Solid-state single-photon emitters
NASA Astrophysics Data System (ADS)
Aharonovich, Igor; Englund, Dirk; Toth, Milos
2016-10-01
Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo
2017-12-13
Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.
Diamond-based single-photon emitters
NASA Astrophysics Data System (ADS)
Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.
2011-07-01
The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
Space-charge-limited solid-state triode
NASA Technical Reports Server (NTRS)
Shumka, A. (Inventor)
1975-01-01
A solid-state triode is provided from a wafer of nearinstrinsic semiconductor material sliced into filaments of rectangular cross section. Before slicing, emitter and collector regions are formed on the narrow sides of the filaments, and after slicing gate regions are formed in arrow strips extending longitudinally along the midsections of the wide sides of the filaments. Contacts are then formed on the emitter, collector and gate regions of each filament individually for a single filament device, or in parallel for an array of filament devices to increase load current.
Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters
NASA Astrophysics Data System (ADS)
Buterakos, Donovan; Barnes, Edwin; Economou, Sophia E.
2017-10-01
Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss.
NASA Astrophysics Data System (ADS)
Wein, Stephen; Lauk, Nikolai; Ghobadi, Roohollah; Simon, Christoph
2018-05-01
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Pérot hybrid cavity is an excellent candidate system.
Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.
Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter
2018-03-14
Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.
High efficiency and stable white OLED using a single emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian
2016-01-18
The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-basedmore » white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.« less
Room temperature solid-state quantum emitters in the telecom range.
Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo
2018-03-01
On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...
2017-09-26
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
Room temperature solid-state quantum emitters in the telecom range
Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam
2018-01-01
On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945
NASA Astrophysics Data System (ADS)
Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.
2018-02-01
Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2015-09-29
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J; Smith, David D
2014-12-16
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method or forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2014-08-12
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Rayleigh scattering in an emitter-nanofiber-coupling system
NASA Astrophysics Data System (ADS)
Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng
2017-04-01
Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.
Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian
2016-06-28
Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.
Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian
2016-01-01
Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159
Small slot waveguide rings for on-chip quantum optical circuits.
Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid
2017-03-06
Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.
Spectroscopy of Single AlInAs Quantum Dots
NASA Astrophysics Data System (ADS)
Derebezov, I. A.; Gaisler, A. V.; Gaisler, V. A.; Dmitriev, D. V.; Toropov, A. I.; Kozhukhov, A. S.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.
2018-03-01
A system of quantum dots based on Al x In1- x As/Al y Ga1- y As solid solutions is investigated. The use of Al x In1- x As wide-gap solid solutions as the basis of quantum dots substantially extends the spectral emission range to the short-wavelength region, including the wavelength region near 770 nm, which is of interest for the development of aerospace systems of quantum cryptography. The optical characteristics of Al x In1- x As single quantum dots grown by the Stranski-Krastanov mechanism were studied by cryogenic microphotoluminescence. The statistics of the emission of single quantum dot excitons was studied using a Hanbury Brown-Twiss interferometer. The pair photon correlation function indicates the sub-Poissonian nature of the emission statistics, which directly confirms the possibility of developing single-photon emitters based on Al x In1- x As quantum dots. The fine structure of quantum dot exciton states was investigated at wavelengths near 770 nm. The splitting of the exciton states is found to be similar to the natural width of exciton lines, which is of great interest for the development of entangled photon pair emitters based on Al x In1- x As quantum dots.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
Optical levitation of a microdroplet containing a single quantum dot.
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-15
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.
Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity
NASA Astrophysics Data System (ADS)
Herzog, T.; Sartison, M.; Kolatschek, S.; Hepp, S.; Bommer, A.; Pauly, C.; Mücklich, F.; Becher, C.; Jetter, M.; Portalupi, S. L.; Michler, P.
2018-07-01
Cavity quantum electrodynamics is widely used in many solid-state systems for improving quantum emitter performances or accessing specific physical regimes. For these purposes it is fundamental that the non-classical emitter, like a quantum dot or an NV center, matches the cavity mode, both spatially and spectrally. In the present work, we couple single photons stemming from In(Ga)As quantum dots into an open fiber-based Fabry–Pérot cavity. Such a system allows for reaching an optimal spatial and spectral matching for every present emitter and every optical transition, by precisely tuning the cavity geometry. In addition to that, the capability of deterministically and repeatedly locating a single quantum dot enables to compare the behavior of the quantum emitter inside the cavity with respect to before it is placed inside. The presented open-cavity system shows full flexibility by precisely tuning in resonance different QD transitions, namely excitons, biexcitons and trions. A measured Purcell enhancement of 4.4 ± 0.5 is obtained with a cavity finesse of about 140, while still demonstrating a single-photon source with vanishing multi-photon emission probability.
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk
2017-01-01
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097
Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...
2017-05-26
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less
NASA Astrophysics Data System (ADS)
Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe
2018-05-01
We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.
Solid state transport-based thermoelectric converter
Hu, Zhiyu
2010-04-13
A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.
Wiring up pre-characterized single-photon emitters by laser lithography
NASA Astrophysics Data System (ADS)
Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.
2016-08-01
Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.
Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.
Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun
2018-01-01
Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Guo-Zhu; Zhang, Mei; Ai, Qing
We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our schememore » is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.« less
A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues
2014-02-27
Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.
NASA Astrophysics Data System (ADS)
Zorn, Martin; Hülsewede, Ralf; Pietrzak, Agnieszka; Meusel, Jens; Sebastian, Jürgen
2015-03-01
Laser bars, laser arrays, and single emitters are highly-desired light sources e.g. for direct material processing, pump sources for solid state and fiber lasers or medical applications. These sources require high output powers with optimal efficiency together with good reliability resulting in a long lifetime of the device. Desired wavelengths range from 760 nm in esthetic skin treatment over 915 nm, 940 nm and 976 nm to 1030 nm for direct material processing and pumping applications. In this publication we present our latest developments for the different application-defined wavelengths in continuouswave operation mode. At 760nm laser bars with 30 % filling factor and 1.5 mm resonator length show optical output powers around 90-100 W using an optimized design. For longer wavelengths between 915 nm and 1030 nm laser bars with 4 mm resonator length and 50 % filling factor show reliable output powers above 200 W. The efficiency reached lies above 60% and the slow axis divergence (95% power content) is below 7°. Further developments of bars tailored for 940 nm emission wavelength reach output powers of 350 W. Reliable single emitters for effective fiber coupling having emitter widths of 90 μm and 195 μm are presented. They emit optical powers of 12 W and 24 W, respectively, at emission wavelengths of 915 nm, 940 nm and 976 nm. Moreover, reliability tests of 90 μm-single emitters at a power level of 12W currently show a life time over 3500 h.
Li, Xiaoshuang; Liu, Yu; Luo, Jian; Zhang, Zhiyong; Shi, Danyan; Chen, Qing; Wang, Yafei; He, Juan; Li, Jianming; Lei, Gangtie; Zhu, Weiguo
2012-03-14
To tune aggregation/excimer emission and obtain a single active emitter for white polymer light-emitting devices (PLEDs), a heterobimetallic Pt(II)-Ir(III) complex of FIr(pic)-C(6)DBC(6)-(pic)PtF was designed and synthesized, in which C(6)DBC(6) is a di(phenyloxyhexyloxy) bridging group, FIr(pic) is an iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore and FPt(pic) is a platinum(II) [(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore. Its physical and opto-electronic properties were investigated. Interestingly, the excimer emission was efficiently controlled by this heterobimetallic Pt(II)-Ir(III) complex compared to the PL profile of the mononuclear FPt(pic) complex in the solid state. Near-white emissions were obtained in the single emissive layer (SEL) PLEDs using this heterobimetallic Pt(II)-Ir(III) complex as a single dopant and poly(vinylcarbazole) as a host matrix at dopant concentrations from 0.5 wt% to 2 wt%. This work indicates that incorporating a non-planar iridium(III) complex into the planar platinum(II) complex can control aggregation/excimer emissions and a single phosphorescent emitter can be obtained to exhibit white emission in SEL devices.
NASA Astrophysics Data System (ADS)
Chatzidakis, Georgios D.; Yannopapas, Vassilios
2018-05-01
We present a new technique for the study of hybrid collections of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The technique is based on a multiple-scattering polaritonic-operator formalism in conjunction with an electromagnetic coupled dipole method. Apart from collections of quantum emitters and nanoparticles, the method can equally treat the interaction of a collection of quantum emitters with a single nano-object of arbitrary shape in which case the nano-object is treated as a finite three-dimensional lattice of point scatterers. We have applied our method to the case of linear array (chain) of dimers of quantum emitters and metallic nanoparticles wherein the corresponding (geometrical and physical) parameters of the dimers are chosen so as the interaction between the emitter and the nanoparticle lies in the strong-coupling regime in order to enable the formation of plexciton states in the dimer. In particular, for a linear chain of dimers, we show that the corresponding light spectra reveal a multitude of plexciton modes resulting from the hybridization of the plexciton resonances of each individual dimer in a manner similar to the tight-binding description of electrons in solids.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning
2005-01-01
Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.
Rare Earth Garnet Selective Emitter
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.
1994-01-01
Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, I.; Portolan, S.; Auffeves, A.
2011-12-15
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters' inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitter ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collectivemore » dark state, which is also very attractive for the storage of quantum information.« less
Single photon emission from plasma treated 2D hexagonal boron nitride.
Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor
2018-05-03
Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.
Enhanced photon indistinguishability in pulse-driven quantum emitters
NASA Astrophysics Data System (ADS)
Fotso, Herbert F.
2017-04-01
Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.
NASA Astrophysics Data System (ADS)
Lagomarsino, Stefano; Sciortino, Silvio; Gelli, Nicla; Flatae, Assegid M.; Gorelli, Federico; Santoro, Mario; Chiari, Massimo; Czelusniac, Caroline; Massi, Mirko; Taccetti, Francesco; Agio, Mario; Giuntini, Lorenzo
2018-05-01
The line for the pulsed beam of the 3 MeV Tandetron accelerator at LABEC (Florence) has been upgraded for ion implantation experiments aiming at the fabrication of single-photon emitters in a solid-state matrix. A system based on Al attenuators has been calibrated in order to extend the energy range of the implanted ions from MeV down to the tens of keV. A new motorized XY stage has been installed in the implantation chamber for achieving ultra-fine control on the position of each implanted ion, allowing to reach the scale imposed by lateral straggling. A set-up for the activation of the implanted ions has been developed, based on an annealing furnace operating under controlled high-vacuum conditions. The first experiments have been performed with silicon ions implanted in diamond and the luminescent signal of the silicon-vacancy (SiV) center, peaked at 738 nm, has been observed for a wide range of implantation fluences (108 ÷ 1015 cm-2) and implantation depths (from a few nm to 2.4 μm). Studies on the efficiency of the annealing process have been performed and the activation yield has been measured to range from 1% to 3%. The implantation and annealing facility has thus been tuned for the production of SiV centers in diamond, but is in principle suitable for other ion species and solid-state matrices.
Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide
NASA Astrophysics Data System (ADS)
Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco
2018-06-01
By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.
Nanophotonic enhanced quantum emitters
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea
2017-08-01
Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.
Silicon Mie resonators for highly directional light emission from monolayer MoS2
NASA Astrophysics Data System (ADS)
Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.
2018-05-01
Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.
Solid-state current transformer
NASA Technical Reports Server (NTRS)
Farnsworth, D. L. (Inventor)
1976-01-01
A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.
Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin
2018-06-13
Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.
Cooperative Effects in Closely Packed Quantum Emitters with Collective Dephasing
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Juan, M. L.; Romero-Isart, O.
2018-01-01
In a closely packed ensemble of quantum emitters, cooperative effects are typically suppressed due to the dephasing induced by the dipole-dipole interactions. Here, we show that by adding sufficiently strong collective dephasing, cooperative effects can be restored. Specifically, we show that the dipole force on a closely packed ensemble of strongly driven two-level quantum emitters, which collectively dephase, is enhanced in comparison to the dipole force on an independent noninteracting ensemble. Our results are relevant to solid-state systems with embedded quantum emitters such as color centers in diamond and superconducting qubits in microwave cavities and waveguides.
Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela
2010-01-01
Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.
NASA Astrophysics Data System (ADS)
Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.
2016-08-01
Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.
Tuning the photon statistics of a strongly coupled nanophotonic system
NASA Astrophysics Data System (ADS)
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Sapra, Neil V.; Vučković, Jelena
2017-02-01
We investigate the dynamics of single- and multiphoton emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of nonclassical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency filtering we are able to find a strong two-photon component of the emission in the multiphoton regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission in both the single- and multiphoton regimes. These models are then supported by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system.
NASA Astrophysics Data System (ADS)
Bhansali, Unnat S.
Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically, the commercially available and most commonly used Ir-based emitters suffer from triplet-triplet annihilation and self-quenching issues due to their long triplet excited lifetimes (˜1 mus). The performance of these OLEDs is hence very sensitive to the dopant concentration. On the other hand, Pt(ptp)2 is a self-sensitizing, fast phosphor with triplet lifetimes ~100 ns and near unity quantum yield at room temperature. We have demonstrated high peak efficiency yellow OLEDs from undoped (neat) thin films of the emitter complex (>30 lm/W) and near 100% Internal Quantum Efficiency (IQE) with faster radiative recombination rate than doped films, thus proving the existence of self-sensitization in electroluminescence. We have successfully combined the monomer emission (low dopant concentrations) and excimer emission of Pt(ptp)2 to achieve high CRI SWOLEDs using a 2-layer and a 3-layer graded-doping design. The best color metrics were a CRI=62 and a CCT = 3452 K for a WOLED with the highest power efficiency = 31.3 lm/W and EQE = 17.4%, representing excellent performance for single-emitter WOLEDs.
Material platforms for spin-based photonic quantum technologies
NASA Astrophysics Data System (ADS)
Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg
2018-05-01
A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.
Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.
2015-10-01
Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.
Output limitations to single stage and cascaded 2-2.5 mum light emitting diodes
NASA Astrophysics Data System (ADS)
Hudson, Andrew Ian
Since the advent of precise semiconductor engineering techniques in the 1960s, considerable effort has been devoted both in academia and private industry to the fabrication and testing of complex structures. In addition to other techniques, molecular beam epitaxy (MBE) has made it possible to create devices with single mono-layer accuracy. This facilitates the design of precise band structures and the selection of specific spectroscopic properties for light source materials. The applications of such engineered structures have made solid state devices common commercial quantities. These applications include solid state lasers, light emitting diodes and light sensors. Band gap engineering has been used to design emitters for many wavelength bands, including the short wavelength (SWIR) infrared region which ranges from 1.5 to 2.5mum. Practical devices include sensors operating in the 2-2.5mum range. When designing such a device, necessary concerns include the required bias voltage, operating current, input impedance and especially for emitters, the wall-plug efficiency. Three types of engineered structures are considered in this thesis. These include GaInAsSb quaternary alloy bulk active regions, GaInAsSb multiple quantum well devices (MQW) and GaInAsSb cascaded light emitting diodes. The three structures are evaluated according to specific standards applied to emitters of infrared light. The spectral profiles are obtained with photo or electro-luminescence, for the purpose of locating the peak emission wavelength. The peak wavelength for these specimens is in the 2.2-2.5mum window. The emission efficiency is determined by employing three empirical techniques: current/voltage (IV), radiance/current (LI), and carrier lifetime measurements. The first verifies that the structure has the correct electrical properties, by measuring among other parameters the activation voltage. The second is used to determine the energy efficiency of the device, including the wall-plug and quantum efficiencies. The last provides estimates of the relative magnitude of the Shockley Read Hall, radiative and Auger coefficients. These constants illustrate the overall radiative efficiency of the material, by noting comparisons between radiative and non-radiative recombination rates.
Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard
2015-06-01
Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.
Optical levitation of a microdroplet containing a single quantum dot
NASA Astrophysics Data System (ADS)
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-01
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
Photophysics of GaN single-photon emitters in the visible spectral range
NASA Astrophysics Data System (ADS)
Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor
2018-04-01
In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.
Optical devices featuring nonpolar textured semiconductor layers
Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua
2013-11-26
A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.
Electron-phonon interaction in efficient perovskite blue emitters
NASA Astrophysics Data System (ADS)
Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.
2018-06-01
Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.
SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.Y.; Guatelli, S; Oborn, B
2014-06-01
Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less
Coulomb-coupled quantum-dot thermal transistors
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan
2018-04-01
A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.
High brightness fiber laser pump sources based on single emitters and multiple single emitters
NASA Astrophysics Data System (ADS)
Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas
2008-02-01
Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.
III-V quantum light source and cavity-QED on silicon.
Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.
Robustness of edge states in topological quantum dots against global electric field
NASA Astrophysics Data System (ADS)
Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen
2017-07-01
The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Electro-optic routing of photons from a single quantum dot in photonic integrated circuits
NASA Astrophysics Data System (ADS)
Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren
2017-12-01
Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.
Single-photon non-linear optics with a quantum dot in a waveguide
NASA Astrophysics Data System (ADS)
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-10-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...
2018-01-29
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
2017-01-01
Single-photon nanoantennas are broadband strongly scattering nanostructures placed in the near field of a single quantum emitter, with the goal to enhance the coupling between the emitter and far-field radiation channels. Recently, great strides have been made in the use of nanoantennas to realize fluorescence brightness enhancements, and Purcell enhancements, of several orders of magnitude. This perspective reviews the key figures of merit by which single-photon nanoantenna performance is quantified and the recent advances in measuring these metrics unambiguously. Next, this perspective discusses what the state of the art is in terms of fluoresent brightness enhancements, Purcell factors, and directivity control on the level of single photons. Finally, I discuss future challenges for single-photon nanoantennas. PMID:29354664
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Nanogap near-field thermophotovoltaics.
Fiorino, Anthony; Zhu, Linxiao; Thompson, Dakotah; Mittapally, Rohith; Reddy, Pramod; Meyhofer, Edgar
2018-06-18
Conversion of heat to electricity via solid-state devices is of great interest and has led to intense research of thermoelectric materials 1,2 . Alternative approaches for solid-state heat-to-electricity conversion include thermophotovoltaic (TPV) systems where photons from a hot emitter traverse a vacuum gap and are absorbed by a photovoltaic (PV) cell to generate electrical power. In principle, such systems may also achieve higher efficiencies and offer more versatility in use. However, the typical temperature of the hot emitter remains too low (<1,000 K) to achieve a sufficient photon flux to the PV cell, limiting practical applications. Theoretical proposals 3-12 suggest that near-field (NF) effects 13-18 that arise in nanoscale gaps may be leveraged to increase the photon flux to the PV cell and significantly enhance the power output. Here, we describe functional NFTPV devices consisting of a microfabricated system and a custom-built nanopositioner and demonstrate an ~40-fold enhancement in the power output at nominally 60 nm gaps relative to the far field. We systematically characterize this enhancement over a range of gap sizes and emitter temperatures, and for PV cells with two different bandgap energies. We anticipate that this technology, once optimized, will be viable for waste heat recovery applications.
