Sample records for single source precursor

  1. Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)

    2006-01-01

    A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.

  2. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  3. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  4. Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.

    PubMed

    Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R

    2018-05-28

    In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

  5. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  6. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  7. Sol-gel precursors and products thereof

    DOEpatents

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  8. Methods of forming semiconductor devices and devices formed using such methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  9. A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.

  10. Combining single source chemical vapour deposition precursors to explore the phase space of titanium oxynitride thin films.

    PubMed

    Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey

    2018-02-14

    In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.

  11. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2016-04-19

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  12. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  13. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    NASA Technical Reports Server (NTRS)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  14. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  15. Making Single-Source Precursors of Ternary Semiconductors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius; Banger, Kulbindre K.

    2007-01-01

    A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. A closely related class of single-source precursors of these semiconductors, and their synthesis routes, were reported in "Improved Single-Source Precursors for Solar-Cell Absorbers" (LEW-17445-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 56. The present synthesis route is better suited to commercialization because it is simpler and involves the use of commercially available agents, yet offers the flexibility needed for synthesis of a variety of precursors. A single-source precursor of the type of interest here is denoted by the general formula L2M'(mu-ER)2M(ER)2, where L signifies a Lewis base; M signifies Al, In, or Ga; M' signifies Ag or Cu; R signifies an alkyl, aryl, silyl, or perfluorocarbon group; E signifies O, S, Se, or Te; and mu signifies a bridging ligand. This compound can be synthesized in a "one-pot" procedure from ingredients that are readily available from almost any chemical supplier. In a demonstration, the following synthesis was performed: Under anaerobic conditions, InCl3 was reacted with sodium ethanethiolate in methanol in a 1:4 molar ratio to afford the ionic stable intermediate compound Na+[In(SEt)4]- (where Et signifies ethyl group). After approximately 15 minutes, a heterogeneous solution of CuCl and the Lewis base PPh3 (where Ph signifies phenyl) in a 1:2 ratio in a mixture of CH3CN and CH2Cl2 was added directly to the freshly prepared Na+[In(SEt)4]-. After 24 hours, the reaction was essentially complete. The methanolic solution was concentrated, then the product was extracted with CH2Cl2, then the product was washed with dry ether and pentane. The product in its final form was a creamy white solid. Spectroscopic and elemental analysis confirmed that the product was (PPh3)2Cu(mu-SEt)2In(mu-SEt)2, which is known to be a precursor of the ternary semiconductor CuInS2.

  16. Wet-chemical synthesis of different bismuth telluride nanoparticles using metal organic precursors - single source vs. dual source approach.

    PubMed

    Bendt, Georg; Weber, Anna; Heimann, Stefan; Assenmacher, Wilfried; Prymak, Oleg; Schulz, Stephan

    2015-08-28

    Thermolysis of the single source precursor (Et2Bi)2Te in DIPB at 80 °C yielded phase-pure Bi4Te3 nanoparticles, while mixtures of Bi4Te3 and elemental Bi were formed at higher temperatures. In contrast, cubic Bi2Te particles were obtained by thermal decomposition of Et2BiTeEt in DIPB. Moreover, a dual source approach (hot injection method) using the reaction of Te(SiEt3)2 and Bi(NMe2)3 was applied for the synthesis of different pure Bi-Te phases including Bi2Te, Bi4Te3 and Bi2Te3, which were characterized by PXRD, REM, TEM and EDX. The influence of reaction temperature, precursor molar ratio and thermolysis conditions on the resulting material phase was verified. Moreover, reactions of alternate bismuth precursors such as Bi(NEt2)3, Bi(NMeEt)3 and BiCl3 with Te(SiEt3)2 were investigated.

  17. The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

    PubMed

    Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye

    2013-10-11

    One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and Characterization of Chalcopyrite (CuInS2 and CuhInSe2) Colloidal Nanoparticles for Optoelectronic Applications via Low-Temperature Pyrolysis of Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.

    2003-01-01

    Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.

  19. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  20. A New Commercializable Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I-III-IV Semiconductors

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Jin, Michael H. C.; Harris, Jerry D.; Fanwick, Philip E.; Hepp, Aloysius F.

    2004-01-01

    We report a new simplified synthetic procedure for commercial manufacture of ternary single source precursors (SSP). This new synthetic process has been successfully implemented to fabricate known SSPs on bulk scale and the first liquid SSPs to the semiconductors CuInSe2 and AgIn(x)S(y). Single crystal X-ray determination reveals the first unsolvated ternary AgInS SSP. SSPs prepared via this new route have successfully been used in a spray assisted chemical vapor deposition (CVD) process to deposit polycrystalline thin films, and for preparing ternary nanocrystallites.

  1. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  2. Enhancement of photoluminescence intensity of GaAs with cubic GaS chemical vapor deposited using a structurally designed single-source precursor

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  3. Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor

    NASA Astrophysics Data System (ADS)

    Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan

    2018-05-01

    Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.

  4. Confined-plume chemical deposition: rapid synthesis of crystalline coatings of known hard or superhard materials on inorganic or organic supports by resonant IR decomposition of molecular precursors.

    PubMed

    Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M

    2009-08-26

    A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.

  5. Selenium containing imidazolium salt in designing single source precursors for silver bromide and selenide nano-particles.

    PubMed

    Joshi, Hemant; Sharma, Kamal Nayan; Singh, Ved Vati; Singh, Pradhumn; Singh, Ajai Kumar

    2013-02-21

    The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and TOP-OA (1 : 2) are most suitable solvents for thermolysis of 1 and 2 respectively, resulting in the NPs. The composition of the solvent used in thermolysis affects the purity of NPs. The bonding of L in 1 is unique, as it has a pre-carbene site intact.

  6. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  7. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.

  8. Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment.

    PubMed

    Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M

    2017-08-22

    LiCoO 2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO 2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li + ) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li + ) and cobalt (Co 2+ ) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO 2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO 2 have faster kinetics for Li + insertion/extraction compared to microparticles. Overall, nano-sized LiCoO 2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.

  9. Methods for forming particles

    DOEpatents

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  10. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  11. Examining single-source secondary impacts estimated from brute-force, decoupled direct method, and advanced plume treatment approaches

    EPA Science Inventory

    In regulatory assessments, there is a need for reliable estimates of the impacts of precursor emissions from individual sources on secondary PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microns) and ozone. Three potential methods for estimating th...

  12. Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins.

    PubMed

    Beita-Sandí, Wilson; Karanfil, Tanju

    2017-11-01

    Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mixed-ligand approach to design of heterometallic single-source precursors with discrete molecular structure.

    PubMed

    Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V

    2014-05-05

    Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.

  14. Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2003-01-01

    Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.

  15. Polycrystalline ZnO and Mn-doped ZnO nanorod arrays with variable dopant content via a template based synthesis from Zn(II) and Mn(II) Schiff base type single source molecular precursors

    NASA Astrophysics Data System (ADS)

    Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.

    2011-01-01

    The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 μm. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.

  16. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    NASA Astrophysics Data System (ADS)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (<200°C) to provide homogeneous carbon-free materials via the elimination of isobutylene and water. A gel is formed when thermolyses are performed in non-polar solvents, and subsequent drying of the gel in a conventional manner yields high surface area xerogels. This thermolytic molecular precursor (TMP) approach has been utilized to provide a variety of oxide materials with tailored properties. In addition, the oxygen rich environment of the molecular precursors coupled with the presence of M-O-E heterolinkages permits use of them as models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is the only crystalline species present in CrOSiss and CrOSixg after calcination at temperatures up to 1200°C in O2. (Abstract shortened by UMI.)

  17. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content.more » The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.« less

  18. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  19. ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors.

    PubMed

    Onwudiwe, Damian C; Ajibade, Peter A

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.

  20. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    PubMed Central

    Onwudiwe, Damian C.; Ajibade, Peter A.

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607

  1. Making Ternary Quantum Dots From Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius

    2007-01-01

    A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.

  2. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    NASA Astrophysics Data System (ADS)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  3. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  4. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals

    DTIC Science & Technology

    2009-06-30

    Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of

  5. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  6. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    PubMed

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  7. A phase coherence approach to identifying co-located earthquakes and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Ampuero, J.-P.

    2018-05-01

    We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.

  8. Synthesizing and characterization of titanium diboride for composite bipolar plates in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Duddukuri, Ramesh

    This research deals with the synthesis and characterization of titanium diboride (TiB2) from novel carbon coated precursors. This work provides information on using different boron sources and their effect on the resulting powders of TiB2. The process has two steps in which the oxide powders were first coated with carbon by cracking of a hydrocarbon gas, propylene (C3H6) and then, mixed with boron carbide and boric acid powders in a stoichiometric ratio. These precursors were treated at temperatures in the range of 1200--1400° C for 2 h in flowing Argon atmosphere to synthesize TiB2. The process utilizes a carbothermic reduction reaction of novel carbon coated precursor that has potential of producing high-quality powders (sub-micrometer and high purity). Single phase TiB2 powders produced, were compared with commercially available titanium diboride using X-ray diffraction and Transmission electron microscopy obtained from boron carbide and boric acid containing carbon coated precursor.

