepwise selection, and LASSO model each genotype by the risk allele doses. We reanalyzed 20 unlinked SNPs related to type 2 diabetes (T2D) in the EPIC-Potsdam case-cohort study (760 cases, 2193 noncases). No SNP-SNP interactions and no nonlinear effects were found. Two SNP combinations selected by MSR (Nagelkerke's R² = 0.050 and 0.048) included eight SNPs with mean allele combination frequency of 2%. GRS and stepwise selection selected nearly the same SNP combinations consisting of 12 and 13 SNPs (Nagelkerke's R² ranged from 0.020 to 0.029). LASSO showed similar results. The MSR method showed the best model fit measured by Nagelkerke's R² suggesting that further improvement may render this method a useful tool in genetic research. However, our comparison suggests that the GRS is a simple way to model genetic effects since it does not consider linkage, SNP-SNP interactions, and no non-linear effects. © 2015 John Wiley & Sons Ltd/University College London.
A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.
Hu, Y J; Lin, D Y; Sun, W; Zeng, D
2014-10-01
Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.
2015-01-01
Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. Conclusions Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine. PMID:26694100
Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V
2017-01-01
This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions). Copyright © 2017 Central Police University.
Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine
2010-03-01
Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.
Liu, Xin; Wang, Li Gang; Luo, Wei Zhen; Li, Yong; Liang, Jing; Yan, Hua; Zhao, Ke Bin; Wang, Li Xian; Zhang, Long Chao
2014-12-01
A high-density single nucleotide polymorphism (SNP) array containing 62 163 markers was employed for a genome-wide association study (GWAS) to identify variants associated with lean meat in ham (LMH, %) and lean meat percentage (LMP, %) within a porcine Large White×Minzhu intercross population. For each individual, LMH and LMP were measured after slaughter at the age of 240±7 days. A total of 557 F2 animals were genotyped. The GWAS revealed that 21 SNPs showed significant genome-wide or chromosome-wide associations with LMH and LMP by the Genome-wide Rapid Association using Mixed Model and Regression-Genomic Control approach. Nineteen significant genome-wide SNPs were mapped to the distal end of Sus Scrofa Chromosome (SSC) 2, where a major known gene responsible for muscle mass, IGF2 is located. A conditioned analysis, in which the genotype of the strongest associated SNP is included as a fixed effect in the model, showed that those significant SNPs on SSC2 were derived from a single quantitative trait locus. The two chromosome-wide association SNPs on SSC1 disappeared after conditioned analysis suggested the association signal is a false association derived from using a F2 population. The present result is expected to lead to novel insights into muscle mass in different pig breeds and lays a preliminary foundation for follow-up studies for identification of causal mutations for subsequent application in marker-assisted selection programs for improving muscle mass in pigs. © 2014 Japanese Society of Animal Science.
Jacobsson, Josefin A.; Almén, Markus Sällman; Benedict, Christian; Hedberg, Lilia A.; Michaëlsson, Karl; Brooks, Samantha; Kullberg, Joel; Axelsson, Tomas; Johansson, Lars; Ahlström, Håkan; Fredriksson, Robert; Lind, Lars; Schiöth, Helgi B.
2011-01-01
Background The rs9939609 single-nucleotide polymorphism (SNP) in the fat mass and obesity (FTO) gene has previously been associated with higher BMI levels in children and young adults. In contrast, this association was not found in elderly men. BMI is a measure of overweight in relation to the individuals' height, but offers no insight into the regional body fat composition or distribution. Objective To examine whether the FTO gene is associated with overweight and body composition-related phenotypes rather than BMI, we measured waist circumference, total fat mass, trunk fat mass, leg fat mass, visceral and subcutaneous adipose tissue, and daily energy intake in 985 humans (493 women) at the age of 70 years. In total, 733 SNPs located in the FTO gene were genotyped in order to examine whether rs9939609 alone or the other SNPs, or their combinations, are linked to obesity-related measures in elderly humans. Design Cross-sectional analysis of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. Results Neither a single SNP, such as rs9939609, nor a SNP combination was significantly linked to overweight, body composition-related measures, or daily energy intake in elderly humans. Of note, these observations hold both among men and women. Conclusions Due to the diversity of measurements included in the study, our findings strengthen the view that the effect of FTO on body composition appears to be less profound in later life compared to younger ages and that this is seemingly independent of gender. PMID:21637715
The Minnesota Center for Twin and Family Research Genome-Wide Association Study
Miller, Michael B.; Basu, Saonli; Cunningham, Julie; Eskin, Eleazar; Malone, Steven M.; Oetting, William S.; Schork, Nicholas; Sul, Jae Hoon; Iacono, William G.; Mcgue, Matt
2012-01-01
As part of the Genes, Environment and Development Initiative (GEDI), the Minnesota Center for Twin and Family Research (MCTFR) undertook a genome-wide association study (GWAS), which we describe here. A total of 8405 research participants, clustered in 4-member families, have been successfully genotyped on 527,829 single nucleotide polymorphism (SNP) markers using Illumina’s Human660W-Quad array. Quality control screening of samples and markers as well as SNP imputation procedures are described. We also describe methods for ancestry control and how the familial clustering of the MCTFR sample can be accounted for in the analysis using a Rapid Feasible Generalized Least Squares algorithm. The rich longitudinal MCTFR assessments provide numerous opportunities for collaboration. PMID:23363460
Kent, Jack W
2016-02-03
New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
Trembizki, Ella; Smith, Helen; Lahra, Monica M; Chen, Marcus; Donovan, Basil; Fairley, Christopher K; Guy, Rebecca; Kaldor, John; Regan, David; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M
2014-06-01
Neisseria gonorrhoeae antimicrobial resistance (AMR) is a global problem heightened by emerging resistance to ceftriaxone. Appropriate molecular typing methods are important for understanding the emergence and spread of N. gonorrhoeae AMR. We report on the development, validation and testing of a Sequenom MassARRAY iPLEX method for multilocus sequence typing (MLST)-style genotyping of N. gonorrhoeae isolates. An iPLEX MassARRAY method (iPLEX14SNP) was developed targeting 14 informative gonococcal single nucleotide polymorphisms (SNPs) previously shown to predict MLST types. The method was initially validated using 24 N. gonorrhoeae control isolates and was then applied to 397 test isolates collected throughout Queensland, Australia in the first half of 2012. The iPLEX14SNP method provided 100% accuracy for the control isolates, correctly identifying all 14 SNPs for all 24 isolates (336/336). For the 397 test isolates, the iPLEX14SNP assigned results for 5461 of the possible 5558 SNPs (SNP call rate 98.25%), with complete 14 SNP profiles obtained for 364 isolates. Based on the complete SNP profile data, there were 49 different sequence types identified in Queensland, with 11 of the 49 SNP profiles accounting for the majority (n = 280; 77%) of isolates. AMR was dominated by several geographically clustered sequence types. Using the iPLEX14SNP method, up to 384 isolates could be tested within 1 working day for less than Aus$10 per isolate. The iPLEX14SNP offers an accurate and high-throughput method for the MLST-style genotyping of N. gonorrhoeae and may prove particularly useful for large-scale studies investigating the emergence and spread of gonococcal AMR. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels.
Lau, Cia-Hin; Muniandy, Sekaran
2011-05-01
Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.
NASA Astrophysics Data System (ADS)
Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue
2008-11-01
Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong
2013-12-01
Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.
Vieira, Alexandre R.; McHenry, Toby G.; Daack-Hirsch, Sandra; Murray, Jeffrey C.; Marazita, Mary L.
2009-01-01
We revisited 42 families with two or more cleft affected siblings that participated in previous studies and collected complete dental information. Genotypes from 1489 single nucleotide polymorphism (SNP) markers located in 150 candidate genes/loci were reanalyzed. Two sets of association analyses were carried out. First we ran the analysis solely on the cleft status. Second we assigned affection to any cleft or dental anomaly (tooth agenesis, supernumerary teeth, and microdontia), and repeated the analysis. Significant over-transmission was seen for a SNP in ANKS6 (rs4742741, 9q22.33; p=0.0004) when a dental anomaly phenotype was included in the analysis. Significant over-transmission was also seen for a SNP in ERBB2 (rs1810132, 17q21.1; p=0.0006). In the clefts only data, the most significant result was also for ERBB2 (p=0.0006). Other markers with suggestive p-values included IRF6 and 6q21-q23 loci. In contrast to the above results, suggestive over-transmission of markers in GART, DPF3, and NRXN3 were seen only when the dental anomaly phenotype was included in the analysis. These findings support the hypothesis that some loci may contribute to both clefts and congenital dental anomalies. Thus, including dental anomalies information in the genetics analysis of cleft lip and palate will provide new opportunities to map susceptibility loci for clefts. PMID:18978678
An innovative SNP genotyping method adapting to multiple platforms and throughputs
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are highly abundant, distributed throughout the genome in various species, and therefore they are widely used as genetic markers. However, the usefulness of this genetic tool relies heavily on the availability of user-friendly SNP genotyping methods. We have d...
Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications
USDA-ARS?s Scientific Manuscript database
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...
USDA-ARS?s Scientific Manuscript database
Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international demands fro...
Safa, Ahmad Hosseini; Harandi, Majid Fasihi; Tajaddini, Mohammadhasan; Rostami-Nejad, Mohammad; Mohtashami-Pour, Mehdi; Pestehchian, Nader
2016-07-22
High-resolution melting (HRM) is a reliable and sensitive scanning method to detect variation in DNA sequences. We used this method to better understand the epidemiology and transmission of Echinococcus granulosus. We tested the use of HRM to discriminate the genotypes of E. granulosus and E. canadensis. One hundred forty-one hydatid cysts were collected from slaughtered animals in different parts of Isfahan-Iran in 2013. After DNA extraction, the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using PCR coupled with the HRM curve. The result of HRM analysis using partial the sequences of cox1 gene revealed that 93, 35, and 2 isolates were identified as G1, G3, and G6 genotypes, respectively. A single nucleotide polymorphism (SNP) was found in locus 9867 of the cox1 gene. This is a critical locus for the differentiation between the G6 and G7 genotypes. In the phylogenic tree, the sample with a SNP was located between the G6 and G7 genotypes, which suggest that this isolate has a G6/G7 genotype. The HRM analysis developed in the present study provides a powerful technique for molecular and epidemiological studies on echinococcosis in humans and animals.
Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao
2013-10-02
Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.
[Phenotypic and genetic analysis of a patient presented with Tietz/Waardenburg type II a syndrome].
Wang, Huanhuan; Tang, Lifang; Zhang, Jingmin; Hu, Qin; Chen, Yingwei; Xiao, Bing
2015-08-01
To determine the genetic cause for a patient featuring decreased pigmentation of the skin and iris, hearing loss and multiple congenital anomalies. Routine chromosomal banding was performed to analyze the karyotype of the patient and his parents. Single nucleotide polymorphism array (SNP array) was employed to identify cryptic chromosome aberrations, and quantitative real-time PCR was used to confirm the results. Karyotype analysis has revealed no obvious anomaly for the patient and his parents. SNP array analysis of the patient has demonstrated a 3.9 Mb deletion encompassing 3p13p14.1, which caused loss of entire MITF gene. The deletion was confirmed by quantitative real-time PCR. Clinical features of the patient have included severe bilateral hearing loss, decreased pigmentation of the skin and iris and multiple congenital anomalies. The patient, carrying a 3p13p14.1 deletion, has features of Tietz syndrome/Waardenburg syndrome type IIa. This case may provide additional data for the study of genotype-phenotype correlation of this disease.
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are the marker of choice for many researchers due to their abundance and the high-throughput methods available for their multiplex analysis. Only recently have SNP markers been available to researchers in soybean [Glycine max (L.) Merr.] with the release of th...
USDA-ARS?s Scientific Manuscript database
Cowpea is a legume widely grown in Africa, North, Central and South America, and Asia. The Cowpea plant growth habits consist of erect, semi-prostrate, and prostrate types. Developing a cultivar while considering plant growth habit is essential within a breeding program since the need for a particul...
2011-04-01
critical. 5. REFERENCES Almasy, L, Blangero, J. (2009) “Human QTL linkage mapping.” Genetica 136:333-340. Amos, CI. (2007) “Successful...quantitative trait loci.” Genetica 136:237-243. Ward, JH, Hook, ME. “A Hierarchical Grouping Procedure Applied to a Problem of Grouping Profiles
X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping.
Dressman, Devin; Ahearn, Mary Ellen; Yariz, Kemal O; Basterrecha, Hugo; Martínez, Francisco; Palau, Francesc; Barmada, M Michael; Clark, Robin Dawn; Meindl, Alfons; Wirth, Brunhilde; Hoffman, Eric P; Baumbach-Reardon, Lisa
2007-01-01
X-linked infantile spinal-muscular atrophy (XL-SMA) is a rare disorder, which presents with the clinical characteristics of hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and death in infancy. We have previously reported a single family with XL-SMA that mapped to Xp11.3-q11.2. Here we report further clinical description of XL-SMA plus an additional seven unrelated (XL-SMA) families from North America and Europe that show linkage data consistent with the same region. We first investigated linkage to the candidate disease gene region using microsatellite repeat markers. We further saturated the candidate disease gene region using polymorphic microsatellite repeat markers and single nucleotide polymorphisms in an effort to narrow the critical region. Two-point and multipoint linkage analysis was performed using the Allegro software package. Linkage analysis of all XL-SMA families displayed linkage consistent with the original XL-SMA region. The addition of new families and new markers has narrowed the disease gene interval for a XL-SMA locus between SNP FLJ22843 near marker DXS 8080 and SNP ARHGEF9 which is near DXS7132 (Xp11.3-Xq11.1).
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
Cooper, T A; Wiggans, G R; VanRaden, P M
2013-05-01
Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99% (low call rate) as well as a genotype with a call rate of >99% (high call rate) were calculated by dividing the number of identical SNP genotype calls by the number of SNP that were called for both genotypes. Mean concordance between low- and high-call genotypes was >99% for a low call rate of >90% but decreased to 97% for a call rate of 86 to 90% and to 58% for a call rate of <60%. Edits on call rate reduce the use of incorrect SNP genotypes to calculate genomic evaluations. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Protein-based forensic identification using genetically variant peptides in human bone.
Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon
2018-04-22
Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.
Corbin, Karen D.; Abdelmalek, Manal F.; Spencer, Melanie D.; da Costa, Kerry-Ann; Galanko, Joseph A.; Sha, Wei; Suzuki, Ayako; Guy, Cynthia D.; Cardona, Diana M.; Torquati, Alfonso; Diehl, Anna Mae; Zeisel, Steven H.
2013-01-01
Choline metabolism is important for very low-density lipoprotein secretion, making this nutritional pathway an important contributor to hepatic lipid balance. The purpose of this study was to assess whether the cumulative effects of multiple single nucleotide polymorphisms (SNPs) across genes of choline/1-carbon metabolism and functionally related pathways increase susceptibility to developing hepatic steatosis. In biopsy-characterized cases of nonalcoholic fatty liver disease and controls, we assessed 260 SNPs across 21 genes in choline/1-carbon metabolism. When SNPs were examined individually, using logistic regression, we only identified a single SNP (PNPLA3 rs738409) that was significantly associated with severity of hepatic steatosis after adjusting for confounders and multiple comparisons (P=0.02). However, when groupings of SNPs in similar metabolic pathways were defined using unsupervised hierarchical clustering, we identified groups of subjects with shared SNP signatures that were significantly correlated with steatosis burden (P=0.0002). The lowest and highest steatosis clusters could also be differentiated by ethnicity. However, unique SNP patterns defined steatosis burden irrespective of ethnicity. Our results suggest that analysis of SNP patterns in genes of choline/1-carbon metabolism may be useful for prediction of severity of steatosis in specific subsets of people, and the metabolic inefficiencies caused by these SNPs should be examined further.—Corbin, K. D., Abdelmalek, M. F., Spencer, M. D., da Costa, K.-A., Galanko, J. A., Sha, W., Suzuki, A., Guy, C. D., Cardona, D. M., Torquati, A., Diehl, A. M., Zeisel, S. H. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. PMID:23292069
A whole genome analyses of genetic variants in two Kelantan Malay individuals.