NASA Astrophysics Data System (ADS)
Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo
2018-07-01
More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Triarylborane-Based Materials for OLED Applications.
Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan
2017-09-13
Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED) applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing
The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less
NASA Astrophysics Data System (ADS)
Nayak, Kali P.; Sadgrove, Mark; Yalla, Ramachandrarao; Le Kien, Fam; Hakuta, Kohzo
2018-07-01
Recent advances in the coherent control of single quanta of light, photons, is a topic of prime interest, and is discussed under the banner of quantum photonics. In the last decade, the subwavelength diameter waist of a tapered optical fiber, referred to as an optical nanofiber, has opened promising new avenues in the field of quantum optics, paving the way toward a versatile platform for quantum photonics applications. The key feature of the technique is that the optical field can be tightly confined in the transverse direction while propagating over long distances as a guided mode and enabling strong interaction with the surrounding medium in the evanescent region. This feature has led to surprising possibilities to manipulate single atoms and fiber-guided photons, e.g. the efficient channeling of emission from single atoms and solid-state quantum emitters into the fiber-guided modes, high optical depth with a few atoms around the nanofiber, trapping atoms around a nanofiber, and atomic memories for fiber-guided photons. Furthermore, implementing a moderate longitudinal confinement in nanofiber cavities has enabled the strong coupling regime of cavity quantum electrodynamics to be reached, and the long-range dipole–dipole interaction between quantum emitters mediated by the nanofiber offers a platform for quantum nonlinear optics with an ensemble of atoms. In addition, the presence of a longitudinal component of the guided field has led to unique capabilities for chiral light–matter interactions on nanofibers. In this article, we review the key developments of the nanofiber technology toward a vision for quantum photonics on an all-fiber interface.
Plasma shape control by pulsed solenoid on laser ion source
NASA Astrophysics Data System (ADS)
Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.
2015-09-01
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.
Intrinsic white-light emission from layered hybrid perovskites.
Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I
2014-09-24
We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.
Plasma shape control by pulsed solenoid on laser ion source
Sekine, M.; Ikeda, S.; Romanelli, M.; ...
2015-05-28
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less
III–V quantum light source and cavity-QED on Silicon
Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621
Suppressing spectral diffusion of emitted photons with optical pulses
Fotso, H. F.; Feiguin, A. E.; Awschalom, D. D.; ...
2016-01-22
In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy center in diamond as an example, we show that only several pulses, with the width of 1more » ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. As a result, our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.« less
Terahertz Emitter Based on Frequency Mixing in Microchip Solid-State Laser Cavity
2011-09-09
crystals” Applied Physics Letterrs 64, 1324 (1994). 7. Takayuki Shibuya, Takuya Akiba, Koji Suizu, Hirohisa Uchida, Chiko Otani, and Kodo Kawase...thin films”, Journal of Applied Physics 108, 044310 (2010) 23. Takayuki Shibuya, Takuya Akiba, Koji Suizu, Hirohisa Uchida, Chiko Otani, and Kodo
Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles
Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei
2017-01-01
Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level—a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (∼50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers. PMID:28090078
Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles
NASA Astrophysics Data System (ADS)
Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei
2017-01-01
Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.
NASA Astrophysics Data System (ADS)
Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.
2017-05-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.
Demonstrating the Light-Emitting Diode.
ERIC Educational Resources Information Center
Johnson, David A.
1995-01-01
Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)
NASA Astrophysics Data System (ADS)
Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.
2018-04-01
In a preceding paper we introduced a formalism to study the scattering of low-intensity fields from a system of multilevel emitters embedded in a three-dimensional (3 D ) dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multilevel quantum emitter coupled to a one-dimensional (1 D ) waveguide. The reduction of the photon-scattering relation to 1 D waveguides provides a direct solution of the scattering problem involving low-intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multilevel emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photodetection in the waveguide architecture. We show this by considering a specific problem of state generation by photodetection in a multilevel emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the 1 D results apply to a plethora of physical systems such as atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a 1 D waveguide or transmission line.
NASA Astrophysics Data System (ADS)
Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.
2017-12-01
The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.
NASA Astrophysics Data System (ADS)
Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg
2018-05-01
Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.
Ultra High p-doping Material Research for GaN Based Light Emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Dmitriev
2007-06-30
The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.« less
Single photon emitters in boron nitride: More than a supplementary material
NASA Astrophysics Data System (ADS)
Koperski, M.; Nogajewski, K.; Potemski, M.
2018-03-01
We present comprehensive optical studies of recently discovered single photon sources in boron nitride, which appear in form of narrow lines emitting centres. Here, we aim to compactly characterise their basic optical properties, including the demonstration of several novel findings, in order to inspire discussion about their origin and utility. Initial inspection reveals the presence of narrow emission lines in boron nitride powder and exfoliated flakes of hexagonal boron nitride deposited on Si/SiO2 substrates. Generally rather stable, the boron nitride emitters constitute a good quality visible light source. However, as briefly discussed, certain specimens reveal a peculiar type of blinking effects, which are likely related to existence of meta-stable electronic states. More advanced characterisation of representative stable emitting centres uncovers a strong dependence of the emission intensity on the energy and polarisation of excitation. On this basis, we speculate that rather strict excitation selectivity is an important factor determining the character of the emission spectra, which allows the observation of single and well-isolated emitters. Finally, we investigate the properties of the emitting centres in varying external conditions. Quite surprisingly, it is found that the application of a magnetic field introduces no change in the emission spectra of boron nitride emitters. Further analysis of the impact of temperature on the emission spectra and the features seen in second-order correlation functions is used to provide an assessment of the potential functionality of boron nitride emitters as single photon sources capable of room temperature operation.
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
Hirsch, Gregory
2017-02-22
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Concepts for high efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Hunze, A.; Krause, R.; Seidel, S.; Weiss, O.; Kozlowski, F.; Schmid, G.; Meyer, J.; Kröger, M.; Johannes, H. H.; Kowalsky, W.; Dobbertin, T.
2007-09-01
Apart from usage of organic light emitting diodes for flat panel display applications OLEDs are a potential candidate for the next solid state lighting technology. One key parameter is the development of high efficient, stable white devices. To realize this goal there are different concepts. Especially by using highly efficient phosphorescent guest molecules doped into a suitable host material high efficiency values can be obtained. We started our investigations with a single dopant and extended this to a two phosphorescent emitter approach leading to a device with a high power efficiency of more than 25 lm/W @ 1000 cd/m2. The disadvantage of full phosphorescent device setups is that esp. blue phosphorescent emitters show an insufficient long-term stability. A possibility to overcome this problem is the usage of more stable fluorescent blue dopants, whereas, due to the fact that only singlet excitons can decay radiatively, the efficiency is lower. With a concept, proposed by Sun et al.1 in 2006, it is possible to manage the recombination zone and thus the contribution from the different dopants. With this approach stable white color coordinates with sufficient current efficiency values have been achieved.
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Superresolution Microscopy of Single Rare-Earth Emitters in YAG and H 3 Centers in Diamond
NASA Astrophysics Data System (ADS)
Kolesov, R.; Lasse, S.; Rothfuchs, C.; Wieck, A. D.; Xia, K.; Kornher, T.; Wrachtrup, J.
2018-01-01
We demonstrate superresolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is ≈50 nm . Similar results were obtained on H 3 color centers in diamond. In both cases, STED resolution is improving slower than the conventional inverse square-root dependence on the depletion beam intensity. In the proposed model of this effect, the anomalous behavior is caused by excited state absorption and the interaction of the emitter with nonfluorescing crystal defects in its local surrounding.
Hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2016-04-12
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.
High-Power Broad-Area Diode Lasers and Laser Bars
NASA Astrophysics Data System (ADS)
Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens
This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.
Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.
2014-01-01
Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
Variable Emittance Electrochromic Devices for Satellite Thermal Control
NASA Astrophysics Data System (ADS)
Demiryont, Hulya; Shannon, Kenneth C.
2007-01-01
An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.
High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.
Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E
2015-08-12
Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.
Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME
NASA Astrophysics Data System (ADS)
Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.
2017-07-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.
Remote detection of single emitters via optical waveguides
NASA Astrophysics Data System (ADS)
Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert
2014-05-01
The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.
NASA Astrophysics Data System (ADS)
Luo, Dongxiang; Xiao, Ye; Hao, Mingming; Zhao, Yu; Yang, Yibin; Gao, Yuan; Liu, Baiquan
2017-02-01
Doping-free white organic light-emitting diodes (DF-WOLEDs) are promising for the low-cost commercialization because of their simplified device structures. However, DF-WOLEDs reported thus far in the literature are based on the use of blue single molecular emitters, whose processing can represent a crucial point in device manufacture. Herein, DF-WOLEDs without the blue single molecular emitter have been demonstrated by managing a blue exciplex system. For the single-molecular-emitter (orange or yellow emitter) DF-WOLEDs, (i) a color rendering index (CRI) of 81 at 1000 cd/m2 can be obtained, which is one of the highest for the single-molecular-emitter WOLEDs, or (ii) a high efficiency of 35.4 lm/W can be yielded. For the dual-molecular-emitter (yellow/red emitters) DF-WOLED, a high CRI of 85 and low correlated color temperature of 2376 K at 1000 cd/m2 have been simultaneously achieved, which has not been reported by previous DF-WOLEDs. Such presented findings may unlock an alternative avenue to the simplified but high-performance WOLEDs.
High power fiber coupled diode lasers for display and lighting applications
NASA Astrophysics Data System (ADS)
Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens
2017-02-01
The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.
Method of manufacturing a hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2017-02-07
A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.
Chikkaraddy, Rohit; Turek, V A; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F; Baumberg, Jeremy J
2018-01-10
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 10 3 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D
2017-12-01
The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250 ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.
Efficient room-temperature source of polarized single photons
Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.
2007-08-07
An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.
Optical Measurements on Solid Specimens of Solid Rocket Motor Exhaust and Solid Rocket Motor Slag
NASA Technical Reports Server (NTRS)
Roberts, F. E., III
1991-01-01
Samples of aluminum slag were investigated to aid the Earth Science and Applications Division at the Marshall Space Flight Center (MSFC). Alumina from space motor propellant exhaust and space motor propellant slag was examined as a component of space refuse. Thermal emittance and solar absorptivity measurements were taken to support their comparison with reflectance measurements derived from actual debris. To determine the similarity between the samples and space motor exhaust or space motor slag, emittance and absorbance results were correlated with an examination of specimen morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jeremy Benjamin
2014-07-01
In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail
2016-11-01
We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.
Reappraisal of solid selective emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1990-01-01
New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.
Ilic, Ognjen; Jablan, Marinko; Joannopoulos, John D; Celanovic, Ivan; Soljacić, Marin
2012-05-07
Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 – 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14 W/cm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120) W/cm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to-electricity conversion devices.
Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions
NASA Astrophysics Data System (ADS)
Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.
Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.
2015-11-23
Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1,2,3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate thatmore » colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.« less
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.
2015-11-23
Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1, 2, 3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. Wemore » demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.« less
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.; Jean, Joel; Geva, Nadav; Welborn, Matthew; van Voorhis, Troy; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.
2016-01-01
Optical upconversion via sensitized triplet-triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.
2017-01-01
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale. PMID:29166033
NASA Astrophysics Data System (ADS)
Chikkaraddy, Rohit; Turek, V. A.; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F.; Baumberg, Jeremy J.
2018-01-01
Fabricating nanocavities in which optically-active single quantum emitters are precisely positioned, is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore, and obtain enhancements of $\\geq4\\times10^3$ with high quantum yield ($\\geq50$%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of $\\pm1.5$ nm. Our approach introduces a straightforward non-invasive way to measure and quantify confined optical modes on the nanoscale.
New Materials and Device Designs for Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
O'Brien, Barry Patrick
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
Non-blinking single-photon emitters in silica
Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; ...
2016-02-19
Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less
Dendron-functionalized perylenes for red luminescent materials
NASA Astrophysics Data System (ADS)
Pan, Jianfeng; Zhu, Weihong; Li, Shangfeng; Tian, He
2005-01-01
This paper presents a novel series of dendrimers containing perylene diimide cores, Fréchet-type poly(arylether) dendrons, and peripheral functional units such as hole-transporting groups (carbazole) via a convergent synthetic approach with three generation. The higher generation dendrimer has an obvious site-isolation effect or dilution effect of dendrons, which results in a relatively small red-shift of absorption and emission spectra when they form a solid thin film for applications. The interactions between peripheral units and perylene diimide core in the dendrimers are studied by fluorescence spectra. The steady-state fluorescence shows there is no effective Förster intramolecular energy transfer. DSC results indicate that the incorporation of Fréchet-type poly(arylether) dendrons can improve the amorphous property and increase glass transition temperature (Tg). The preliminary EL results with a single-layer architecture demonstrate that these dendrimers could be utilized as a promising kind of active red luminescent emitters.
NASA Astrophysics Data System (ADS)
Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter
2018-05-01
As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.
High-brightness 800nm fiber-coupled laser diodes
NASA Astrophysics Data System (ADS)
Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior
2014-03-01
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.
Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function
NASA Astrophysics Data System (ADS)
Moerner, W. E.
2011-03-01
Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on a double-helix point spread function enables quantitative tracking of single mRNA particles in living yeast cells with 15 ms time resolution and 25-50 nm spatial precision (PNAS {107}, 17864 (2010)). These examples illustrate the power of single-molecule optical imaging in extracting new structural and functional information in living cells.
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D
2017-01-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219
A topological quantum optics interface
NASA Astrophysics Data System (ADS)
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-01
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing.
A high-temperature single-photon source from nanowire quantum dots.
Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak
2008-12-01
We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.
Single-molecule strong coupling at room temperature in plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.
2016-07-01
Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
1984-08-15
for the Same Signal 30 3 -1 Schematic Diagrams of Two Configurations with SOI/ CMOS and Bipolar Devices Fabricated on the Same Si Wafer. The Bipolar...Waveform of 39-Stage SOI/ CMOS Ring Oscillator for 5-V Supply Voltage. The Propagation Delay per Stage is 藨 ps 33 3 -4 Common-Emitter I-V...multiple beam splitters and delay lines. 3 . MATERIALS RESEARCH Two merged CMOS ! bipolar technologies utilizing S01 films have been developed for
Vacancy-impurity centers in diamond: prospects for synthesis and applications
NASA Astrophysics Data System (ADS)
Ekimov, E. A.; Kondrin, M. V.
2017-06-01
The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
Operating single quantum emitters with a compact Stirling cryocooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlehahn, A.; Krüger, L.; Gschrey, M.
2015-01-15
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, wemore » perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.« less
Operating single quantum emitters with a compact Stirling cryocooler.
Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S
2015-01-01
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
Huckaba, Aron J; Cao, Bei; Hollis, T Keith; Valle, Henry U; Kelly, John T; Hammer, Nathan I; Oliver, Allen G; Webster, Charles Edwin
2013-06-28
The recently reported metallation/transmetallation route for the synthesis of CCC-bis(NHC) pincer ligand architectures was extended to 1,3-bis(3'-(trimethylsilylmethyl)-benzimidizol-1'-yl)benzene. The precursor was metallated with Zr(NMe2)4 and transmetallated to Pt using [Pt(COD)Cl2]. This Pt complex was found to resist photobleaching under UV irradiation in ambient conditions. Density functional theory (DFT) computations were used to generate the emission spectrum of the complex and reveal that this spectrum is the result of a transition from the triplet excited state (T1) to the ground state (S0). The Pt complex's molecular structure was determined by X-ray crystallography. The UV-vis absorption and emission spectra in solution and the solid-state emission spectra are reported. The solid-state photostability data and the radiative lifetime is also reported.
Universal photonic quantum computation via time-delayed feedback
Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.
2017-01-01
We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057
Localization of Narrowband Single Photon Emitters in Nanodiamonds.
Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor
2016-03-23
Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.
Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Knorr, Andreas; Milde, Frank
2013-10-01
Solid state-based light emitters such as semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction. In contrast to optics with isolated atomic systems, in the solid-state dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle toward stable performances in experiments and applications. In this theoretical model study we show that this is not necessarily the case. In fact, in certain parameter regimes, the memory of the solid-state environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath can exhibit a stabilizing effect on the coherent QD cavity-quantum electrodynamics by inhibiting irregular oscillations and allowing for regular collapse and revival patterns. For self-assembled GaAs/InAs QDs at low photon numbers we predict dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Even if the required sample parameters are not yet available in recent experimental achievements, we believe our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.
Exploring quantum thermodynamics in continuous measurement of superconducting qubits
NASA Astrophysics Data System (ADS)
Murch, Kater
The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.
Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System
NASA Astrophysics Data System (ADS)
Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.
Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.
2018-03-01
Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.
NASA Astrophysics Data System (ADS)
Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.
2014-05-01
Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.
Wavelength locking of single emitters and multi-emitter modules: simulation and experiments
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe
2016-03-01
Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Brunner, Fabian; Martínez-Sarti, Laura; Keller, Sarah; Pertegás, Antonio; Prescimone, Alessandro; Constable, Edwin C; Bolink, Henk J; Housecroft, Catherine E
2016-09-27
A series of heteroleptic [Cu(N^N)(P^P)][PF 6 ] complexes is described in which P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyridine substituted in the 4-position of the phenyl groups with atom X (N^N = 1 has X = F, 2 has X = Cl, 3 has X = Br, 4 has X = I; the benchmark N^N ligand with X = H is 5). These complexes have been characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses and cyclic voltammetry; representative single crystal structures are also reported. The solution absorption spectra are characterized by high energy bands (arising from ligand-centred transitions) which are red-shifted on going from X = H to X = I, and a broad metal-to-ligand charge transfer band with λ max in the range 387-395 nm. The ten complexes are yellow emitters in solution and yellow or yellow-orange emitters in the solid-state. For a given N^N ligand, the solution photoluminescence (PL) spectra show no significant change on going from [Cu(N^N)(POP)] + to [Cu(N^N)(xantphos)] + ; introducing the iodo-functionality into the N^N domain leads to a red-shift in λ compared to the complexes with the benchmark N^N ligand 5. In the solid state, [Cu(1)(POP)][PF 6 ] and [Cu(1)(xantphos)][PF 6 ] (fluoro-substituent) exhibit the highest PL quantum yields (74 and 25%, respectively) with values of τ 1/2 = 11.1 and 5.8 μs, respectively. Light-emitting electrochemical cells (LECs) with [Cu(N^N)(P^P)][PF 6 ] complexes in the emissive layer have been tested. Using a block-wave pulsed current driving mode, the best performing device employed [Cu(1)(xantphos)] + and this showed a maximum luminance (Lum max ) of 129 cd m -2 and a device lifetime (t 1/2 ) of 54 h; however, the turn-on time (time to reach Lum max ) was 4.1 h. Trends in performance data reveal that the introduction of fluoro-groups is beneficial, but that the incorporation of heavier halo-substituents leads to poor devices, probably due to a detrimental effect on charge transport; LECs with the iodo-functionalized N^N ligand 4 failed to show any electroluminescence after 50 h.