  9. The Preparation of (Al2O3)x(SiO2)y Thin Films Using (Al(OSiEt3)3)2 as a Single Source Precursor

    DTIC Science & Technology

    1992-05-12

    point AI(OSiEt 3)3(NH3 ) cannot itself readily be used as a volatile precursor. If, however, NH 3 is used as the carrier gas [AI(OSiEt3)3]2 rapidly melts ...situ formation of the low melting Lewis acid-base adduct Al(OSiEt 3)3(NH 3), however, no nitrogen incorporation was observed in these deposited films...in situ formation of the low melting Lewis acid-base adduct AI(OSiEt3)3(NH3), however, no nitrogen incorporation was observed in these deposited

  10. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  11. NASA Tech Briefs, June 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include: High-Accuracy, High-Dynamic-Range Phase-Measurement System; Simple, Compact, Safe Impact Tester; Multi-Antenna Radar Systems for Doppler Rain Measurements; 600-GHz Electronically Tunable Vector Measurement System; Modular Architecture for the Measurement of Space Radiation; VLSI Design of a Turbo Decoder; Architecture of an Autonomous Radio Receiver; Improved On-Chip Measurement of Delay in an FPGA or ASIC; Resource Selection and Ranking; Accident/Mishap Investigation System; Simplified Identification of mRNA or DNA in Whole Cells; Printed Multi-Turn Loop Antennas for RF Biotelemetry; Making Ternary Quantum Dots From Single-Source Precursors; Improved Single-Source Precursors for Solar-Cell Absorbers; Spray CVD for Making Solar-Cell Absorber Layers; Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells; A Method of Assembling Compact Coherent Fiber-Optic Bundles; Manufacturing Diamond Under Very High Pressure; Ring-Resonator/Sol-Gel Interferometric Immunosensor; Compact Fuel-Cell System Would Consume Neat Methanol; Algorithm Would Enable Robots to Solve Problems Creatively; Hypothetical Scenario Generator for Fault-Tolerant Diagnosis; Smart Data Node in the Sky; Pseudo-Waypoint Guidance for Proximity Spacecraft Maneuvers; Update on Controlling Herds of Cooperative Robots; and Simulation and Testing of Maneuvering of a Planetary Rover.

  12. Synthesis and Characterization of Single-Source Molecular Precursors to Binary Metal Sulphides: Bis(Diethyldithiocarbamato) M(II)Trialkylphosphine (M=Zn and Cd) Adducts

    DTIC Science & Technology

    1994-05-06

    while the heterobimetallic species, 7, thermally decomposed to give00 crystalline ZnO.5S according to X-ray powder diffraction data. A. SUBJECT TERMS 15... heterobimetallic species, 7, thermally decomposed to give crystalline ZnO.5CdO.5S according to X-ray powder diffraction data. LaGOSSIOn "or OTIS RA&I VT-iC TAB EU...on the NMR timescale, and a single heterobimetallic species. Attempts to distinguish these possibilities are described later. The variable temperature

  13. Single-Source Molecular Precursor for Synthesis of CdS Nanoparticles and Nanoflowers

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Sobhani, Azam

    2012-04-01

    CdS Semiconductor nanostructures were synthesized by using two different methods. Using triphenylphosphine (C18H15P) and oleylamine (C18H37N) as surfactant, CdS semiconductor nanocrystals with a size ranging from 30 to 90 nm can be synthesized by thermal decomposition of precursor [bis(thiosemicarbazide)cadmium(II)]. CdS nanoflowers were synthesized via hydrothermal decomposition of [bis(thiosemicarbazide) cadmium(II)] without any surfactant. X-ray diffraction (XRD) patterns confirm that the resulting samples were a pure hexagonal phase of CdS. The optical property test indicates that the absorption peak of the samples shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect.

  14. Single-crystalline δ-Ni2Si nanowires with excellent physical properties

    PubMed Central

    2013-01-01

    In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation. PMID:23782805

  15. Relative Importance of Different Water Categories as Sources of N-Nitrosamine Precursors.

    PubMed

    Zeng, Teng; Glover, Caitlin M; Marti, Erica J; Woods-Chabane, Gwen C; Karanfil, Tanju; Mitch, William A; Dickenson, Eric R V

    2016-12-20

    A comparison of loadings of N-nitrosamines and their precursors from different source water categories is needed to design effective source water blending strategies. Previous research using Formation Potential (FP) chloramination protocols (high dose and prolonged contact times) raised concerns about precursor loadings from various source water categories, but differences in the protocols employed rendered comparisons difficult. In this study, we applied Uniform Formation Condition (UFC) chloramination and ozonation protocols mimicking typical disinfection practice to compare loadings of ambient specific and total N-nitrosamines as well as chloramine-reactive and ozone-reactive precursors in 47 samples, including 6 pristine headwaters, 16 eutrophic waters, 4 agricultural runoff samples, 9 stormwater runoff samples, and 12 municipal wastewater effluents. N-Nitrosodimethylamine (NDMA) formation from UFC and FP chloramination protocols did not correlate, with NDMA FP often being significant in samples where no NDMA formed under UFC conditions. N-Nitrosamines and their precursors were negligible in pristine headwaters. Conventional, and to a lesser degree, nutrient removal wastewater effluents were the dominant source of NDMA and its chloramine- and ozone-reactive precursors. While wastewater effluents were dominant sources of TONO and their precursors, algal blooms, and to a lesser degree agricultural or stormwater runoff, could be important where they affect a major fraction of the water supply.

  16. Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Levy, Moises; Sarma, Bimal K.

    1994-01-01

    Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.

  17. Advanced transition metal phosphide materials from single-source molecular precursors

    NASA Astrophysics Data System (ADS)

    Colson, Adam Caleb

    In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and field-dependent magnetization measurements, the results of which were all in good agreement with measurements obtained from bulk Fe3P. As-deposited Fe3P films were found to be amorphous, and little or no magnetic hysteresis was observed in plots of magnetization versus applied field. Annealing the Fe3P films at 550 °C resulted in improved crystallinity as well as the observation of magnetic hysteresis.

  18. Detection of Chemical Precursors of Explosives

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2012-01-01

    Certain selected chemicals associated with terrorist activities are too unstable to be prepared in final form. These chemicals are often prepared as precursor components, to be combined at a time immediately preceding the detonation. One example is a liquid explosive, which usually requires an oxidizer, an energy source, and a chemical or physical mechanism to combine the other components. Detection of the oxidizer (e.g. H2O2) or the energy source (e.g., nitromethane) is often possible, but must be performed in a short time interval (e.g., 5 15 seconds) and in an environment with a very small concentration (e.g.,1 100 ppm), because the target chemical(s) is carried in a sealed container. These needs are met by this invention, which provides a system and associated method for detecting one or more chemical precursors (components) of a multi-component explosive compound. Different carbon nanotubes (CNTs) are loaded (by doping, impregnation, coating, or other functionalization process) for detecting of different chemical substances that are the chemical precursors, respectively, if these precursors are present in a gas to which the CNTs are exposed. After exposure to the gas, a measured electrical parameter (e.g. voltage or current that correlate to impedance, conductivity, capacitance, inductance, etc.) changes with time and concentration in a predictable manner if a selected chemical precursor is present, and will approach an asymptotic value promptly after exposure to the precursor. The measured voltage or current are compared with one or more sequences of their reference values for one or more known target precursor molecules, and a most probable concentration value is estimated for each one, two, or more target molecules. An error value is computed, based on differences of voltage or current for the measured and reference values, using the most probable concentration values. Where the error value is less than a threshold, the system concludes that the target molecule is likely. Presence of one, two, or more target molecules in the gas can be sensed from a single set of measurements.

  19. Synthesis and spectral studies on Cd(II) dithiocarbamate complexes and their use as precursors for CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, Ethiraj; Padmavathy, Krishnaraj; Kumar, Chandran Udhaya; Krishnan, Kannan Gokula; Ramalingan, Chennan

    2017-11-01

    Bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (1) and (2,2‧-bipyridine) bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (2) have been synthesized and characterized by FT-IR, 1HNMR and 13C NMR analyses. For the complex 2, single crystal X-ray diffraction analysis and computational studies (optimized geometry, HOMO-LUMO and MEP) have been executed employing DFT/B3LYP method with LANL 2DZ basic set. The optimized bond lengths and bond angles agree well with the experimental results. The complexes 1 and 2 have been used as single source precursors for the synthesis of ethyleneglycol capped CdS1 and CdS2 nanoparticles, respectively. CdS1 and CdS2 nanoparticles have been synthesized by solvothermal method. PXRD, SEM, Elemental colour mapping, EDAX, TEM and UV-Vis spectroscopy have been used to characterize the as-prepared CdS nanoparticles. The X-ray diffraction pattern confirms both their hexagonal structures.

  20. Popcorn-Shaped FexO (Wüstite) Nanoparticles from a Single-Source Precursor: Colloidal Synthesis and Magnetic Properties

    PubMed Central

    2018-01-01

    Colloidal nanoparticles (NPs) with myriads of compositions and morphologies have been synthesized and characterized in recent years. For wüstite FexO, however, obtaining phase-pure NPs with homogeneous morphologies have remained challenging. Herein, we report the colloidal synthesis of phase-pure FexO (x ≈ 0.94) popcorn-shaped NPs by decomposition of a single-source precursor, [Fe3(μ3-O)(CF3COO)(μ-CF3COO)6(H2O)2]·CF3COOH. The popcorn shape and multigrain structure had been reconstructed using high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) tomography. This morphology offers a large surface area and internal channels and prevents further agglomeration and thermal tumbling of the subparticles. [Fe3(μ3-O)(CF3COO)(μ-CF3COO)6(H2O)2]·CF3COOH behaves as an antiferromagnetic triangle whose magnetic frustration is mitigated by the low symmetry of the complex. The popcorn-shaped FexO NPs show the typical wüstite antiferromagnetic transition at approximately 200 K, but behave very differently to their bulk counterpart below 200 K. The magnetization curves show a clear, unsymmetrical hysteresis, which arises from a combined effect of the superparamagnetic behavior and exchange bias. PMID:29606798

  1. Popcorn-Shaped Fe x O (Wüstite) Nanoparticles from a Single-Source Precursor: Colloidal Synthesis and Magnetic Properties.