Wan Juhari, Wan Khairunnisa; Md Tamrin, Nur Aida; Mat Daud, Mohd Hanif Ridzuan; Isa, Hatin Wan; Mohd Nasir, Nurfazreen; Maran, Sathiya; Abdul Rajab, Nur Shafawati; Ahmad Amin Noordin, Khairul Bariah; Nik Hassan, Nik Norliza; Tearle, Rick; Razali, Rozaimi; Merican, Amir Feisal; Zilfalil, Bin Alwi
2014-12-01
The sequencing of two members of the Royal Kelantan Malay family genomes will provide insights on the Kelantan Malay whole genome sequences. The two Kelantan Malay genomes were analyzed for the SNP markers associated with thalassemia and Helicobacter pylori infection. Helicobacter pylori infection was reported to be low prevalence in the north-east as compared to the west coast of the Peninsular Malaysia and beta-thalassemia was known to be one of the most common inherited and genetic disorder in Malaysia. By combining SNP information from literatures, GWAS study and NCBI ClinVar, 18 unique SNPs were selected for further analysis. From these 18 SNPs, 10 SNPs came from previous study of Helicobacter pylori infection among Malay patients, 6 SNPs were from NCBI ClinVar and 2 SNPs from GWAS studies. The analysis reveals that both Royal Kelantan Malay genomes shared all the 10 SNPs identified by Maran (Single Nucleotide Polymorphims (SNPs) genotypic profiling of Malay patients with and without Helicobacter pylori infection in Kelantan, 2011) and one SNP from GWAS study. In addition, the analysis also reveals that both Royal Kelantan Malay genomes shared 3 SNP markers; HBG1 (rs1061234), HBB (rs1609812) and BCL11A (rs766432) where all three markers were associated with beta-thalassemia. Our findings suggest that the Royal Kelantan Malays carry the SNPs which are associated with protection to Helicobacter pylori infection. In addition they also carry SNPs which are associated with beta-thalassemia. These findings are in line with the findings by other researchers who conducted studies on thalassemia and Helicobacter pylori infection in the non-royal Malay population.
Wang, Liyong; Rundek, Tatjana; Beecham, Ashley; Hudson, Barry; Blanton, Susan H; Zhao, Hongyu; Sacco, Ralph L; Dong, Chuanhui
2014-01-01
Carotid intima-media thickness (cIMT), a marker for atherosclerosis, is affected by smoking and has substantial interindividual variation. We sought to identify the genetic moderators influencing the effect of smoking on cIMT. With a multistage design using 722 379 single nucleotide polymorphisms (SNP), a genome-wide interaction study was performed in a discovery sample of 669 Hispanics, followed by replication in 589 subjects (264 Hispanics, 172 non-Hispanic blacks, 153 non-Hispanic whites). Assuming an additive genetic model, regression analysis was performed to test for smoking-SNP interaction on cIMT while controlling for age, sex, and the top 3 principal components of ancestry. The strongest interaction in Hispanics was found with a synonymous splicing SNP (rs3751383) in exon 9 of RCBTB1 (P=2.5e(-6) in discovery sample; P=0.01 in the Hispanic replication sample; P<8.8e(-9) in the combined Hispanic sample). Stratification analysis in the combined Hispanic sample showed that smoking had no effect on cIMT among rs3751383 G homozygote (P=0.15), a moderate effect among rs3751383 heterozygote (P=0.01), and a strong effect among rs3751383 A homozygote (P=2.1e(-7)). A consistent trend was observed in the non-Hispanic white and black data sets, leading to an interaction effect of P<2.9e(-9) in the meta-analysis of all 1258 subjects. Our study represents the first genome-wide smoking-SNP interaction study of cIMT and identifies RCBTB1 as a modifier of the smoking effect on cIMT. Testing for gene-environment interactions can help uncover genetic factors that contribute to the interindividual variation in response to the same environmental exposure.
Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.
Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross
2016-08-01
High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.
2015-01-01
High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569
Comparison of three PCR-based assays for SNP genotyping in sugar beet
USDA-ARS?s Scientific Manuscript database
Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...
A web-based genome browser for 'SNP-aware' assay design
USDA-ARS?s Scientific Manuscript database
Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...
Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle
USDA-ARS?s Scientific Manuscript database
Effects of individual single nucleotide polymorphisms (SNP), and variation explained by sets of SNP associated with dry matter intake (DMI), metabolic mid-test weight (MBW), BW gain (GN) and feed efficiency expressed as phenotypic and genetic residual feed intake (RFIp; RFIg) were estimated from wei...
2012-01-01
Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-adapted squash varieties. PMID:22356647
Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro
2012-04-01
A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Buitenhuis, A J; Sundekilde, U K; Poulsen, N A; Bertram, H C; Larsen, L B; Sørensen, P
2013-05-01
Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. For this purpose, milk samples were collected in mid lactation from 371 Danish Holstein cows in first to third parity. A total of 31 metabolites were detected and identified in bovine milk by using (1)H nuclear magnetic resonance (NMR) spectroscopy. Cows were genotyped using a bovine high-density single nucleotide polymorphism (SNP) chip. Based on the SNP data, a genomic relationship matrix was calculated and used as a random factor in a model together with 2 fixed factors (herd and lactation stage) to estimate the heritability and breeding value for individual metabolites in the milk. Heritability was in the range of 0 for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25; and glycerophosphocholine: BTA25]. These results demonstrate that selection for metabolites in bovine milk may be possible. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zheng, Jie; Gaunt, Tom R; Day, Ian N M
2013-01-01
Genome-Wide Association Studies (GWAS) frequently incorporate meta-analysis within their framework. However, conditional analysis of individual-level data, which is an established approach for fine mapping of causal sites, is often precluded where only group-level summary data are available for analysis. Here, we present a numerical and graphical approach, "sequential sentinel SNP regional association plot" (SSS-RAP), which estimates regression coefficients (beta) with their standard errors using the meta-analysis summary results directly. Under an additive model, typical for genes with small effect, the effect for a sentinel SNP can be transformed to the predicted effect for a possibly dependent SNP through a 2×2 2-SNP haplotypes table. The approach assumes Hardy-Weinberg equilibrium for test SNPs. SSS-RAP is available as a Web-tool (http://apps.biocompute.org.uk/sssrap/sssrap.cgi). To develop and illustrate SSS-RAP we analyzed lipid and ECG traits data from the British Women's Heart and Health Study (BWHHS), evaluated a meta-analysis for ECG trait and presented several simulations. We compared results with existing approaches such as model selection methods and conditional analysis. Generally findings were consistent. SSS-RAP represents a tool for testing independence of SNP association signals using meta-analysis data, and is also a convenient approach based on biological principles for fine mapping in group level summary data. © 2012 Blackwell Publishing Ltd/University College London.
Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-06-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.
Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-01-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418
Construction of a versatile SNP array for pyramiding useful genes of rice.
Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki
2016-01-01
DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander
2012-06-01
Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.
Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis
Waterfall, Christy M.; Cobb, Benjamin D.
2001-01-01
Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a ‘matrix-based’ optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable. PMID:11726702
Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis.
Waterfall, C M; Cobb, B D
2001-12-01
Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a 'matrix-based' optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable.
Fontanesi, L; Galimberti, G; Calò, D G; Fronza, R; Martelli, P L; Scotti, E; Colombo, M; Schiavo, G; Casadio, R; Buttazzoni, L; Russo, V
2012-08-01
Combining different approaches (resequencing of portions of 54 obesity candidate genes, literature mining for pig markers associated with fat deposition or related traits in 77 genes, and in silico mining of porcine expressed sequence tags and other sequences available in databases), we identified and analyzed 736 SNP within candidate genes to identify markers associated with back fat thickness (BFT) in Italian Large White sows. Animals were chosen using a selective genotyping approach according to their EBV for BFT (276 with most negative and 279 with most positive EBV) within a population of ≈ 12,000 pigs. Association analysis between the SNP and BFT has been carried out using the MAX test proposed for case-control studies. The designed assays were successful for 656 SNP: 370 were excluded (low call rate or minor allele frequency <5%), whereas the remaining 286 in 212 genes were taken for subsequent analyses, among which 64 showed a P(nominal) value <0.1. To deal with the multiple testing problem in a candidate gene approach, we applied the proportion of false positives (PFP) method. Thirty-eight SNP were significant (P(PFP) < 0.20). The most significant SNP was the IGF2 intron3-g.3072G>A polymorphism (P(nominal) < 1.0E-50). The second most significant SNP was the MC4R c.1426A>G polymorphism (P(nominal) = 8.0E-05). The third top SNP (P(nominal) = 6.2E-04) was the intronic TBC1D1 g.219G>A polymorphic site, in agreement with our previous results obtained in an independent study. The list of significant markers also included SNP in additional genes (ABHD16A, ABHD5, ACP2, ALMS1, APOA2, ATP1A2, CALR, COL14A1, CTSF, DARS, DECR1, ENPP1, ESR1, GH1, GHRL, GNMT, IKBKB, JAK3, MTTP, NFKBIA, NT5E, PLAT, PPARG, PPP2R5D, PRLR, RRAGD, RFC2, SDHD, SERPINF1, UBE2H, VCAM1, and WAT). Functional relationships between genes were obtained using the Ingenuity Pathway Analysis (IPA) Knowledge Base. The top scoring pathway included 19 genes with a P(nominal) < 0.1, 2 of which (IKBKB and NFKBIA) are involved in the hypothalamic IKKβ/NFκB program that could represent a key axis to affect fat deposition traits in pigs. These results represent a starting point to plan marker-assisted selection in Italian Large White nuclei for BFT. Because of similarities between humans and pigs, this study might also provide useful clues to investigate genetic factors affecting human obesity.
Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra
2015-01-01
Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients' countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France) or (b) more likely random in regions where diverse migration flows occurred.
Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David
2013-01-01
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.
Weigel, K A; de los Campos, G; González-Recio, O; Naya, H; Wu, X L; Long, N; Rosa, G J M; Gianola, D
2009-10-01
The objective of the present study was to assess the predictive ability of subsets of single nucleotide polymorphism (SNP) markers for development of low-cost, low-density genotyping assays in dairy cattle. Dense SNP genotypes of 4,703 Holstein bulls were provided by the USDA Agricultural Research Service. A subset of 3,305 bulls born from 1952 to 1998 was used to fit various models (training set), and a subset of 1,398 bulls born from 1999 to 2002 was used to evaluate their predictive ability (testing set). After editing, data included genotypes for 32,518 SNP and August 2003 and April 2008 predicted transmitting abilities (PTA) for lifetime net merit (LNM$), the latter resulting from progeny testing. The Bayesian least absolute shrinkage and selection operator method was used to regress August 2003 PTA on marker covariates in the training set to arrive at estimates of marker effects and direct genomic PTA. The coefficient of determination (R(2)) from regressing the April 2008 progeny test PTA of bulls in the testing set on their August 2003 direct genomic PTA was 0.375. Subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP were created by choosing equally spaced and highly ranked SNP, with the latter based on the absolute value of their estimated effects obtained from the training set. The SNP effects were re-estimated from the training set for each subset of SNP, and the 2008 progeny test PTA of bulls in the testing set were regressed on corresponding direct genomic PTA. The R(2) values for subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP with largest effects (evenly spaced SNP) were 0.184 (0.064), 0.236 (0.111), 0.269 (0.190), 0.289 (0.179), 0.307 (0.228), 0.313 (0.268), and 0.322 (0.291), respectively. These results indicate that a low-density assay comprising selected SNP could be a cost-effective alternative for selection decisions and that significant gains in predictive ability may be achieved by increasing the number of SNP allocated to such an assay from 300 or fewer to 1,000 or more.
Johansen, Morten Bo; Izarzugaza, Jose M. G.; Brunak, Søren; Petersen, Thomas Nordahl; Gupta, Ramneek
2013-01-01
We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP PMID:23935863
Torres, Rosa J; de Miguel, Eugenio; Bailén, Rebeca; Banegas, José R; Puig, Juan G
2014-09-01
Primary gout has been associated with single-nucleotide polymorphisms (SNP) in several tubular urate transporter genes. No study has assessed the association of reabsorption and secretion urate transporter gene SNP with gout in a single cohort of documented primary patients with gout carefully subclassified as normoexcretors or underexcretors. Three reabsorption SNP (SLC22A12/URAT1, SLC2A9/GLUT9, and SLC22A11/OAT4) and 2 secretion transporter SNP (SLC17A1/NPT1 and ABCG2/BRCP) were studied in 104 patients with primary gout and in 300 control subjects. The patients were subclassified into normoexcretors and underexcretors according to their serum and 24-h urinary uric acid levels under strict conditions of dietary control. Compared with control subjects, patients with gout showed different allele distributions of the 5 SNP analyzed. However, the diagnosis of underexcretor was only positively associated with the presence of the T allele of URAT1 rs11231825, the G allele of GLUT9 rs16890979, and the A allele of ABCG2 rs2231142. The association of the A allele of ABCG2 rs2231142 in normoexcretors was 10 times higher than in underexcretors. The C allele of NPT1 rs1165196 was only significantly associated with gout in patients with normal uric acid excretion. Gout with uric acid underexcretion is associated with transporter gene SNP related mainly to tubular reabsorption, whereas uric acid normoexcretion is associated only with tubular secretion SNP. This finding supports the concept of distinctive mechanisms to account for hyperuricemia in patients with gout with reduced or normal uric acid excretion.
Case-control study of eczema associated with IL13 genetic polymorphisms in Japanese children.
Miyake, Yoshihiro; Kiyohara, Chikako; Koyanagi, Midori; Fujimoto, Takahiro; Shirasawa, Senji; Tanaka, Keiko; Sasaki, Satoshi; Hirota, Yoshio
2011-01-01
Several association studies have investigated the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, with inconsistent results. We conducted a case-control study of the relationship between the polymorphisms of rs1800925 and rs20541 and the risk of eczema in Japanese children aged 3 years. Included were the 209 cases identified based on criteria of the International Study of Asthma and Allergies in Childhood (ISAAC). Controls were 451 children without eczema based on ISAAC questions who had not been diagnosed by a physician as having asthma or atopic eczema. The minor TT genotype of the rs1800925 SNP and the minor AA genotype of the rs20541 SNP were significantly related to an increased risk of eczema: adjusted odds ratio for the TT genotype was 2.78 (95% confidence interval 1.22-6.30) and that for the AA genotype was 2.38 (95% confidence interval 1.35-4.18). Haplotype analyses showed a protective association between the CG haplotype and eczema, whereas the TA haplotype was positively related to the risk of eczema. Perinatal smoking exposure did not interact with genotypes of the IL13 gene in the etiology of eczema. The significant association of the rs20541 SNP with eczema essentially disappeared after additional adjustment for the rs1800925 SNP, whereas a relationship with the rs1800925 SNP remained significant. A common genetic variation in the IL13 gene at the levels of both single SNPs and haplotypes was associated with eczema. However, the significant association with the rs20541 SNP might be ascribed to the rs1800925 SNP. Copyright © 2010 S. Karger AG, Basel.
2011-01-01
Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants. PMID:22082336
Knüppel, Sven; Rohde, Klaus; Meidtner, Karina; Drogan, Dagmar; Holzhütter, Hermann-Georg; Boeing, Heiner; Fisher, Eva
2013-01-01
Objective Obesity has become a leading preventable cause of morbidity and mortality in many parts of the world. It is thought to originate from multiple genetic and environmental determinants. The aim of the current study was to introduce haplotype-based multi-locus stepwise regression (MSR) as a method to investigate combinations of unlinked single nucleotide polymorphisms (SNPs) for obesity phenotypes. Methods In 2,122 healthy randomly selected men and women of the EPIC-Potsdam cohort, the association between 41 SNPs from 18 obesity-candidate genes and either body mass index (BMI, mean = 25.9 kg/m2, SD = 4.1) or waist circumference (WC, mean = 85.2 cm, SD = 12.6) was assessed. Single SNP analyses were done by using linear regression adjusted for age, sex, and other covariates. Subsequently, MSR was applied to search for the ‘best’ SNP combinations. Combinations were selected according to specific AICc and p-value criteria. Model uncertainty was accounted for by a permutation test. Results The strongest single SNP effects on BMI were found for TBC1D1 rs637797 (β = −0.33, SE = 0.13), FTO rs9939609 (β = 0.28, SE = 0.13), MC4R rs17700144 (β = 0.41, SE = 0.15), and MC4R rs10871777 (β = 0.34, SE = 0.14). All these SNPs showed similar effects on waist circumference. The two ‘best’ six-SNP combinations for BMI (global p-value = 3.45⋅10–6 and 6.82⋅10–6) showed effects ranging from −1.70 (SE = 0.34) to 0.74 kg/m2 (SE = 0.21) per allele combination. We selected two six-SNP combinations on waist circumference (global p-value = 7.80⋅10–6 and 9.76⋅10–6) with an allele combination effect of −2.96 cm (SE = 0.76) at maximum. Additional adjustment for BMI revealed 15 three-SNP combinations (global p-values ranged from 3.09⋅10–4 to 1.02⋅10–2). However, after carrying out the permutation test all SNP combinations lost significance indicating that the statistical associations might have occurred by chance. Conclusion MSR provides a tool to search for risk-related SNP combinations of common traits or diseases. However, the search process does not always find meaningful SNP combinations in a dataset. PMID:23874820
DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection.