Single-Photon Emitters in Boron Nitride Nanococoons.
Ziegler, Joshua; Blaikie, Andrew; Fathalizadeh, Aidin; Miller, David; Yasin, Fehmi S; Williams, Kerisha; Mohrhardt, Jordan; McMorran, Benjamin J; Zettl, Alex; Alemán, Benjamín
2018-04-11
Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter. We determined the emission source to be the nanometer-size BNNC through the cross-correlation of optical confocal microscopy with high-resolution scanning and transmission electron microscopy. Altogether, this discovery enlivens color centers in BN materials and, because of the BN nanococoon's size, opens new and exciting opportunities in nanophotonics, quantum information, biological imaging, and nanoscale sensing.
Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie
2014-01-01
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle. PMID:24921337
Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie
2014-05-19
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.
Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin
2018-06-01
Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.
Localised excitation of a single photon source by a nanowaveguide.
Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe
2016-01-29
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.
Localised excitation of a single photon source by a nanowaveguide
Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe
2016-01-01
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999
Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo
2017-07-12
Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.
Coherent beam combining architectures for high power tapered laser arrays
NASA Astrophysics Data System (ADS)
Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.
2017-02-01
Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.
Reliability study of high-brightness multiple single emitter diode lasers
NASA Astrophysics Data System (ADS)
Zhu, Jing; Yang, Thomas; Zhang, Cuipeng; Lang, Chao; Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Guo, Weirong; Jiang, Yuhua; Liu, Yang; Zhang, Luyan; Chen, Louisa
2015-03-01
In this study the chip bonding processes for various chips from various chip suppliers around the world have been optimized to achieve reliable chip on sub-mount for high performance. These chip on sub-mounts, for examples, includes three types of bonding, 8xx nm-1.2W/10.0W Indium bonded lasers, 9xx nm 10W-20W AuSn bonded lasers and 1470 nm 6W Indium bonded lasers will be reported below. The MTTF@25 of 9xx nm chip on sub-mount (COS) is calculated to be more than 203,896 hours. These chips from various chip suppliers are packaged into many multiple single emitter laser modules, using similar packaging techniques from 2 emitters per module to up to 7 emitters per module. A reliability study including aging test is performed on those multiple single emitter laser modules. With research team's 12 years' experienced packaging design and techniques, precise optical and fiber alignment processes and superior chip bonding capability, we have achieved a total MTTF exceeding 177,710 hours of life time with 60% confidence level for those multiple single emitter laser modules. Furthermore, a separated reliability study on wavelength stabilized laser modules have shown this wavelength stabilized module packaging process is reliable as well.
Coherent interaction of single molecules and plasmonic nanowires
NASA Astrophysics Data System (ADS)
Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg
2017-09-01
Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Eirin, E-mail: esulliv@ilstu.edu; Avdeev, Maxim; Blom, Douglas A.
2015-10-15
Single-phase ordered oxyfluorides Na{sub 3}WO{sub 4}F, Na{sub 3}MoO{sub 4}F and their mixed members Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F can be prepared via facile solid state reaction of Na{sub 2}MO{sub 4}·2H{sub 2}O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na{sub 3}WO{sub 4}F and Na{sub 3}MoO{sub 4}F exhibit broad emission maxima centered around 485 nm. Thesemore » materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu{sup 3+}. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F has broad emissions centered ≈485 nm (λ{sub ex}=254 nm and λ{sub ex}=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F materials are amenable to doping with emitters such as Eu{sup 3+}.« less
High-performance organic light-emitting diodes comprising ultrastable glass layers
Rodríguez-Viejo, Javier
2018-01-01
Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029
NASA Astrophysics Data System (ADS)
Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.
2018-05-01
Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.
Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min
2016-06-08
The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters ( including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring themore » underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. Lastly, this study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen vacancy centres that use these freestanding hybrid nanostructures as building blocks.« less
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
NASA Astrophysics Data System (ADS)
Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min
2016-06-01
The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.
Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian
2015-12-30
Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.
Multi-spectral investigation of bulk and facet failures in high-power single emitters at 980 nm
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Shamay, Moshe; Cohen, Shalom; Shkedy, Lior; Berk, Yuri; Tessler, Renana; Klumel, Genadi; Rappaport, Noam; Karni, Yoram
2013-03-01
Reliable single emitters delivering >10W in the 9xx nm spectral range, are common building blocks for fiber laser pumps. As facet passivation techniques can suppress or delay catastrophic optical mirror damage (COMD) extending emitter reliability into hundreds of thousands of hours, other, less dominant, failure modes such as intra-chip catastrophic optical bulk damage (COBD) become apparent. Based on our failure statistics in high current operation, only ~52% of all failures can be attributed to COMD. Imaging through a window opened in the metallization on the substrate (n) side of a p-side down mounted emitter provides valuable insight into both COMD and COBD failure mechanisms. We developed a laser ablation process to define a window on the n-side of an InGaAs/AlGaAs 980nm single emitter that is overlaid on the pumped 90μm stripe on the p-side. The ablation process is compatible with the chip wire-bonding, enabling the device to be operated at high currents with high injection uniformity. We analyzed both COMD and COBD failed emitters in the electroluminescence and mid-IR domains supported by FIB/SEM observation. The ablated devices revealed branching dark line patterns, with a line origin either at the facet center (COMD case) or near the stripe edge away from the facet (COBD case). In both cases, the branching direction is always toward the rear facet (against the photon density gradient), with SEM images revealing a disordered active layer structure. Absorption levels between 0.22eV - 0.55eV were observed in disordered regions by FT-IR spectroscopy. Temperature mapping of a single emitter in the MWIR domain was performed using an InSb detector. We also report an electroluminescence study of a single emitter just before and after failure.
Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard
2017-10-11
Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.
Transport and collective radiance in a basic quantum chiral optical model
NASA Astrophysics Data System (ADS)
Kornovan, D. F.; Petrov, M. I.; Iorsh, I. V.
2017-09-01
In our work, we theoretically study the dynamics of a single excitation in a one-dimensional array of two-level systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state, which is well known to be superradiant, has twice lower emission rate in the case of unidirectional quantum interaction. Our model is supported and verified with the numerical computations of quantum emitters coupled via surface plasmon modes in a metallic nanowire. The obtained results are based on a very general model and can be applied to any chirally coupled system that gives a new outlook on quantum transport in chiral nanophotonics.
White-Light Emission from Layered Halide Perovskites.
Smith, Matthew D; Karunadasa, Hemamala I
2018-03-20
With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the exciton couples strongly to the lattice, creating transient elastic lattice distortions that can be viewed as "excited-state defects". These deformations stabilize the exciton affording a broad emission with a large Stokes shift. Although material defects very likely contribute to the emission width, our mechanistic studies suggest that the emission mostly arises from the bulk material. Ultrafast spectroscopic measurements support self-trapping, with new, transient, electronic states appearing upon photoexcitation. Importantly, the broad emission appears common to layered Pb-Br and Pb-Cl perovskites, albeit with a strong temperature dependence. Although the emission is attributed to light-induced defects, it still reflects changes in the crystal structure. We find that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over the broad emission. Many of these perovskites have color rendering abilities that exceed commercial requirements and mixing halides affords both "warm" and "cold" white light. The most efficient white-light-emitting perovskite has a quantum efficiency of 9%. Improving this value will make these phosphors attractive for solid-state lighting, particularly as large-area coatings that can be deposited inexpensively. The emission mechanism can also be extended to other low-dimensional systems. We hope this Account aids in expanding the phase space of white-light emitters and controlling their exciton dynamics by the synthetic, spectroscopic, theoretical, and engineering communities.
Controlling the angular radiation of single emitters using dielectric patch nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuanqing; Li, Qiang; Qiu, Min, E-mail: minqiu@zju.edu.cn
2015-07-20
Dielectric nanoantennas have generated much interest in recent years owing to their low loss and optically induced electric and magnetic resonances. In this paper, we investigate the coupling between a single emitter and dielectric patch nanoantennas. For the coupled system involving non-spherical structures, analytical Mie theory is no longer applicable. A semi-analytical model is proposed instead to interpret the coupling mechanism and the radiation characteristics of the system. Based on the presented model, we demonstrate that the angular emission of the single emitter can be not only enhanced but also rotated using the dielectric patch nanoantennas.
2017-05-05
results of this project there are: (1) the investigation of the effect of phonons on the optical properties of solid state emitters. A microscopic ...In what follows we list the main results and undergoing research. 2. Results 2.1 Microscopic modeling...fluorescent markers for biological measurements. Here, we present a first-‐principles microscopic description
Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing
2018-03-14
Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.
A nanophotonic solar thermophotovoltaic device.
Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N
2014-02-01
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik
2015-01-01
Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442
Quantum metrology of spatial deformation using arrays of classical and quantum light emitters
NASA Astrophysics Data System (ADS)
Sidhu, Jasminder S.; Kok, Pieter
2017-06-01
We introduce spatial deformations to an array of light sources and study how the estimation precision of the interspacing distance d changes with the sources of light used. The quantum Fisher information (QFI) is used as the figure of merit in this work to quantify the amount of information we have on the estimation parameter. We derive the generator of translations G ̂ in d due to an arbitrary homogeneous deformation applied to the array. We show how the variance of the generator can be used to easily consider how different deformations and light sources can effect the estimation precision. The single-parameter estimation problem is applied to the array, and we report on the optimal state that maximizes the QFI for d . Contrary to what may have been expected, the higher average mode occupancies of the classical states performs better in estimating d when compared with single photon emitters (SPEs). The optimal entangled state is constructed from the eigenvectors of the generator and found to outperform all these states. We also find the existence of multiple optimal estimators for the measurement of d . Our results find applications in evaluating stresses and strains, fracture prevention in materials expressing great sensitivities to deformations, and selecting frequency distinguished quantum sources from an array of reference sources.
Controlling the gain contribution of background emitters in few-quantum-dot microlasers
NASA Astrophysics Data System (ADS)
Gericke, F.; Segnon, M.; von Helversen, M.; Hopfmann, C.; Heindel, T.; Schneider, C.; Höfling, S.; Kamp, M.; Musiał, A.; Porte, X.; Gies, C.; Reitzenstein, S.
2018-02-01
We provide experimental and theoretical insight into single-emitter lasing effects in a quantum dot (QD)-microlaser under controlled variation of background gain provided by off-resonant discrete gain centers. For that purpose, we apply an advanced two-color excitation concept where the background gain contribution of off-resonant QDs can be continuously tuned by precisely balancing the relative excitation power of two lasers emitting at different wavelengths. In this way, by selectively exciting a single resonant QD and off-resonant QDs, we identify distinct single-QD signatures in the lasing characteristics and distinguish between gain contributions of a single resonant emitter and a countable number of off-resonant background emitters to the optical output of the microlaser. Our work addresses the important question whether single-QD lasing is feasible in experimentally accessible systems and shows that, for the investigated microlaser, the single-QD gain needs to be supported by the background gain contribution of off-resonant QDs to reach the transition to lasing. Interestingly, while a single QD cannot drive the investigated micropillar into lasing, its relative contribution to the emission can be as high as 70% and it dominates the statistics of emitted photons in the intermediate excitation regime below threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
A topological quantum optics interface.
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-09
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Direct diode lasers and their advantages for materials processing and other applications
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael
2015-03-01
The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.
Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula
2017-06-01
Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.
2014-09-30
It is well known that the achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. In this report we systematically study the ion transmission and ionization efficiencies in different ESI-MS interface configurations. The configurations under investigation include a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interfaces with a single emitter and an emitter array, respectively. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuringmore » the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Our experimental results suggest that the overall ion utilization efficiency in the SPIN-MS interface configurations is better than that in the inlet capillary based ESI-MS interface configurations.« less
Weston, Kenneth D; Dyck, Martina; Tinnefeld, Philip; Müller, Christian; Herten, Dirk P; Sauer, Markus
2002-10-15
A simple new approach is described and demonstrated for measuring the number of independent emitters along with the fluorescence intensity, lifetime, and emission wavelength for trajectories and images of single molecules and multichromophoric systems using a single PC plug-in card for time-correlated single-photon counting. The number of independent emitters present in the detection volume can be determined using the interphoton times in a manner similar to classical antibunching experiments. In contrast to traditional coincidence analysis based on pulsed laser excitation and direct measurement of coincident photon pairs using a time-to-amplitude converter, the interphoton distances are retrieved afterward by recording the absolute arrival time of each photon with nanosecond time resolution on two spectrally separated detectors. Intensity changes that result from fluctuations of a photophysical parameter can be distinguished from fluctuations due to changes in the number of emitters (e.g., photobleaching) in single chromophore and multichromophore intensity trajectories. This is the first report to demonstrate imaging with contrast based on the number of independently emitting species within the detection volume.
NASA Astrophysics Data System (ADS)
Boichenko, Stepan
2018-04-01
We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Rosser, Ethan W.; Zhang, Di
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
Analysis of lasers as a solution to efficiency droop in solid-state lighting
Chow, Weng W.; Crawford, Mary H.
2015-10-06
This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less
Liu, Li-Ping; Li, Qian; Xiang, Song-Po; Liu, Li; Zhong, Xin-Xin; Liang, Chen; Li, Guang Hua; Hayat, Tasawar; Alharbi, Njud S; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Qin, Hai-Mei; Wang, Lei
2018-06-07
Recently, highly emissive neutral copper halide complexes have received much attention. Here, a series of four-coordinate mononuclear Cu(i) halide complexes, [CuX(dpqu)(dpna)] (dpqu = 8-(diphenylphosphino)quinoline, dpna = 1-(diphenylphosphino)naphthalene, X = I (1), Br (2) and Cl (3)), were synthesized, and their molecular structures and photophysical properties were investigated. These complexes exhibit near-saturated red emission in the solid state at room temperature and have peak emission wavelengths at 669-691 nm with microsecond lifetimes (τ = 0.46-1.80 μs). Small S1-T1 energy gaps in the solid state indicate that the emission occurs from a thermally activated excited singlet state at ambient temperature. The emission of the complexes 1-3 mainly originates from MLCT transition. The solution-processed devices of complex 1 exhibit stable red emission with a CIE(x, y) of (0.62, 0.38) for a doped device and (0.63, 0.37) for a non-doped device.
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
Analysis of translucent and opaque photocathodes.
Sizelove, J R; Love Iii, J A
1966-09-01
By an analysis of the photodetection process, the response of photodetectors to wide band, noncoherent light and guidelines for its improvement are determined. In this paper, the phenomenon of multiple reflections within the emitter of a reflecting-translucent and a reflecting-opaque photocathode is analyzed. Geometrical and optical configurations and solid state parameters are evaluated in terms of their effect on the photodetection process. The quantum yield, the percent of incident light absorbed, and the collection efficiency are determined as functions of the thickness of the emitting layer. These results are then employed to suggest areas of improvement in the use of state-of-the-art photocathodes.
Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-11-15
An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1993-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.
Quasi-Solid-State Single-Atom Transistors.
Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas
2018-06-21
The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0 = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Boutsidis, Christos
In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of photon antibunching from emitters doped in each of these structures. These experimental observations include photon antibunching from: nanocrystal quantum dots and nanodiamond color-centers doped in a cholesteric microcavity; terrylene and DiIC 18(3) dye molecules doped in nematic structures, and nanocrystal quantum dots doped in the distributed Bragg reflector microcavity. A value of the zero-time second-order coherence as low as g(2)(0) = 0.001 +/- 0.03 was measured. These results represent an important step forward in the realization of room temperature single-photon sources with definite polarization for secure quantum communication.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K
2018-06-13
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...
2018-05-21
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
NASA Technical Reports Server (NTRS)
Hapke, Bruce
1996-01-01
Several problems of interest in planetary infrared remote sensing are investigated using a new radiative-conductive model of energy transfer in regoliths: the solid-state greenhouse effect, thermal beaming, and reststrahlen spectra. The results of the analysis are as follows: (1) The solid-state greenhouse effect is self-limiting to a rise of a few tens of degrees in bodies of the outer solar system. (2) Non-Lambertian directional emissivity can account for only about 20% of the observed thermal beaming factor. The remainder must have another cause, presumably surface roughness effects. (3) The maximum in a reststrahlen emissivity spectrum does not occur exactly at the Christiansen wavelength where, by definition, the real part of the refractive index equals one, but rather at the first transition minimum in reflectance associated with the transition from particle scattering being dominated by volume scattering to that dominated by strong surface scattering. The transparency feature is at the second transition minimum and does not require the presence of a second band at longer wavelength for its occurance. Subsurface temperature gradients have only a small effect on emissivity bands.
Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters
NASA Astrophysics Data System (ADS)
Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor
2017-11-01
Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.
Generation of maximally entangled states and coherent control in quantum dot microlenses
NASA Astrophysics Data System (ADS)
Bounouar, Samir; de la Haye, Christoph; Strauß, Max; Schnauber, Peter; Thoma, Alexander; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan
2018-04-01
The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.
Proposal for a room-temperature diamond maser
Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao
2015-01-01
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758
Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei
2012-07-16
Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.; Tang, Keqi
2014-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations. PMID:25267087
On the ionization and ion transmission efficiencies of different ESI-MS interfaces.
Cox, Jonathan T; Marginean, Ioan; Smith, Richard D; Tang, Keqi
2015-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas-phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method, we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations.
Facility for assessing spectral normal emittance of solid materials at high temperature.
Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2015-10-10
Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 μm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 μm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.
Enhanced thermaly managed packaging for III-nitride light emitters
NASA Astrophysics Data System (ADS)
Kudsieh, Nicolas
In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .
Single Protein Structural Analysis with a Solid-state Nanopore Sensor
NASA Astrophysics Data System (ADS)
Li, Jiali; Golovchenko, Jene; McNabb, David
2005-03-01
We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.
Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan
2018-04-11
The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.
Emittance Measurements for a Thin Liquid Sheet Flow
NASA Technical Reports Server (NTRS)
Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.
1996-01-01
The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.
Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa
2007-03-16
We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.
NASA Astrophysics Data System (ADS)
Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.
2018-02-01
The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...
2014-03-28
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less
Rare earth garnet selective emitter
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.
1994-01-01
Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less
Recent Progress in Silicon-Based MEMS Field Emission Thrusters
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin
2005-02-01
The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster prototype has already been tested to demonstrate the proof-of-concept in laboratory-scale testing. In this paper we discuss progress that has been achieved in the past year on fabricating silicon-based MEMS In-FETs.