    PubMed

    Guntlin, Christoph P; Ochsenbein, Stefan T; Wörle, Michael; Erni, Rolf; Kravchyk, Kostiantyn V; Kovalenko, Maksym V

    2018-02-27

    Colloidal nanoparticles (NPs) with myriads of compositions and morphologies have been synthesized and characterized in recent years. For wüstite Fe x O, however, obtaining phase-pure NPs with homogeneous morphologies have remained challenging. Herein, we report the colloidal synthesis of phase-pure Fe x O ( x ≈ 0.94) popcorn-shaped NPs by decomposition of a single-source precursor, [Fe 3 (μ 3 -O)(CF 3 COO)(μ-CF 3 COO) 6 (H 2 O) 2 ]·CF 3 COOH. The popcorn shape and multigrain structure had been reconstructed using high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) tomography. This morphology offers a large surface area and internal channels and prevents further agglomeration and thermal tumbling of the subparticles. [Fe 3 (μ 3 -O)(CF 3 COO)(μ-CF 3 COO) 6 (H 2 O) 2 ]·CF 3 COOH behaves as an antiferromagnetic triangle whose magnetic frustration is mitigated by the low symmetry of the complex. The popcorn-shaped Fe x O NPs show the typical wüstite antiferromagnetic transition at approximately 200 K, but behave very differently to their bulk counterpart below 200 K. The magnetization curves show a clear, unsymmetrical hysteresis, which arises from a combined effect of the superparamagnetic behavior and exchange bias.

  2. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan

    2018-02-01

    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.

  3. Multidisciplinary Analysis of the NEXUS Precursor Space Telescope

    NASA Astrophysics Data System (ADS)

    de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.

    2002-12-01

    A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.

  4. A novel precursor system and its application to produce tin doped indium oxide.

    PubMed

    Veith, M; Bubel, C; Zimmer, M

    2011-06-14

    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me(2)In(O(t)Bu)(3)Sn (Me = CH(3), O(t)Bu = OC(CH(3))(3)), which is in equilibrium with an excess of Me(2)In(O(t)Bu). This quasi single-source precursor is applied in a sol-gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state (119)Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.

  5. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.

    PubMed

    Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie

    2013-08-14

    Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application.

  6. Atomic layer deposition of Al{sub 2}O{sub 3} for single electron transistors utilizing Pt oxidation and reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Michael S., E-mail: mmcconn5@nd.edu; Schneider, Louisa C.; Karbasian, Golnaz

    This work describes the fabrication of single electron transistors using electron beam lithography and atomic layer deposition to form nanoscale tunnel transparent junctions of alumina (Al{sub 2}O{sub 3}) on platinum nanowires using either water or ozone as the oxygen precursor and trimethylaluminum as the aluminum precursor. Using room temperature, low frequency conductance measurements between the source and drain, it was found that devices fabricated using water had higher conductance than devices fabricated with ozone. Subsequent annealing caused both water- and ozone-based devices to increase in conductance by more than 2 orders of magnitude. Furthermore, comparison of devices at low temperaturesmore » (∼4 K) showed that annealed devices displayed much closer to the ideal behavior (i.e., constant differential conductance) outside of the Coulomb blockade region and that untreated devices showed nonlinear behavior outside of the Coulomb blockade region (i.e., an increase in differential conductance with source-drain voltage bias). Transmission electron microscopy cross-sectional images showed that annealing did not significantly change device geometry, but energy dispersive x-ray spectroscopy showed an unusually large amount of oxygen in the bottom platinum layer. This suggests that the atomic layer deposition process results in the formation of a thin platinum surface oxide, which either decomposes or is reduced during the anneal step, resulting in a tunnel barrier without the in-series native oxide contribution. Furthermore, the difference between ozone- and water-based devices suggests that ozone promotes atomic layer deposition nucleation by oxidizing the surface but that water relies on physisorption of the precursors. To test this theory, devices were exposed to forming gas at room temperature, which also reduces platinum oxide, and a decrease in resistance was observed, as expected.« less

  7. Preparation of single-crystal spherical γ-Mo2N by temperature-programmed reaction between β-MoO3 and NH3

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Zhang, Guo-Hua; Chou, Kuo-Chih

    2017-10-01

    In the present wok, single-crystalline spherical γ-Mo2N powders was successfully prepared by the temperature-programmed reaction of single-crystal spherical β-MoO3 with NH3 in the temperature ranges of 1013-1073 K. Herein, the Mo source used was monoclinic system, β-MoO3, a metastable phase of MoO3. It is found that the characterizations of the as-prepared γ-Mo2N powders are strongly depended on the selection of the MoO3 precursor. In other words, the as-prepared γ-Mo2N powders inherited the shape, size and structure of the used β-MoO3 precursors upon reaction with NH3. In order to make a comparison, β-MoO3 was also reduced by the mixed gases of N2 and H2 with the flow rate ratio of 1:3 at the identical conditions. It was found that pure β-Mo2N polycrystalline can be obtained when the temperature was 1013 K; while further increasing the reaction temperature, metal Mo powder will be turned up.

  8. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles.

    PubMed

    Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine

    2014-06-21

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.

  9. Determination of 14 nitrosamines at nanogram per liter levels in drinking water.

    PubMed

    Qian, Yichao; Wu, Minghuo; Wang, Wei; Chen, Beibei; Zheng, Hao; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang

    2015-01-20

    N-Nitrosamines, probable human carcinogens, are a group of disinfection byproducts under consideration for drinking water regulation. Currently, no method can determine trace levels of alkyl and tobacco-specific nitrosamines (TSNAs) of varying physical and chemical properties in water by a single analysis. To tackle this difficulty, we developed a single solid-phase extraction (SPE) method with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of 14 nitrosamines of health concern with widely differing properties. We made a cartridge composed of a vinyl/divinylbenzene polymer that efficiently concentrated the 14 nitrosamines in 100 mL of water (in contrast to 500 mL in other methods). This single SPE-HPLC-MS/MS technique provided calculated method detection limits of 0.01-2.7 ng/L and recoveries of 53-93% for the 14 nitrosamines. We have successfully demonstrated that this method can determine the presence or absence of the 14 nitrosamines in drinking water systems (eight were evaluated in Canada and the U.S.), with occurrence similar to that in other surveys. N-Nitrosodimethylamine (NDMA), N-nitrosodiphenylamine, and the TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were identified and quantified in authentic drinking water. Formation potential (FP) tests demonstrated that NDMA and TSNA precursors were present in (1) water samples in which tobacco was leached and (2) wastewater-impacted drinking water. Our results showed that prechlorination or ozonation destroyed most of the nitrosamine precursors in water. Our new single method determination of alkylnitrosamines and TSNAs significantly reduced the time and resource demands of analysis and will enable other studies to more efficiently study precursor sources, formation mechanisms, and removal techniques. It will be useful for human exposure and health risk assessments of nitrosamines in drinking water.

  10. Development and Application of an Oxidation Flow Reactor to Study Secondary Organic Aerosol Formation from Ambient Air

    NASA Astrophysics Data System (ADS)

    Palm, Brett Brian

    Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.

  11. Relationship between organic precursors and N-nitrosodimethylamine (NDMA) formation in tropical water sources.

    PubMed

    Qi, Wang; Fang Yee, Lim; Jiangyong, Hu

    2014-12-01

    The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

  12. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k

  13. Photoluminescence intensity enhancement of GaAs by vapor-deposited GaS - A rational approach to surface passivation

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Hepp, Aloysius F.; Power, Michael B.; Macinnes, Andrew N.; Barron, Andrew R.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster (/t-Bu/GaS)4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  14. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  15. Source Attribution of Tropospheric Ozone using a Global Model

    NASA Astrophysics Data System (ADS)

    Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.

    2016-12-01

    Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.

  16. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.

  17. The rational design of a Au(I) precursor for focused electron beam induced deposition

    PubMed Central

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au–Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe3, they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe3 and MeAuPMe3 shows that Au–Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au–Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au. PMID:29354346

  18. The rational design of a Au(I) precursor for focused electron beam induced deposition.

    PubMed

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M; van Dorp, Willem F

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au-Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe 3 , they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe 3 and MeAuPMe 3 shows that Au-Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe 3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au-Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au.

  19. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  20. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  1. Molecular ways to nanoscale particles and films

    NASA Astrophysics Data System (ADS)

    Shen, H.; Mathur, S.

    2002-06-01

    Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.

  2. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    NASA Technical Reports Server (NTRS)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  3. Synthesis and Characterization of a Novel Borazine-Type UV Photo-Induced Polymerization of Ceramic Precursors.

    PubMed

    Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi

    2016-06-21

    A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.

  4. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  5. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  6. Development of a Short-Lived Radioisotope Production Service (SRPS) for CTTC at the University of Alberta SLOWPOKE Reactor Facility

    DTIC Science & Technology

    2004-12-01

    abundance and neutron cross-section of 17~r (the precursor of 171 Er~~limit,tb~’Xi!Y o~_ 171Er that could be produced and delivered to Suf field to about...the radioisotope being produced. Additional factors relate to the irradiation conditions and include the reactor neutron flux and the irradiation...generally be desirable to have single radioisotopic sources with nuclear characteristics (e.g., half-life, gamma-ray energies and emission rates

  7. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1–3 were found to act as effective single-source precursors for the low-temperature preparation of iron–cobalt spinel oxides Fe xCo 3–xO 4 known as important materials for diverse energy-related applications.« less

  8. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  9. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  10. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  11. γ-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh, E-mail: bibhutoshadhikary@yahoo.in

    2014-01-01

    Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM)more » and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.« less

  12. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-01

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

  13. Synthesis and structural characterization of CdS nanoparticles using nitrogen adducts of mixed diisopropylthiourea and dithiolate derivatives of Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2015-07-01

    [Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.