Bichenkova, Elena V; Lang, Zhaolei; Yu, Xuan; Rogert, Candelaria; Douglas, Kenneth T
2011-01-01
This article presents an overview of new emerging approaches for nucleic acid detection via hybridization techniques that can potentially be applied to genomic analysis and SNP identification in clinical diagnostics. Despite the availability of a diverse variety of SNP genotyping technologies on the diagnostic market, none has truly succeeded in dominating its competitors thus far. Having been designed for specific diagnostic purposes or clinical applications, each of the existing bio-assay systems (briefly outlined here) is usually limited to a relatively narrow aspect or format of nucleic acid detection, and thus cannot entirely satisfy all the varieties of commercial requirements and clinical demands. This drives the diagnostic sector to pursue novel, cost-effective approaches to ensure rapid and reliable identification of pathogenic or hereditary human diseases. Hence, the purpose of this review is to highlight some new strategic directions in DNA detection technologies in order to inspire development of novel molecular diagnostic tools and bio-assay systems with superior reliability, reproducibility, robustness, accuracy and sensitivity at lower assay cost. One approach to improving the sensitivity of an assay to confidently discriminate between single point mutations is based on the use of target assembled, split-probe systems, which constitutes the main focus of this review. Copyright © 2010 Elsevier B.V. All rights reserved.
MMP9 polymorphisms and breast cancer risk: a report from the Shanghai Breast Cancer Genetics Study.
Beeghly-Fadiel, Alicia; Lu, Wei; Shu, Xiao-Ou; Long, Jirong; Cai, Qiuyin; Xiang, Yongbin; Gao, Yu-Tang; Zheng, Wei
2011-04-01
In addition to tumor invasion and angiogenesis, matrix metalloproteinase (MMP)9 also contributes to carcinogenesis and tumor growth. Genetic variation that may influence MMP9 expression was evaluated among participants of the Shanghai Breast Cancer Genetics Study (SBCGS) for associations with breast cancer susceptibility. In stage 1, 11 MMP9 single nucleotide polymorphisms (SNPs) were genotyped by the Affymetrix Targeted Genotyping System and/or the Affymetrix Genome-Wide Human SNP Array 6.0 among 4,227 SBCGS participants. One SNP was further genotyped using the Sequenom iPLEX MassARRAY platform among an additional 6,270 SBCGS participants. Associations with breast cancer risk were evaluated by odds ratios (OR) and 95% confidence intervals (CI) from logistic regression models that included adjustment for age, education, and genotyping stage when appropriate. In Stage 1, rare allele homozygotes for a promoter SNP (rs3918241) or a non-synonymous SNP (rs2274756, R668Q) tended to occur more frequently among breast cancer cases (P value = 0.116 and 0.056, respectively). Given their high linkage disequilibrium (D' = 1.0, r (2) = 0.97), one (rs3918241) was selected for additional analysis. An association with breast cancer risk was not supported by additional Stage 2 genotyping. In combined analysis, no elevated risk of breast cancer among homozygotes was found (OR: 1.2, 95% CI: 0.8-1.8). Common genetic variation in MMP9 was not found to be significantly associated with breast cancer susceptibility among participants of the Shanghai Breast Cancer Genetics Study.
Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok
2016-04-15
Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
Murakami, Shin-Ichiro; Otsuki, Takemi; Maeda, Megumi; Miura, Yoshie; Morii, Seiko; Kiyokane, Kenji; Hayakawa, Shin-Ichi; Maeda, Atsushi; Imakawa, Takayo; Harada, Shunpei; Handa, Torataro; Nishimura, Yasumitsu; Murakami, Shuko; Kumagai, Naoko; Hayashi, Hiroaki; Chen, Ying; Suemori, Shin-Ichiro; Fukushima, Yumiko; Nishida, Seikoh; Fukushima, Keisuke
2009-01-01
The enhancement and promotion of health is necessary to maintain the quality of life (QOL) of the aged population in developed nations such as Japan where the number of elderly has been increasing rapidly. For this purpose, low-resistance training using exercise machines ('Power Rehabilitation') has been established as a rehabilitation program. To investigate the individual factors which influence the effects of 'Power Rehabilitation', single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene and the ciliary neurotrophic factor (CNTF) gene were analyzed, and the relationship between SNP patterns and the effects of 'Power Rehabilitation' was evaluated. 'Power Rehabilitation' had an effect on the physiological functions involved in the activities of daily life (ADL) rather than muscle strength and size. In addition, certain SNP patterns showed better improvement of parameters associated with the effects of 'Power Rehabilitation' as analyzed by comparison between SNP patterns and factor analysis. Large scale analyses are required to ensure this tendency and to discover individual factors which may help to promote the health and QOL of the aged population.
An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)
USDA-ARS?s Scientific Manuscript database
This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...
Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat
USDA-ARS?s Scientific Manuscript database
Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate alternative methods for designing and utilizing reduced single nucleotide polymorphism (SNP) panels for imputing SNP genotypes. Two purebred Hereford populations, an experimental population known as Line 1 Hereford (L1, N=240) and registered Hereford wi...
Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.
USDA-ARS?s Scientific Manuscript database
Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...
USDA-ARS?s Scientific Manuscript database
As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...
USDA-ARS?s Scientific Manuscript database
Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP) -based assays. Despite domestic and international demands fr...
USDA-ARS?s Scientific Manuscript database
Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...
SEAN: SNP prediction and display program utilizing EST sequence clusters.
Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek
2006-02-15
SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.
SNP-VISTA: An Interactive SNPs Visualization Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.
2005-07-05
Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmentalmore » samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.« less
Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin
2013-01-01
Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of genetic variation among Turkish olive genotypes revealed by SNPs, AFLPs and SSRs allowed us to characterize the Turkish olive genotype. PMID:24058483
Association of the polymorphisms 292 C>T and 1304 G>A in the SLC38A4 gene with hyperglycaemia.
González-Renteria, Siblie Marbey; Loera-Castañeda, Verónica; Chairez-Hernández, Isaías; Sosa-Macias, Martha; Paniagua-Castro, Norma; Lares-Aseff, Ismael; Rodríguez-Moran, Martha; Guerrero-Romero, Fernando; Galaviz-Hernández, Carlos
2013-01-01
The SLC38A4 gene is related to system 'A' activity, which seems to be related to impaired gluconeogenesis. The objective of this study was to determine whether the 292 C>T and 1304 G>A polymorphisms of SLC38A4 gene are associated with hyperglycaemia in humans. A total of 227 individuals were enrolled in a case-control study, in which hyperglycaemia was defined by plasma glucose levels ≥95 mg/dL. Genotyping was carried out by using real-time polymerase chain reaction. The frequency of mutant alleles of SLC38A4 gene for single-nucleotide polymorphism (SNP) 1304 G>A was 23.6% and 30.2% for SNP 292 C>T. The frequency of allele T for the SNP 292 C>T in the case and control groups did not show significant differences, whereas the frequency of allele A for the SNP 1304 G>A was significantly higher in the case group than in the control group (p = 0.04). In the logistic regression analysis, the SNP 1304 G>A [odds ratio (OR) 1.78; 95%CI 1.04-3.05, p = 0.03] but not SNP 292 C>T (OR 1.41; 95%CI 0.80-2.47, p = 0.23) showed a significant association with hyperglycaemia. After adjusting by body mass index, waist circumference and triglycerides, the SNP 1304 G>A remained significantly associated with hyperglycaemia (OR 2.13; 95%CI 1.18-3.83, p = 0.03). Pair wise linkage disequilibrium showed correlation (D' > 0.82) between 292 C>T and 1304 G>A SNPs. Haplotype association with hyperglycaemia also showed significant association between both homozygous mutant alleles (A/T) and hyperglycaemia (OR 1.68; 95%CI 1.01-2.79, p = 0.048). Our results suggest that mutant allele A for SNP 1304 G>A of SLC38A4 gene is associated with hyperglycaemia. Copyright © 2012 John Wiley & Sons, Ltd.
Maruyama, Kohei; Takeyama, Haruko; Nemoto, Etsuo; Tanaka, Tsuyoshi; Yoda, Kiyoshi; Matsunaga, Tadashi
2004-09-20
Single nucleotide polymorphism (SNP) detection for aldehyde dehydrogenase 2 (ALDH2) gene based on DNA thermal dissociation curve analysis was successfully demonstrated using an automated system with bacterial magnetic particles (BMPs) by developing a new method for avoiding light scattering caused by nanometer-size particles when using commercially available fluorescent dyes such as FITC, Cy3, and Cy5 as labeling chromophores. Biotin-labeled PCR products in ALDH2, two allele-specific probes (Cy3-labeled detection probe for ALDH2*1 and Cy5-labeled detection probe for ALDH2*2), streptavidin-immobilized BMPs (SA-BMPs) were simultaneously mixed. The mixture was denatured at 70 degrees C for 3 min, cooled slowly to 25 degrees C, and incubated for 10 min, allowing the DNA duplex to form between Cy3- or Cy5-labeled detection probes and biotin-labeled PCR products on SA-BMPs. Then duplex DNA-BMP complex was heated to 58 degrees C, a temperature determined by dissociation curve analysis and a dissociated single-base mismatched detection probe was removed at the same temperature under precise control. Furthermore, fluorescence signal from the detection probe was liberated into the supernatant from completely matched duplex DNA-BMP complex by heating to 80 degrees C and measured. In the homozygote target DNA (ALDH2*1/*1 and ALDH2*2/*2), the fluorescence signals from single-base mismatched were decreased to background level, indicating that mismatched hybridization was efficiently removed by the washing process. In the heterozygote target DNA (ALDH2*1/*2), each fluorescence signals was at a similar level. Therefore, three genotypes of SNP in ALDH2 gene were detected using the automated detection system with BMPs. Copyright 2004 Wiley Periodicals, Inc.
Brøndum, R F; Su, G; Janss, L; Sahana, G; Guldbrandtsen, B; Boichard, D; Lund, M S
2015-06-01
This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index itself. Depending on the trait's economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage disequilibrium and assaying performance on the array, a total of 1,623 QTL markers were selected for inclusion on the custom chip. Genomic prediction analyses were performed for Nordic and French Holstein and Nordic Red animals using either a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model including the QTL markers in the analysis, reliability was increased by up to 4 percentage points for production traits in Nordic Holstein animals, up to 3 percentage points for Nordic Reds, and up to 5 percentage points for French Holstein. Smaller gains of up to 1 percentage point was observed for mastitis, but only a 0.5 percentage point increase was seen for fertility. When using a Bayesian model accuracies were generally higher with only 54k data compared with the genomic BLUP approach, but increases in reliability were relatively smaller when QTL markers were included. Results from this study indicate that the reliability of genomic prediction can be increased by including markers significant in genome-wide association studies on whole genome sequence data alongside the 54k SNP set. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl; Krześlak, Anna; Forma, Ewa
2014-10-15
Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determinedmore » by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.« less
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088
Zhang, Suhua; Bian, Yingnan; Chen, Anqi; Zheng, Hancheng; Gao, Yuzhen; Hou, Yiping; Li, Chengtao
2017-03-01
Utilizing massively parallel sequencing (MPS) technology for SNP testing in forensic genetics is becoming attractive because of the shortcomings of STR markers, such as their high mutation rates and disadvantages associated with the current PCR-CE method as well as its limitations regarding multiplex capabilities. MPS offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. In this study, we designed a customized SNP panel that includes 273 forensically relevant identity SNPs chosen from SNPforID, IISNP, and the HapMap database as well as previously related studies and evaluated the levels of genotyping precision, sequence coverage, sensitivity and SNP performance using the Ion Torrent PGM. In a concordant study of the custom MPS-SNP panel, only four MPS callings were missing due to coverage reads that were too low (<20), whereas the others were fully concordant with Sanger's sequencing results across the two control samples, that is, 9947A and 9948. The analyses indicated a balanced coverage among the included loci, with the exception of the 16 SNPs that were used to detect an inconsistent allele balance and/or lower coverage reads among 50 tested individuals from the Chinese HAN population and the above controls. With the exception of the 16 poorly performing SNPs, the sequence coverage obtained was extensive for the bulk of the SNPs, and only three Y-SNPs (rs16980601, rs11096432, rs3900) showed a mean coverage below 1000. Analyses of the dilution series of control DNA 9948 yielded reproducible results down to 1ng of DNA input. In addition, we provide an analysis tool for automated data quality control and genotyping checks, and we conclude that the SNP targets are polymorphic and independent in the Chinese HAN population. In summary, the evaluation of the sensitivity, accuracy and genotyping performance provides strong support for the application of MPS technology in forensic SNP analysis, and the assay offers a straightforward sample-to-genotype workflow that could be beneficial in forensic casework with respect to both individual identification and complex kinship issues. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia
2017-08-04
Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units
Kam-Thong, Tony; Czamara, Darina; Tsuda, Koji; Borgwardt, Karsten; Lewis, Cathryn M; Erhardt-Lehmann, Angelika; Hemmer, Bernhard; Rieckmann, Peter; Daake, Markus; Weber, Frank; Wolf, Christiane; Ziegler, Andreas; Pütz, Benno; Holsboer, Florian; Schölkopf, Bernhard; Müller-Myhsok, Bertram
2011-01-01
Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson's correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair. PMID:21150885
Family, Leila; Bensen, Jeannette T.; Troester, Melissa A.; Wu, Michael C.; Anders, Carey K.; Olshan, Andrew F.
2015-01-01
DNA damage recognition and repair is a complex system of genes focused on maintaining genomic stability. Recently, there has been a focus on how breast cancer susceptibility relates to genetic variation in the DNA bypass polymerases pathway. Race-stratified and subtype-specific logistic regression models were used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for the association between 22 single-nucleotide polymorphisms (SNPs) in seven bypass polymerase genes and breast cancer risk in the Carolina Breast Cancer Study, a population-based, case–control study (1,972 cases and 1,776 controls). We used SNP-set kernel association test (SKAT) to evaluate the multi-gene, multi-locus (combined) SNP effects within bypass polymerase genes. We found similar ORs for breast cancer with three POLQ SNPs (rs487848 AG/AA vs. GG; OR = 1.31, 95 % CI 1.03–1.68 for Whites and OR = 1.22, 95 % CI 1.00–1.49 for African Americans), (rs532411 CT/TT vs. CC; OR = 1.31, 95 % CI 1.02–1.66 for Whites and OR = 1.22, 95 % CI 1.00–1.48 for African Americans), and (rs3218634 CG/CC vs. GG; OR = 1.29, 95 % CI 1.02–1.65 for Whites). These three SNPs are in high linkage disequilibrium in both races. Tumor subtype analysis showed the same SNPs to be associated with increased risk of Luminal breast cancer. SKAT analysis showed no significant combined SNP effects. These results suggest that variants in the POLQ gene may be associated with the risk of Luminal breast cancer. PMID:25417172
Angulo, Jenniffer; Pino, Karla; Echeverría-Chagas, Natalia; Marco, Claudia; Martínez-Valdebenito, Constanza; Galeno, Héctor; Villagra, Eliecer; Vera, Lilian; Lagos, Natalia; Becerra, Natalia; Mora, Judith; Bermúdez, Andrea; Cárcamo, Marcela; Díaz, Janepsy; Miquel, Juan Francisco; Ferrés, Marcela; López-Lastra, Marcelo
2015-01-01
Background. Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). Methods. A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. Results. Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF −308G>A). Conclusions. The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis. PMID:26394672
Davis, Brian W.; Schoenebeck, Jeffrey J.