Measurement and evaluation of the radiative properties of a thin solid fuel
NASA Technical Reports Server (NTRS)
Pettegrew, Richard; Street, Kenneth; Pitch, Nancy; Tien, James; Morrison, Phillip
2003-01-01
Accurate modeling of combustion systems requires knowledge of the radiative properties of the system. Gas phase properties are well known, but detailed knowledge of surface properties is limited. Recent work has provided spectrally resolved data for some solid fuels, but only for the unburned material at room temperature, and for limited sets of previously burned and quenched samples. Due to lack of knowledge of the spectrally resolved properties at elevated temperatures, as well as processing limitations in the modeling effort, graybody values are typically used for the fuels surface radiative properties. However, the spectrally resolved properties for the fuels at room temperature can be used to give a first-order correction for temperature effects on the graybody values. Figure 1 shows a sample of the spectrally resolved emittance/absorptance for a thin solid fuel of the type commonly used in combustion studies, from approximately 2 to 20 microns. This plot clearly shows a strong spectral dependence across the entire range. By definition, the emittance is the ratio of the emitted energy to that of a blackbody at the same temperature. Therefore, to determine a graybody emittance for this material, the spectrally resolved data must be applied to a blackbody curve. The total area under the resulting curve is ratioed to the total area under the blackbody curve to yield the answer. Due to the asymmetry of the spectrally resolved emittance and the changing shape of the blackbody curve as the temperature increases, the relative importance of the emittance value at any given wavelength will change as a function of temperature. Therefore, the graybody emittance value for a given material will change as a function of temperature even if the spectral dependence of the radiative properties remains unchanged. This is demonstrated in Figures 2 and 3, which are plots of the spectrally resolved emittance for KimWipes (shown in Figure 1) multiplied by the blackbody curves for 300 K (Figure 2) and 800 K (Figure 3). Each figure also shows the blackbody curve for that temperature. Ratioing the areas under the curve for each of these figures give a graybody emittance of 0.64 at 300 K, and 0.46 at 800 K. It is recognized that materials undergoing pyrolysis will change in composition as they heat up, and that the radiative properties of the materials may have inherent temperature dependence. Both of these effects will contribute to changes in the radiative characteristics of a given material, and are not accounted for here. However, this paper demonstrates the temperature dependence of graybody radiative properties, and provides a method for a first-order correction (for temperature) to the graybody values if the spectrally resolved properties are known.
High-precision half-life measurements for the superallowed Fermi β+ emitter 14O
NASA Astrophysics Data System (ADS)
Laffoley, A. T.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Blank, B.; Bouzomita, H.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Ketelhut, S.; Leach, K. G.; Leslie, J. R.; Tardiff, E.; Thomas, J. C.; Unsworth, C.
2013-07-01
The half-life of the superallowed Fermi β+ emitter 14O has been determined via simultaneous direct β and γ counting experiments at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. A γ-ray counting measurement was performed by detecting the 2312.6-keV γ rays emitted from an excited state of the daughter 14N following the implantation of samples at the center of the 8π γ-ray spectrometer, a spherical array of 20 high-purity germanium (HPGe) detectors. A simultaneous β counting experiment was performed using a fast plastic scintillator positioned behind the implantation site with a solid angle coverage of ˜20%. The results, T1/2(β)=70.610±0.030s and T1/2(γ)=70.632±0.094s, form a consistent set and, together with eight previous measurements, establish a new average for the 14O half-life of T1/2=70.619±0.011s with a reduced χ2 of 0.99.
Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(II) complexes.
Tronnier, Alexander; Metz, Stefan; Wagenblast, Gerhard; Muenster, Ingo; Strassner, Thomas
2014-02-28
Since C^C* cyclometalated Pt(II) complexes with N-heterocyclic carbene (NHC) ligands have been identified as potential emitter materials in organic light-emitting devices (OLEDs), very promising results regarding quantum yields, colour and stability have been presented. Herein, we report on four nitrile substituted complexes with a chelating NHC ligand (1-(4-cyanophenyl)-3-isopropyl-1H-benzo[d]imidazole or 4-(tert-butyl)-1-(4-cyanophenyl)-3-methyl-1H-imidazole) and a bidentate monoanionic auxiliary ligand (acetylacetone or dimesitoylmethane). The complexes have been fully characterized including extensive 2D NMR studies (COSY, HSQC, HMBC, NOESY, (195)Pt NMR), three of them also by solid-state structures. Photophysical measurements in amorphous PMMA films and pure emitter films at room temperature reveal the impact of the mesityl groups in the auxiliary ligand, which led to a significant increase of the quantum yield, while the decay lifetimes decreased. The electron withdrawing nitrile groups shift the emission towards blue colour coordinates.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
NASA Astrophysics Data System (ADS)
Sun, Bo; Sun, Yong; Wang, Chengxin
2017-11-01
Due to the coexistence of metal- and ionic-bonds in a hexagonal tungsten carbide (WC) lattice, disparate electron behaviors were found in the basal plane and along the c-axial direction, which may create an interesting anisotropic mechanical and electrical performance. To demonstrate this, low-dimensional nanostructures such as nanowires and nanosheets are suitable for investigation because they usually grow in single crystals with special orientations. Herein, we report the experimental research regarding the anisotropic conductivity of [0001] grown WC nanowires and basal plane-expanded nanosheets, which resulted in a conductivity of 7.86 × 103 Ω-1 · m-1 and 7.68 × 104 Ω-1 · m-1 respectively. This conforms to the fact that the highly localized W d state aligns along the c direction, while there is little intraplanar directional bonding in the W planes. With advanced micro-manipulation technology, the conductivity of a nanowire was tested to be approximately constant, even under a considerable bending state. Moreover, the field electron emission of WC was evaluated based on large area emission and single nanowire (nanosheet) emission. A single nanowire exhibits a stable electron emission performance, which can output emission currents >3 uA before fusing. These results provide useful references to assess low-dimensional WC nanostructures as electronic materials in flexible devices, such as nanoscale interconnects and electron emitters.
High-quality beam generation using an RF gun and a 150 MeV microtron
NASA Astrophysics Data System (ADS)
Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.
2000-11-01
Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.
Microfluidic multiplexing of solid-state nanopores
NASA Astrophysics Data System (ADS)
Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit
2017-12-01
Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
Shimizu, Masaki
2015-02-01
The construction of a diorganosilylene bridge over a biaryl moiety at the 2,2'-positions is a versatile strategy for fine-tuning its HOMO-LUMO energy gap, which is closely linked to the electronic and optical properties of the compounds. Therefore, there is growing interest in the use of silicon-bridged biaryl motifs as key cores of various types of advanced functional materials, such as light-emitting, semiconducting, photovoltaic, and sensing materials. To accelerate the advances of materials based on silicon-bridged biaryls, it is essential to create new classes of biaryls and explore their functions and properties. This Personal Account describes recent research on the development of organic chromophores based on functionalized dibenzosiloles and 12H-indololo[3,2-d]naphtho[1,2-b][1]siloles as solid-state emitters. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Wei; Rosser, Ethan W.; Zhang, Di; ...
2015-05-11
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.
Müller, M; Vural, H; Schneider, C; Rastelli, A; Schmidt, O G; Höfling, S; Michler, P
2017-06-23
Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.
NASA Astrophysics Data System (ADS)
Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
EMIIM Wetting Properties & Their Effect on Electrospray Thruster Design
2012-03-01
tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface. Ideally this angle is a function of the...3 3 Picture of a Taylor cone formed at AFRL, note bubbles present. . . . . . . 3 4 Titanium electrode grids in use at AFRL...cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in Figure 3.[7] Emitters are precisely aligned with openings
Direct experimental observation of nonclassicality in ensembles of single-photon emitters
NASA Astrophysics Data System (ADS)
Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.
2017-11-01
In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.
Packaging of solid state devices
Glidden, Steven C.; Sanders, Howard D.
2006-01-03
A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.
High quality GaAs single photon emitters on Si substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bietti, S.; Sanguinetti, S.; Cavigli, L.
2013-12-04
We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.
NASA Astrophysics Data System (ADS)
Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan
2018-04-01
The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.
Unraveling mirror properties in time-delayed quantum feedback scenarios
NASA Astrophysics Data System (ADS)
Faulstich, Fabian M.; Kraft, Manuel; Carmele, Alexander
2018-06-01
We derive in the Heisenberg picture a widely used phenomenological coupling element to treat feedback effects in quantum optical platforms. Our derivation is based on a microscopic Hamiltonian, which describes the mirror-emitter dynamics based on a dielectric, a mediating fully quantized electromagnetic field and a single two-level system in front of the dielectric. The dielectric is modelled as a system of identical two-state atoms. The Heisenberg equation yields a system of describing differential operator equations, which we solve in the Weisskopf-Wigner limit. Due to a finite round-trip time between emitter and dielectric, we yield delay differential operator equations. Our derivation motivates and justifies the typical phenomenologicalassumed coupling element and allows, furthermore, a generalization to a variety of mirrors, such as dissipative mirrors or mirrors with gain dynamics.
Emittance of a finite scattering medium with refractive index greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosbie, A.L.
1980-01-01
Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directionalmore » emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed.« less
Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity.
Tang, Jianwei; Xia, Juan; Fang, Maodong; Bao, Fanglin; Cao, Guanjun; Shen, Jianqi; Evans, Julian; He, Sailing
2018-04-27
Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos
Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.
Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D
2017-08-30
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
Merino, P; Große, C; Rosławska, A; Kuhnke, K; Kern, K
2015-09-29
Exciton creation and annihilation by charges are crucial processes for technologies relying on charge-exciton-photon conversion. Improvement of organic light sources or dye-sensitized solar cells requires methods to address exciton dynamics at the molecular scale. Near-field techniques have been instrumental for this purpose; however, characterizing exciton recombination with molecular resolution remained a challenge. Here, we study exciton dynamics by using scanning tunnelling microscopy to inject current with sub-molecular precision and Hanbury Brown-Twiss interferometry to measure photon correlations in the far-field electroluminescence. Controlled injection allows us to generate excitons in solid C60 and let them interact with charges during their lifetime. We demonstrate electrically driven single-photon emission from localized structural defects and determine exciton lifetimes in the picosecond range. Monitoring lifetime shortening and luminescence saturation for increasing carrier injection rates provides access to charge-exciton annihilation dynamics. Our approach introduces a unique way to study single quasi-particle dynamics on the ultimate molecular scale.
"Sizing" the oligomers of Azami Green fluorescent protein with FCS and antibunching
NASA Astrophysics Data System (ADS)
Temirov, Jamshid; Werner, James H.; Goodwin, Peter M.; Bradbury, Andrew R. M.
2012-02-01
Fluorescent proteins are invaluable molecules in fluorescence microscopy and spectroscopy. The size and brightness of fluorescent proteins often dictates the application they may be used for. While a monomeric protein may be the least perturbative structure for labeling a protein in a cell, often oligomers (dimers and tetramers) of fluorescent proteins can be more stable. However, from a quantitative microscopy standpoint, it is important to realize the photophysical properties of monomers do not necessarily multiply by their number when they form oligomers. In this work we studied oligomerization states of the Azami Green (AG) protein with fluorescence correlation spectroscopy (FCS) and photon antibunching or photon pair correlation spectroscopy (PPCS). FCS was used to measure the hydrodynamic size of the oligomers, whereas antibunching was used to count the number of fluorescent emitters in the oligomers. The results exhibited that the dimers of AG were single emitters and the tetramers were dual-emitters, indicative of dipole-dipole interactions and energy transfer between the monomeric units. We also used these methods to estimate the number of fluorescent proteins displayed on T7 phage molecules.
Analytic few-photon scattering in waveguide QED
NASA Astrophysics Data System (ADS)
Hurst, David L.; Kok, Pieter
2018-04-01
We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
Method and system for making integrated solid-state fire-sets and detonators
O'Brien, Dennis W.; Druce, Robert L.; Johnson, Gary W.; Vogtlin, George E.; Barbee, Jr., Troy W.; Lee, Ronald S.
1998-01-01
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.
Multibeam Laser Altimeter for Planetary Topographic Mapping
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Bufton, J. L.; Harding, D. J.
1993-01-01
Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.
NASA Astrophysics Data System (ADS)
Damaceanu, Mariana-Dana; Constantin, Catalin-Paul
2018-04-01
A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.
Overview of Lattice Design and Evaluation for the APS Upgrade
Borland, M.; Emery, L.; Lindberg, R.; ...
2017-08-01
The Advanced Photon Source (APS) is a 7-GeV synchrotron light source that has been in operation since 1996. Since that time, the effective emittance has been decreased from 8 nm to 3.1 nm, which is very competitive for a 3rd-generation light source. However, newer facilities such as PETRA-III, NSLS-II, and MAX-IV are pushing the emittance to significantly smaller values. MAX-IV in particular has set the current benchmark with an emittance of about 300 pm at 3 GeV. This was accomplished by use of a multi-bend achromat lattice, which takes advantage of the 1/M3 scaling of the emittance with respect tomore » the number of dipoles M. In order to ensure that our facility remains competitive, APS is pursuing a major upgrade, which involves replacement of the existing double-bend lattice with a seven-bend achromat lattice, promising a 40-fold reduction in emittance. This paper describes the process of developing and evaluating candidate lattice designs. Two candidate 6-GeV lattices are described: one providing a natural emittance of 67 pm and the other providing 41 pm. Our analysis includes single-particle dynamics as well as single- and multi-bunch collective effects.« less
Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array
NASA Astrophysics Data System (ADS)
Kintz, Andrew L.
This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering geolocates multiple simultaneous and co-frequency emitters in spite of highly erratic DOA estimates. We also mitigate manifold mismatch by applying the Direct Mapping Method (DMM). DMM averages DOA spectra on the earth(apostrophe)s surface and estimates the emitter locations directly from the composite spectrum. In the example results presented, our goal is to geolocate four diversely polarized emitters with a seven-element antenna array. This is too challenging for MAAE and DMM. We fuse Nullspace MUSIC and DMM into the novel Nullspace DMM algorithm and demonstrate that Nullspace DMM locates all emitters. Finally, we apply the proposed geolocation algorithms to real-world experimental data. A six-element antenna array and Data Collection System (DCS) were installed on a small aircraft. The DCS recorded signals from four live transmitters during a three-hour flight over Columbus, Ohio. The four emitters were geolocated from various segments of the flight. As expected, individual DOA estimates were erratic and widespread due to the airplane(apostrophe)s perturbations of the measured array manifold. MAAE and DMM locate at most three of the four emitters. On the other hand, Nullspace DMM yields unambiguous estimates for every emitter in every flight segment. The successful experimental trials show that Nullspace DMM could significantly enhance airborne emitter geolocation in missions such as RF spectrum enforcement, locating unknown transmitters for defense, and search and rescue operations.
NASA Astrophysics Data System (ADS)
Sirtori, Carlo
2017-02-01
Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.
Modified Reference SPS with Solid State Transmitting Antenna
NASA Technical Reports Server (NTRS)
Woodcock, G. R.; Sperber, B. R.
1980-01-01
The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1992-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.
EMIIM Wetting Properties of & Their Effect on Electrospray Thruster Design
2012-03-21
materials can be characterized using the surface tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface...Illustration of the instantaneous dipole formed by electron motion in a hy- drogen atom(left) and how these instantaneous dipoles can attract each other...the extractor grid and of like charge to the emitter. A Taylor cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in
NASA Astrophysics Data System (ADS)
Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan
2016-10-01
Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.
Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881
Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-05-26
Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
Method and apparatus for multispray emitter for mass spectrometry
Smith, Richard D.; Tang, Keqi; Lin, Yuehe
2004-12-14
A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.
Method and system for making integrated solid-state fire-sets and detonators
O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.
1998-03-24
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.
Jayakiruba, S; Chandrasekaran, S Selva; Murugan, P; Lakshminarasimhan, N
2017-07-05
Eu 3+ activated phosphors are widely used as red emitters in various display devices and light emitting diodes (LEDs). The emission characteristics of Eu 3+ depend on the local site symmetry. The present study demonstrates the role of excitation-dependent local symmetry changes due to the structural reorganization on the emission colour tuning of Eu 3+ from orange-red to orange in single host lattices, Ba 2 Mg(BO 3 ) 2 and Ba 2 Ca(BO 3 ) 2 . The choice of these lattices was based on the difference in the extent of strain experienced by the oxygen atoms. The samples with Eu 3+ at Ba or Mg (Ca) sites were synthesized using the conventional high-temperature solid-state reaction method. The samples were characterized using powder XRD, 11 B MAS-NMR, FT-IR, and diffuse reflectance UV-Vis spectroscopic techniques. The room temperature photoluminescence (PL) recorded using different excitation wavelengths revealed a clear difference in the PL emission features due to symmetry reversal from non-inversion to inversion symmetry around Eu 3+ . The reorganization of highly strained oxygen atoms leads to such symmetry reversal. First-principles calculations were used to deduce the optimized structures of the two borate host lattices, and local geometries and their distortions upon Eu 3+ substitution. The outcomes of these calculations support the experimental findings.
Quantum Emitters in Two-Dimensional Structured Reservoirs in the Nonperturbative Regime
NASA Astrophysics Data System (ADS)
González-Tudela, A.; Cirac, J. I.
2017-10-01
We show that the coupling of quantum emitters to a two-dimensional reservoir with a simple band structure gives rise to exotic quantum dynamics with no analogue in other scenarios and which cannot be captured by standard perturbative treatments. In particular, for a single quantum emitter with its transition frequency in the middle of the band, we predict an exponential relaxation at a rate different from that predicted by Fermi's golden rule, followed by overdamped oscillations and slow relaxation decay dynamics. This is accompanied by directional emission into the reservoir. This directionality leads to a modification of the emission rate for few emitters and even perfect subradiance, i.e., suppression of spontaneous emission, for four quantum emitters.
NASA Astrophysics Data System (ADS)
Winden, A.; Mikulics, M.; Grützmacher, D.; Hardtdegen, H.
2013-10-01
Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Sukumaran, Indu
2017-09-01
Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.
Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom
2017-11-17
Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.
NASA Astrophysics Data System (ADS)
Whitty, Kevin J.; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
Whitty, Kevin J; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Radiative damping and synchronization in a graphene-based terahertz emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, A. S., E-mail: andrey.moskalenko@physik.uni-augsburg.de; Mikhailov, S. A., E-mail: sergey.mikhailov@physik.uni-augsburg.de
2014-05-28
We investigate the collective electron dynamics in a recently proposed graphene-based terahertz emitter under the influence of the radiative damping effect, which is included self-consistently in a molecular dynamics approach. We show that under appropriate conditions synchronization of the dynamics of single electrons takes place, leading to a rise of the oscillating component of the charge current. The synchronization time depends dramatically on the applied dc electric field and electron scattering rate and is roughly inversely proportional to the radiative damping rate that is determined by the carrier concentration and the geometrical parameters of the device. The emission spectra inmore » the synchronized state, determined by the oscillating current component, are analyzed. The effective generation of higher harmonics for large values of the radiative damping strength is demonstrated.« less
Microscale Digital Vacuum Electronic Gates
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji
2017-02-08
The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.