  14. Femtosecond-laser hyperdoping silicon in an SF{sub 6} atmosphere: Dopant incorporation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sher, Meng-Ju, E-mail: msher@stanford.edu; Mangan, Niall M.; Lin, Yu-Ting

    2015-03-28

    In this paper, we examine the fundamental processes that occur during femtosecond-laser hyperdoping of silicon with a gas-phase dopant precursor. We probe the dopant concentration profile as a function of the number of laser pulses and pressure of the dopant precursor (sulfur hexafluoride). In contrast to previous studies, we show the hyperdoped layer is single crystalline. From the dose dependence on pressure, we conclude that surface adsorbed molecules are the dominant source of the dopant atoms. Using numerical simulation, we estimate the change in flux with increasing number of laser pulses to fit the concentration profiles. We hypothesize that themore » native oxide plays an important role in setting the surface boundary condition. As a result of the removal of the native oxide by successive laser pulses, dopant incorporation is more efficient during the later stage of laser irradiation.« less

  15. Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent--case study of Tama River, Japan.

    PubMed

    Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki

    2014-12-15

    Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia; Booth, Samuel

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensivemore » overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.« less

  18. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  19. Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors

    DOEpatents

    Serov, Alexey; Halevi, Barr; Artyushkova, Kateryna; Atanassov, Plamen B; Martinez, Ulises A

    2017-04-25

    A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.

  20. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  1. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

    PubMed Central

    Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2016-01-01

    Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas. PMID:28144515

  2. On the level of skill in predicting maximum sunspot number - A comparative study of single variate and bivariate precursor techniques

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1990-01-01

    The level of skill in predicting the size of the sunspot cycle is investigated for the two types of precursor techniques, single variate and bivariate fits, both applied to cycle 22. The present level of growth in solar activity is compared to the mean level of growth (cycles 10-21) and to the predictions based on the precursor techniques. It is shown that, for cycle 22, both single variate methods (based on geomagnetic data) and bivariate methods suggest a maximum amplitude smaller than that observed for cycle 19, and possibly for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it were a +2.6 sigma cycle (maximum amplitude of about 225), which means that either it will be the first cycle not to be reliably predicted by the combined precursor techniques or its deviation relative to the mean cycle will substantially decrease over the next 18 months.

  3. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach

    USGS Publications Warehouse

    Kraus, T.E.C.; Bergamaschi, B.A.; Hernes, P.J.; Spencer, R.G.M.; Stepanauskas, R.; Kendall, C.; Losee, R.F.; Fujii, R.

    2008-01-01

    This study assesses how rivers, wetlands, island drains and open water habitats within the Sacramento-San Joaquin River Delta affect dissolved organic matter (DOM) content and composition, and disinfection byproduct (DBP) formation. Eleven sites representative of these habitats were sampled on six dates to encompass seasonal variability. Using a suite of qualitative analyses, including specific DBP formation potential, absorbance, fluorescence, lignin content and composition, C and N stable isotopic compositions, and structural groupings determined using CPMAS (cross polarization, magic angle spinning) 13C NMR, we applied a geochemical fingerprinting approach to characterize the DOM from different Delta habitats, and infer DOM and DBP precursor sources and estimate the relative contribution from different sources. Although river input was the predominant source of dissolved organic carbon (DOC), we observed that 13-49% of the DOC exported from the Delta originated from sources within the Delta, depending on season. Interaction with shallow wetlands and subsided islands significantly increased DOC and DBP precursor concentrations and affected DOM composition, while deep open water habitats had little discernable effect. Shallow wetlands contributed the greatest amounts of DOM and DBP precursors in the spring and summer, in contrast to island drains which appeared to be an important source during winter months. The DOM derived from wetlands and island drains had greater haloacetic acid precursor content relative to incoming river water, while two wetlands contributed DOM with greater propensity to form trihalomethanes. These results are pertinent to restoration of the Delta. Large scale introduction of shallow wetlands, a proposed restoration strategy, could alter existing DOC and DBP precursor concentrations, depending on their hydrologic connection to Delta channels. ?? 2008 Elsevier Ltd.

  4. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  5. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  6. Statistical study of single and multiple pulse laser-induced damage in glasses.

    PubMed

    Gallais, L; Natoli, J; Amra, C

    2002-12-16

    Single and multiple pulse laser damage studies are performed in Suprasil silica and BK-7 borosilicate glasses. Experiments are made in the bulk of materials at 1.064microm with nanosecond pulses, using an accurate and reliable measurement system. By means of a statistical study on laser damage probabilities, we demonstrate that the same nano-precursors could be involved in the multiple shot and single shot damage process. A damage mechanism with two stages is then proposed to explain the results. Firstly, a pre-damage process, corresponding to material changes at a microscopic level, leads the precursor to a state that can induce a one-pulse damage. And secondly a final damage occurs, with a mechanism identical to the single shot case. For each material, a law is found to predict the precursor life-time. We can then deduce the long term life of optical elements in high-power laser systems submitted to multipulse irradiation.

  7. Photochemical grid model implementation and application of ...

    EPA Pesticide Factsheets

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned am

  8. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita; Jana, Sumanta; Chattopadhyay, Dipankar; Mondal, Anup; Seok, Sang Il; Bera, Pulakesh

    2016-10-01

    Hexagonal copper-deficient copper(I) sulfide (Cu2- x S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa)2][CuCl2], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN2S2 chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu2- x S ( x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH2SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of CuI-complex to Cu2- x S ( x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu1.97S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu1.8S. The optical band gap values (2.25-2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity ( 87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).

  9. Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin

    2017-01-01

    We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.

  10. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Schütte, Kai; Doddi, Adinarayana; Kroll, Clarissa; Meyer, Hajo; Wiktor, Christian; Gemel, Christian; van Tendeloo, Gustaaf; Fischer, Roland A.; Janiak, Christoph

    2014-04-01

    Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions. Electronic supplementary information (ESI) available: Ni-Ga phase diagrams, EDX (XPS) of NP1-NP8, table of Ni : Ga ratios, TG of Ni-Ga SSPs, analysis of NP4, dec. of [Ni(GaCp*)3(PCy3)] with characterization, local resolution EDX of NP3-IL, Ni-NP characterization from Ni(COD)2 and details of (semi-)hydrogenation catalysis. See DOI: 10.1039/c4nr00111g

  11. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    PubMed Central

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  12. Co-occurrence of biphenotypic acute leukaemia, glucose 6-phosphate dehydrogenase deficiency and haemoglobin E trait in a single child.

    PubMed

    Mallick, Debkrishna; Thapa, Rajoo; Biswas, Biswajit

    2016-02-01

    Acute leukaemias occur as the result of clonal expansion subsequent to transformation and arrest at a normal differentiation stage of haematopoietic precursors, which commit to a single lineage, such as myeloid or B-lymphoid or T-lymphoid cells. Biphenotypic acute leukaemia (BAL) constitutes a biologically different group of leukaemia arising from a precursor stem cell and co-expressing more than one lineage specific marker. The present report describes a child with unusual co-occurrence of biphenotypic (B-precursor cell and Myeloid) acute leukaemia, haemoglobin E trait and glucose 6-phosphate dehydrogenase (G6-PD) deficiency. To the best of our knowledge, this constellation of haematological conditions in a single child has never been described before. 2016 BMJ Publishing Group Ltd.

  13. Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Manohara, Harish

    2008-01-01

    This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one monolayer of the target material.

  14. Sources of Information on Sex and Antecedents of Early Sexual Initiation among Urban Latino Youth

    ERIC Educational Resources Information Center

    Fuxman, Shai; De Los Santos, Sabrina; Finkelstein, Daniel; Landon, Mary Kay; O'Donnell, Lydia

    2015-01-01

    The study examined the relationship between young adolescents' sources of information on sex and precursors to sexual activity. Surveys were conducted with 3,940 Latino sixth grade students. According to results, girls who received information from their parents were less likely to engage in sex precursors. For boys, getting information from other…

  15. KINETICS OF LOW SOURCE REACTOR STARTUPS. PART II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.

    1962-06-01

    A computational technique is described for computation of the probability distribution of power level for a low source reactor startup. The technique uses a mathematical model, for the time-dependent probability distribution of neutron and precursor concentration, having finite neutron lifetime, one group of delayed neutron precursors, and no spatial dependence. Results obtained by the technique are given. (auth)

  16. Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double-blind, placebo-controlled pilot and feasibility study.

    PubMed

    Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J

    2017-08-08

    Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.

  17. Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi.

    PubMed

    Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S

    2015-06-01

    Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  18. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE PAGES

    Zhao, B.; Wang, S. X.; Xing, J.; ...

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  19. Spatial localization of nanoparticle growth in photoinduced nanocomposites

    NASA Astrophysics Data System (ADS)

    Smirnov, Anton A.; Pikulin, Alexander; Bityurin, Nikita

    2018-02-01

    Photoinduced nanocomposites are the polymer materials where the nanoparticles can be generated by the light irradiation. The single atoms of metal are formed due to the photoreduction of the metal-containing precursor added to the polymer matrix. Then the atoms precipitate into the nanoparticles (NPs). Similarly, semiconductor NPs are assembled from the monomer species such as CdS, which can be released due to the photodestruction of the appropriate precursor. We analyze theoretically the possibility of spatial confinement of growing nanoparticles in a domain where the elementary species are generated by a three-dimensionally localized source. It is shown that the effective confinement can be achieved only if the size of the generation domain exceeds some critical spatial scale determined by the parameters of the system. The confinement is provided by the trapping of the diffusing elementary species by the growing nanoparticles. The proposed model considers the irreversible particle growth, typical for the noble metals. Both the nucleation and the particle growth processes are suggested to be diffusion controlled.

  20. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  1. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Strydom, Christien A.

    2015-01-01

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.