2017-01-01
Domestic dog breeds display significant diversity in both body mass and skeletal size, resulting from intensive selective pressure during the formation and maintenance of modern breeds. While previous studies focused on the identification of alleles that contribute to small skeletal size, little is known about the underlying genetics controlling large size. We first performed a genome-wide association study (GWAS) using the Illumina Canine HD 170,000 single nucleotide polymorphism (SNP) array which compared 165 large-breed dogs from 19 breeds (defined as having a Standard Breed Weight (SBW) >41 kg [90 lb]) to 690 dogs from 69 small breeds (SBW ≤41 kg). We identified two loci on the canine X chromosome that were strongly associated with large body size at 82–84 megabases (Mb) and 101–104 Mb. Analyses of whole genome sequencing (WGS) data from 163 dogs revealed two indels in the Insulin Receptor Substrate 4 (IRS4) gene at 82.2 Mb and two additional mutations, one SNP and one deletion of a single codon, in Immunoglobulin Superfamily member 1 gene (IGSF1) at 102.3 Mb. IRS4 and IGSF1 are members of the GH/IGF1 and thyroid pathways whose roles include determination of body size. We also found one highly associated SNP in the 5’UTR of Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) at 82.9 Mb, a gene which controls the traits of muscling and back fat thickness. We show by analysis of sequencing data from 26 wolves and 959 dogs representing 102 domestic dog breeds that skeletal size and body mass in large dog breeds are strongly associated with variants within IRS4, ACSL4 and IGSF1. PMID:28257443
Angulo, Jenniffer; Pino, Karla; Echeverría-Chagas, Natalia; Marco, Claudia; Martínez-Valdebenito, Constanza; Galeno, Héctor; Villagra, Eliecer; Vera, Lilian; Lagos, Natalia; Becerra, Natalia; Mora, Judith; Bermúdez, Andrea; Cárcamo, Marcela; Díaz, Janepsy; Miquel, Juan Francisco; Ferrés, Marcela; López-Lastra, Marcelo
2015-12-15
Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Genome-wide analysis of epistasis in body mass index using multiple human populations.
Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S
2012-08-01
We surveyed gene-gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E-08) and a Bonferroni corrected threshold (P=1.1E-12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E-08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E-08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings.
Guo, Liyuan; Wang, Jing
2018-01-04
Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2018-01-01
Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525
Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen
2015-01-01
The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241
Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan
2009-09-01
Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.
Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A
2013-03-10
The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Orfanidou, Martha A; Lafioniatis, Anastasios; Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos
2017-09-30
The nitric oxide (NO) donor sodium nitroprusside (SNP) actually is under investigation for the treatment of schizophrenia. That anxiety disorders are noted to occur commonly in schizophrenia patients is known. Contradictory results were reported however, concerning the effects of SNP in animal models of anxiety disorders. The present study investigated the effects of acute and repeated administration of SNP on anxiety-like behaviour in rats assessed in the light/dark test. The effects of SNP on motility in a locomotor activity chamber were also investigated in rats. Acute administration of 1 mg/kg SNP 30 but not 60 min before testing induced anxiolytic-like behaviour which cannot be attributed to changes in locomotor activity. Conversely, a single injection of 3 mg/kg SNP at 30 min before testing depressed rats' general activity, while at 60 min this dose did not influence performance of animals either in the light/dark or in the motor activity test. Repeated application of SNP (1 and 3 mg/kg, for 5 consecutive days) did not alter rodents' performance in the above described behavioural paradigms. The present results suggest that the effects exerted by SNP in the light/dark test in rats are dose, time and treatment schedule-dependent. The current findings propose also a narrow therapeutic window for SNP in this animal model of anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.
Glutamate decarboxylase genes and alcoholism in Han Taiwanese men.
Loh, El-Wui; Lane, Hsien-Yuan; Chen, Chien-Hsiun; Chang, Pi-Shan; Ku, Li-Wen; Wang, Kathy H T; Cheng, Andrew T A
2006-11-01
Glutamate decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), may be involved in the development of alcoholism. This study examined the possible roles of the genes that code for 2 forms of GAD (GAD1 and GAD2) in the development of alcoholism. An association study was conducted among 140 male alcoholic subjects meeting the DSM-III-R criteria for alcohol dependence and 146 controls recruited from the Han Taiwanese in community and clinical settings. Psychiatric assessment of drinking conditions was conducted using a Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry. The SHEsis and Haploview programs were used in statistical analyses. Nine single-nucleotide polymorphisms (SNPs) at the GAD1 gene were valid for further statistics. Between alcoholic subjects and controls, significant differences were found in genotype distributions of SNP1 (p=0.000), SNP2 (p=0.015), SNP4 (p=0.015), SNP5 (p=0.031), SNP6 (p=0.012), and SNP8 (p=0.004) and in allele distributions of SNP1 (p=0.001), SNP2 (p=0.009), and SNP8 (p=0.009). Permutation tests of SNP1, SNP2, and SNP8 demonstrated significant differences in allele frequencies but not in 2 major haplotype blocks. Three valid SNPs at the GAD2 gene demonstrated no associations with alcoholism. Further permutation tests in the only 1 haplotype block or individual SNPs demonstrated no significant differences. This is the first report indicating a possible significant role of the GAD1 gene in the development of alcohol dependence and/or the course of alcohol withdrawal and outcome of alcoholism.
Jo, Jinkwan; Purushotham, Preethi M.; Han, Koeun; Lee, Heung-Ryul; Nah, Gyoungju; Kang, Byoung-Cheorl
2017-01-01
Single nucleotide polymorphisms (SNPs) play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L.) is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS) offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM), with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs. PMID:28959273
Ferchaud, Anne-Laure; Pedersen, Susanne H; Bekkevold, Dorte; Jian, Jianbo; Niu, Yongchao; Hansen, Michael M
2014-10-06
The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new. We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).
Zadjali, F; Al-Yahyaee, S; Hassan, M O; Albarwani, S; Bayoumi, R A
2013-09-25
Plasma levels of adiponectin are decreased in type 2 diabetes, obesity and hypertension. Our aim was to use a family-based analysis to identify the genetic variants of the adiponectin (ADIPOQ) gene that are associated with obesity, insulin resistance, dyslipidemia and hypertension, among Arabs. We screened 328 Arabs in one large extended family for single nucleotide polymorphisms (SNPs) in the promoter region of the ADIPOQ gene. Two common SNPs were detected: rs17300539 and rs266729. Evidences of association between traits related to the metabolic syndrome and the SNPs were studied by implementing quantitative genetic association analysis. Results showed that SNP rs266729 was significantly associated with body weight (p-value=0.001), waist circumference (p-value=0.037), BMI (p-value=0.015) and percentage of total body fat (p-value=0.003). Up to 4.1% of heritability of obesity traits was explained by the rs266729 locus. Further cross-sectional analysis showed that carriers of the G allele had significantly higher values of waist circumference, BMI and percentage of total body fat (p-values 0.014, 0.004 and 0.032, respectively). No association was detected between SNP rs266729 and other clusters of metabolic syndrome or their traits except for HOMA-IR and fasting plasma insulin levels, p-values 0.035 and 0.004, respectively. In contrast, both measured genotype and cross-sectional analysis failed to detect an association between the SNP rs17300539 with traits and clusters of metabolic syndrome. In conclusion, we showed family-based evidence of association of SNP rs266729 at ADIPOQ gene with traits defining obesity in Arab population. This is important for future prediction and prevention of obesity in population where obesity is in an increasing trend. © 2013 Elsevier B.V. All rights reserved.
Larmer, S G; Sargolzaei, M; Schenkel, F S
2014-05-01
Genomic selection requires a large reference population to accurately estimate single nucleotide polymorphism (SNP) effects. In some Canadian dairy breeds, the available reference populations are not large enough for accurate estimation of SNP effects for traits of interest. If marker phase is highly consistent across multiple breeds, it is theoretically possible to increase the accuracy of genomic prediction for one or all breeds by pooling several breeds into a common reference population. This study investigated the extent of linkage disequilibrium (LD) in 5 major dairy breeds using a 50,000 (50K) SNP panel and 3 of the same breeds using the 777,000 (777K) SNP panel. Correlation of pair-wise SNP phase was also investigated on both panels. The level of LD was measured using the squared correlation of alleles at 2 loci (r(2)), and the consistency of SNP gametic phases was correlated using the signed square root of these values. Because of the high cost of the 777K panel, the accuracy of imputation from lower density marker panels [6,000 (6K) or 50K] was examined both within breed and using a multi-breed reference population in Holstein, Ayrshire, and Guernsey. Imputation was carried out using FImpute V2.2 and Beagle 3.3.2 software. Imputation accuracies were then calculated as both the proportion of correct SNP filled in (concordance rate) and allelic R(2). Computation time was also explored to determine the efficiency of the different algorithms for imputation. Analysis showed that LD values >0.2 were found in all breeds at distances at or shorter than the average adjacent pair-wise distance between SNP on the 50K panel. Correlations of r-values, however, did not reach high levels (<0.9) at these distances. High correlation values of SNP phase between breeds were observed (>0.94) when the average pair-wise distances using the 777K SNP panel were examined. High concordance rate (0.968-0.995) and allelic R(2) (0.946-0.991) were found for all breeds when imputation was carried out with FImpute from 50K to 777K. Imputation accuracy for Guernsey and Ayrshire was slightly lower when using the imputation method in Beagle. Computing time was significantly greater when using Beagle software, with all comparable procedures being 9 to 13 times less efficient, in terms of time, compared with FImpute. These findings suggest that use of a multi-breed reference population might increase prediction accuracy using the 777K SNP panel and that 777K genotypes can be efficiently and effectively imputed using the lower density 50K SNP panel. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wu, Wilfred; Clark, Erin A S; Stoddard, Gregory J; Watkins, W Scott; Esplin, M Sean; Manuck, Tracy A; Xing, Jinchuan; Varner, Michael W; Jorde, Lynn B
2013-04-25
Because of the role of inflammation in preterm birth (PTB), polymorphisms in and near the interleukin-6 gene (IL6) have been association study targets. Several previous studies have assessed the association between PTB and a single nucleotide polymorphism (SNP), rs1800795, located in the IL6 gene promoter region. Their results have been inconsistent and SNP frequencies have varied strikingly among different populations. We therefore conducted a meta-analysis with subgroup analysis by population strata to: (1) reduce the confounding effect of population structure, (2) increase sample size and statistical power, and (3) elucidate the association between rs1800975 and PTB. We reviewed all published papers for PTB phenotype and SNP rs1800795 genotype. Maternal genotype and fetal genotype were analyzed separately and the analyses were stratified by population. The PTB phenotype was defined as gestational age (GA) < 37 weeks, but results from earlier GA were selected when available. All studies were compared by genotype (CC versus CG+GG), based on functional studies.For the maternal genotype analysis, 1,165 PTBs and 3,830 term controls were evaluated. Populations were stratified into women of European descent (for whom the most data were available) and women of heterogeneous origin or admixed populations. All ancestry was self-reported. Women of European descent had a summary odds ratio (OR) of 0.68, (95% confidence interval (CI) 0.51 - 0.91), indicating that the CC genotype is protective against PTB. The result for non-European women was not statistically significant (OR 1.01, 95% CI 0.59 - 1.75). For the fetal genotype analysis, four studies were included; there was no significant association with PTB (OR 0.98, 95% CI 0.72 - 1.33). Sensitivity analysis showed that preterm premature rupture of membrane (PPROM) may be a confounding factor contributing to phenotype heterogeneity. IL6 SNP rs1800795 genotype CC is protective against PTB in women of European descent. It is not significant in other heterogeneous or admixed populations, or in fetal genotype analysis.Population structure is an important confounding factor that should be controlled for in studies of PTB.
van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul
2017-08-07
Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.
Krawczyk, Paweł; Kucharczyk, Tomasz; Kowalski, Dariusz M; Powrózek, Tomasz; Ramlau, Rodryg; Kalinka-Warzocha, Ewa; Winiarczyk, Kinga; Knetki-Wróblewska, Magdalena; Wojas-Krawczyk, Kamila; Kałakucka, Katarzyna; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz
2014-12-01
We presented retrospective analysis of up to five polymorphisms in TS, MTHFR and ERCC1 genes as molecular predictive markers for homogeneous Caucasian, non-squamous NSCLC patients treated with pemetrexed and platinum front-line chemotherapy. The following polymorphisms in DNA isolated from 115 patients were analyzed: various number of 28-bp tandem repeats in 5'-UTR region of TS gene, single nucleotide polymorphism (SNP) within the second tandem repeat of TS gene (G>C); 6-bp deletion in 3'-UTR region of the TS (1494del6); 677C>T SNP in MTHFR; 19007C>T SNP in ERCC1. Molecular examinations' results were correlated with disease control rate, progression-free survival (PFS) and overall survival. Polymorphic tandem repeat sequence (2R, 3R) in the enhancer region of TS gene and G>C SNP within the second repeat of 3R allele seem to be important for the effectiveness of platinum and pemetrexed in first-line chemotherapy. The insignificant shortening of PFS in 3R/3R homozygotes as compared to 2R/2R and 2R/3R genotypes were observed, while it was significantly shorter in patients carrying synchronous 3R allele and G nucleotide. The combined analysis of TS VNTR and MTHFR 677C>T SNP revealed shortening of PFS in synchronous carriers of 3R allele in TS and two C alleles in MTHFR. The strongest factors increased the risk of progression were poor PS, weight loss, anemia and synchronous presence of 3R allele and G nucleotide in the second repeat of 3R allele in TS. Moreover, lack of application of second-line chemotherapy, weight loss and poor performance status and above-mentioned genotype of TS gene increased risk of early mortality. The examined polymorphisms should be accounted as molecular predictor factors for pemetrexed- and platinum-based front-line chemotherapy in non-squamous NSCLC patients.
Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian
2013-06-01
The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Two Novel SNPs of PPARγ Significantly Affect Weaning Growth Traits of Nanyang Cattle.
Huang, Jieping; Chen, Ningbo; Li, Xin; An, Shanshan; Zhao, Minghui; Sun, Taihong; Hao, Ruijie; Ma, Yun
2018-01-02
Peroxisome-proliferator-activated receptor gamma (PPARγ) is a key transcription factor that controls adipocyte differentiation and energy in mammals. Therefore, PPARγ is a potential factor influencing animal growth traits. This study primarily evaluates PPARγ as candidate gene for growth traits of cattle and identifies potential molecular marker for cattle breeding. Per previous studies, PPARγ mRNA was mainly expressed at extremely high levels in adipose tissues as shown by quantitative real-time polymerase chain reaction analysis. Three novel SNPs of the bovine PPARγ gene were identified in 514 individuals from six Chinese cattle breeds: SNP1 (AC_000179.1 g.57386668 C > G) in intron 2 and SNP2 (AC_000179.1 g.57431964 C > T) and SNP3 (AC_000179.1 g.57431994 T > C) in exon 7. The present study also investigated genetic characteristics of these SNP loci in six populations. Association analysis showed that SNP1 and SNP3 loci significantly affect weaning growth traits, especially body weight of Nanyang cattle. These results revealed that SNP1 and SNP3 are potential molecular markers for cattle breeding.
He, Fei; Zhou, Wanjun; Cai, Ren; Yan, Tizhen; Xu, Xiangmin
2018-04-01
In this study, we aimed to assess the performance of two whole-genome amplification methods, multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycle (MALBAC), for β-thalassemia genotyping and single-nucleotide polymorphism (SNP)/copy-number variant (CNV) detection using two DNA sequencing assays. We collected peripheral blood, cell lines, and discarded embryos, and carried out MALBAC and MDA on single-cell and five-cell samples. We detected and statistically analyzed differences in the amplification efficiency, positive predictive value, sensitivity, allele dropout (ADO) rate, SNPs, and CV values between the two methods. Through Sanger sequencing at the single-cell and five-cell levels, we showed that both the amplification rate and ADO rate of MDA were better than those using MALBAC, and the sensitivity and positive predictive value obtained from MDA were higher than those from MALBAC for β-thalassemia genotyping. Using next-generation sequencing (NGS) at the single-cell level, we confirmed that MDA has better properties than MALBAC for SNP detection. However, MALBAC was more stable and homogeneous than MDA using low-depth NGS at the single-cell level for CNV detection. We conclude that MALBAC is the better option for CNV detection, while MDA is better suited for SNV detection.