The Pierce-diode approximation to the single-emitter plasma diode
NASA Astrophysics Data System (ADS)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-01
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ɛ,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.
The Pierce-diode approximation to the single-emitter plasma diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-15
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations mustmore » be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the ({epsilon},{eta}) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.« less
Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin
2010-01-01
A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.
Enhanced adhesion of films to semiconductors or metals by high energy bombardment
NASA Technical Reports Server (NTRS)
Tombrello, Thomas A. (Inventor); Qiu, Yuanxun (Inventor); Mendenhall, Marcus H. (Inventor)
1985-01-01
Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70.
Selective protected state preparation of coupled dissipative quantum emitters
Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.
2015-01-01
Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501
Zhang, Jinfeng; Chen, Wencheng; Chen, Rui; Liu, Xiao-Ke; Xiong, Yuan; Kershaw, Stephen V; Rogach, Andrey L; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing
2016-09-27
We applied organic nanostructures based on thermally activated delayed fluorescent (TADF) emitters for singlet oxygen generation. Due to the extremely small energy gaps between the excited singlet states (S 1 ) and triplet states (T 1 ) of these heavy-metal-free organic nanostructures, intersystem conversion between S 1 and T 1 can occur easily. This strategy also works well for exciplex-type TADF emitters prepared by mixing suitable donors and acceptors which have no TADF characteristics themselves.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
NASA Astrophysics Data System (ADS)
van Tilborg, Jeroen
2017-10-01
The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.
Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab
2013-01-01
In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.
Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A
2013-09-17
Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.
Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes
NASA Astrophysics Data System (ADS)
Ecton, Jeremy Exton
Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated.
Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M
2014-04-21
Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.
Limiting effects in double EEX beamline
NASA Astrophysics Data System (ADS)
Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.
2017-07-01
The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.
3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure.
Chakraborty, Chitraleema; Qiu, Liangyu; Konthasinghe, Kumarasiri; Mukherjee, Arunabh; Dhara, Sajal; Vamivakas, Nick
2018-05-09
Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.
Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo
2017-06-01
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.
Self aligning electron beam gun having enhanced thermal and mechanical stability
Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.
1995-01-01
A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.
Measured emittance dependence on injection method in laser plasma accelerators
NASA Astrophysics Data System (ADS)
Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Tuning the spectral emittance of α-SiC open-cell foams up to 1300 K with their macro porosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, B., E-mail: benoit.rousseau@univ-nantes.fr; Guevelou, S.; Mekeze-Monthe, A.
2016-06-15
A simple and robust analytical model is used to finely predict the spectral emittance under air up to 1300 K of α-SiC open-cell foams constituted of optically thick struts. The model integrates both the chemical composition and the macro-porosity and is valid only if foams have volumes higher than their Representative Elementary Volumes required for determining their emittance. Infrared emission spectroscopy carried out on a doped silicon carbide single crystal associated to homemade numerical tools based on 3D meshed images (Monte Carlo Ray Tracing code, foam generator) make possible to understand the exact role of the cell network in emittance.more » Finally, one can tune the spectral emittance of α-SiC foams up to 1300 K by simply changing their porosity.« less
Houel, Julien; Doan, Quang T; Cajgfinger, Thomas; Ledoux, Gilles; Amans, David; Aubret, Antoine; Dominjon, Agnès; Ferriol, Sylvain; Barbier, Rémi; Nasilowski, Michel; Lhuillier, Emmanuel; Dubertret, Benoît; Dujardin, Christophe; Kulzer, Florian
2015-01-27
We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nanoemitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the microsecond time scale.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-05
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.S. Tyan
2009-06-30
Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. Themore » project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.« less
A universal formula for the field enhancement factor
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2018-04-01
The field enhancement factor (FEF) is an important quantity in field emission calculations since the tunneling electron current depends very sensitively on its magnitude. The exact dependence of FEF on the emitter height h, the radius of curvature at the apex Ra, as well as the shape of the emitter base are still largely unknown. In this work, a universal formula for the field enhancement factor is derived for a single emitter. It depends on the ratio h/Ra and has the form γ a = ( 2 h / R a ) / [ α 1 ln ( 4 h / R a ) - α 2 ] , where α1 and α2 depend on the charge distribution on the emitter. Numerical results show that a simpler form γ a = ( 2 h / R a ) / [ ln ( 4 h / R a ) - α ] is equally valid with α depending on the emitter-base. Thus, for the hyperboloid, conical, and ellipsoid emitters, the value of α is 0, 0.88, and 2, while for the cylindrical base, α ≃ 2.6.
Particle production of a graphite target system for the intensity frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X.; Kirk, H.; McDonald, K. T.
2015-05-03
A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particlemore » production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.« less
Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.
Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R
2014-08-15
We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.
Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui
2017-05-24
A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.
Pointing and Jitter Control for the USNA Multi-Beam Combining System
2013-05-10
previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state
Wetting Properties of EMIIm & its Relevance to Electrospray Design
2012-03-12
apparent surface area S Distance separating two grid apertures T Absolute temperature of the test liquid TC Critical temperature of the test liquid V...include the choice of solid materials being used as insulators, emitters or electrodes, thin film surface coatings that have a de- sired high or low...wettability, and changing the solid component surface roughness or temperature during operation.678 An electrospray thruster has been developed by
Optofluidic devices with integrated solid-state nanopores
Hawkins, Aaron R.; Schmidt, Holger
2016-01-01
This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940
GPU-Accelerated Hybrid Algorithm for 3D Localization of Fluorescent Emitters in Dense Clusters
NASA Astrophysics Data System (ADS)
Jung, Yoon; Barsic, Anthony; Piestun, Rafael; Fakhri, Nikta
In stochastic switching-based super-resolution imaging, a random subset of fluorescent emitters are imaged and localized for each frame to construct a single high resolution image. However, the condition of non-overlapping point spread functions (PSFs) imposes constraints on experimental parameters. Recent development in post processing methods such as dictionary-based sparse support recovery using compressive sensing has shown up to an order of magnitude higher recall rate than single emitter fitting methods. However, the computational complexity of this approach scales poorly with the grid size and requires long runtime. Here, we introduce a fast and accurate compressive sensing algorithm for localizing fluorescent emitters in high density in 3D, namely sparse support recovery using Orthogonal Matching Pursuit (OMP) and L1-Homotopy algorithm for reconstructing STORM images (SOLAR STORM). SOLAR STORM combines OMP with L1-Homotopy to reduce computational complexity, which is further accelerated by parallel implementation using GPUs. This method can be used in a variety of experimental conditions for both in vitro and live cell fluorescence imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooks, Tomer; Schmidt, Michael; Bittan, Hadas
2009-07-01
Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors inmore » athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.« less
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2013-10-01
Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.
Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor)
2010-01-01
A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.
All-optical control and super-resolution imaging of quantum emitters in layered materials.
Kianinia, Mehran; Bradac, Carlo; Sontheimer, Bernd; Wang, Fan; Tran, Toan Trong; Nguyen, Minh; Kim, Sejeong; Xu, Zai-Quan; Jin, Dayong; Schell, Andreas W; Lobo, Charlene J; Aharonovich, Igor; Toth, Milos
2018-02-28
Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.
Waveguide quantum electrodynamics in squeezed vacuum
NASA Astrophysics Data System (ADS)
You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail
2018-02-01
We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.
Molecular electronics with single molecules in solid-state devices.
Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-09-01
The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.
Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan
We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of deliveringmore » beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.« less
Emittance studies of the 2.45 GHz permanent magnet ECR ion source
NASA Astrophysics Data System (ADS)
Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.
2004-05-01
During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.
Metal Photocathodes for Free Electron Laser Applications
NASA Astrophysics Data System (ADS)
Greaves, Corin Michael Ricardo
Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)
High efficiency light source using solid-state emitter and down-conversion material
Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul
2010-10-26
A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.
Metasurface-Enabled Remote Quantum Interference.
Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang
2015-07-10
An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.
Thermal management of microwave power heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Bozada, C.; Cerny, C.; De Salvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Havasy, C.; Jenkins, T.; Ito, C.; Nakano, K.; Pettiford, C.; Quach, T.; Sewell, J.; Via, G. D.; Anholt, R.
1997-10-01
A comprehensive study of the device layout effects on thermal resistance in thermally-shunted heterojunction bipolar transistors (HBTs) was completed. The thermal resistance scales linearly with emitter dot diameter for single element HBTs. For multiple emitter element devices, the thermal resistance scales with area. HBTs with dot geometrics have lower thermal impedance than bar HBTs with equivalent emitter area. The thermal resistance of a 200 μm 2 emitter area device was reduced from 266°C/W to 146°C/W by increasing the shunt thickness from 3 μm to 20 μm and placing a thermal shunt landing between the fingers. Also, power-added efficiencies at 10 GHz were improved from 30% to 68% by this thermal resistance reduction.
Solar Power Satellite (SPS) solid-state antenna power combiner
NASA Technical Reports Server (NTRS)
1980-01-01
A low loss power-combining microstrip antenna suitable for solid state solar power satellite (SPS) application was developed. A unique approach for performing both the combining and radiating function in a single cavity-type circuit was verified, representing substantial refinements over previous demonstration models in terms of detailed geometry to obtain good matching and adequate bandwidth at the design frequency. The combiner circuit was designed, built, and tested and the overall results support the view that the solid state power-combining antenna approach is a viable candidate for a solid state SPS antenna building block.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
New perspectives for high accuracy SLR with second generation geodesic satellites
NASA Technical Reports Server (NTRS)
Lund, Glenn
1993-01-01
This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return of a single clean pulse with an adequate cross-section.
Self aligning electron beam gun having enhanced thermal and mechanical stability
Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.
1995-05-16
A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.
Multi-dimensional photonic states from a quantum dot
NASA Astrophysics Data System (ADS)
Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2018-04-01
Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.
Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.
Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G
2017-03-31
A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.
Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.
Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet
2011-04-26
Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiabao; Liapis, Andreas C.; Chen, Edward H.
Effcient collection of fluorescence from nitrogen vacancy (NV) centers in diamond underlies the spin-dependent optical read-out that is necessary for quantum information processing and enhanced sensing applications. The optical collection effciency from NVs within diamond substrates is limited primarily due to the high refractive index of diamond and the non-directional dipole emission. Here we introduce a light collection strategy based on chirped, circular dielectric gratings that can be fabricated on a bulk diamond substrate to redirect an emitter’s far-field radiation pattern. Using a genetic optimization algorithm, these grating designs achieve 98.9% collection effciency for the NV zero-phonon emission line, collectedmore » from the back surface of the diamond with an objective of aperture 0.9. Across the broadband emission spectrum of the NV (600-800 nm), the chirped grating achieves 82.2% collection e ciency into a numerical aperture of 1.42, corresponding to an oil immersion objective again on the back side of the diamond. Our proposed bulk-dielectric grating structures are applicable to other optically active solid state quantum emitters in high index host materials.« less
Zheng, Jiabao; Liapis, Andreas C.; Chen, Edward H.; ...
2017-12-13
Effcient collection of fluorescence from nitrogen vacancy (NV) centers in diamond underlies the spin-dependent optical read-out that is necessary for quantum information processing and enhanced sensing applications. The optical collection effciency from NVs within diamond substrates is limited primarily due to the high refractive index of diamond and the non-directional dipole emission. Here we introduce a light collection strategy based on chirped, circular dielectric gratings that can be fabricated on a bulk diamond substrate to redirect an emitter’s far-field radiation pattern. Using a genetic optimization algorithm, these grating designs achieve 98.9% collection effciency for the NV zero-phonon emission line, collectedmore » from the back surface of the diamond with an objective of aperture 0.9. Across the broadband emission spectrum of the NV (600-800 nm), the chirped grating achieves 82.2% collection e ciency into a numerical aperture of 1.42, corresponding to an oil immersion objective again on the back side of the diamond. Our proposed bulk-dielectric grating structures are applicable to other optically active solid state quantum emitters in high index host materials.« less
Time-bin entangled photons from a quantum dot
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor
2014-01-01
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024
Time-bin entangled photons from a quantum dot.
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor
2014-06-26
Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.
High temperature fuel/emitter system for advanced thermionic fuel elements
NASA Astrophysics Data System (ADS)
Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny
1997-01-01
Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Tesi, C.; Piroddi, N.; Poggesi, C.; Castiglioni, C.; Milani, A.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2007-07-01
The intrinsically ordered arrays of proteins in skeletal muscle allows imaging of this tissue by Second Harmonic Generation (SHG). Biochemical and colocalization studies have gathered an increasing wealth of clues for the attribution of the molecular origin of the muscle SHG signal to the motor protein myosin. Thus, SHG represents a potentially very powerful tool in the investigation of structural dynamics occurring in muscle during active production of force. A full characterization of the polarization-dependence of the SHG signal represents a very selective information on the orientation of the emitting proteins and their dynamics during contraction, provided that different physiological states of muscle (relaxed, rigor and active) exhibit distinct patterns of SHG polarization dependence. Here polarization data are obtained from single frog muscle fibers at rest and during isometric contraction and interpreted, by means of a model, in terms of an average orientation of the SHG emitters which are structured with a cylindrical symmetry about the fiber axis. Optimizing the setup for accurate polarization measurements with SHG, we developed a line scan imaging method allowing measurement of SHG polarization curves in different physiological states. We demonstrate that muscle fiber displays a measurable variation of the orientation of SHG emitters with the transition from rest to isometric contraction.
Matching optics for Gaussian beams
NASA Technical Reports Server (NTRS)
Gunter, William D. (Inventor)
1991-01-01
A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.
Chemical nature of the light emitter of the Aequorea green fluorescent protein
Niwa, Haruki; Inouye, Satoshi; Hirano, Takashi; Matsuno, Tatsuki; Kojima, Satoshi; Kubota, Masayuki; Ohashi, Mamoru; Tsuji, Frederick I.
1996-01-01
The jellyfish Aequorea victoria possesses in the margin of its umbrella a green fluorescent protein (GFP, 27 kDa) that serves as the ultimate light emitter in the bioluminescence reaction of the animal. The protein is made up of 238 amino acid residues in a single polypeptide chain and produces a greenish fluorescence (λmax = 508 nm) when irradiated with long ultraviolet light. The fluorescence is due to the presence of a chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser65-Tyr66-Gly67-. GFP has been used extensively as a reporter protein for monitoring gene expression in eukaryotic and prokaryotic cells, but relatively little is known about the chemical mechanism by which fluorescence is produced. To obtain a better understanding of this problem, we studied a peptide fragment of GFP bearing the chromophore and a synthetic model compound of the chromophore. The results indicate that the GFP chromophore consists of an imidazolone ring structure and that the light emitter is the singlet excited state of the phenolate anion of the chromophore. Further, the light emission is highly dependent on the microenvironment around the chromophore and that inhibition of isomerization of the exo-methylene double bond of the chromophore accounts for its efficient light emission. PMID:8942983
Charge recombination in the muon collider cooling channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernow, R. C.; Palmer, R. B.
2012-12-21
The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.
Use of Wedge Absorbers in MICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Summers, D.; Mohayai, T.
2017-03-01
Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL andmore » G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.« less
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
Shan, Tong; Liu, Yulong; Tang, Xiangyang; Bai, Qing; Gao, Yu; Gao, Zhao; Li, Jinyu; Deng, Jian; Yang, Bing; Lu, Ping; Ma, Yuguang
2016-10-26
Great efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials meeting the standards of European Broadcasting Union (EBU) standard with Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.06) for flat-panel displays and solid-state lightings. However, high-performance deep blue OLEDs are still rare for applications. Herein, two efficient deep blue emitters, PIMNA and PyINA, are designed and synthesized by coupling naphthalene with phenanthreneimidazole and pyreneimidazole, respectively. The balanced ambipolar transporting natures of them are demonstrated by single-carrier devices. Their nondoped OLEDs show deep blue emissions with extremely small CIE y of 0.034 for PIMNA and 0.084 for PyINA, with negligible efficiency roll-off. To take advantage of high photoluminescence quantum efficiency of PIMNA and large fraction of singlet exciton formation of PyINA, doped devices are fabricated by dispersing PyINA into PIMNA. A significantly improved maximum external quantum efficiency (EQE) of 5.05% is obtained through very effective energy transfer with CIE coordinates of (0.156, 0.060), and the EQE remains 4.67% at 1000 cd m -2 , which is among the best of deep blue OLEDs reported matching stringent EBU standard well.
NASA Astrophysics Data System (ADS)
An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng
2018-05-01
Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.
Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride.
Berhane, Amanuel M; Jeong, Kwang-Yong; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor
2017-03-01
Room-temperature quantum emitters in gallium nitride (GaN) are reported. The emitters originate from cubic inclusions in hexagonal lattice and exhibit narrowband luminescence in the red spectral range. The sources are found in different GaN substrates, and therefore are promising for scalable quantum technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing
2017-11-08
Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.
The solid state detector technology for picosecond laser ranging
NASA Technical Reports Server (NTRS)
Prochazka, Ivan
1993-01-01
We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.
Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi
2010-01-01
In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879
Frontiers of More than Moore in Bioelectronics and the Required Metrology Needs
NASA Astrophysics Data System (ADS)
Guiseppi-Elie, Anthony; Kotanen, Christian; Wilson, A. Nolan
2011-11-01
Silicon's intersection with biology is a premise inherent in Moore's prediction. Distinct from biologically inspired molecular logic and storage devices (more Moore) are the integration of solid state electronic devices with the soft condensed state of the body (more than Moore). Developments in biomolecular recognition events per sq. cm parallel those of Moore's Law. However, challenges continue in the area of "More than Moore". Two grand challenge problems must be addressed—the biocompatibility of synthetic materials with the myriad of tissue types within the human body and the interfacing of solid state micro- and nano-electronic devices with the electronics of biological systems. Electroconductive hydrogels have been developed as soft, condensed, biomimetic but otherwise inherently electronically conductive materials to address the challenge of interfacing solid state devices with the electronics of the body, which is predominantly ionic. Nano-templated interfaces via the oriented immobilization of single walled carbon nanotubes (SWCNTs) onto metallic electrodes have engendered reagentless, direct electron transfer between biological redox enzymes and solid state electrodes. In addressing these challenges, metrology needs and opportunities are found in such widely diverse areas as single molecule counting and addressing, sustainable power requirements such as the development of implantable biofuel cells for the deployment of implantable biochips, and new manufacturing paradigms to address plura-biology needs on solid state devices.
NASA Astrophysics Data System (ADS)
Susa, Anna C.; Lippens, Jennifer L.; Xia, Zijie; Loo, Joseph A.; Campuzano, Iain D. G.; Williams, Evan R.
2018-01-01
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m / z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. [Figure not available: see fulltext.
Susa, Anna C; Lippens, Jennifer L; Xia, Zijie; Loo, Joseph A; Campuzano, Iain D G; Williams, Evan R
2018-01-01
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m /z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. Graphical Abstract.
Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
Neuman, Tomáš; Esteban, Ruben; Casanova, David; García-Vidal, Francisco J; Aizpurua, Javier
2018-04-11
As the size of a molecular emitter becomes comparable to the dimensions of a nearby optical resonator, the standard approach that considers the emitter to be a point-like dipole breaks down. By adoption of a quantum description of the electronic transitions of organic molecular emitters, coupled to a plasmonic electromagnetic field, we are able to accurately calculate the position-dependent coupling strength between a plasmon and an emitter. The spatial distribution of excitonic and photonic quantum states is found to be a key aspect in determining the dynamics of molecular emission in ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic fields leads to the selection rule breaking of molecular excitations.
Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric
NASA Astrophysics Data System (ADS)
Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya
2018-02-01
Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.
Silicon cells made by self-aligned selective-emitter plasma-etchback process
Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.
2000-01-01
Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
The spectral emittance of a NASA developed zirconia ceramic thermal barrier coating system, consisting of a metal substrate, a layer of Ni-Cr-Al-Y bond material and a layer of yttria-stabilized zirconia ceramic material, is analyzed. The emittance, needed for evaluation of radiant heat loads on cooled coated gas turbine components, was measured over a range of temperatures that would be typical of its use on such components. Emittance data were obtained with a spectrometer, a reflectometer and a radiation pyrometer at a single bond coating thickness of 0.010 cm and at a ceramic coating thickness of 0-0.076 cm. The data were transformed into the hemispherical total emittance and were correlated to the ceramic coating thickness and temperature using multiple-regression curve-fitting techniques. The system was found to be highly reflective, and, consequently, capable of significantly reducing radiation heat loads on cooled gas turbine engine components.
Waveguide transport mediated by strong coupling with atoms
NASA Astrophysics Data System (ADS)
Cheng, Mu-Tian; Xu, Jingping; Agarwal, Girish S.
2017-05-01
We investigate single-photon scattering properties in a one-dimensional waveguide coupled to a quantum emitter's chain with dipole-dipole interaction (DDI). The photon transport is extremely sensitive to the location of the evanescently coupled atoms. The analytical expressions of reflection and transmission amplitudes for the chain containing two emitters with DDI are deduced by using a real-space Hamiltonian. Two cases, where the two emitters symmetrically or asymmetrically couple to the waveguide, are discussed in detail. It shows that the reflection and transmission typical spectra split into two peaks due to the DDI. The Fano minimum in the spectra can be used to estimate the strength of the DDI. Furthermore, the DDI makes spectra strongly asymmetric and creates a transmission window in the region where there was zero transmission. The scattering spectra for the chain consisting of multiple emitters are also given. Our key finding is that DDI can broaden the frequency bandwidth for high reflection when the chain consists of many emitters.
NASA Astrophysics Data System (ADS)
de Assis, Thiago A.; Dall’Agnol, Fernando F.
2018-05-01
Numerical simulations are important when assessing the many characteristics of field emission related phenomena. In small simulation domains, the electrostatic effect from the boundaries is known to influence the calculated apex field enhancement factor (FEF) of the emitter, but no established dependence has been reported at present. In this work, we report the dependence of the lateral size, L, and the height, H, of the simulation domain on the apex-FEF of a single conducting ellipsoidal emitter. Firstly, we analyze the error, ε, in the calculation of the apex-FEF as a function of H and L. Importantly, our results show that the effects of H and L on ε are scale invariant, allowing one to predict ε for ratios L/h and H/h, where h is the height of the emitter. Next, we analyze the fractional change of the apex-FEF, δ, from a single emitter, , and a pair, . We show that small relative errors in (i.e. ), due to the finite domain size, are sufficient to alter the functional dependence , where c is the distance from the emitters in the pair. We show that obeys a recently proposed power law decay (Forbes 2016 J. Appl. Phys. 120 054302), at sufficiently large distances in the limit of infinite domain size (, say), which is not observed when using a long time established exponential decay (Bonard et al 2001 Adv. Mater. 13 184) or a more sophisticated fitting formula proposed recently by Harris et al (2015 AIP Adv. 5 087182). We show that the inverse-third power law functional dependence is respected for various systems like infinity arrays and small clusters of emitters with different shapes. Thus, , with m = 3, is suggested to be a universal signature of the charge-blunting effect in small clusters or arrays, at sufficient large distances between emitters with any shape. These results improve the physical understanding of the field electron emission theory to accurately characterize emitters in small clusters or arrays.
Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.
Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya
2017-12-22
A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2.1 μm high-power laser diode beam combining(Conference Presentation)
NASA Astrophysics Data System (ADS)
Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel
2016-10-01
Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation lenses used in the experiment. We evaluated two broadband (1.8 - 3 µm) AR coated Geltech aspheric lenses with focal lengths of 1.87 mm and 4 mm, with numerical apertures of 0.85 and 0.56, respectively, as an initial collimation lens, followed by an additional cylindrical lens of focal length 100 mm for fully collimating the slow axis. Using D-shaped gold-coated mirrors, multiple single emitter beams are stacked in the fast axis direction with the objective that the combined beam has a beam propagation factor in the stacking direction close to the beam propagation factor of the slow axis of a single emitter, e.g. M2 of 20 to 25 in both axes. We further found that the output beam of a single emitter is highly linearly polarized along the slow axis, making it feasible to implement polarization beam combining techniques to increase the beam power by a factor two while maintaining the same beam quality. Along with full beam characterization, a power scaling strategy towards a multi-watt output power beam combining laser system will be presented.
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-01-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954
NASA Astrophysics Data System (ADS)
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-06-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread--an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.
Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
Shi, Xin; Verschueren, Daniel; Pud, Sergii; Dekker, Cees
2018-05-01
Plasmonic nanopores combine the advantages of nanopore sensing and surface plasmon resonances by introducing confined electromagnetic fields to a solid-state nanopore. Ultrasmall nanogaps between metallic nanoantennas can generate the extremely enhanced localized electromagnetic fields necessary for single-molecule optical sensing and manipulation. Challenges in fabrication, however, hamper the integration of such nanogaps into nanopores. Here, a top-down approach for integrating a plasmonic antenna with an ultrasmall nanogap into a solid-state nanopore is reported. Employing a two-step e-beam lithography process, the reproducible fabrication of nanogaps down to a sub-1 nm scale is demonstrated. Subsequently, nanopores are drilled through the 20 nm SiN membrane at the center of the nanogap using focused-electron-beam sculpting with a transmission electron microscope, at the expense of a slight gap expansion for the smallest gaps. Using this approach, sub-3 nm nanogaps can be readily fabricated on solid-state nanopores. The functionality of these plasmonic nanopores for single-molecule detection is shown by performing DNA translocations. These integrated devices can generate intense electromagnetic fields at the entrance of the nanopore and can be expected to find applications in nanopore-based single-molecule trapping and optical sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid state d.c. power controller design philosophies and their evaluation.
NASA Technical Reports Server (NTRS)
Maus, L. G.; Williams, D. E.
1972-01-01
Evaluation of remote power controllers (RPC), which has enhanced knowledge of the capabilities of various design philosophies and has indicated certain limitations that RPC's exhibit. Additionally, this activity has clearly emphasized that certain RPC design parameters merit further consideration in development. The major design parameters to be analyzed in more detail are the rates of change of the rise and fall times of the output current. The major reason why transient voltages and currents should be reduced is the minimization of the reverse collector-to-emitter voltage. The requirement for higher bus voltage coupled with the present problem of improving the efficiency of power control points out the urgent need for improvement and advancement of higher current, voltage, and gain power semiconductors.
Low-NA fiber laser pumps powered by high-brightness single emitters
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-03-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinhong; Song, Jongchan; Lee, Hongkyung
Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interfacemore » of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.« less
Optical Spectra of the Jaynes-Cummings Ladder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laussy, Fabrice P.; Valle, Elena del
2009-06-29
We explore how the Jaynes-Cummings ladder transpires in the emitted spectra of a two-level system in strong coupling with a single mode of light. We focus on the case of very strong coupling, that would be achieved with systems of exceedingly good quality (very long lifetimes for both the emitter and the cavity). We focus on the incoherent regime of excitation, that is realized with semiconductors quantum dots in microcavities, and discuss how reasonable is the understanding of the systems in terms of transitions between dressed states of the Jaynes-Cummings Hamiltonian.
Olson, Jerry M.
1994-01-01
A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
NASA Astrophysics Data System (ADS)
Li, Xiaoqing; Hu, Rui; Li, Ji; Tong, Xin; Diao, J. J.; Yu, Dapeng; Zhao, Qing
2016-10-01
Nanopore-based sensing technology is considered high-throughput and low-cost for single molecule detection, but solid-state nanopores have suffered from pore clogging issues. A simple Tween 20 coating method is applied to ensure long-term (several hours) non-sticky translocation of various types of bio-molecules through SiN nanopores in a wide pH range (4.0-13.0). We also emphasize the importance of choosing appropriate concentration of Tween 20 coating buffer for desired effect. By coating nanopores with a Tween 20 layer, we are able to differentiate between single-stranded DNA and double-stranded DNA, to identify drift-dominated domain for single-stranded DNA, to estimate BSA volume and to observe the shape of individual nucleosome translocation event without non-specific adsorption. The wide pH endurance from 4.0 to 13.0 and the broad types of detection analytes including nucleic acids, proteins, and biological complexes highlight the great application potential of Tween 20-coated solid-state nanopores.
Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.
Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T
2017-02-08
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
Nonpolar InGaN/GaN core–shell single nanowire lasers
Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...
2017-01-24
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less
Diaryl-1,2,3-Triazolylidene Platinum(II) Complexes.
Soellner, Johannes; Strassner, Thomas
2018-04-11
Control of the excited state geometry by rational ligand design leads to a new class of phosphorescent emitters with extraordinary photophysical properties. Extension of the π-system in the triplet state leading to a significant bathochromic shift of the emission was avoided by introduction of additional steric demand. We report the synthesis, characterization and photophysical properties of novel platinum(II) complexes bearing C^C* cyclometalated mesoionic carbene (MIC) with different β-diketonate ligands. The MIC ligand precursors were prepared from 1-phenyl-1,2,3-triazole using arylation protocols, introducing phenyl or mesityl functionalities. A solid state structure confirming the NMR assignments is presented. The emission properties were investigated in detail at room temperature and 77 K and are supported by DFT calculations and cyclic voltammetry. All complexes, with emission maxima between 502-534 nm, emit with quantum efficiencies ranging from 70-84 % in PMMA films. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space charge effects on the current-voltage characteristics of gated field emitter arrays
NASA Astrophysics Data System (ADS)
Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.
1997-07-01
Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.
Time-Dependent Solid State Polymorphism of a Series of Donor-Acceptor Dyads
Peebles, Cameron; Alvey, Paul M.; Lynch, Vincent; Iverson, Brent L.
2014-01-01
In order to exploit the use of favorable electrostatic interactions between aromatic units in directing the assembly of donor-acceptor (D-A) dyads, the present work examines the ability of conjugated aromatic D-A dyads with symmetric side chains to exhibit solid-state polymorphism as a function of time during the solid formation process. Four such dyads were synthesized and their packing in the solid-state from either slower (10-20 days) or faster (1-2 days) evaporation from solvent was investigated using single crystal X-ray analysis and powder X-ray diffraction. Two of the dyads exhibited tail-to-tail (A-A) packing upon slower evaporation from solvent and head-to-tail (D-A) packing upon faster evaporation from solvent. A combination of single crystal analysis and XRD patterns were used to create models wherein a packing model for the other two dyads is proposed. Our findings suggest that while side chain interactions in asymmetric aromatic dyads can play an important role in enforcing segregated D-A dyad assembly, slowly evaporating symmetrically substituted aromatic dyads allows for favorable electrostatic interactions between the aromatic moieties to facilitate the organization of the dyads in the solid-state. PMID:24678269
Emitter and absorber assembly for multiple self-dual operation and directional transparency
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.
2017-03-01
We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.
Electromagnetic and geometric characterization of accelerated ion beams by laser ablation
NASA Astrophysics Data System (ADS)
Nassisi, V.; Velardi, L.; Side, D. Delle
2013-05-01
Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.
Electrospray performance of interacting multi-capillary emitters in a linear array
NASA Astrophysics Data System (ADS)
Kumar, V.; Srivastava, A.; Shanbhogue, K. M.; Ingersol, S.; Sen, A. K.
2018-03-01
Here, we report electrospray performance of multiple emitters (of internal diameter 200 µm) arranged in a linear (inline) array. For a fixed flow rate Q , at higher voltages {{V}a} , multi-jet mode is observed, which leads to a rapid increase in the spray current (I∼ {{V}a} ) as compared to the single cone-jet case (I∼ Va0.8 ). A theoretical model is presented that predicts (within 10% of experimental data) the divergence of sprays g(x) issued from a pair of interacting emitters due to the mutual Columbic interaction of space charges. The variation of onset voltage {{V}o} and spray current I with spacing between the emitters p is studied and it is found that {{V}o}∼ {{p}-0.2} and I∼ {{p}0.8} . The effect of the flow rate Q , voltage V and number of emitters ~n~ on the spray current I is investigated and it is found that I∼ {{Q}0.5} , I∼ Va0.8 and I∼ \\sqrt{n} . The present work provides insight regarding the behavior of interacting sprays in an inline configuration and could be significant in the design of multiple emitter systems for electrospray applications.
Chen, Bin; Jiang, Yibin; Chen, Long; Nie, Han; He, Bairong; Lu, Ping; Sung, Herman H Y; Williams, Ian D; Kwok, Hoi Sing; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong
2014-02-10
2,3,4,5-Tetraarylsiloles are a class of important luminogenic materials with efficient solid-state emission and excellent electron-transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, and 9,9'-spirobifluorenyl substituents were introduced into the 2,5-positions of silole rings. The resulting 2,5-difluorenyl-substituted siloles are thermally stable and have low-lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π-π interactions are prone to form between 9,9'-spirobifluorene units and phenyl rings at the 3,4-positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (Φ(F) =2.5-5.4%) than 2,3,4,5-tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid-state Φ(F) values (75-88%). Efficient organic light-emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44,100 cd m(-2), 18.3 cd A(-1), and 15.7 lm W(-1), respectively. Notably, a maximum external quantum efficiency of 5.5% was achieved in an optimized device. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Quantum state engineering of light with continuous-wave optical parametric oscillators.
Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien
2014-05-30
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics(1,2). Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems(3). We focus here on the use of a continuous-wave optical parametric oscillator(3,4). This system is based on a non-linear χ(2) crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states(5). Generating directly such states is a difficult task and would require strong χ(3) non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.
Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion
NASA Astrophysics Data System (ADS)
Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias
2018-05-01
Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.
Room temperature single photon source using fiber-integrated hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy
2017-07-01
Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.
Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.
Zhang, Fan; Ren, Juanjuan; Duan, Xueke; Zhao, Chen; Gong, Qihuang; Gu, Ying
2018-06-13
Scalable integrated quantum information networks calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement. © 2018 IOP Publishing Ltd.
Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores
Belkin, Maxim; Maffeo, Christopher; Wells, David B.
2013-01-01
Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013
NASA Astrophysics Data System (ADS)
Venturini, M.
2016-06-01
Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.
Venturini, M.
2016-06-09
Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2015-01-01
The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
High reliability and high performance of 9xx-nm single emitter laser diodes
NASA Astrophysics Data System (ADS)
Bao, L.; Leisher, P.; Wang, J.; Devito, M.; Xu, D.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Bai, C.; Bai, J. G.; Wise, D.; Martinsen, R.
2011-03-01
Improved performance and reliability of 9xx nm single emitter laser diodes are presented. To date, over 15,000 hours of accelerated multi-cell lifetest reliability data has been collected, with drive currents from 14A to 18A and junction temperatures ranging from 60°C to 110°C. Out of 208 devices, 14 failures have been observed so far. Using established accelerated lifetest analysis techniques, the effects of temperature and power acceleration are assessed. The Mean Time to Failure (MTTF) is determined to be >30 years, for use condition 10W and junction temperature 353K (80°C), with 90% statistical confidence.
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
Visible high power fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe
2018-02-01
In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.
Realization of reliable solid-state quantum memory for photonic polarization qubit.
Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can
2012-05-11
Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.
Nanoscale probing of image-dipole interactions in a metallic nanostructure
Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo
2015-01-01
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228
Laser Based Phosphor Converted Solid State White Light Emitters
NASA Astrophysics Data System (ADS)
Cantore, Michael
Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.
22 W coherent GaAlAs amplifier array with 400 emitters
NASA Technical Reports Server (NTRS)
Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.
1991-01-01
Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.
Olson, J.M.
1994-08-30
A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.
Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang
2017-03-08
Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX
NASA Astrophysics Data System (ADS)
Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun
2016-10-01
We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).
Parametric emittance measurements of electron beams produced by a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.
2018-05-01
Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.
Emission Enhancement in Quantum Emitters - Plasmonic Nanostructures Systems
NASA Astrophysics Data System (ADS)
Muqri, Aeshah; Suh, Jae Yong; Michogan Technological University Team
In this poster, the emission enhancement probed by spectroscopic and dynamic means will be presented. Systems composed of quantum emitters ensembles in the vicinity of plasmonic structures were fabricated. Their coupling strength were investigated by measuring the reflection, steady state photoluminescence, and time resolved fluorescence.
NASA Astrophysics Data System (ADS)
Baniya, S.; Pang, Z.; Sun, D.; Basel, T.; Zhai, Y.; Kwon, O.; Choi, H.; Vardeny, Z. V.
2016-09-01
A new type of organic light-emitting diode (OLED) has emerged that shows enhanced operational stability and large internal quantum efficiency approaching 100%, which is based on exciplexes in donor-acceptor (D-A) blends having thermally activated delayed fluorescence (TADF) when doped with fluorescent emitters. We have investigated magnetoelectroluminescence (MEL) and magneto-conductivity in such TADF-based OLEDs, as well as magnetophotoluminescence (MPL) in thin films based on the OLEDs active layers, with various fluorescence emitters. We found that both MEL and MPL responses are thermally activated with substantially lower activation energy compared to that in the pristine undoped D-A exciplex host blend. In addition, both MPL and MEL steeply decrease with the emitters' concentration. This indicates the existence of a loss mechanism, whereby the triplet charge-transfer state in the D-A exciplex host blend may directly decay to the lowest, non-emissive triplet state of the additive fluorescent emitter molecules.
Multi-field electron emission pattern of 2D emitter: Illustrated with graphene
NASA Astrophysics Data System (ADS)
Luo, Ma; Li, Zhibing
2016-11-01
The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.