  2. Gallium hydride complexes stabilised by multidentate alkoxide ligands: precursors to thin films of Ga2O3 at low temperatures.

    PubMed

    Pugh, David; Bloor, Leanne G; Parkin, Ivan P; Carmalt, Claire J

    2012-05-07

    The donor-functionalised alkoxides {Me(3-x)N(CH(2)CH(2)O)(x)} (L(x); x = 1, 2) have been used to form gallium hydride complexes [{GaH(2)(L(1))}(2)] and [{GaH(L(2))}(2)] that are stable and isolable at room temperature. Along with a heteroleptic gallium tris(alkoxide) complex [Ga(L(1))(3)] and the dimeric complex [{GaMe(L(2))}(2)], these compounds have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted chemical vapour deposition (AACVD) with toluene as solvent. The resulting films were mostly transparent, indicating low levels of carbon contamination, and they were also mainly amorphous. However, [Ga(L(1))(3)] did contain visibly crystalline material deposited at a substrate temperature of 450 °C, by far the lowest ever observed for the CVD of gallium oxide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto

    DTIC Science & Technology

    2001-05-07

    energetic’ (characterized by high levels of electrical and geothermal activity) liquid water environment, are capable of generating significant prebiotic ...synthesis of biogenic molecules (Chyba & Sagan 1992). In this light, a potential cometary source of prebiotic organics (the precursors of biological...precursors for prebiotic molecules. This exogenous source of prebiotic organics on early Earth could provide an alternative method of accounting for

  4. The removal of disinfection by-product precursors from water with ceramic membranes.

    PubMed

    Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M

    2010-01-01

    The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.

  5. The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry, Industrial and Pharmaceutical Biotechnology.

    PubMed

    R L Morlighem, Jean-Étienne; Huang, Chen; Liao, Qiwen; Braga Gomes, Paula; Daniel Pérez, Carlos; de Brandão Prieto-da-Silva, Álvaro Rossan; Ming-Yuen Lee, Simon; Rádis-Baptista, Gandhi

    2018-06-13

    Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis , looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.

  6. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  7. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  8. Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.

    PubMed

    Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man

    2018-02-13

    Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.

  9. Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer Ann

    1999-11-01

    The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.

  10. Morphology and stability in a half-metallic ferromagnetic CrO 2 compound of nanoparticles synthesized via a polymer precursor

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Ram, S.

    2004-11-01

    Nanoparticles of stable CrO2 of a half-metallic ferromagnet are synthesized with a novel chemical method involving a Cr4+-polymer composite precursor. A single phase CrO2 of D4h 14 : P42 / mnm tetragonal crystal structure (lattice parameters a = 0.4250 and c = 0.3190 nm) lies after firing the precursor at 350 °C for 1 h in air. Microstructure reveals single domain CrO2 particles of thin platelets (aspect ratio ∼1) of average 50 nm diameter and 35 nm thickness. In air, unless heating at temperatures above 500 °C, no due CrO2 → Cr2O3 phase transformation encounters. The results are presented in terms of X-ray diffraction and thermal or thermogravimetric analysis of precursor and derived CrO2 powder.

  11. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  12. Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua

    2015-01-01

    N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.

    PubMed

    Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif

    2012-06-30

    In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and <2 and 1648ng/L NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  15. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  16. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  17. On the origin of cratonic `high-mu' isotopic signatures

    NASA Astrophysics Data System (ADS)

    Reimink, J. R.; Carlson, R.; Shirey, S. B.; Pearson, D. G.; Kamber, B. S.

    2017-12-01

    Some Archean cratons (i.e. Slave, Wyoming) contain Neoarchean granitoids with initial Pb isotopic compositions indicative of derivation from sources characterized by high time-integrated U/Pb ratios (high-mu [1]). Single-stage high-m precursor source reservoir separation from the depleted mantle occurred no later than 3.9 Ga [2]. However, multi-stage separation could have occurred in the Hadean, suggesting that recycling or reworking of Eoarchean/Hadean crust played a significant role in the generation of Neoarchean granitic crust in many cratons. The Sm-Nd system is similar to the U-Pb system in that it has a short-lived parent-daughter pair (146Sm-142Nd) that is sensitive to very early differentiation events, as well as a long-lived parent-daughter pair (147Sm-143Nd) that is sensitive to differentiation throughout all of Earth history. The 103 Ma half-life of 146Sm makes it sensitive only to Sm/Nd fractionation that occurred in the Hadean, providing a useful tracker for very early differentiation events. Indeed, evidence for Neoarchean remelting of ancient crust in another craton has come from analyses of the paired Sm-Nd isotope systems from the Hudson Bay terrane of the northeastern Superior Province. These results indicate that the source of 2.7 Ga Hudson Bay terrane granitoids was Hadean mafic crust, and not Eoarchean felsic crust [3]. Here, we present new data from Neoarchean granites located in the Slave and Wyoming cratons, along with modeling of the dual paired-isotope systems of U-Pb and Sm-Nd to achieve a tighter constraint on the composition of the precursors and the timing of their melting. Combining our newly collected 142Nd data with the high-m signature of these Neoarchean rocks, we evaluate precursor source separation ages along with the source Sm/Nd and U/Pb compositions. In the simplest end-member scenarios, use of the 142Nd system allows us to test whether the cratonic high-mu signature was created by melting of Hadean mafic crust or Eoarchean felsic crust. Differences between these models have major implications for the longevity of mafic crust on the ancient Earth as well as the growth rate and recycling history of the continents. [1] Oversby, 1978, EPSL; [2] Kamber et al., 2003, CMP; [3] O'Neil and Carlson, 2017; Science

  18. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  19. Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori

    2017-10-01

    We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.

  20. Recent advances in understanding atmospheric CO based on stable isotope measurements

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Naus, Stijn; Ferrero Lopez, Noelia; Vijverberg, Sem; de Leeuw, Selma; Röckmann, Thomas

    2017-04-01

    Carbon monoxide (CO) plays an important role for atmospheric chemistry and for carbon cycling in the atmosphere. Via its reaction with the OH radical it influences concentrations of many other trace gases, it is an important precursor for O3 formation, and its oxidation leads to the formation of about 1 Pg C per year of CO2. The natural and anthropogenic sources of CO are subject to relatively large temporal changes due to natural variability (e.g. biomass burning), industrial activity and mitigation measures (e.g. fossil fuel burning), variations in precursor compounds (e.g. CH4 and VOC) and variations in the abundance of the OH radical in the atmosphere, which are difficult to quantify. Isotope measurements can be used to distinguish between the effects of individual sources and sinks to put tighter constrains on its budget, but the isotopic characterization of the CO sources is in many cases still based on a few relatively old measurements that did not allow to account for dependence on parameters. We will present an update of the isotopic composition of several sources and removal processes of CO that have been carried out in the past years with the automated continuous-flow IRMS system at Utrecht University. This includes: - the previously unknown isotopic composition of direct biogenic CO emissions - a surprisingly large variability in the isotopic composition of CO emitted by different vehicles and single vehicles under various driving conditions - previously very poorly investigated signatures, like the fractionation in the removal of CO by soils, and its interaction with CO that is simultaneously emitted from soil. These results from process specific investigations will be linked to recent atmospheric measurements at various locations.

  1. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  2. Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere

    NASA Astrophysics Data System (ADS)

    Köllner, Franziska; Schneider, Johannes; Willis, Megan D.; Klimach, Thomas; Helleis, Frank; Bozem, Heiko; Kunkel, Daniel; Hoor, Peter; Burkart, Julia; Leaitch, W. Richard; Aliabadi, Amir A.; Abbatt, Jonathan P. D.; Herber, Andreas B.; Borrmann, Stephan

    2017-11-01

    Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50-3000 m) were conducted in July 2014 in the Canadian high Arctic during an aircraft-based measurement campaign (NETCARE 2014). We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200-1000 nm) to identify different particle types and their mixing states. On the basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). Two main pieces of evidence suggest that these TMA-containing particles originated from emissions within the Arctic boundary layer. First, the maximum fraction of particulate TMA occurred in the Arctic boundary layer. Second, compared to particles observed aloft, TMA particles were smaller and less oxidized. Further, air mass history analysis, associated wind data and comparison with measurements of methanesulfonic acid give evidence of a marine-biogenic influence on particulate TMA. Moreover, the external mixture of TMA-containing particles and sodium and chloride (Na / Cl-) containing particles, together with low wind speeds, suggests particulate TMA results from secondary conversion of precursor gases released by the ocean. In contrast to TMA-containing particles originating from inner-Arctic sources, particles with biomass burning markers (such as levoglucosan and potassium) showed a higher fraction at higher altitudes, indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for composition and growth of summertime Arctic aerosol.

  3. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  4. Comparative analysis of 1-phenyl-2-propanone (P2P), an amphetamine-type stimulant precursor, using stable isotope ratio mass spectrometry: presented in part as a poster at the 2nd meeting of the Joint European Stable Isotope User Meeting (JESIUM), Giens, France, September 2008.

    PubMed

    Schneiders, S; Holdermann, T; Dahlenburg, R

    2009-06-01

    The isotope ratios of amphetamine type stimulants (ATS) depend as well on the precursor as the synthetic pathway. For clandestine production of amphetamine and methamphetamine, 1-phenyl-2-propanone (P2P, benzylmethylketone) is a commonly used precursor. Our aim was to determine the variation of the isotope ratios within precursor samples of one manufacturer and to compare seized samples of unknown sources to these values. delta13C(V-PDB), delta2H(V-SMOW) and delta118O(V-SMOW) isotope ratios were determined using elemental analysis (EA) and gas chromatography (GC) coupled toan isotope ratio mass spectrometer (IRMS). The comparison of all seized samples to the data of the samples of one manufacturer revealed considerable differences. The results show that IRMS provides a high potential in differentiating between precursors from different manufacturers for the clandestine production of ATS and identifying corresponding sources.