Alvarado, David M; Yang, Ping; Druley, Todd E; Lovett, Michael; Gurnett, Christina A
2014-06-01
Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp
2017-01-04
SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Linkage disequilibrium between STRPs and SNPs across the human genome.
Payseur, Bret A; Place, Michael; Weber, James L
2008-05-01
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.
Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice
2011-05-05
High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.
USDA-ARS?s Scientific Manuscript database
One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...
ERIC Educational Resources Information Center
Greenwood, Pamela M.; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J.; Parasuraman, Raja
2009-01-01
We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues,…
USDA-ARS?s Scientific Manuscript database
For the first time in many years a comprehensive genome map for cultivated oat has been constructed using a combination of single nucleotide polymorphism (SNP) markers and validated with a collection of cytogenetically defined germplasm lines. The markers were able to help distinguish the three geno...
USDA-ARS?s Scientific Manuscript database
Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce (Lactuca sativa L.) lines. Each of these lines was derived from a single plant that had been genotyped with 384 SNP makers using LSGermOPA. They...
Pendergrass, Sarah A; Verma, Shefali S; Holzinger, Emily R; Moore, Carrie B; Wallace, John; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A; Ritchie, Marylyn D
2013-01-01
Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach provides an additional source of data for seeking these advanced explanatory models of the etiology of complex disease/outcome such as cataracts.
Evaluation of copy number variation detection for a SNP array platform
2014-01-01
Background Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform. We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package. Results Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest. Conclusion We found that PennCNV outperformed the other three packages in the sensitivity and specificity of CNV calling. Obviously, each calling method had its own limitations and advantages for different data analysis. Therefore, the optimized calling methods might be identified using multiple algorithms to evaluate the concordance and discordance of SNP array-based CNV calling. PMID:24555668
NASA Astrophysics Data System (ADS)
Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun
2012-03-01
As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.
Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David
2013-01-01
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917
Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David
2015-10-01
Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J.; Ho, Julie; Reisen, Peter; Samac, Deborah A.
2014-01-01
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs. PMID:25536106
Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J; Ho, Julie; Reisen, Peter; Samac, Deborah A
2014-01-01
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.
Genome-wide association study identifies three new melanoma susceptibility loci.
Barrett, Jennifer H; Iles, Mark M; Harland, Mark; Taylor, John C; Aitken, Joanne F; Andresen, Per Arne; Akslen, Lars A; Armstrong, Bruce K; Avril, Marie-Francoise; Azizi, Esther; Bakker, Bert; Bergman, Wilma; Bianchi-Scarrà, Giovanna; Bressac-de Paillerets, Brigitte; Calista, Donato; Cannon-Albright, Lisa A; Corda, Eve; Cust, Anne E; Dębniak, Tadeusz; Duffy, David; Dunning, Alison M; Easton, Douglas F; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Giles, Graham G; Hansson, Johan; Hocevar, Marko; Höiom, Veronica; Hopper, John L; Ingvar, Christian; Janssen, Bart; Jenkins, Mark A; Jönsson, Göran; Kefford, Richard F; Landi, Giorgio; Landi, Maria Teresa; Lang, Julie; Lubiński, Jan; Mackie, Rona; Malvehy, Josep; Martin, Nicholas G; Molven, Anders; Montgomery, Grant W; van Nieuwpoort, Frans A; Novakovic, Srdjan; Olsson, Håkan; Pastorino, Lorenza; Puig, Susana; Puig-Butille, Joan Anton; Randerson-Moor, Juliette; Snowden, Helen; Tuominen, Rainer; Van Belle, Patricia; van der Stoep, Nienke; Whiteman, David C; Zelenika, Diana; Han, Jiali; Fang, Shenying; Lee, Jeffrey E; Wei, Qingyi; Lathrop, G Mark; Gillanders, Elizabeth M; Brown, Kevin M; Goldstein, Alisa M; Kanetsky, Peter A; Mann, Graham J; Macgregor, Stuart; Elder, David E; Amos, Christopher I; Hayward, Nicholas K; Gruis, Nelleke A; Demenais, Florence; Bishop, Julia A Newton; Bishop, D Timothy
2011-10-09
We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 × 10(-9)), an SNP in MX2 (rs45430, P = 2.9 × 10(-9)) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 × 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 × 10(-7) under a fixed-effects model and P = 1.2 × 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.
2011-01-01
Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers. PMID:21767361
NASA Astrophysics Data System (ADS)
Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.
2006-02-01
Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.
SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.
Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi
2017-09-14
The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Kelly, Hilary; Dupras, Andrée Ann; Belanger, Sebastien; Devenish, John
2014-01-01
The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks. PMID:25297333
Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes
Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.
2009-01-01
OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein–coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP density selection algorithm and genotyped on 1,425 Hispanic-American individuals from 90 families in the IRASFS. These families comprised two samples (set 1 and set 2), which were analyzed individually and as a combined set. Single SNP tests of association were performed for four glucose homeostasis measures—insulin sensitivity (SI), acute insulin response (AIR), disposition index (DI), and fasting blood glucose (FBG)—using generalized estimating equations. RESULTS The SSTR2 locus was encompassed by a single linkage disequilibrium (LD) block (D′ = 0.91–1.00; r2 = 0.09–0.97) that contained four of the ten SNPs evaluated. Within the SSTR2-containing LD block, evidence of association was observed in each of the two sets and in a combined analysis with decreased SI(βhomozygous = −0.16; Pmeta-analysis = 0.0024–0.0030), decreased DI (βhomozygous = −0.35 to −5.16; Pmeta-analysis = 0.0075–0.027), and increased FBG (βhomozygous = 2.30; Pmeta-analysis = 0.045). SNPs outside the SSTR2-containing LD block were not associated with measures of glucose homeostasis. CONCLUSIONS We observed evidence for association of SSTR2 polymorphisms with measures of glucose homeostasis. Thus, variants in SSTR2 may influence pathways of SIto modulate glucose homeostasis. PMID:19324939
Cánovas, A; Rincón, G; Islas-Trejo, A; Jimenez-Flores, R; Laubscher, A; Medrano, J F
2013-04-01
The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca(2+) and H(+) ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) β (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hinney, Anke; Hebebrand, Johannes
2008-01-01
The molecular genetic analysis of obesity has led to the identification of a limited number of confirmed major genes. While such major genes have a clear influence on the development of the phenotype, the underlying mutations are however (extremely) infrequent and thus of minor clinical importance only. The genetic predisposition to obesity must thus be polygenic; a number of such variants should be found in most obese subjects; however, these variants predisposing to obesity are also found in normal weight and even lean individuals. Therefore, a polygene can only be identified and validated by statistical analyses: the appropriate gene variant (allele) occurs more frequently in obese than in non-obese subjects. Each single polygene makes only a small contribution to the development of obesity. The 103Ile allele of the Val103Ile single nucleotide polymorphism (SNP) of the melanocortin-4 receptor gene (MC4R) was the first confirmed polygenetic variant with an influence on the body mass index (BMI); the more common Val103 allele is more frequent in obese individuals. As determined in a recent, large-scaled meta-analysis the effect size of this allele on mean BMI was approximately -0.5 kg/m(2). The first genome-wide association study (GWA) for obesity, based on approximately 100,000 SNPs analyzed in families of the Framingham study, revealed that a SNP in the proximity of the insulin-induced gene 2 (INSIG2) was associated with obesity. The positive result was replicated in independent samples; however, some other study groups detected no association. Currently, a meta-analysis is ongoing; its result will contribute to the evaluation of the importance of the INSIG2 polymorphism in body weight regulation. SNP alleles in intron 1 of the fat mass and obesity associated gene (FTO) confer the most relevant polygenic effect on obesity. In the first GWA for extreme early onset obesity we substantiated that variation in FTO strongly contributes to early onset obesity. Copyright 2008 S. Karger AG, Basel.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh
2018-01-01
Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028
Zhao, Linlu; Bracken, Michael B.; DeWan, Andrew T.
2013-01-01
Summary A genome-wide association study was undertaken to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) associated with preeclampsia. Case-control analysis was performed on 1070 Afro-Caribbean (n=21 cases and 1049 controls) and 723 Hispanic (n=62 cases and 661 controls) mothers and 1257 mothers of European ancestry (n=50 cases and 1207 controls) from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. European ancestry subjects were genotyped on Illumina Human610-Quad and Afro-Caribbean and Hispanic subjects were genotyped on Illumina Human1M-Duo BeadChip microarrays. Genome-wide SNP data were analyzed using PLINK. CNVs were called using three detection algorithms (GNOSIS, PennCNV, and QuantiSNP), merged using CNVision, and then screened using stringent criteria. SNP and CNV findings were compared to those of the Study of Pregnancy Hypertension in Iowa (SOPHIA), an independent preeclampsia case-control dataset of Caucasian mothers (n=177 cases and 116 controls). A list of top SNPs were identified for each of the HAPO ethnic groups, but none reached Bonferroni-corrected significance. Novel candidate CNVs showing enrichment among preeclampsia cases were also identified in each of the three ethnic groups. Several variants were suggestively replicated in SOPHIA. The discovered SNPs and copy-number variable regions present interesting candidate genetic variants for preeclampsia that warrant further replication and investigation. PMID:23551011
MultiBLUP: improved SNP-based prediction for complex traits.
Speed, Doug; Balding, David J
2014-09-01
BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breeding, and increasingly in human genetics. The BLUP mathematical model, which consists of a single random effect term, was adequate when kinships were measured from pedigrees. However, when genome-wide SNPs are used to measure kinships, the BLUP model implicitly assumes that all SNPs have the same effect-size distribution, which is a severe and unnecessary limitation. We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing greatly improved prediction when the random effects correspond to classes of SNPs with distinct effect-size variances. The SNP classes can be specified in advance, for example, based on SNP functional annotations, and we also provide an adaptive procedure for determining a suitable partition of SNPs. We apply MultiBLUP to genome-wide association data from the Wellcome Trust Case Control Consortium (seven diseases), and from much larger studies of celiac disease and inflammatory bowel disease, finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is computationally very efficient; for the largest data set, which includes 12,678 individuals and 1.5 M SNPs, the total analysis can be run on a single desktop PC in less than a day and can be parallelized to run even faster. Tools to perform MultiBLUP are freely available in our software LDAK. © 2014 Speed and Balding; Published by Cold Spring Harbor Laboratory Press.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
A survey about methods dedicated to epistasis detection.
Niel, Clément; Sinoquet, Christine; Dina, Christian; Rocheleau, Ghislain
2015-01-01
During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).
Tavasolian, Fataneh; Abdollahi, Elham; Samadi, Morteza
2014-07-01
Recurrent spontaneous abortion (RSA) is defined as three or more consecutive abortions before the 20th week of gestation. There is increasing evidence to support an immunological mechanism for the occurrence of RSA. The purpose of our study was to examine whether single-nucleotide polymorphisms (SNPs) of the interleukin-4 receptor gene IL4R influence susceptibility to, recurrent spontaneous abortion. This is a case-control study. We recruited 200 patients with RSA (case group) using established diagnostic criteria and 200, normal individuals (control group) at the fertility and infertility center in Yazd city and Isfahan city during 2012 to 2013. We screened the I50V variant in IL-4R in patients and controls by PCR-RFLF method, and we performed an association analysis between I50V variant and RSA.the data was analyzed by spss 16 software using Chi-square test. No differences in the genotype and allele frequencies of the I50V SNPs were identified between patients with RSA and healthy controls. The frequency of SNP in IL-4 receptor (I50V) in patients with recurrent spontaneous abortion did not differ significantly compared with the control group. Analysis of IL4R SNP haplotypes or complex alleles suggested no dominant protection in patients with RSA.
Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping
2011-08-15
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.
Ulmer, Megan; Li, Jun; Yaspan, Brian L; Ozel, Ayse Bilge; Richards, Julia E; Moroi, Sayoko E; Hawthorne, Felicia; Budenz, Donald L; Friedman, David S; Gaasterland, Douglas; Haines, Jonathan; Kang, Jae H; Lee, Richard; Lichter, Paul; Liu, Yutao; Pasquale, Louis R; Pericak-Vance, Margaret; Realini, Anthony; Schuman, Joel S; Singh, Kuldev; Vollrath, Douglas; Weinreb, Robert; Wollstein, Gadi; Zack, Donald J; Zhang, Kang; Young, Terri; Allingham, R Rand; Wiggs, Janey L; Ashley-Koch, Allison; Hauser, Michael A
2012-07-03
To investigate the effects of central corneal thickness (CCT)-associated variants on primary open-angle glaucoma (POAG) risk using single nucleotide polymorphisms (SNP) data from the Glaucoma Genes and Environment (GLAUGEN) and National Eye Institute (NEI) Glaucoma Human Genetics Collaboration (NEIGHBOR) consortia. A replication analysis of previously reported CCT SNPs was performed in a CCT dataset (n = 1117) and these SNPs were then tested for association with POAG using a larger POAG dataset (n = 6470). Then a CCT genome-wide association study (GWAS) was performed. Top SNPs from this analysis were selected and tested for association with POAG. cDNA libraries from fetal and adult brain and ocular tissue samples were generated and used for candidate gene expression analysis. Association with one of 20 previously published CCT SNPs was replicated: rs12447690, near the ZNF469 gene (P = 0.001; β = -5.08 μm/allele). None of these SNPs were significantly associated with POAG. In the CCT GWAS, no SNPs reached genome-wide significance. After testing 50 candidate SNPs for association with POAG, one SNP was identified, rs7481514 within the neurotrimin (NTM) gene, that was significantly associated with POAG in a low-tension subset (P = 0.00099; Odds Ratio [OR] = 1.28). Additionally, SNPs in the CNTNAP4 gene showed suggestive association with POAG (top SNP = rs1428758; P = 0.018; OR = 0.84). NTM and CNTNAP4 were shown to be expressed in ocular tissues. The results suggest previously reported CCT loci are not significantly associated with POAG susceptibility. By performing a quantitative analysis of CCT and a subsequent analysis of POAG, SNPs in two cell adhesion molecules, NTM and CNTNAP4, were identified and may increase POAG susceptibility in a subset of cases.
Ertiro, Berhanu Tadesse; Semagn, Kassa; Das, Biswanath; Olsen, Michael; Labuschagne, Maryke; Worku, Mosisa; Wegary, Dagne; Azmach, Girum; Ogugo, Veronica; Keno, Tolera; Abebe, Beyene; Chibsa, Temesgen; Menkir, Abebe
2017-10-12
Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.
Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição
2013-01-01
The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki
2015-05-20
Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
Gruber, Bernd; Unmack, Peter J; Berry, Oliver F; Georges, Arthur
2018-05-01
Although vast technological advances have been made and genetic software packages are growing in number, it is not a trivial task to analyse SNP data. We announce a new r package, dartr, enabling the analysis of single nucleotide polymorphism data for population genomic and phylogenomic applications. dartr provides user-friendly functions for data quality control and marker selection, and permits rigorous evaluations of conformation to Hardy-Weinberg equilibrium, gametic-phase disequilibrium and neutrality. The package reports standard descriptive statistics, permits exploration of patterns in the data through principal components analysis and conducts standard F-statistics, as well as basic phylogenetic analyses, population assignment, isolation by distance and exports data to a variety of commonly used downstream applications (e.g., newhybrids, faststructure and phylogeny applications) outside of the r environment. The package serves two main purposes: first, a user-friendly approach to lower the hurdle to analyse such data-therefore, the package comes with a detailed tutorial targeted to the r beginner to allow data analysis without requiring deep knowledge of r. Second, we use a single, well-established format-genlight from the adegenet package-as input for all our functions to avoid data reformatting. By strictly using the genlight format, we hope to facilitate this format as the de facto standard of future software developments and hence reduce the format jungle of genetic data sets. The dartr package is available via the r CRAN network and GitHub. © 2017 John Wiley & Sons Ltd.
Etienne, Kizee A.; Gillece, John; Hilsabeck, Remy; Schupp, Jim M.; Colman, Rebecca; Lockhart, Shawn R.; Gade, Lalitha; Thompson, Elizabeth H.; Sutton, Deanna A.; Neblett-Fanfair, Robyn; Park, Benjamin J.; Turabelidze, George; Keim, Paul; Brandt, Mary E.; Deak, Eszter; Engelthaler, David M.