Pazzagli, Sofia; Lombardi, Pietro; Martella, Daniele; Colautti, Maja; Tiribilli, Bruno; Cataliotti, Francesco Saverio; Toninelli, Costanza
2018-05-22
Quantum technologies could largely benefit from the control of quantum emitters in sub-micrometric size crystals. These are naturally prone to integration in hybrid devices, including heterostructures and complex photonic devices. Currently available quantum emitters in nanocrystals suffer from spectral instability, preventing their use as single-photon sources for most quantum optics operations. In this work we report on the performances of single-photon emission from organic nanocrystals (average size of hundreds of nm), made of anthracene (Ac) and doped with dibenzoterrylene (DBT) molecules. The source has hours-long photostability with respect to frequency and intensity, both at room and at cryogenic temperature. When cooled to 3 K, the 00-zero phonon line shows linewidth values (50 MHz) close to the lifetime limit. Such optical properties in a nanocrystalline environment recommend the proposed organic nanocrystals as single-photon sources for integrated photonic quantum technologies.
NASA Astrophysics Data System (ADS)
Li, F.; Wu, Y. P.; Nie, Z.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.
2018-01-01
Low emittance (sub-100 nm rad) measurement of electron beams in plasma accelerators has been a challenging issue for a while. Among various measurement schemes, measurements based on single-shot quad-scan using permanent magnetic quadrupoles (PMQs) has been recently reported with emittance as low as ˜200 nm Weingartner (2012 Phys. Rev. Spec. Top. Accel. Beams 15 111302). However, the accuracy and reliability of this method have not been systematically analyzed. Such analysis is critical for evaluating the potential of sub-100 nm rad emittance measurement using any scheme. In this paper, we analyze the effects of various nonideal physical factors on the accuracy and reliability using the PMQ method. These factors include aberration induced by a high order field, PMQ misalignment and angular fluctuation of incoming beams. Our conclusions are as follows: (i) the aberrations caused by high order fields of PMQs are relatively weak for low emittance measurement as long as the PMQs are properly constructed. A series of PMQs were manufactured and measured at Tsinghua University, and using numerical simulations their high order field effects were found to be negligible . (ii) The largest measurement error of emittance is caused by the angular misalignment between PMQs. For low emittance measurement of ˜100 MeV beams, an angular alignment accuracy of 0.1° is necessary. This requirement can be eased for beams with higher energies. (iii) The transverse position misalignment of PMQs and angular fluctuation of incoming beams only cause a translational and rotational shift of measured signals, respectively, therefore, there is no effect on the measured value of emittance. (iv) The spatial resolution and efficiency of the detection system need to be properly designed to guarantee the accuracy of sub-100 nm rad emittance measurement.
High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir
2018-02-01
High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.
Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex
NASA Astrophysics Data System (ADS)
Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel
2016-03-01
Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.
Solid state SPS microwave generation and transmission study. Volume 1: Phase 2
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
NASA Astrophysics Data System (ADS)
Chandrahalim, Hengky; Fan, Xudong
2015-12-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
Chandrahalim, Hengky; Fan, Xudong
2015-01-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Chandrahalim, Hengky; Fan, Xudong
2015-12-17
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
20-mN Variable Specific Impulse (Isp) Colloid Thruster
NASA Technical Reports Server (NTRS)
Demmons, Nathaniel
2015-01-01
Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.
Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique
NASA Astrophysics Data System (ADS)
Pakluea, S.; Rimjaem, S.
2017-09-01
Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.
O'Donnell, R G; Mitchell, P I; Priest, N D; Strange, L; Fox, A; Henshaw, D L; Long, S C
1997-08-18
Concentrations of plutonium-239, plutonium-240, strontium-90 and total alpha-emitters have been measured in children's teeth collected throughout Great Britain and Ireland. The concentrations of plutonium and strontium-90 were measured in batched samples, each containing approximately 50 teeth, using low-background radiochemical methods. The concentrations of total alpha-emitters were determined in single teeth using alpha-sensitive plastic track detectors. The results showed that the average concentrations of total alpha-emitters and strontium-90 were approximately one to three orders of magnitude greater than the equivalent concentrations of plutonium-239,240. Regression analyses indicated that the concentrations of plutonium, but not strontium-90 or total alpha-emitters, decreased with increasing distance from the Sellafield nuclear fuel reprocessing plant-suggesting that this plant is a source of plutonium contamination in the wider population of the British Isles. Nevertheless, the measured absolute concentrations of plutonium (mean = 5 +/- 4 mBq kg-1 ash wt.) were so low that they are considered to present an insignificant radiological hazard.
NASA Astrophysics Data System (ADS)
Omiya, Hiromasa
Much interest currently exists in GaN and related materials for applications such as light-emitting devices operating in the amber to ultraviolet range. Solid-state lighting (SSL) using these materials is widely being investigated worldwide, especially due to their high-energy efficiency and its impact on environmental issues. A new approach for solid-state lighting uses phosphor-free white light emitting diodes (LEDs) that consist of blue, green, and red quantum wells (QW), all in a single device. This approach leads to improved color rendering, and directionality, compared to the conventional white LEDs that use yellow phosphor on blue or ultraviolet emitters. Improving the brightness of these phosphor-free white LEDs should enhance and accelerate the development of SSL technology. The main objective of the research reported in this dissertation is to provide a comprehensive understanding of the nature of the multiple quantum wells used in phosphor-free white LEDs. This dissertation starts with an introduction to lighting history, the fundamental concepts of nitride semiconductors, and the evolution of LED technology. Two important challenges in LED technology today are metal-semiconductor contacts and internal piezoelectric fields present in quantum well structures. Thus, the main portion of this dissertation consists of three parts dealing with metal-semiconductor interfaces, single quantum well structures, and multiple quantum well devices. Gold-nickel alloys are widely used as contacts to the p-region of LEDs. We have performed a detailed study for its evolution under standard annealing steps. The atomic arrangement of gold at its interface with GaN gives a clear explanation for the improved ohmic contact performance. We next focus on the nature of InGaN QWs. The dynamic response of the QWs was studied with electron holography and time-resolved cathodoluminescence. Establishing the correlation between energy band structure and the light emission spectra elucidated the nature of light emission. Finally, we studied a more complex device, consisting of two red, one green, and two blue emitting quantum wells. A correlation between structural, electrical and optical measurements allows us to understand the dynamic performance of this device. The collective results of this dissertation lead to an improved understanding of the performance of high-brightness, phosphor-free, white LEDs.
Growth of single crystals of BaFe12O19 by solid state crystal growth
NASA Astrophysics Data System (ADS)
Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia
2016-10-01
Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.
Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.
Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo
2016-05-11
Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
Universal features of the equation of state of solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Rose, James H.; Ferrante, John; Smith, John R.
1989-01-01
A study of the energetics of solids leads to the conclusion that the equation of state for all classes of solids in compression can be expressed in terms of a universal function. The form of this universal function is determined by scaling experimental compression data for measured isotherms of a wide variety of solids. The equation of state is thus known (in the absence of phase transitions), if zero-pressure volume and isothermal compression and its pressure derivative are known. The discovery described in this paper has two immediate consequences: first, despite the well known differences in the microscopic energetics of the various classes of solids, there is a single equation of state for all classes in compression; and second, a new method is provided for analyzing measured isotherms and extrapolating high-pressure data from low-pressure (e.g. acoustic) data.
NASA Astrophysics Data System (ADS)
Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos
2016-12-01
Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.
Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes
NASA Astrophysics Data System (ADS)
Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.
2012-11-01
The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.
de Assis, Thiago A; Dall'Agnol, Fernando F
2018-05-16
Numerical simulations are important when assessing the many characteristics of field emission related phenomena. In small simulation domains, the electrostatic effect from the boundaries is known to influence the calculated apex field enhancement factor (FEF) of the emitter, but no established dependence has been reported at present. In this work, we report the dependence of the lateral size, L, and the height, H, of the simulation domain on the apex-FEF of a single conducting ellipsoidal emitter. Firstly, we analyze the error, ε, in the calculation of the apex-FEF as a function of H and L. Importantly, our results show that the effects of H and L on ε are scale invariant, allowing one to predict ε for ratios L/h and H/h, where h is the height of the emitter. Next, we analyze the fractional change of the apex-FEF, δ, from a single emitter, [Formula: see text], and a pair, [Formula: see text]. We show that small relative errors in [Formula: see text] (i.e. [Formula: see text]), due to the finite domain size, are sufficient to alter the functional dependence [Formula: see text], where c is the distance from the emitters in the pair. We show that [Formula: see text] obeys a recently proposed power law decay (Forbes 2016 J. Appl. Phys. 120 054302), at sufficiently large distances in the limit of infinite domain size ([Formula: see text], say), which is not observed when using a long time established exponential decay (Bonard et al 2001 Adv. Mater. 13 184) or a more sophisticated fitting formula proposed recently by Harris et al (2015 AIP Adv. 5 087182). We show that the inverse-third power law functional dependence is respected for various systems like infinity arrays and small clusters of emitters with different shapes. Thus, [Formula: see text], with m = 3, is suggested to be a universal signature of the charge-blunting effect in small clusters or arrays, at sufficient large distances between emitters with any shape. These results improve the physical understanding of the field electron emission theory to accurately characterize emitters in small clusters or arrays.
Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S
2017-08-01
Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD 3 , using [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol -1 , PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene) 2 ][BAr F 4 ] , is formed. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(butene)][BAr F 4 ] ( x = 1) is characterized as having 2-butene bound as the cis -isomer and a single Rh···H 3 C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol -1 . [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] and the polymorphs of [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis - and trans -2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor.
High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure
Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo
2016-01-01
Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.
Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Study of skeletal muscle cross-bridge population dynamics by second harmonic generation
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Tesi, C.; Pirrodi, N.; Poggesi, C.; Castiglioni, C.; Milani, A.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2007-02-01
The high degree of structural order in skeletal muscle allows imaging of this tissue by Second Harmonic Generation (SHG). Biochemical and colocalization studies have gathered an increasing wealth of clues for the attribution of the molecular origin of the muscle SHG signal to the motor protein myosin. Thus, SHG represents a potentially very powerful tool in the investigation of structural dynamics occurring in muscle during active production of force and/or shortening. A full characterization of the polarization-dependence of the SHG signal represents a very selective information on the orientation of the emitting proteins and their dynamics during contraction, provided that different physiological states of muscle (relaxed, rigor and active) exhibit distinct patterns of SHG polarization dependence. Here polarization data are obtained from single frog muscle fibers at rest and during isometric contraction and interpreted, by means of a model, in terms of an average orientation of the SHG emitters which are structured with a cylindrical symmetry about the fiber axis. The setup is optimized for accurate polarization measurements with SHG, combined with a line scan imaging method allowing acquisition of SHG polarization curves in different physiological states. We demonstrate that muscle fiber displays a measurable variation of the orientation of SHG emitters with the transition from rest to isometric contraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M.; Abujetas, Diego R.
The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guidedmore » modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.« less
Resonant tunneling device with two-dimensional quantum well emitter and base layers
Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.
1998-10-20
A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.
Resonant tunneling device with two-dimensional quantum well emitter and base layers
Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.
1998-01-01
A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes
NASA Astrophysics Data System (ADS)
Kaifuchi, Yoshikazu; Yamagata, Yuji; Nogawa, Ryozaburo; Morohashi, Rintaro; Yamada, Yumi; Yamaguchi, Masayuki
2017-02-01
Design optimization of single emitter broad stripe 9xx-nm laser diodes was studied to achieve ultimate high power and high efficiency operation for a use in fiber laser pumping and other industrial applications. We tuned laser vertical layer design and stripe width in terms of optical confinement as well as electrical resistance. As a result, newly designed LDs with 4mm-long cavity and 220 μm-wide stripe successfully demonstrate maximum CW output power as high as 33 W and high efficiency operation of more than 60 % PCE even at 27 W output power. In pulse measurement, the maximum output of 68 W was obtained.
Photon pair source via two coupling single quantum emitters
NASA Astrophysics Data System (ADS)
Peng, Yong-Gang; Zheng, Yu-Jun
2015-10-01
We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source. Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.
Preformation probability inside α emitters around the shell closures Z = 50 and N = 82
NASA Astrophysics Data System (ADS)
Seif, W. M.; Ismail, M.; Zeini, E. T.
2017-05-01
The preformation of an α-particle as a distinct entity inside the α-emitter is the first move towards α-decay. We investigate the α-particle preformation probability (S α ) in ordinary and exotic α-decays. We consider favored and unfavored decays at which the α-emitters and the produced daughter nuclides are in their ground or isomeric states. The study of 244 α-decay modes with 52≤slant Z≤slant 81 and 53≤slant N≤slant 112 is accomplished using the preformed cluster model. The preformation probabilities were estimated from the experimental half-lives and the computed decay widths based on the Wentzel-Kramers-Brillouin tunneling penetrability and knocking frequency, and the Skyrme-SLy4 interaction potential. We found that the favored α-decay mode from a ground state to an isomeric state shows larger α-preformation probability than the favored and unfavored decays of the same isotope but from isomeric to ground states. The favored decay mode from isomeric- to ground-state exhibits rather less S α relative to the other decay modes from the same nuclide. The favored decay modes between two isomeric states tend to yield larger S α and less partial half-life compared with the favored and unfavored decays from the same nuclides but between two ground states. For the decays involving two ground states, the preformation probability is larger for the favored decay modes than for the unfavored ones. The unfavored α-decay modes from ground- to isomeric-states are rare. The unfavored decay modes from isomeric- to ground-states show less S α than that for the favored decays from the ground states of the same emitters. The unfavored α-decay modes between two isomeric states exhibit larger S α than the other α-decay modes from the same isomers.
High Energy, Single-Mode, All-Solid-State Nd:YAG Laser
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd
2006-01-01
In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.
Detecting the Length of Double-stranded DNA with Solid State Nanopores
NASA Astrophysics Data System (ADS)
Li, Jiali; Gershow, Marc; Stein, Derek; Qun, Cai; Brandin, Eric; Wang, Hui; Huang, Albert; Branton, Dan; Golovchenko, Jene
2003-03-01
We report on the use of nanometer scale diameter, solid-state nanopores as single molecule detectors of double stranded DNA molecules. These solid-state nanopores are fabricated in thin membranes of silicon nitride, by ion beam sculpting 1. They produce discrete electronic signals: current blockages, when an electrically biased nanopore is exposed to DNA molecules in aqueous salt solutions. We demonstrate examples of such electronic signals for 3k base pairs (bp) and 10k bp double stranded DNA molecules, which suggest that these molecules are individually translocating through the nanopore during the detection process. The translocating time for the 10k bp double stranded DNA is about 3 times longer than the 3k bp, demonstrating that a solid-state nanopore device can be used to detect the lengths of double stranded DNA molecules. Similarities and differences with signals obtained from single stranded DNA in a biological nanopores are discussed 2. 1. Li, J., Stein, D., McMullan, C., Branton, D. Aziz, M. J. and Golovchenko, J. Ion Beam Sculpting at nanometer length scales. Nature 412, 166-169 (2001). 2. Meller, A., L. Nivon, E. Brandin, Golovchenko, J. & Branton, D. Proc. Natl. Acad. Sci. USA 97, 1079-1084 (2000).
NASA Astrophysics Data System (ADS)
Rauch, Michael; Haehnelt, Martin; Bunker, Andrew; Becker, George; Marleau, Francine; Graham, James; Cristiani, Stefano; Jarvis, Matt; Lacey, Cedric; Morris, Simon; Peroux, Celine; Röttgering, Huub; Theuns, Tom
2008-07-01
We have conducted a long-slit search for low surface brightness Lyα emitters at redshift 2.67 < z < 3.75. A 92 hr long exposure with the ESO VLT FORS2 instrument down to a 1 σ surface brightness detection limit of 8 × 10-20 erg cm-2 s-1 arcsec-2 per arcsec2 aperture yielded a sample of 27 single line emitters with fluxes of a few × 10-18 erg s-1 cm-2. We present arguments that most objects are indeed Lyα. The large comoving number density, 3 × 10-2 h370 Mpc-3, the large covering factor, dN/dz ~ 0.2-1, and the often extended Lyα emission suggest that the emitters can be identified with the elusive host population of damped Lyα systems (DLAS) and high column density Lyman limit systems (LLS). A small inferred star formation rate, perhaps supplemented by cooling radiation, appears to energetically dominate the Lyα emission, and is consistent with the low metallicity, low dust content, and theoretically inferred low masses of DLAS, and with the relative lack of success of earlier searches for their optical counterparts. Some of the line profiles show evidence for radiative transfer in galactic outflows. Stacking surface brightness profiles, we find emission out to at least 4''. The centrally concentrated emission of most objects appears to light up the outskirts of the emitters (where LLS arise) down to a column density where the conversion from UV to Lyα photon becomes inefficient. DLAS, high column density LLS, and the emitter population discovered in this survey appear to be different observational manifestations of the same low-mass, protogalactic building blocks of present-day L* galaxies. Based partly on observations made with ESO Telescopes at the Paranal Observatories under Program ID LP173.A-0440, and partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).
Manahan, Grace G.; Habib, A. F.; Scherkl, P.; ...
2017-06-05
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m –1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wavemore » can be locally overloaded without compromising the witness bunch normalized emittance. Here, this reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.« less
Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
NASA Astrophysics Data System (ADS)
Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg
2018-03-01
Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.
Novel high-brightness fiber coupled diode laser device
NASA Astrophysics Data System (ADS)
Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas
2007-02-01
High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.
NASA Astrophysics Data System (ADS)
Shimoi, Norihiro
2015-12-01
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.
High-power laser diodes with high polarization purity
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady
2017-02-01
Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp
2015-12-07
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, themore » blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.« less
Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung
2011-08-01
We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
NASA Astrophysics Data System (ADS)
Ferretti, S.; Savona, V.; Gerace, D.
2013-02-01
We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.
NASA Astrophysics Data System (ADS)
Yang, Li-Kai; Cai, Han; Peng, Tao; Wang, Da-Wei
2018-06-01
The Hong‑Ou‑Mandel (HOM) effect was long believed to be a two-photon interference phenomenon. It describes the fact that two indistinguishable photons mixed at a beam splitter will bunch together to one of the two output modes. Considering the two single-photon emitters such as trapped ions, we explore a hidden scenario of the HOM effect, where entanglement can be generated between the two ions when a single photon is detected by one of the detectors. A second photon emitted by the entangled photon sources will be subsequently detected by the same detector. However, we can also control the fate of the second photon by manipulating the entangled state. Instead of two-photon interference, the phase of the entangled state is responsible for the photon’s path in our proposal. Toward a feasible experimental realization, we conduct a quantum jump simulation on the system to show its robustness against experimental errors.
Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang
2016-12-07
Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.
Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
NASA Astrophysics Data System (ADS)
Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno
2015-10-01
The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.
Effects of quantum coherence and interference in atoms near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman; Rostovtsev, Yuri V.