  5. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2012-12-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  6. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2013-04-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  7. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review.

    PubMed

    Krasner, Stuart W; Mitch, William A; McCurry, Daniel L; Hanigan, David; Westerhoff, Paul

    2013-09-01

    This review summarizes major findings over the last decade related to nitrosamines in drinking water, with a particular focus on N-nitrosodimethylamine (NDMA), because it is among the most widely detected nitrosamines in drinking waters. The reaction of inorganic dichloramine with amine precursors is likely the dominant mechanism responsible for NDMA formation in drinking waters. Even when occurrence surveys found NDMA formation in chlorinated drinking waters, it is unclear whether chloramination resulted from ammonia in the source waters. NDMA formation has been associated with the use of quaternary amine-based coagulants and anion exchange resins, and wastewater-impaired source waters. Specific NDMA precursors in wastewater-impacted source waters may include tertiary amine-containing pharmaceuticals or other quaternary amine-containing constituents of personal care products. Options for nitrosamine control include physical removal of precursors by activated carbon or precursor deactivation by application of oxidants, particularly ozone or chlorine, upstream of chloramination. Although NDMA has been the most prevalent nitrosamine detected in worldwide occurrence surveys, it may account for only ≈ 5% of all nitrosamines in chloraminated drinking waters. Other significant contributors to total nitrosamines are poorly characterized. However, high levels of certain low molecular weight nitrosamines have been detected in certain Chinese waters suspected to be impaired by industrial effluents. The review concludes by identifying research needs that should be addressed over the next decade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Neuronal cell fate specification in Drosophila.

    PubMed

    Jan, Y N; Jan, L Y

    1994-02-01

    Recent work indicates that the Drosophila nervous system develops in a progressive process of cell fate specification. Expression of specific proneural genes in clusters of cells (the proneural clusters) in the cellular blastoderm endows these cells with the potential to form certain types of neural precursors. Intercellular interactions that involve both proneural genes and neurogenic genes then allow the neural precursors to be singled out from the proneural clusters. Expression of neural precursor genes in all neural precursors is likely to account for the universal aspects of neuronal differentiation, such as axonal outgrowth. Selective expression of certain neuronal-type selector genes further specifies the type of neuron(s) that a neural precursor will produce.

  9. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    DOE PAGES

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).

  10. Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors.

    PubMed

    Liu, Yong-Jun; Aizawa, Mami; Wang, Zheng-Ming; Hatori, Hiroaki; Uekawa, Naofumi; Kanoh, Hirofumi

    2008-06-15

    Titanium dioxide nanocrystalline particles were synthesized by peroxo titanium acid (PTA) approach from titanium alkoxide and inorganic salt precursors, and their structural and surface properties, porosities, and photocatalytic activities were comparatively examined by XRD, TG/DTA, DRIFT, UV-vis, low temperature N(2) adsorption, and methyl orange (MO) degradation. It was found that nanoparticles with single anatase phase can be obtained from alkoxide precursor even near room temperature if synthesis conditions are appropriately controlled. PTA-derived anatase nanoparticles from titanium alkoxide precursor have smaller crystalline sizes and better porosities, and contain less amount of peroxo group and no organic impurities as compared to those from TiCl(4) precursor. The advantages in structural property, porosity, and surface properties (few deficiencies) lead to a much better photocatalytic activity for TiO(2) nanoparticles from titanium alkoxide precursor in comparison with those from TiCl(4) precursor.

  11. Effect of precursor on epitaxially grown of ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate by hydrothermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.

    2008-03-04

    Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less

  12. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions

    PubMed Central

    Bouyssou, Guillaume; Allmann, Stefan; Kiema, Tiila-Riikka; Biran, Marc; Plazolles, Nicolas; Dittrich-Domergue, Franziska; Crouzols, Aline; Wierenga, Rik K.; Rotureau, Brice; Moreau, Patrick

    2018-01-01

    De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway. PMID:29813135

  13. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less

  14. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    PubMed Central

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  15. Gamma-Ray Burst Precursor Activity as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Kouveliotou, Chryssa; Paciesas, William S.; vanParadijs, Jan; Pendleton, Geoffrey N.; Briggs, Michael S.; Fishman, Gerald J.; Meegan, Charles A.

    1995-01-01

    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission.

  16. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor.

    PubMed

    Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T; Murphy, Anthony B; Han, Zhao Jun; Ostrikov, Kostya Ken

    2017-01-30

    Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.

  17. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  18. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor

    NASA Astrophysics Data System (ADS)

    Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T.; Murphy, Anthony B.; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2017-01-01

    Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.

  19. Direct anisotropic growth of CdS nanocrystals in thermotropic liquid crystal templates for heterojunction optoelectronics.

    PubMed

    Yuan, Kai; Chen, Lie; Chen, Yiwang

    2014-09-01

    The direct growth of CdS nanocrystals in functional solid-state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single-source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady-state PL and ultrafast emission dynamics studies show that the charge-transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid-crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel sol-gel precursors for thin mesoporous eu(3+)-doped silica coatings as efficient luminescent materials.

    PubMed

    Feinle, Andrea; Lavoie-Cardinal, Flavie; Akbarzadeh, Johanna; Peterlik, Herwig; Adlung, Matthias; Wickleder, Claudia; Hüsing, Nicola

    2012-10-09

    Europium(III) ions containing mesoporous silica coatings have been prepared via a solvent evaporation-induced self-assembly (EISA) approach of different single-source precursors (SSPs) in the presence of Pluronic P123 as a structure-directing agent, using the spin-coating process. A deliberate tailoring of the chemical composition of the porous coatings with various Si:Eu ratios was achieved by processing mixtures of tetraethylorthosilicate (TEOS) and Eu(3+)-coordinated SSPs. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses demonstrate that the thin metal oxide-doped silica coatings consist of a porous network with a short-range order of the pore structure, even at high europium(III) loadings. Furthermore, luminescence properties were investigated at different temperatures and different degrees of Eu(3+) contents. The photoluminescence spectra clearly show characteristic emission peaks corresponding to the (5)D0 → (7)FJ (J = 0-5) transitions resulting in a red luminescence visible by the eyes, although the films have a very low thickness (150-200 nm).

  1. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique.

    PubMed

    Bartosh, Thomas J; Ylostalo, Joni H

    2014-02-06

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.

  2. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging drop culture technique

    PubMed Central

    Bartosh, Thomas J.

    2014-01-01

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3D culture without addition of exogenous chemicals or gene transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, reported lag time for activation in experimental models have prompted investigations to pre-activate the cells prior to their administration. In this protocol, standard 2D culture expanded MSCs are activated by aggregation into 3D spheres using hanging drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Furthermore, we elucidate methods to prepare MSC sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. PMID:24510769

  3. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles.

    PubMed

    Onwudiwe, Damian C; Strydom, Christien A

    2015-01-25

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML(1)2L(2)] (M=Cd(II), Zn(II); L(1)=N-phenyldithiocarbamate, L(2)=2,2' bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M=Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-01-01

    The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  5. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less

  6. Morphology control of anisotropic BaTiO 3 and BaTiOF 4 using organic-inorganic interaction

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshitake; Tanaka, Yuki; Gao, Yanfeng; Koumoto, Kunihito

    2009-01-01

    We proposed a novel concept for morphology control of barium titanate precursor to fabricate platy particles. Organic molecules play an essential role in the crystallization of BaTiOF 4 to synthesize multi-needle particles, polyhedron particles or platy particles in an aqueous solution. Precursors were successfully transformed to barium titanate single phase by annealing. Platy barium titanate precursor particles are expected for future multilayer ceramic capacitors.

  7. Effects of Low Level Radiation exposure on Neurogenesis and Cognitive Function: Mechanisms and Prevention

    DTIC Science & Technology

    2005-09-01

    precursor cells in culture with uX-lipoic acid reverses the density dependent changes observed in culture; this compound may provide an effective means...inhibited growth of precursor cells in vitro; - Antioxidant treatment of neural precursor cells in culture with a-lipoic acid (ALA) reverses the...with a single lO-Gy dose, and tissues avidin-biotinylated pemxidase complex; GFAP, glial fibrillary acidic protein; DAB, 3,3’- were collected from 6 to

  8. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  9. Supernova and Prompt Gravitational-wave Precursors to LIGO Gravitational-wave Sources and Short GRBs

    NASA Astrophysics Data System (ADS)

    Michaely, Erez; Perets, Hagai B.

    2018-03-01

    Binary black holes (BBHs) and binary neutron stars (BNSs) mergers have been recently detected through their gravitational-wave (GW) emission. A post-merger electromagnetic counterpart for the first BNS merger has been detected from seconds up to weeks after the merger. While such post-merger electromagnetic counterparts had been anticipated theoretically, far fewer electromagnetic precursors to GW sources have been proposed, and non have been observed. Here we show that a fraction of a few ×10‑3 (for a standard model) GW sources and short gamma-ray bursts (GRBs) observed by the Laser Interferometer Gravitational-wave Observatory (LIGO) could have been preceded by supernova (SN) explosions from years up to decades before the mergers. The GW sources are produced following the preceding binary evolution, the supernovae involved in the final formation of the GW source progenitors, and the natal kicks that likely accompany them. Together, these determine the orbits of surviving binaries, and hence the delay-time between the birth of the compact binary and its final merger through GW emission. We use data from binary evolution population-synthesis models to show that the delay-time distribution has a non-negligible tail of ultra-short delay-times between 1 and 100 years, thereby giving rise to potentially observable supernovae precursors to GW sources. Moreover, future LISA/DECIGO GW space-detectors will enable the detection of GW inspirals in the pre-merger stage weeks to decades before the final merger. These sources could therefore produce a unique type of promptly appearing LISA/DECIGO GW sources accompanied by coincident supernovae. The archival (and/or direct) detection of precursor (coincident) SNe with GW and/or short GRBs will provide unprecedented characterizations of the merging binaries, and their prior evolution through supernovae and natal kicks, otherwise inaccessible through other means.