2012-01-01
Case reports of Apophysomyces spp. in immunocompetent hosts have been a result of traumatic deep implantation of Apophysomyces spp. spore-contaminated soil or debris. On May 22, 2011 a tornado occurred in Joplin, MO, leaving 13 tornado victims with Apophysomyces trapeziformis infections as a result of lacerations from airborne material. We used whole genome sequence typing (WGST) for high-resolution phylogenetic SNP analysis of 17 outbreak Apophysomyces isolates and five additional temporally and spatially diverse Apophysomyces control isolates (three A. trapeziformis and two A. variabilis isolates). Whole genome SNP phylogenetic analysis revealed three clusters of genotypically related or identical A. trapeziformis isolates and multiple distinct isolates among the Joplin group; this indicated multiple genotypes from a single or multiple sources. Though no linkage between genotype and location of exposure was observed, WGST analysis determined that the Joplin isolates were more closely related to each other than to the control isolates, suggesting local population structure. Additionally, species delineation based on WGST demonstrated the need to reassess currently accepted taxonomic classifications of phylogenetic species within the genus Apophysomyces. PMID:23209631
Etienne, Kizee A; Gillece, John; Hilsabeck, Remy; Schupp, Jim M; Colman, Rebecca; Lockhart, Shawn R; Gade, Lalitha; Thompson, Elizabeth H; Sutton, Deanna A; Neblett-Fanfair, Robyn; Park, Benjamin J; Turabelidze, George; Keim, Paul; Brandt, Mary E; Deak, Eszter; Engelthaler, David M
2012-01-01
Case reports of Apophysomyces spp. in immunocompetent hosts have been a result of traumatic deep implantation of Apophysomyces spp. spore-contaminated soil or debris. On May 22, 2011 a tornado occurred in Joplin, MO, leaving 13 tornado victims with Apophysomyces trapeziformis infections as a result of lacerations from airborne material. We used whole genome sequence typing (WGST) for high-resolution phylogenetic SNP analysis of 17 outbreak Apophysomyces isolates and five additional temporally and spatially diverse Apophysomyces control isolates (three A. trapeziformis and two A. variabilis isolates). Whole genome SNP phylogenetic analysis revealed three clusters of genotypically related or identical A. trapeziformis isolates and multiple distinct isolates among the Joplin group; this indicated multiple genotypes from a single or multiple sources. Though no linkage between genotype and location of exposure was observed, WGST analysis determined that the Joplin isolates were more closely related to each other than to the control isolates, suggesting local population structure. Additionally, species delineation based on WGST demonstrated the need to reassess currently accepted taxonomic classifications of phylogenetic species within the genus Apophysomyces.
De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A
2002-06-01
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.
A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band
NASA Astrophysics Data System (ADS)
Zou, Quan; Shan, Xiao; Jiang, Yi
Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.
The role of TNF alpha polymorphism and expression in susceptibility to nasal polyposis.
Zhang, Guimin; Zhang, Jinmei; Kuang, Manbao; Lin, Peng
2018-05-01
In this study, we first performed a meta-analysis to assess the role of single-nucleotide polymorphism (SNP) within tumor necrosis factor alpha (TNF alpha) gene and TNF alpha expression in the risk of nasal polyposis. STATA 12.0 software was utilized to conduct the Mantel-Haenszel statistics, Cohen statistics, Begg's test, Egger's tests and sensitivity analysis. We systemically carried out the database retrieval and initially identified 486 articles. After screening, 15 articles were included in our meta-analysis. For TNF alpha rs1800629 G/A SNP, compared with control group, an increased risk of nasal polyposis of case group was observed in the models of A vs. G [p (P value of association) = 0.009, OR (odds ratio) = 1.35], GA vs. GG (p = 0.001, OR = 1.69), GA+AA vs. GG (p = 0.010, OR = 1.47). The similar results were observed in Caucasian subgroup (p < 0.05, OR > 1). For TNF alpha rs361525 G/A SNP, no significant difference between control and case group was detected (all p > 0.05). In addition, a significant difference exists between case and control groups in the meta-analyses of TNF alpha expression in nasal mucosal cells, secreted TNF alpha (p < 0.05, OR > 1), but not serum TNF alpha (p = 0.090). The present meta-analysis revealed that TNF alpha rs1800629, increased TNF alpha expression and secretion of nasal mucosal cells were associated with an increased risk of nasal polyposis.
Rajasekaran, S; Kanna, Rishi Mugesh; Senthil, Natesan; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Subramaniam, Sakthikanal; Shetty, Ajoy Prasad
2013-10-01
Although the influence of genetics on the process of disc degeneration is well recognized, in recently published studies, there is a wide variation in the race and selection criteria for such study populations. More importantly, the radiographic features of disc degeneration that are selected to represent the disc degeneration phenotype are variable in these studies. The study presented here evaluates the association between single nucleotide polymorphisms (SNPs) of candidate genes and three distinct radiographic features that can be defined as the degenerative disc disease (DDD) phenotype. The study objectives were to examine the allelic diversity of 58 SNPs related to 35 candidate genes related to lumbar DDD, to evaluate the association in a hitherto unevaluated ethnic Indian population that represents more than one-sixth of the world population, and to analyze how genetic associations can vary in the same study subjects with the choice of phenotype. A cross-sectional, case-control study of an ethnic Indian population was carried out. Fifty-eight SNPs in 35 potential candidate genes were evaluated in 342 subjects and the associations were analyzed against three highly specific markers for DDD, namely disc degeneration by Pfirrmann grading, end-plate damage evaluated by total end-plate damage score, and annular tears evaluated by disc herniations and hyperintense zones. Genotyping of cases and controls was performed on a genome-wide SNP array to identify potential associated disease loci. The results from the genome-wide SNP array were then used to facilitate SNP selection and genotype validation was conducted using Sequenom-based genotyping. Eleven of the 58 SNPs provided evidence of association with one of the phenotypes. For annular tears, rs1042631 SNP of AGC1 and rs467691 SNP of ADAMTS5 were highly significantly associated (p<.01) and SNPs in NGFB, IL1B, IL18RAP, and MMP10 were also significantly associated (p<.05). The rs4076018 SNP of NGFB was highly significant (p<.01) and rs2292657 SNP of GLI1 was significantly (p<.05) correlated to disc degeneration. For end-plate damage, the rs2252070 SNP of MMP 13 showed a significant association (p<.05). Previously associated genes such as COL 9, SKT, CHST 3, CILP, IGFR, SOXp, BMP, MMP 2-12, ADH2, IL1RN, and COX2 were not significantly associated and new associations (NGFB and GLI1) were identified. The validity of all the associations was found to be phenotype dependent. For the first time, genetic associations with DDD have been performed in an Indian population. Apart from identifying new associations, the highlight of the study was that in the same study population with DDD, SNP associations completely changed when different radiographic features were used to define the DDD phenotype. Our study results therefore indicate that standardization of the phenotypes chosen to study the genetics of disc degeneration is essential and should be strongly considered before planning genetic association studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Ulloa, Mauricio; Hulse-Kemp, Amanda M; De Santiago, Luis M; Stelly, David M; Burke, John J
2017-01-01
High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, eg, upland cotton ( Gossypium hirsutum L., "2n = 52"). Three independently developed intraspecific upland mapping populations were analyzed to generate 3 high-density genetic linkage single-nucleotide polymorphism (SNP) maps and a consensus map using the CottonSNP63K array. The populations consisted of a previously reported F 2 , a recombinant inbred line (RIL), and reciprocal RIL population, from "Phytogen 72" and "Stoneville 474" cultivars. The cluster file provided 7417 genotyped SNP markers, resulting in 26 linkage groups corresponding to the 26 chromosomes (c) of the allotetraploid upland cotton (AD) 1 arisen from the merging of 2 genomes ("A" Old World and "D" New World). Patterns of chromosome-specific recombination were largely consistent across mapping populations. The high-density genetic consensus map included 7244 SNP markers that spanned 3538 cM and comprised 3824 SNP bins, of which 1783 and 2041 were in the A t and D t subgenomes with 1825 and 1713 cM map lengths, respectively. Subgenome average distances were nearly identical, indicating that subgenomic differences in bin number arose due to the high numbers of SNPs on the D t subgenome. Examination of expected recombination frequency or crossovers (COs) on the chromosomes within each population of the 2 subgenomes revealed that COs were also not affected by the SNPs or SNP bin number in these subgenomes. Comparative alignment analyses identified historical ancestral A t -subgenomic translocations of c02 and c03, as well as of c04 and c05. The consensus map SNP sequences aligned with high congruency to the NBI assembly of Gossypium hirsutum . However, the genomic comparisons revealed evidence of additional unconfirmed possible duplications, inversions and translocations, and unbalance SNP sequence homology or SNP sequence/loci genomic dominance, or homeolog loci bias of the upland tetraploid A t and D t subgenomes. The alignments indicated that 364 SNP-associated previously unintegrated scaffolds can be placed in pseudochromosomes of the NBI G hirsutum assembly. This is the first intraspecific SNP genetic linkage consensus map assembled in G hirsutum with a core of reproducible mendelian SNP markers assayed on different populations and it provides further knowledge of chromosome arrangement of genic and nongenic SNPs. Together, the consensus map and RIL populations provide a synergistically useful platform for localizing and identifying agronomically important loci for improvement of the cotton crop.
USDA-ARS?s Scientific Manuscript database
The genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org) on 19,652...
USDA-ARS?s Scientific Manuscript database
Background: Our goal is to produce a high-throughput SNP genotyping platform for genomic analyses in rainbow trout that will enable fine mapping of QTL, whole genome association studies, genomic selection for improved aquaculture production traits, and genetic analyses of wild populations that aid ...
USDA-ARS?s Scientific Manuscript database
The soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy but only properly oriented 66% of the sequence scaffolds. To find additional single nucleotide polymorphism (SNP) markers for additiona...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to evaluate the effect of 68 SNP previously associated with genetic merit for fertility and production on phenotype for reproductive and productive traits in a population of Holstein cows. In addition, we determined which SNP had repeated effects across three studie...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to identify single nucleotide polymorphisms (SNP) associated to fertility in female cows raised under a subtropical environment. Re-sequencing of 9 genes associated to GH-IGF endocrine pathway located in bovine chromosome 5, identified 75 SNP useful for associative ge...
A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis.
Bunyavanich, Supinda; Shargorodsky, Josef; Celedón, Juan C
2011-06-01
There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations. © 2011 John Wiley & Sons A/S.
Lira-Ruan, Verónica; Mendivil, Selene Napsucialy; Dubrovsky, Joseph G
2013-10-01
Lateral root (LR) initiation (LRI) is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO) promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length), we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. • Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP]) and/or an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide [cPTIO]). LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. • Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.
Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T
2016-01-01
Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.
Hammaker, Deepa; Whitaker, John W; Maeshima, Keisuke; Boyle, David L; Ekwall, Anna-Karin H; Wang, Wei; Firestein, Gary S
2016-11-01
To identify nonobvious therapeutic targets for rheumatoid arthritis (RA), we performed an integrative analysis incorporating multiple "omics" data and the Encyclopedia of DNA Elements (ENCODE) database for potential regulatory regions. This analysis identified the limb bud and heart development (LBH) gene, which has risk alleles associated with RA/celiac disease and lupus, and can regulate cell proliferation in RA. We identified a novel LBH transcription enhancer with an RA risk allele (rs906868 G [Ref]/T) 6 kb upstream of the LBH gene with a differentially methylated locus. The confluence of 3 regulatory elements, rs906868, an RA differentially methylated locus, and a putative enhancer, led us to investigate their effects on LBH regulation in fibroblast-like synoviocytes (FLS). We cloned the 1.4-kb putative enhancer with either the rs906868 Ref allele or single-nucleotide polymorphism (SNP) variant into reporter constructs. The constructs were methylated in vitro and transfected into cultured FLS by nucleofection. We found that both variants increased transcription, thereby confirming the region's enhancer function. Unexpectedly, the transcriptional activity of the Ref risk allele was significantly lower than that of the SNP variant and is consistent with low LBH levels as a risk factor for aggressive FLS behavior. Using RA FLS lines with a homozygous Ref or SNP allele, we confirmed that homozygous Ref lines expressed lower LBH messenger RNA levels than did the SNP lines. Methylation significantly reduced enhancer activity for both alleles, indicating that enhancer function is dependent on its methylation status. This study shows how the interplay between genetics and epigenetics can affect expression of LBH in RA. © 2016, American College of Rheumatology.
Mirza, S. S.; Zhao, J. H.; Chasman, D. I.; Fischer, K.; Qi, Q.; Smith, A. V.; Thinggaard, M.; Jarczok, M. N.; Nalls, M. A.; Trompet, S.; Timpson, N. J.; Schmidt, B.; Jackson, A. U.; Lyytikäinen, L. P.; Verweij, N.; Mueller-Nurasyid, M.; Vikström, M.; Marques-Vidal, P.; Wong, A.; Meidtner, K.; Middelberg, R. P.; Strawbridge, R. J.; Christiansen, L.; Kyvik, K. O.; Hamsten, A.; Jääskeläinen, T.; Tjønneland, A.; Eriksson, J. G.; Whitfield, J. B.; Boeing, H.; Hardy, R.; Vollenweider, P.; Leander, K.; Peters, A.; van der Harst, P.; Kumari, M.; Lehtimäki, T.; Meirhaeghe, A.; Tuomilehto, J.; Jöckel, K.-H.; Ben-Shlomo, Y.; Sattar, N.; Baumeister, S. E.; Smith, G. Davey; Casas, J. P.; Houston, D. K.; März, W.; Christensen, K.; Gudnason, V.; Hu, F. B.; Metspalu, A.; Ridker, P. M.; Wareham, N. J.; Loos, R. J. F.; Tiemeier, H.; Sonestedt, E.; Sørensen, T. I. A.
2015-01-01
Summary Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has strong pleiotropic effects on adiposity and adiposity-independent pathological pathways that leads to increased mortality. To investigate this further, we conducted a meta-analysis of similar data from 34 longitudinal studies including 169,551 adult Caucasians among whom 27,100 died during follow-up. Linear regression showed that the minor allele of the FTO SNP was associated with greater BMI (n = 169,551; 0.32 kg m−2; 95% CI 0.28–0.32, P < 1 × 10−32), WC (n = 152,631; 0.76 cm; 0.68–0.84, P < 1 × 10−32) and FMI (n = 48,192; 0.17 kg m−2; 0.13–0.22, P = 1.0 × 10−13). Cox proportional hazard regression analyses for mortality showed that the hazards ratio (HR) for the minor allele of the FTO SNPs was 1.02 (1.00–1.04, P = 0.097), but the apparent excess risk was eliminated after adjustment for BMI and WC (HR: 1.00; 0.98–1.03, P = 0.662) and for FMI (HR: 1.00; 0.96–1.04, P = 0.932). In conclusion, this study does not support that the FTO SNP is associated with all-cause mortality independently of the adiposity phenotypes. PMID:25752329
Ma, G J; Song, Q J; Markell, S G; Qi, L L
2018-07-01
A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.
Nho, Kwangsik; Saykin, Andrew J.; Nelson, Peter T.
2016-01-01
Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer’s disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (~50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer’s disease contribution to atrophy outside of the hippocampus in older adults. PMID:27003218
Bai, Xianan; Xie, Jingjing; Sun, Shanshan; Zhang, Xianyu; Jiang, Yongdong; Pang, Da
2017-01-01
Background Cytochrome P450 (CYP) 1A2 and CYP3A4 may play a role in the differentiation of clinical outcomes among breast cancer women. This study aimed to analyze the association of genetic polymorphisms in the CYP1A2 and CYP3A4 genes with clinicopathological features, protein expression and prognosis of breast cancer in the northern Chinese population. Results Firstly, SNP rs11636419, rs17861162 and rs2470890 in the CYP1A2 were significantly associated with age and menstruation status. And SNP rs11636419 and rs17861162 were associated with the P53 status. Secondly, SNP rs2470890 was correlated with CYP1A2 protein expression under the co-dominant and dominant model (P = 0.017, P = 0.006, respectively). Thirdly, for SNP rs2470890, the Kaplan–Meier 5 year survival curves showed that patients carrying genotypes CT or TT had a worse OS compared with the genotype CC carriers under both codominant and dominant model (P < 0.001, P < 0.001, respectively). Materials and Methods Four single nucleotide polymorphisms (SNPs) were successfully genotyped in 459 breast cancer patients using the SNaPshot method. The associations of four polymorphisms with protein expression and clinicopathological characteristics were evaluated by Pearson's chi-square test. The Cox hazard regression analysis and Kaplan–Meier survival analysis were performed to evaluate the relationship between the SNPs and overall survival (OS) of breast cancer. Conclusions CYP1A2 rs2470890 was significantly associated with the prognosis of patients with breast cancer and could serve as an independent impact factor of prognosis of breast carcinoma. PMID:28418906
Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei
2017-09-01
It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.