2016-04-01
Optical properties of ensembles of realistic quantum emitters coupled to plasmonic systems are studied by using adequate models that can take into account full atomic geometry. In particular, the coherent effects such as forming "dark states," optical pumping, coherent Raman scattering, and the stimulated Raman adiabatic passage (STIRAP) are revisited in the presence of metallic nanoparticles. It is shown that the dark states are still formed but they have more complicated structure, and the optical pumping and the STIRAP cannot be employed in the vicinity of plasmonic nanostructures. Also, there is a huge difference in the behavior of the local atomic polarization and the atomic polarization averaged over an ensemble of atoms homogeneously spread near nanoparticles. The average polarization is strictly related to the polarization induced by the external field, while the local polarization can be very different from the one induced by the external field. This is important for the excitation of single molecules, e.g., different components of scattering from single molecules can be used for their efficient detection.
The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.
Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George
2013-06-01
The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.
Terahertz spin current pulses controlled by magnetic heterostructures
NASA Astrophysics Data System (ADS)
Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.
2013-04-01
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.
Quantum enhanced superresolution microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oron, Dan; Tenne, Ron; Israel, Yonatan; Silberberg, Yaron
2017-02-01
Far-field optical microscopy beyond the Abbe diffraction limit, making use of nonlinear excitation (e.g. STED), or temporal fluctuations in fluorescence (PALM, STORM, SOFI) is already a reality. In contrast, overcoming the diffraction limit using non-classical properties of light is very difficult to achieve due to the fragility of quantum states of light. Here, we experimentally demonstrate superresolution microscopy based on quantum properties of light naturally emitted by fluorophores used as markers in fluorescence microscopy. Our approach is based on photon antibunching, the tendency of fluorophores to emit photons one by one rather than in bursts. Although a distinctively quantum phenomenon, antibunching is readily observed in most common fluorophores even at room temperature. This nonclassical resource can be utilized directly to enhance the imaging resolution, since the non-classical far-field intensity correlations induced by antibunching carry high spatial frequency information on the spatial distribution of emitters. Detecting photon statistics simultaneously in the entire field of view, we were able to detect non-classical correlations of the second and third order, and reconstructed images with resolution significantly beyond the diffraction limit. Alternatively, we demonstrate the utilization of antibunching for augmenting the capabilities of localization-based superresolution imaging in the presence of multiple emitters, using a novel detector comprised of an array of single photon detectors connected to a densely packed fiber bundle. These features allow us to enhance the spatial and temporal resolution with which multiple emitters can be imaged compared with other techniques that rely on CCD cameras.
Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS
NASA Astrophysics Data System (ADS)
De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.
1996-08-01
This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.
Pustovit, Vitaliy N; Shahbazyan, Tigran V
2009-02-20
We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon. The cross talk between emitters due to the virtual plasmon exchange leads to the formation of three plasmonic superradiant modes whose radiative decay rates scale with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives nonradiative losses in the metal.
Microcavity enhanced single photon emission from two-dimensional WSe2
NASA Astrophysics Data System (ADS)
Flatten, L. C.; Weng, L.; Branny, A.; Johnson, S.; Dolan, P. R.; Trichet, A. A. P.; Gerardot, B. D.; Smith, J. M.
2018-05-01
Atomically flat semiconducting materials such as monolayer WSe2 hold great promise for novel optoelectronic devices. Recently, quantum light emission has been observed from bound excitons in exfoliated WSe2. As part of developing optoelectronic devices, the control of the radiative properties of such emitters is an important step. Here, we report the coupling of a bound exciton in WSe2 to open microcavities. We use a range of radii of curvature in the plano-concave cavity geometry with mode volumes in the λ3 regime, giving Purcell factors of up to 8 while increasing the photon flux five-fold. Additionally, we determine the quantum efficiency of the single photon emitter to be η=0.46 ±0.03 . Our findings pave the way to cavity-enhanced monolayer based single photon sources for a wide range of applications in nanophotonics and quantum information technologies.
Design of 20 W fiber-coupled green laser diode by Zemax
NASA Astrophysics Data System (ADS)
Qi, Yunfei; Zhao, Pengfei; Wu, Yulong; Chen, Yongqi; Zou, Yonggang
2017-09-01
We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 μm and numerical aperture (NA) of 0.22. To achieve a 20 W laser beam, the spatial beam combination and polarization beam combination by polarization beam splitter are used to combine output of 26 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation shows that the total coupling efficiency is more than 95%. Project supported by the National Key R& D Program of China (No. 2016YFB0402105), the Key Deployment Program of the Chinese Academy of Sciences (No. KGZD-SW-T01-2), and the National Natural Science Foundation of China (No. 61404135).
Singles correlation energy contributions in solids
NASA Astrophysics Data System (ADS)
Klimeš, Jiří; Kaltak, Merzuk; Maggio, Emanuele; Kresse, Georg
2015-09-01
The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
Majorana modes in solid state systems and its dynamics
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-04-01
We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.
Orfield, Noah J; Majumder, Somak; McBride, James R; Yik-Ching Koh, Faith; Singh, Ajay; Bouquin, Sarah J; Casson, Joanna L; Johnson, Alex D; Sun, Liuyang; Li, Xiaoqin; Shih, Chih-Kang; Rosenthal, Sandra J; Hollingsworth, Jennifer A; Htoon, Han
2018-05-07
Quantum dots (QDs) are steadily being implemented as down-conversion phosphors in market-ready display products to enhance color rendering, brightness, and energy efficiency. However, for adequate longevity, QDs must be encased in a protective barrier that separates them from ambient oxygen and humidity, and device architectures are designed to avoid significant heating of the QDs as well as direct contact between the QDs and the excitation source. In order to increase the utility of QDs in display technologies and to extend their usefulness to more demanding applications as, for example, alternative phosphors for solid-state lighting (SSL), QDs must retain their photoluminescence emission properties over extended periods of time under conditions of high temperature and high light flux. Doing so would simplify the fabrication costs for QD display technologies and enable QDs to be used as down-conversion materials in light-emitting diodes for SSL, where direct-on-chip configurations expose the emitters to temperatures approaching 100 °C and to photon fluxes from 0.1 W/mm 2 to potentially 10 W/mm 2 . Here, we investigate the photobleaching processes of single QDs exposed to controlled temperature and photon flux. In particular, we investigate two types of room-temperature-stable core/thick-shell QDs, known as "giant" QDs for which shell growth is conducted using either a standard layer-by-layer technique or by a continuous injection method. We determine the mechanistic pathways responsible for thermally-assisted photodegradation, distinguishing effects of hot-carrier trapping and QD charging. The findings presented here will assist in the further development of advanced QD heterostructures for maximum device lifetime stability.
A Single-Phase Analytic Equation of State for Solid Polyurea and Polyurea Aerogels
NASA Astrophysics Data System (ADS)
Whitworth, Nicholas; Lambourn, Brian
2017-06-01
Commercially available polymers are commonly used as impactors in high explosive gas-gun experiments. This paper presents a relatively simple, single-phase, analytic equation of state (EoS) for solid polyurea and polyurea aerogels suitable for use in hydrocode simulations. An exponential shock velocity-particle velocity relation is initially fit to available Hugoniot data on the solid material, which has a density of 1.13 g/cm3. This relation is then converted to a finite strain relation along the principal isentrope, which is used as the reference curve for a Mie-Gruneisen form of EoS with an assumed form for the variation of Gruneisen Γ with specific volume. Using the solid EoS in conjunction with the Snowplough model for porosity, experimental data on the shock response of solid polyurea and polyurea aerogels with initial densities of 0.20 and 0.35 g/cm3 can be reproduced to a reasonable degree of accuracy. A companion paper at this conference describes the application of this and other EoS in modelling shock-release-reshock gas-gun experiments on the insensitive high explosive PBX 9502.
Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Van Noord, Jonathan
2012-01-01
NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos
2010-01-01
An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore themore » lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensen, Matthias; Heilpern, Tal; Gray, Stephen K.
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance linemore » width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.« less
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen
During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less
Window-assisted nanosphere lithography for vacuum micro-nano-electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai
2015-04-15
Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-01
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
An analytical study of double bend achromat lattice.
Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D
2015-03-01
In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.
Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials
Kappaun, Stefan; Slugovc, Christian; List, Emil J. W.
2008-01-01
Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III) complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers. PMID:19325819
A compact time reversal emitter-receiver based on a leaky random cavity
Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter
2016-01-01
Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957
A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik
2013-09-09
We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.
All-Solid-State UV Transmitter Development for Ozone Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.
2009-01-01
In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Faqiang; Yang, Qunbao; Liu, Zhifu; Li, Yongxiang; Liu, Yun; Zhang, Qiming
2016-05-01
We report lead-free single crystals with a nominal formula of (K0.45Na0.55)0.96Li0.04NbO3 grown using a simple low-cost seed-free solid-state crystal growth method (SFSSCG). The crystals thus prepared can reach maximum dimensions of 6 mm × 5 mm × 2 mm and exhibit a large piezoelectric coefficient d33 of 689 pC/N. Moreover, the effective piezoelectric coefficient d33 * , obtained under a unipolar electric field of 30 kV/cm, can reach 967 pm/V. The large piezoelectric response plus the high Curie temperature (TC) of 432 °C indicate that SFSSCG is an effective approach to synthesize high-performance lead-free piezoelectric single crystals.
Single Frequency Monolithic Solid State Green Laser as a Potential Source for Vibrometry Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotor, Jaroslaw Z.; Antonczak, Arkadiusz J.; Abramski, Krzysztof M.
2010-05-28
In this paper miniature, monolithic single frequency solid state laser operating at 532 nm is presented. Developed Nd:GdVO{sub 4}/YVO{sub 4}/KTP consist of three crystal bonded together with a UV adhesive. The single frequency operation was obtained in wide temperature range from 17 deg. C to 27 deg. C. The laser operated with output power up to 90 mW at 532 nm. The total optical efficiency (808 nm to 532 nm) was 9.5%. Power stability was at the level of +-0.8% and the long term frequency stability was approximately 3centre dot10{sup -8}. The beam has a Gaussian profile and the M2more » parameter was below 1.1.« less
Mon, Marta; Pascual-Álvarez, Alejandro; Grancha, Thais; Cano, Joan; Ferrando-Soria, Jesús; Lloret, Francesc; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio
2016-01-11
Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S
2014-11-11
Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.
Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.
Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A
2017-07-13
Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.
A CMOS enhanced solid-state nanopore based single molecule detection platform.
Chen, Chinhsuan; Yemenicioglu, Sukru; Uddin, Ashfaque; Corgliano, Ellie; Theogarajan, Luke
2013-01-01
Solid-state nanopores have emerged as a single molecule label-free electronic detection platform. Existing transimpedance stages used to measure ionic current nanopores suffer from dynamic range limitations resulting from steady-state baseline currents. We propose a digitally-assisted baseline cancellation CMOS platform that circumvents this issue. Since baseline cancellation is a form of auto-zeroing, the 1/f noise of the system is also reduced. Our proposed design can tolerate a steady state baseline current of 10µA and has a usable bandwidth of 750kHz. Quantitative DNA translocation experiments on 5kbp DNA was performed using a 5nm silicon nitride pore using both the CMOS platform and a commercial system. Comparison of event-count histograms show that the CMOS platform clearly outperforms the commercial system, allowing for unambiguous interpretation of the data.
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md
2015-11-15
The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.
Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits
NASA Astrophysics Data System (ADS)
Schmidgall, Emma R.; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R.; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C.
2018-02-01
Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.
Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits.
Schmidgall, Emma R; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C
2018-02-14
Generating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.
NASA Astrophysics Data System (ADS)
Li, Feng; Li, Hongren; Cui, Tianfang
2017-11-01
Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.
Chadwick, F. Mark; McKay, Alasdair I.; Martinez-Martinez, Antonio J.; Rees, Nicholas H.; Krämer, Tobias
2017-01-01
Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] (NBA = norbornane; ArF = 3,5-(CF3)2C6H3) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy2PCH2CH2PCy2)(alkene)x][BArF4] are formed. The ethene (x = 2) complex, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Oct, has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Hex, that has a hexagonal microporous structure (P6322). The propene complex (x = 1) [Rh(Cy2PCH2CH2PCy2)(propene)][BArF4] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H3C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d3-propene, H2C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD3, using [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol–1, PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy2PCH2CH2PCy2)(propene)2][BArF4], is formed. [Rh(Cy2PCH2CH2PCy2)(butene)][BArF4] (x = 1) is characterized as having 2-butene bound as the cis-isomer and a single Rh···H3C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol–1. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] and the polymorphs of [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis- and trans-2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor. PMID:28989631
NASA Astrophysics Data System (ADS)
Biteen, Julie S.; Thompson, Michael A.; Tselentis, Nicole K.; Shapiro, Lucy; Moerner, W. E.
2009-02-01
Recently, photoactivation and photoswitching were used to control single-molecule fluorescent labels and produce images of cellular structures beyond the optical diffraction limit (e.g., PALM, FPALM, and STORM). While previous live-cell studies relied on sophisticated photoactivatable fluorescent proteins, we show in the present work that superresolution imaging can be performed with fusions to the commonly used fluorescent protein EYFP. Rather than being photoactivated, however, EYFP can be reactivated with violet light after apparent photobleaching. In each cycle after initial imaging, only a sparse subset fluorophores is reactivated and localized, and the final image is then generated from the measured single-molecule positions. Because these methods are based on the imaging nanometer-sized single-molecule emitters and on the use of an active control mechanism to produce sparse sub-ensembles, we suggest the phrase "Single-Molecule Active-Control Microscopy" (SMACM) as an inclusive term for this general imaging strategy. In this paper, we address limitations arising from physiologically imposed upper boundaries on the fluorophore concentration by employing dark time-lapse periods to allow single-molecule motions to fill in filamentous structures, increasing the effective labeling concentration while localizing each emitter at most once per resolution-limited spot. We image cell-cycle-dependent superstructures of the bacterial actin protein MreB in live Caulobacter crescentus cells with sub-40-nm resolution for the first time. Furthermore, we quantify the reactivation quantum yield of EYFP, and find this to be 1.6 x 10-6, on par with conventional photoswitchable fluorescent proteins like Dronpa. These studies show that EYFP is a useful emitter for in vivo superresolution imaging of intracellular structures in bacterial cells.
Scalable Quantum Information Processing and Applications
2008-01-19
qubit logic gates, and finally emitting an entangled photon from the single- photon emitter. For the program, we proposed to demonstrate the...coherent, single photon transmitter/receiver system. These requirements included careful tailoring of the g factor for conduction band electrons in...physics required for the realization of a spin-coherent, single photon transmitter/receiver system. These requirements included careful tailoring of
Explaining rISC and 100% efficient TADF (Conference Presentation)
NASA Astrophysics Data System (ADS)
Monkman, Andrew P.; Etherington, Marc; Graves, David; Data, Przemyslaw; Dos Santos, Paloma Lays; Nobuyasu, Roberto; Baiao Dias, Fernando M.
2016-09-01
Detailed photophysical measurements of intramolecular charge transfer (ICT) states have been made both in solution and solid state. Temperature dependent time resolved emission, delayed emission and photoinduced absorption are used to map the energy levels involved in molecule decay, and through detailed kinetic modelling of the thermally activated processes observed, true electron exchange energies and other energy barriers of the systems determined with the real states involved in the reversed intersystem crossing mechanism elucidated. For specific donor acceptor molecules, the CT singlet and local triplet states (of donor or acceptor) are found to be the lowest lying excited states of the molecule with very small energy barrier between them ? kT. In these cases the decay kinetics of the molecules become significantly different to normal molecules, and the effect of rapid recycling between CT singlet and local triplet states is observed which gives rise to the true triplet harvesting mechanism in TADF. Using a series of different TADF emitters we will show how the energy level ordering effects or does not effect TADF and how ultimate OLED performance is dictated by energy level ordering, from 5% to 22% external quantum efficiency. From this understanding, we are able to define three criterion for TADF in different molecules and these will be discussed.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
On-demand semiconductor single-photon source with near-unity indistinguishability.
He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei
2013-03-01
Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.
Yang, Ying; Ri, Kwangho; Rong, Yaoguang; Liu, Linfeng; Liu, Tongfa; Hu, Min; Li, Xiong; Han, Hongwei
2014-09-07
We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.
NASA Astrophysics Data System (ADS)
Pukhov, Konstantin K.
2017-12-01
Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.
Photon scattering from a system of multilevel quantum emitters. I. Formalism
NASA Astrophysics Data System (ADS)
Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.
2018-04-01
We introduce a formalism to solve the problem of photon scattering from a system of multilevel quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields' amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multiemitter and multilevel emitter systems, and is applicable to a plethora of photon-scattering problems, including conditional state preparation by photodetection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II) S. Das et al. [Phys. Rev. A 97, 043838 (2018), 10.1103/PhysRevA.97.043838], we reduce the general photon-scattering formalism to a form that is applicable to one-dimensional waveguides and show its applicability by considering explicit examples with various emitter configurations.
Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors
NASA Technical Reports Server (NTRS)
Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab
2003-01-01
Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.
DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W
2010-03-01
KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pourdavoud, Neda; Riedl, Thomas J.
2016-09-01
Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.
NASA Astrophysics Data System (ADS)
Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.
2018-01-01
Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W-1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.
NASA Astrophysics Data System (ADS)
Morris, Dave; Gilchrist, Brian; Gallimore, Alec
2001-02-01
Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .
Modelling of hydrogen transport in silicon solar cell structures under equilibrium conditions
NASA Astrophysics Data System (ADS)
Hamer, P.; Hallam, B.; Bonilla, R. S.; Altermatt, P. P.; Wilshaw, P.; Wenham, S.
2018-01-01
This paper presents a model for the introduction and redistribution of hydrogen in silicon solar cells at temperatures between 300 and 700 °C based on a second order backwards difference formula evaluated using a single Newton-Raphson iteration. It includes the transport of hydrogen and interactions with impurities such as ionised dopants. The simulations lead to three primary conclusions: (1) hydrogen transport across an n-type emitter is heavily temperature dependent; (2) under equilibrium conditions, hydrogen is largely driven by its charged species, with the switch from a dominance of negatively charged hydrogen (H-) to positively charged hydrogen (H+) within the emitter region critical to significant transport across the junction; and (3) hydrogen transport across n-type emitters is critically dependent upon the doping profile within the emitter, and, in particular, the peak doping concentration. It is also observed that during thermal processes after an initial high temperature step, hydrogen preferentially migrates to the surface of a phosphorous doped emitter, drawing hydrogen out of the p-type bulk. This may play a role in several effects observed during post-firing anneals in relation to the passivation of recombination active defects and even the elimination of hydrogen-related defects in the bulk of silicon solar cells.
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
Maity, Arunava; Ali, Firoj; Agarwalla, Hridesh; Anothumakkool, Bihag; Das, Amitava
2015-02-07
A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.
Mode Matching for Optical Antennas
NASA Astrophysics Data System (ADS)
Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert
2017-11-01
The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.