  10. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  11. Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application

    NASA Astrophysics Data System (ADS)

    Dong, Qingchen; Qu, Wenshan; Liang, Wenqing; Guo, Kunpeng; Xue, Haibin; Guo, Yuanyuan; Meng, Zhengong; Ho, Cheuk-Lam; Leung, Chi-Wah; Wong, Wai-Yeung

    2016-03-01

    Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium. Electronic supplementary information (ESI) available: PXRD, EDX and SEM original data. See DOI: 10.1039/c6nr00034g

  12. BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...

  13. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  14. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  15. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  16. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: Role of precursors on the film growth and properties

    DOE PAGES

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; ...

    2012-09-14

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow TM 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and the substrate temperature (T s) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nano-indentation. In generalmore » films deposited at substrate temperature (T s) <200 °C contained organic moieties, while the films deposited at T s >200 oC depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 -2.0 depending on the deposition parameters. Mechanical properties of the films determined using nano-indentation revealed that these films have hardness between 0.5 GPa to 15 GPa depending on the Ts. AFM evaluation of the films showed high roughness (R a) values of 2-3 nm for the films grown at low T s (< 250 °C), while the films grown at T s ≥ 300 °C exhibited atomically smooth surface with R a of ~ 0.5 nm. Furthermore, based on the gas phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.« less

  17. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain--Potential BPP-like precursor protein?

    PubMed

    Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F

    2015-08-01

    Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: role of precursors on the film growth and properties.

    PubMed

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; Johnson, Kyle W; Sailer, Robert A

    2012-10-24

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow(TM) 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and substrate temperature (T(s)) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nanoindentation. In general, films deposited at substrate temperature (T(s)) < 200 °C contained organic moieties, while the films deposited at T(s) > 200 °C depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 and 2.0, depending on the deposition parameters. Mechanical properties of the films determined using nanoindentation revealed that these films have hardness between 0.5 GPa and 15 GPa, depending on the T(s) value. AFM evaluation of the films showed high roughness (R(a)) values of 2-3 nm for the films grown at low T(s) (<250 °C) while the films grown at T(s) ≥ 300 °C exhibited atomically smooth surface with R(a) of ~0.5 nm. Based on the gas-phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.

  19. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  20. Different processing of CAPA and pyrokinin precursors in the giant mealworm beetle Zophobas atratus (Tenebrionidae) and the boll weevil Anthonomus grandis grandis (Curculionidae).

    PubMed

    Neupert, Susanne; Marciniak, Pawel; Köhler, Rene; Nachman, Ronald J; Suh, Charles P-C; Predel, Reinhard

    2018-03-01

    Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our data revealed that even within Coleoptera, which represents a very well-defined group of insects, highly different evolutionary developments occurred in the neuropeptidergic system. These differences, however, primarily affect the general structure of the precursors and differential processing of mature peptides and, to a lesser degree, the sequences of the active core motifs. With the differential processing of the CAPA-precursor in Z. atratus we found a perfect example of completely different products cleaved from a single neuropeptide precursor in different cells. The CAPA precursor in abdominal ganglia of this species yields primarily periviscerokinins (PVKs) whereas processing of the same precursor in neurosecretory cells of the subesophageal ganglion results in CAPA-tryptoPK and a novel CAPA-PK. Particularly important was the detection of that CAPA-PK which has never been observed in the CNS of insects before. The three different types of CAPA peptides (CAPA-tryptoPK, CAPA-PK, PVK) each represent potential ligands which activate different receptors. In contrast to the processing of the CAPA precursor from Z. atratus, no indications of a differential processing of the CAPA precursor were found in A. g. grandis. These data suggest that rapid evolutionary changes regarding the processing of CAPA precursors were still going on when the different beetle lineages diverged. The sequence of the single known PVK of A. g. grandis occupies a special position within the known PVKs of insects and might serve asa basis to develop lineage-specific peptidomimetics capable of disrupting physiological processes regulated by PVKs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Insights into the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18 for high ε-poly-L-lysine productivity.

    PubMed

    Zeng, Xin; Zhao, Junjie; Chen, Xusheng; Mao, Zhonggui; Miao, Wenyun

    2017-12-01

    The simultaneous consumption of glucose and glycerol led to remarkably higher productivity of both biomass and ε-poly-L-lysine (ε-PL), which was of great significance in industrial microbial fermentation. To further understand the superior fermentation performances, transcriptional analysis and exogenous substrates addition were carried out to study the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18. Transcriptome analysis revealed that there was no mutual transcriptional suppression between the utilization of glucose and glycerol, which was quite different from typical "glucose effect". In addition, microorganisms cultivated with single glycerol showed significant demand for ribose-5-phosphate, which resulted in potential demand for glucose and xylitol. The above demand could be relieved by glucose (in the mixed carbon source) or xylitol addition, leading to improvement of biomass production. It indicated that glucose in the mixed carbon source was more important for biomass production. Besides, transcriptional analysis and exogenous citrate addition proved that single carbon sources could not afford enough carbon skeletons for Embden Meyerhof pathway (EMP) while a glucose-glycerol combination could provided sufficient carbon skeletons to saturate the metabolic capability of EMP, which contributed to the replenishment of precursors and energy consumed in ε-PL production. This study offered insight into the simultaneous consumption of glucose and glycerol in the ε-PL batch fermentation, which deepened our comprehension on the high ε-PL productivity in the mixed carbon source.

  2. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  3. LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.

    2016-02-01

    Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.

  4. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  5. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-02

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.

  6. Synthesis, characterization, microstructure, optical and magnetic properties of strontium cobalt carbonate precursor and Sr2Co2O5 oxide material

    NASA Astrophysics Data System (ADS)

    Agilandeswari, K.; Ruban Kumar, A.

    2014-04-01

    Sr2Co2O5 ceramic synthesized by the coprecipitation of strontium cobalt carbonate method. XRD analysis shows the single phase strontianite precursor and decomposed oxide product as orthorhombic structure of Sr2Co2O5. Thermal analysis proves the Sr2Co2O5 phase formation temperature of 800 °C. SEM image indicates crystalline rod shaped carbonate precursor transformed to oxide as porous diffused sphere shape particles. Optical band gap it reveals the strontium cobalt carbonate precursor as insulating material and the Sr2Co2O5 as semiconducting nature. The room temperature magnetic study indicates the carbonate precursor as paramagnetic but its oxide Sr2Co2O5 as superparamagnetic behavior.

  7. Developmental Dyslexia: Early Precursors, Neurobehavioral Markers, and Biological Substrates

    ERIC Educational Resources Information Center

    Benasich, April A., Ed.; Fitch, R. Holly, Ed.

    2012-01-01

    Understanding the precursors and early indicators of dyslexia is key to early identification and effective intervention. Now there's a single research volume that brings together the very latest knowledge on the earliest stages of dyslexia and the diverse genetic, neurobiological, and cognitive factors that may contribute to it. Based on findings…

  8. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    PubMed Central

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-01-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203

  9. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    PubMed

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  10. A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents.

    PubMed

    Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan

    2018-02-09

    A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    PubMed

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  12. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    PubMed

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  13. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    PubMed

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  14. Influence of Boehmite Precursor on Aluminosilicate Aerogel Pore Structure, Phase Stability and Resistance to Densification at High Temperatures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Newlin, Katy N.

    2011-01-01

    Aluminosilicate aerogels are of interest as constituents of thermal insulation systems for use at temperatures higher than those attainable with silica aerogels. It is anticipated that their effectiveness as thermal insulators will be influenced by their morphology, pore size distribution, physical and skeletal densities. The present study focuses on the synthesis of aluminosilicate aerogel from a variety of Boehmite (precursors as the Al source, and tetraethylorthosilicate (TEOS) as the Si source, and the influence of starting powder on pore structure and thermal stability.

  15. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    PubMed

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  16. Source Finding in the Era of the SKA (Precursors): Aegean 2.0

    NASA Astrophysics Data System (ADS)

    Hancock, Paul J.; Trott, Cathryn M.; Hurley-Walker, Natasha

    2018-03-01

    In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues, and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate how the Aegean source finding package has evolved to address these challenges. In particular, we address the issues of source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary across the sky. We also introduce the concept of forced or prioritised fitting.

  17. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides

    PubMed Central

    Lewis, Robert S.; Garza, Christopher J.; Dang, Ann T.; Pedro, Te Kie A.; Chain, William J.

    2015-01-01

    A protocol by which ketone or ester enolates and ortho-quinone methides (o-QMs) are generated in situ in a single reaction flask from silylated precursors under the action of anhydrous fluoride is reported. The reaction partners are joined to give a variety of β-(2-hydroxyphenyl)-carbonyl compounds in 32–94% yield in a single laboratory operation. The intermediacy of o-QMs is supported by control experiments utilizing enolate precursors and conventional alkyl halides as competitive alkylating agents and the isolation of 1,5-dicarbonyl products resulting from conjugate additions that do not restore the aromatic system. PMID:25906358

  18. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  19. Alternative group V precursors for CVD applications

    NASA Astrophysics Data System (ADS)

    Lum, R. M.; Klingert, J. K.