Genomic prediction of the polled and horned phenotypes in Merino sheep.
Duijvesteijn, Naomi; Bolormaa, Sunduimijid; Daetwyler, Hans D; van der Werf, Julius H J
2018-05-22
In horned sheep breeds, breeding for polledness has been of interest for decades. The objective of this study was to improve prediction of the horned and polled phenotypes using horn scores classified as polled, scurs, knobs or horns. Derived phenotypes polled/non-polled (P/NP) and horned/non-horned (H/NH) were used to test four different strategies for prediction in 4001 purebred Merino sheep. These strategies include the use of single 'single nucleotide polymorphism' (SNP) genotypes, multiple-SNP haplotypes, genome-wide and chromosome-wide genomic best linear unbiased prediction and information from imputed sequence variants from the region including the RXFP2 gene. Low-density genotypes of these animals were imputed to the Illumina Ovine high-density (600k) chip and the 1.78-kb insertion polymorphism in RXFP2 was included in the imputation process to whole-genome sequence. We evaluated the mode of inheritance and validated models by a fivefold cross-validation and across- and between-family prediction. The most significant SNPs for prediction of P/NP and H/NH were OAR10_29546872.1 and OAR10_29458450, respectively, located on chromosome 10 close to the 1.78-kb insertion at 29.5 Mb. The mode of inheritance included an additive effect and a sex-dependent effect for dominance for P/NP and a sex-dependent additive and dominance effect for H/NH. Models with the highest prediction accuracies for H/NH used either single SNPs or 3-SNP haplotypes and included a polygenic effect estimated based on traditional pedigree relationships. Prediction accuracies for H/NH were 0.323 for females and 0.725 for males. For predicting P/NP, the best models were the same as for H/NH but included a genomic relationship matrix with accuracies of 0.713 for females and 0.620 for males. Our results show that prediction accuracy is high using a single SNP, but does not reach 1 since the causative mutation is not genotyped. Incomplete penetrance or allelic heterogeneity, which can influence expression of the phenotype, may explain why prediction accuracy did not approach 1 with any of the genetic models tested here. Nevertheless, a breeding program to eradicate horns from Merino sheep can be effective by selecting genotypes GG of SNP OAR10_29458450 or TT of SNP OAR10_29546872.1 since all sheep with these genotypes will be non-horned.
Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin
2012-01-01
The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.
Nunes, José de Ribamar da Silva; Liu, Shikai; Pértille, Fábio; Perazza, Caio Augusto; Villela, Priscilla Marqui Schmidt; de Almeida-Val, Vera Maria Fonseca; Hilsdorf, Alexandre Wagner Silva; Liu, Zhanjiang; Coutinho, Luiz Lehmann
2017-01-01
Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs. PMID:28387238
Patil, Gunvant; Do, Tuyen; Vuong, Tri D.; Valliyodan, Babu; Lee, Jeong-Dong; Chaudhary, Juhi; Shannon, J. Grover; Nguyen, Henry T.
2016-01-01
Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na+ accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars. PMID:26781337
Santos, C; Fondevila, M; Ballard, D; Banemann, R; Bento, A M; Børsting, C; Branicki, W; Brisighelli, F; Burrington, M; Capal, T; Chaitanya, L; Daniel, R; Decroyer, V; England, R; Gettings, K B; Gross, T E; Haas, C; Harteveld, J; Hoff-Olsen, P; Hoffmann, A; Kayser, M; Kohler, P; Linacre, A; Mayr-Eduardoff, M; McGovern, C; Morling, N; O'Donnell, G; Parson, W; Pascali, V L; Porto, M J; Roseth, A; Schneider, P M; Sijen, T; Stenzl, V; Court, D Syndercombe; Templeton, J E; Turanska, M; Vallone, P M; Oorschot, R A H van; Zatkalikova, L; Carracedo, Á; Phillips, C
2015-11-01
There is increasing interest in forensic ancestry tests, which are part of a growing number of DNA analyses that can enhance routine profiling by obtaining additional genetic information about unidentified DNA donors. Nearly all ancestry tests use single nucleotide polymorphisms (SNPs), but these currently rely on SNaPshot single base extension chemistry that can fail to detect mixed DNA. Insertion-deletion polymorphism (Indel) tests have been developed using dye-labeled primers that allow direct capillary electrophoresis detection of PCR products (PCR-to-CE). PCR-to-CE maintains the direct relationship between input DNA and signal strength as each marker is detected with a single dye, so mixed DNA is more reliably detected. We report the results of a collaborative inter-laboratory exercise of 19 participants (15 from the EDNAP European DNA Profiling group) that assessed a 34-plex SNP test using SNaPshot and a 46-plex Indel test using PCR-to-CE. Laboratories were asked to type five samples with different ancestries and detect an additional mixed DNA sample. Statistical inference of ancestry was made by participants using the Snipper online Bayes analysis portal plus an optional PCA module that analyzes the genotype data alongside calculation of Bayes likelihood ratios. Exercise results indicated consistent genotyping performance from both tests, reaching a particularly high level of reliability for the Indel test. SNP genotyping gave 93.5% concordance (compared to the organizing laboratory's data) that rose to 97.3% excluding one laboratory with a large number of miscalled genotypes. Indel genotyping gave a higher concordance rate of 99.8% and a reduced no-call rate compared to SNP analysis. All participants detected the mixture from their Indel peak height data and successfully assigned the correct ancestry to the other samples using Snipper, with the exception of one laboratory with SNP miscalls that incorrectly assigned ancestry of two samples and did not obtain informative likelihood ratios for a third. Therefore, successful ancestry assignments were achieved by participants in 92 of 95 Snipper analyses. This exercise demonstrates that ancestry inference tests based on binary marker sets can be readily adopted by laboratories that already have well-established CE regimes in place. The Indel test proved to be easy to use and allowed all exercise participants to detect the DNA mixture as well as achieving complete and concordant profiles in nearly all cases. Lastly, two participants successfully ran parallel next-generation sequencing analyses (each using different systems) and achieved high levels of genotyping concordance using the exercise PCR primer mixes unmodified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.
McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array. PMID:24667746
Wieczorek, Stefan; Holle, Julia U; Bremer, Jan P; Wibisono, David; Moosig, Frank; Fricke, Harald; Assmann, Gunter; Harper, Lorraine; Arning, Larissa; Gross, Wolfgang L; Epplen, Joerg T
2010-05-01
There is evidence that the leptin/ghrelin system is involved in T-cell regulation and plays a role in (auto)immune disorders such as SLE, RA and ANCA-associated vasculitides (AAVs). Here, we evaluate the genetic background of this system in WG. We screened variations in the genes encoding leptin, ghrelin and their receptors, the leptin receptor (LEPR) and the growth hormone secretagogue receptor (GHSR). Three single nucleotide polymorphisms (SNPs) in each gene region were analysed in 460 German WG cases and 878 ethnically matched healthy controls. A three-SNP haplotype of GHSR was significantly associated with WG [P = 0.0067; corrected P-value (P(c)) = 0.026; odds ratio (OR) = 1.30; 95% CI 1.08, 1.57], as was one non-synonymous SNP in LEPR (Lys656Asn, P = 0.0034; P(c) = 0.013; OR = 0.72; 95% CI 0.58, 0.90). These four SNPs were re-analysed in independent cohorts of 226 German WG cases and 519 controls. While the GHSR association was not confirmed, allele frequencies of the LEPR SNP were virtually identical to those from the initial cohorts. Analysis of this SNP in the combined WG and control panels revealed a significant association of the LEPR 656Lys allele with WG (P = 0.00032; P(c) = 0.0013; OR = 0.72; 95% CI 0.60, 0.86). Remarkably, the Lys656Asn SNP showed contrasting allele distribution in two cohorts of 108 and 88 German cases diagnosed with Churg-Strauss syndrome (CSS, combined P = 0.0067; OR = 1.41; 95% CI 1.10, 1.81), whereas identical allele frequencies were revealed when comparing British WG and microscopic polyangiitis cases. While GHSR has to be further evaluated, these data provide profound evidence for an association of the LEPR Lys656Asn SNP with AAV, resulting in opposing effects in WG and CSS.
2012-01-01
Background Significant quantitative trait loci (QTL) for carcass weight were previously mapped on several chromosomes in Japanese Black half-sib families. Two QTL, CW-1 and CW-2, were narrowed down to 1.1-Mb and 591-kb regions, respectively. Recent advances in genomic tools allowed us to perform a genome-wide association study (GWAS) in cattle to detect associations in a general population and estimate their effect size. Here, we performed a GWAS for carcass weight using 1156 Japanese Black steers. Results Bonferroni-corrected genome-wide significant associations were detected in three chromosomal regions on bovine chromosomes (BTA) 6, 8, and 14. The associated single nucleotide polymorphisms (SNP) on BTA 6 were in linkage disequilibrium with the SNP encoding NCAPG Ile442Met, which was previously identified as a candidate quantitative trait nucleotide for CW-2. In contrast, the most highly associated SNP on BTA 14 was located 2.3-Mb centromeric from the previously identified CW-1 region. Linkage disequilibrium mapping led to a revision of the CW-1 region within a 0.9-Mb interval around the associated SNP, and targeted resequencing followed by association analysis highlighted the quantitative trait nucleotides for bovine stature in the PLAG1-CHCHD7 intergenic region. The association on BTA 8 was accounted for by two SNP on the BovineSNP50 BeadChip and corresponded to CW-3, which was simultaneously detected by linkage analyses using half-sib families. The allele substitution effects of CW-1, CW-2, and CW-3 were 28.4, 35.3, and 35.0 kg per allele, respectively. Conclusion The GWAS revealed the genetic architecture underlying carcass weight variation in Japanese Black cattle in which three major QTL accounted for approximately one-third of the genetic variance. PMID:22607022
Zhang, Wensheng; Edwards, Andrea; Zhu, Dongxiao; Flemington, Erik K.; Deininger, Prescott; Zhang, Kun
2012-01-01
In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3′ UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3′ UTRs of genes can affect the base-pairing between miRNAs and mRNAs, and hence disrupt existing target sites (in the reference sequence) or create novel target sites, suggesting a possible mechanism for cis regulation of gene expression. Moreover, because the alleles of different SNPs within a DNA sequence of limited length tend to be in strong linkage disequilibrium (LD), we hypothesize the variants of miRNA target sites caused by SNPs potentially function as bridges linking the documented cis-SNP markers to the expression of the associated genes. A large-scale analysis was herein performed to test this hypothesis. By systematically integrating multiple latest information sources, we found 21 significant gene-level SNP-involved miRNA-mediated post-transcriptional regulation modules (SNP-MPRMs) in the form of SNP-miRNA-mRNA triplets in lymphocyte cell lines for the CEU and YRI populations. Among the cognate genes, six including ALG8, DGKE, GNA12, KLF11, LRPAP1, and MMAB are related to multiple genetic diseases such as depressive disorder and Type-II diabetes. Furthermore, we found that ∼35% of the documented transcript intensity-related cis-SNPs (∼950) in a recent publication are identical to, or in significant linkage disequilibrium (LD) (p<0.01) with, one or multiple SNPs located in miRNA target sites. Based on these associations (or identities), 69 significant exon-level SNP-MPRMs and 12 disease genes were further determined for two populations. These results provide concrete in silico evidence for the proposed hypothesis. The discovered modules warrant additional follow-up in independent laboratory studies. PMID:22348086
Ryynänen, Heikki J; Primmer, Craig R
2006-01-01
Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases. PMID:16872523
Suarez-Kurtz, Guilherme; Fuchshuber-Moraes, Mateus; Struchiner, Claudio J; Parra, Esteban J
2016-08-01
Several algorithms have been proposed to reduce the genotyping effort and cost, while retaining the accuracy of N-acetyltransferase-2 (NAT2) phenotype prediction. Data from the 1000 Genomes (1KG) project and an admixed cohort of Black Brazilians were used to assess the accuracy of NAT2 phenotype prediction using algorithms based on paired single nucleotide polymorphisms (SNPs) (rs1041983 and rs1801280) or a tag SNP (rs1495741). NAT2 haplotypes comprising SNPs rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208 and rs1799931 were assigned according to the arylamine N-acetyltransferases database. Contingency tables were used to visualize the agreement between the NAT2 acetylator phenotypes on the basis of these haplotypes versus phenotypes inferred by the prediction algorithms. The paired and tag SNP algorithms provided more than 96% agreement with the 7-SNP derived phenotypes in Europeans, East Asians, South Asians and Admixed Americans, but discordance of phenotype prediction occurred in 30.2 and 24.8% 1KG Africans and in 14.4 and 18.6% Black Brazilians, respectively. Paired SNP panel misclassification occurs in carriers of NATs haplotypes *13A (282T alone), *12B (282T and 803G), *6B (590A alone) and *14A (191A alone), whereas haplotype *14, defined by the 191A allele, is the major culprit of misclassification by the tag allele. Both the paired SNP and the tag SNP algorithms may be used, with economy of scale, to infer NAT2 acetylator phenotypes, including the ultra-slow phenotype, in European, East Asian, South Asian and American populations represented in the 1KG cohort. Both algorithms, however, perform poorly in populations of predominant African descent, including admixed African-Americans, African Caribbeans and Black Brazilians.
2011-01-01
Background Six previous studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and allergic rhinitis, but the results have been inconsistent. However, a recent meta-analysis using data from these 6 studies has shown that the A allele of IL13 SNP rs20541 was associated with an increased risk of allergic rhinitis, whereas no such relationship existed between IL13 SNP rs1800925 and allergic rhinitis. We investigated the associations between IL13 SNPs rs1800925 and rs20541 and the risk of rhinoconjunctivitis in Japanese women. Methods Included were 393 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for rhinoconjunctivitis. Control subjects were 767 women without rhinoconjunctivitis according to the ISAAC criteria, who had also not been diagnosed with allergic rhinitis by a doctor. Adjustment was made for age, region of residence, presence of older siblings, smoking, family history of allergic rhinitis, and education. Results Compared with the GG genotype of IL13 SNP rs20541, the AA genotype, occurring in 7.1% of control subjects, was significantly positively related to the risk of rhinoconjunctivitis: the adjusted odds ratio was 1.65 (95% confidence interval: 1.05 - 2.60). SNP rs1800925 was not associated with rhinoconjunctivitis. The haplotype comprising the rs1800925 C allele and the rs20541 A allele was significantly positively related to rhinoconjunctivitis. The multiplicative interactions between the two SNPs under study and smoking on the risk of rhinoconjunctivitis were not statistically significant. Based on the recessive model, however, the additive interaction between SNP rs1800925, but not rs20541, and smoking was significant. Conclusions This study suggests that the minor genotype of IL13 SNP rs20541 and the CA haplotype are significantly positively associated with the risk of rhinoconjunctivitis. In addition, a new pattern of biological interaction that affects the risk of rhinoconjunctivitis is described between SNP rs1800925 and smoking. PMID:22023794
Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra
2015-01-01
Background Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Methodology/Principal findings Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients’ countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. Conclusions/Significance The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France) or (b) more likely random in regions where diverse migration flows occurred. PMID:26441080
Jiang, Haojun; Xie, Yifan; Li, Xuchao; Ge, Huijuan; Deng, Yongqiang; Mu, Haofang; Feng, Xiaoli; Yin, Lu; Du, Zhou; Chen, Fang; He, Nongyue
2016-01-01
Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels in order to verify the performance in clinical cases. Combining targeted deep sequencing of selective SNP and informative bioinformatics pipeline, we calculated the combined paternity index (CPI) of 17 cases to determine paternity. Sequencing-based NIPAT results fully agreed with invasive prenatal paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future.
Zhou, Fei; Wang, Yanru; Liu, Hongliang; Ready, Neal; Han, Younghun; Hung, Rayjean J.; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S.; Caporaso, Neil; Landi, Maria Teresa; Brüske, Irene; Risch, Angela; Ye, Yuanqing; Wu, Xifeng; Christiani, David C.; Goodman, Gary; Chen, Chu; Amos, Christopher I.; Qingyi, Wei
2017-01-01
Purpose mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities of the genes involved in mRNA degradation were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants of genes in the general mRNA degradation pathway in lung cancer risk. Experimental design Meta-analyses were conducted in six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. Results This pathway-based analysis included 4,603 single nucleotide polymorphisms (SNP) in 68 genes in 14,463 lung cancer cases and 44,188 controls, of which 20 SNPs were found to be associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score “1f” was chosen as the tag SNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio=1.11, 95% confidence interval=1.04–1.18, P=0.001) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. Conclusion The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. PMID:27805284
High-Density SNP Genotyping to Define β-Globin Locus Haplotypes
Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.
2014-01-01
Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352
Consistency between cross-sectional and longitudinal SNP: blood lipid associations.
Costanza, Michael C; Beer-Borst, Sigrid; James, Richard W; Gaspoz, Jean-Michel; Morabia, Alfredo
2012-02-01
Various studies have linked different genetic single nucleotide polymorphisms (SNPs) to different blood lipids (BL), but whether these "connections" were identified using cross-sectional or longitudinal (i.e., changes over time) designs has received little attention. Cross-sectional and longitudinal assessments of BL [total, high-, low-density lipoprotein cholesterol (TC, HDL, LDL), triglycerides (TG)] and non-genetic factors (body mass index, smoking, alcohol intake) were measured for 2,002 Geneva, Switzerland, adults during 1999-2008 (two measurements, median 6 years apart), and 20 SNPs in 13 BL metabolism-related genes. Fixed and mixed effects repeated measures linear regression models, respectively, were employed to identify cross-sectional and longitudinal SNP:BL associations among the 1,516 (76%) study participants who reported not being treated for hypercholesterolemia at either measurement time. One-third more (12 vs. 9) longitudinal than cross-sectional associations were found [Bonferroni-adjusted two-tailed p < 0.00125 (=0.05/2)/20) for each of the four ensembles of 20 SNP:individual BL associations tested under the two study designs]. There was moderate consistency between the cross-sectional and longitudinal findings, with eight SNP:BL associations consistently identified across both study designs: [APOE.2 and APOE.4 (rs7412 and rs429358)]:TC; HL/LIPC (rs2070895):HDL; [APOB (rs1367117), APOE.2 and APOE.4 (rs7412 and rs429358)]:LDL; [APOA5 (rs2072560) and APOC III (rs5128)]:TG. The results suggest that cross-sectional studies, which include most genome-wide association studies (GWAS), can assess the large majority of SNP:BL associations. In the present analysis, which was much less powered than a GWAS, the cross-sectional study was around 2/3 (67%) as efficient as the longitudinal study.
Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter
2014-09-28
New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Kwon, Manjae; Han, Soo Min; Kim, Do-Il; Rhee, Moo-Yong; Lee, Byoung-Kwon; Ahn, Young Keun; Cho, Byung Ryul; Woo, Jeongtaek; Hur, Seung-Ho; Jeong, Jin-Ok; Jang, Yangsoo; Lee, Sang-Hak; Lee, Ji Hyun
2015-09-01
Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused by mutations in LDLR, APOB, or PCSK9. Polygenicity is a plausible cause in mutation-negative FH patients based on LDL cholesterol (LDL-C)-associated single nucleotide polymorphisms (SNPs) identified by the Global Lipids Genetics Consortium (GLGC). However, there are limited data regarding the polygenic cause of FH in Asians. We gathered data from 66 mutation-negative and 31 mutation-positive Korean FH patients, as well as from 2274 controls who participated in the Korean Health Examinee (HEXA) shared control study. We genotyped the patients for six GLGC SNPs and four East Asian LDL-C-associated SNPs and compared SNP scores among patient groups and controls. Weighted mean 6- and 4-SNP scores (0.67 [SD = 0.07] and 0.46 [0.11], respectively) were both significantly associated with LDL-C levels in controls (p = 2.1 × 10(-4), R(2) = 0.01 and p = 5.0 × 10(-12), R(2) = 0.02, respectively). Mutation-negative FH patients had higher 6-SNP (0.72 [0.07]) and 4-SNP (0.49 [0.08]) scores than controls (p = 1.8 × 10(-8) and p = 3.6 × 10(-3), respectively). We also observed higher scores in mutation-positive FH patients compared with controls, but the difference did not reach statistical significance. The present study demonstrates the utility of SNP score analysis for identifying polygenic FH in Korean patients by showing that small-effect common SNPs may cumulatively elevate LDL-C levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Marvalim, Charlie; Wong, Jing Xiang Gimson; Sutiman, Natalia; Lim, Wan Teck; Tan, Shao Weng; Kanesvaran, Ravindran; Ng, Quan Sing; Jain, Amit; Ang, Mei Kim; Tan, Wan Ling; Toh, Chee Keong; Tan, Eng Huat; Chowbay, Balram
2017-03-01
The critical role of lysine demethylase 4A (KDM4A), in regulating chromatin structure and consequently in driving cellular proliferation and oncogenesis has been the focus of recent studies. Non-small-cell lung cancer (NSCLC) patients with adenocarcinoma histology who were homozygous for KDM4A single nucleotide polymorphism (SNP)-A482 (rs586339) were recently shown to have significantly worse overall survival (OS) compared with patients with the wild-type or the heterozygous genotype at this locus (hazard ratio=1.68, P=0.042). In the current study, we investigated the association between the same polymorphism with OS in our Asian NSCLC-adenocarcinoma patients comprising Chinese (N=572), Malays (N=50), and Indians (N=22). KDM4A SNP-A482 genotype status was determined by Sanger sequencing. OS was calculated from the date of diagnosis to date of death or censored at the date of last follow-up. Kaplan-Meier analysis, log-rank test, and Cox regression methods were utilized to evaluate OS outcomes. KDM4A SNP-A482 had a minor allele (C) frequency of 18.8% and a major allele (A) frequency of 81.2% in our Asian NSCLC (adenocarcinoma) patients. However, the OS in our Asian NSCLC patients homozygous for KDM4A SNP-A482 was not significantly different from those who were wild type or heterozygous at this locus [CC vs. AA/AC: median OS (95% confidence interval): 40.2 (18.7-61.6) vs. 29.6 (26.9-32.3) months; P=0.858]. The results remained statistically nonsignificant even after adjustment for epidermal growth factor receptor mutational status, suggesting that KDM4A SNP-A482 does not significantly influence OS in Asian NSCLC patients.
Interest in genomic SNP testing for prostate cancer risk: a pilot survey.
Hall, Michael J; Ruth, Karen J; Chen, David Yt; Gross, Laura M; Giri, Veda N
2015-01-01
Advancements in genomic testing have led to the identification of single nucleotide polymorphisms (SNPs) associated with prostate cancer. The clinical utility of SNP tests to evaluate prostate cancer risk is unclear. Studies have not examined predictors of interest in novel genomic SNP tests for prostate cancer risk in a diverse population. Consecutive participants in the Fox Chase Prostate Cancer Risk Assessment Program (PRAP) (n = 40) and unselected men from surgical urology clinics (n = 40) completed a one-time survey. Items examined interest in genomic SNP testing for prostate cancer risk, knowledge, impact of unsolicited findings, and psychosocial factors including health literacy. Knowledge of genomic SNP tests was low in both groups, but interest was higher among PRAP men (p < 0.001). The prospect of receiving unsolicited results about ancestral genomic markers increased interest in testing in both groups. Multivariable modeling identified several predictors of higher interest in a genomic SNP test including higher perceived risk (p = 0.025), indicating zero reasons for not wanting testing (vs ≥1 reason) (p = 0.013), and higher health literacy (p = 0.016). Knowledge of genomic SNP testing was low in this sample, but higher among high-risk men. High-risk status may increase interest in novel genomic tests, while low literacy may lessen interest.
KinSNP software for homozygosity mapping of disease genes using SNP microarrays
2010-01-01
Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from http://bioinfo.bgu.ac.il/bsu/software/kinSNP. PMID:20846928
Irvin, Marguerite R; Sitlani, Colleen M; Noordam, Raymond; Avery, Christie L; Bis, Joshua C; Floyd, James S; Li, Jin; Limdi, Nita A; Srinivasasainagendra, Vinodh; Stewart, James; de Mutsert, Renée; Mook-Kanamori, Dennis O; Lipovich, Leonard; Kleinbrink, Erica L; Smith, Albert; Bartz, Traci M; Whitsel, Eric A; Uitterlinden, Andre G; Wiggins, Kerri L; Wilson, James G; Zhi, Degui; Stricker, Bruno H; Rotter, Jerome I; Arnett, Donna K; Psaty, Bruce M; Lange, Leslie A
2018-06-01
We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10 -8 ) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10 -8 ; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.
El-Sabrout, Karim; Aggag, Sarah A.
2017-01-01
Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458
Qi, L L; Foley, M E; Cai, X W; Gulya, T J
2016-04-01
A novel downy mildew resistance gene, Pl(18), was introgressed from wild Helianthus argophyllus into cultivated sunflower and genetically mapped to linkage group 2 of the sunflower genome. The new germplasm, HA-DM1, carrying Pl(18) has been released to the public. Sunflower downy mildew (DM) is considered to be the most destructive foliar disease that has spread to every major sunflower-growing country of the world, except Australia. A new dominant downy mildew resistance gene (Pl 18) transferred from wild Helianthus argophyllus (PI 494573) into cultivated sunflower was mapped to linkage group (LG) 2 of the sunflower genome using bulked segregant analysis with 869 simple sequence repeat (SSR) markers. Phenotyping 142 BC1F2:3 families derived from the cross of HA 89 and H. argophyllus confirmed the single gene inheritance of resistance. Since no other Pl gene has been mapped to LG2, this gene was novel and designated as Pl (18). SSR markers CRT214 and ORS203 flanked Pl(18) at a genetic distance of 1.1 and 0.4 cM, respectively. Forty-six single nucleotide polymorphism (SNP) markers that cover the Pl(18) region were surveyed for saturation mapping of the region. Six co-segregating SNP markers were 1.2 cM distal to Pl(18), and another four co-segregating SNP markers were 0.9 cM proximal to Pl(18). The new BC2F4-derived germplasm, HA-DM1, carrying Pl(18) has been released to the public. This new line is highly resistant to all Plasmopara halstedii races identified in the USA providing breeders with an effective new source of resistance against downy mildew in sunflower. The molecular markers that were developed will be especially useful in marker-assisted selection and pyramiding of Pl resistance genes because of their close proximity to the gene and the availability of high-throughput SNP detection assays.
Kawasaki, Eiji; Awata, Takuya; Ikegami, Hiroshi; Kobayashi, Tetsuro; Maruyama, Taro; Nakanishi, Koji; Shimada, Akira; Uga, Miho; Uga, Mho; Kurihara, Susumu; Kawabata, Yumiko; Tanaka, Shoichiro; Kanazawa, Yasuhiko; Lee, Inkyu; Eguchi, Katsumi
2006-03-15
The protein tyrosine phosphatase, nonreceptor 22 gene (PTPN22) maps to human chromosome 1p13.3-p13.1 and encodes an important negative regulator of T-cell activation, lymphoid-specific phosphatase (Lyp). Recently, the minor allele of a single-nucleotide polymorphism (SNP) at nucleotide position 1858 (rs2476601, +1858C > T) was found to be associated with type 1 diabetes. However, the degree of the association is variable among ethnic populations, suggesting the presence of other disease-associated variants in PTPN22. To examine this possibility, we carried out a systemic search for PTPN22 using direct sequencing of PCR-amplified products in the Japanese population. Association and linkage studies were also conducted in 1,690 Japanese samples, 180 Korean samples, and 472 Caucasian samples from 95 nuclear families. We identified five novel SNPs, but not the +1858C > T SNP. Of these two frequent SNPs, -1123G > C, and +2740C > T were in strong linkage disequilibrium (LD), and the -1123G > C promoter SNP was associated with acute-onset but not slow-onset type 1 diabetes in the Japanese population (odds ratio [OR] = 1.42, 95% CI = 1.07-1.89, P = 0.015). This association was observed also in Korean patients with type 1 diabetes (Mantel-Haenszel chi2= 6.543, P = 0.0105, combined OR = 1.41 95% CI = 1.09-1.82). Furthermore, the affected family-based control (AFBAC) association test and the transmission disequilibrium analysis of multiplex families of European descent from the British Diabetes Association (BDA) Warren Repository indicated that the association was stronger in -1123G > C compared to +1858C > T. In conclusion, the type 1 diabetes association with PTPN22 is confirmed, but it cannot be attributed solely to the +1858C > T variant. The promoter -1123G > C SNP is a more likely causative variant in PTPN22. 2006 Wiley-Liss, Inc.
Development of a spreadsheet for SNPs typing using Microsoft EXCEL.
Hashiyada, Masaki; Itakura, Yukio; Takahashi, Shirushi; Sakai, Jun; Funayama, Masato
2009-04-01
Single-nucleotide polymorphisms (SNPs) have some characteristics that make them very appropriate for forensic studies and applications. In our institute, SNPs typings were performed by the TaqMan SNP Genotyping Assays using the ABI PRISM 7500 FAST Real-Time PCR System (AppliedBiosystems) and Sequence Detection Software ver.1.4 (AppliedBiosystem). The TaqMan method was desired two positive control (Allele1 and 2) and one negative control to analyze each SNP locus. Therefore, it can be analyzed up to 24 loci of a person on a 96-well-plate at the same time. If SNPs analysis is expected to apply to biometrics authentication, 48 and over loci are required to identify a person. In this study, we designed a spreadsheet package using Microsoft EXCEL, and population data were used from our 120 SNPs population studies. On the spreadsheet, we defined SNP types using 'template files' instead of positive and negative controls. "Template files" consisted of the results of 94 unknown samples and two negative controls of each of 120 SNPs loci we had previously studied. By the use of the files, the spreadsheet could analyze 96 SNPs on a 96-wells-plate simultaneously.
FOXE1 Association with Differentiated Thyroid Cancer and Its Progression
Penna-Martinez, Marissa; Epp, Friederike; Kahles, Heinrich; Ramos-Lopez, Elizabeth; Hinsch, Nora; Hansmann, Martin-Leo; Selkinski, Ivan; Grünwald, Frank; Holzer, Katharina; Bechstein, Wolf O.; Zeuzem, Stefan; Vorländer, Christian
2014-01-01
Background: Single nucleotide polymorphisms (SNPs) near thyroid transcription factor genes (FOXE1 rs965513/NKX2-1 rs944289) have been shown to be associated with differentiated thyroid cancer (DTC) in Caucasoid populations. We investigated the role of those SNPs in German patients with DTC and also extended our analysis to tumor stages and lymphocytic infiltration of the tumors (ITL). Methods: Patients with DTC (n=243; papillary, PTC; follicular, FTC) and healthy controls (HC; n=270) were analyzed for the rs965513 and rs944289 SNPs. Results: The case-control analysis for rs965513 SNP showed that the genotypes “AA,” “AG,” and minor allele “A” were more frequent in patients with DTC than in HC (pronounced in PTC pgenotype=0.000084, pallele=0.006 than FTC pgenotype=0.29 and pallele=0.06). Furthermore, subgroup analysis of the DTC patients stratified for primary tumor stage (T1–T2, T3–T4), the absence or presence of regional lymph node metastases (N0, N1), for distant metastases (M0, M1), as well as for ITL, showed an association of rs965513 with stages T1–T2, T1–T3, N1, and absence of ITL. The NKX2-1 SNP rs944289, however, was not associated with DTC. Conclusion: Our results confirm that the FOXE1 rs965513 SNP confers an increased risk for DTC in the German population, particularly allele “A” and the genotypes “AA” and “AG” for PTC. This increased risk was also observed in advanced tumor stages and absence of ITL, which may reflect the course of a more aggressive disease. The NKX2-1 rs944289 SNP, however, appears to play a secondary role in the development of DTC in the German population. PMID:24325646