    1991-01-01

    The chemical vapor deposition (CVD) techniques used to grow III/V semiconductors films, such as metalorganic vapor phase epitaxy (MOVPE), hydride VPE, chemical beam epitaxy (CBE) and gas source molecular beam epitaxy (GS-MBE), all use hydrides (AsH 3 and PH 3) as the Group V source. However, the hydrides are extremely toxic gases which are stored under high pressure (200-2000 psi). To reduce the safety hazards associated with these gases, alternative Group V precursors have been investigated. Organoarsenic and phosphorous compounds have received the most attention as replacements for AsH 3 and PH 3 because they are typically low vapor pressure liquids, and thus present significantly lower exposure risks than the hydrides. For AsH 3 these have included the methyl, ethyl and butyl-based derivatives RnAsH 3- n, with varying degrees ( n = 1-3) of hydrogen atom substitution. In this paper the growth properties, thermochemistry and toxicity of the various alkylarsine precursors are compared with arsine. Data are presented on the impact of the thermochemistry of these compounds on film electrical properties, and on the effects of precursor composition and purity on overall film quality. The suitability of alternative As-precursors for device applications is demonstrated, and selection criteria are presented for the most effective alkylarsine compound for a particular CVD growth process.

  20. SYNTHESIS AND MUTAGENIC PROPERTIES OF 4,4'-DIAMINO-PARA-TERPHENYL AND 4,4'-DIAMINO-PARA-QUATERPHENYL

    EPA Science Inventory

    DBPs in drinking water can be controlled by the type of treatment and by knowing andd controlling major sources of DBP toxicant precursors and toxicants that "evade" treatment processes. Efforts are being directed at one category at a time. The initial precursor categories to be ...

  1. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    PubMed Central

    Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard

    2015-01-01

    Summary Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061

  2. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.

    PubMed

    Thorman, Rachel M; Kumar T P, Ragesh; Fairbrother, D Howard; Ingólfsson, Oddur

    2015-01-01

    Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  3. Auditory enhancement of increments in spectral amplitude stems from more than one source.

    PubMed

    Carcagno, Samuele; Semal, Catherine; Demany, Laurent

    2012-10-01

    A component of a test sound consisting of simultaneous pure tones perceptually "pops out" if the test sound is preceded by a copy of itself with that component attenuated. Although this "enhancement" effect was initially thought to be purely monaural, it is also observable when the test sound and the precursor sound are presented contralaterally (i.e., to opposite ears). In experiment 1, we assessed the magnitude of ipsilateral and contralateral enhancement as a function of the time interval between the precursor and test sounds (10, 100, or 600 ms). The test sound, randomly transposed in frequency from trial to trial, was followed by a probe tone, either matched or mismatched in frequency to the test sound component which was the target of enhancement. Listeners' ability to discriminate matched probes from mismatched probes was taken as an index of enhancement magnitude. The results showed that enhancement decays more rapidly for ipsilateral than for contralateral precursors, suggesting that ipsilateral enhancement and contralateral enhancement stem from at least partly different sources. It could be hypothesized that, in experiment 1, contralateral precursors were effective only because they provided attentional cues about the target tone frequency. In experiment 2, this hypothesis was tested by presenting the probe tone before the precursor sound rather than after the test sound. Although the probe tone was then serving as a frequency cue, contralateral precursors were again found to produce enhancement. This indicates that contralateral enhancement cannot be explained by cuing alone and is a genuine sensory phenomenon.

  4. Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate

    PubMed Central

    Liu, Hongfei; Chi, Dongzhi

    2015-01-01

    Vapor-phase growth of large-area two-dimensional (2D) MoS2 nanosheets via reactions of sulfur with MoO3 precursors vaporized and transferred from powder sources onto a target substrate has been rapidly progressing. Recent studies revealed that the growth yield of high quality singlelayer (SL) MoS2 is essentially controlled by quite a few parameters including the temperature, the pressure, the amount/weight of loaded source precursors, and the cleanup of old precursors. Here, we report a dispersive growth method where a shadow mask is encapsulated on the substrate to ‘indirectly’ supply the source precursors onto the laterally advancing growth front at elevated temperatures. With this method, we have grown large-area (up to millimeters) SL-MoS2 nanosheets with a collective in-plane orientation on c-plane sapphire substrates. Regular ripples (~1 nm in height and ~50 nm in period) have been induced by laser scanning into the SL-MoS2 nanosheets. The MoS2 ripples easily initiate at the grain boundaries and extend along the atomic steps of the substrate. Such laser-induced ripple structures can be fundamental materials for studying their effects, which have been predicted to be significant but hitherto not evidenced, on the electronic, mechanical, and transport properties of SL-MoS2. PMID:26119325

  5. Low-temperature solvothermal synthesis of EuS hollow microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yong; Wang, Hong; Li, Peng

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis,more » and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.« less

  6. Chemical vapor deposition growth of boron-carbon-nitrogen layers from methylamine borane thermolysis products

    NASA Astrophysics Data System (ADS)

    Leardini, Fabrice; Flores, Eduardo; Galvis E, Andrés R.; Ferrer, Isabel J.; Ramón Ares, José; Sánchez, Carlos; Molina, Pablo; van der Meulen, Herko P.; Gómez Navarro, Cristina; López Polin, Guillermo; Urbanos, Fernando J.; Granados, Daniel; García-García, F. Javier; Demirci, Umit B.; Yot, Pascal G.; Mastrangelo, Filippo; Grazia Betti, Maria; Mariani, Carlo

    2018-01-01

    This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

  7. Deposition of BN interphase coatings from B-trichloroborazine and its effects on the mechanical properties of SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Wu, Haitang; Chen, Mingwei; Wei, Xi; Ge, Min; Zhang, Weigang

    2010-12-01

    Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl 3B 3N 3H 3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.

  8. The in situ synthesis of PbS nanocrystals from lead(II) n-octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer

    PubMed Central

    Bear, J. C.; Mayes, A. G.; Parkin, I. P.; O'Brien, P.

    2017-01-01

    The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n-octylxanthate, [Pb(S2COOct)2]. The growth of nanocrystals within polymer thin films from single-source precursors offers a faster route to networks of nanocrystals within polymers when compared with ex situ routes. The ‘inverse vulcanization’ sulfur polymer described herein contains a hybrid linker system which demonstrates high solubility in organic solvents, allowing solution processing of the sulfur-based polymer, ideal for the formation of thin films. The process of nanocrystal synthesis within sulfur films was optimized by observing nanocrystal formation by X-ray photoelectron spectroscopy and X-ray diffraction. Examination of the film morphology by scanning electron microscopy showed that beyond a certain precursor concentration the nanocrystals formed were not only within the film but also on the surface suggesting a loading limit within the polymer. We envisage this material could be used as the basis of a new generation of materials where solution processed sulfur polymers act as an alternative to traditional polymers. PMID:28878986

  9. A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules.

    PubMed

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Carozza, Jesse C; Alkan, Melisa; Rogachev, Andrey Yu; Filatov, Alexander S; Abakumov, Artem M; Dikarev, Evgeny V

    2018-06-07

    This work raises a fundamental question about the "real" structure of molecular compounds containing three different metals: whether they consist of genuine hetero tri metallic species or of a mixture of parent hetero bi metallic species. Heterotrimetallic complex Li 2 CoNi(tbaoac) 6 ( 1 , tbaoac = tert -butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo 0.5 Ni 0.5 O 2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li 2 MM'L 5 ] + (M/M' = Co 2 , Ni 2 , and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li 2 MMg(tbaoac) 6 (M = Co ( 2 ) and Ni ( 3 )) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li 2 M 2 L 6 + Li 2 Mg 2 L 6 ↔ 2Li 2 MMgL 6 , upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of hetero tri metallic assemblies fall exactly in between those for the parent hetero bi metallic species. The LiCo 0.5 Ni 0.5 O 2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.

  10. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    CuInS2 was deposited by spray pyrolysis using single-source precursors synthesized in-house. Films with either (112) or (204/220) preferred orientation always showed Cu-rich and In-rich composition respectively. The In-rich (204/220)-oriented films always contained a secondary phase evaluated as an In-rich compound, and the hindrance of (112)-oriented grain growth was confirmed by glancing angle X-ray diffraction. In conclusion, only the Cu-rich (112)-oriented films with dense columnar grains can be prepared without the secondary In-rich compound. The effect of extra Cu on the grain size and the solar cell results will be also presented.

  11. Czochralski growth of LaPd2Al2 single crystals

    NASA Astrophysics Data System (ADS)

    Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.

    2017-10-01

    The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.

  12. One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features

    DOEpatents

    Tsapstsis, Michael; Zhang, Xueyi

    2015-11-17

    A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.

  13. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.

    PubMed

    Li, Liang; Reiss, Peter

    2008-09-03

    InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.

  14. On the difficulties of detecting PP precursors

    NASA Astrophysics Data System (ADS)

    Lessing, Stephan; Thomas, Christine; Saki, Morvarid; Schmerr, Nicholas; Vanacore, Elizabeth

    2015-06-01

    The PP precursors are seismic waves that form from underside reflections of P waves off discontinuities in the upper mantle transition zone (MTZ). These seismic phases are used to map discontinuity topography, sharpness, and impedance contrasts; the resulting structural variations are then often interpreted as evidence for temperature and/or mineralogy variations within the mantle. The PP precursors as well as other seismic phases have been used to establish the global presence of seismic discontinuities at 410 and 660 km depth. Intriguingly, in more than 80 per cent of PP precursor observations the seismic wave amplitudes are significantly weaker than the amplitudes predicted by seismic reference models. Even more perplexing is the observation that 1-5 per cent of all earthquakes (which are 20-25 per cent of earthquakes with clear PP waveforms) do not show any evidence for the PP precursors from the discontinuities even in the presence of well-developed PP waveforms. Non-detections are found in six different data sets consisting of tens to hundreds of events. We use synthetic modelling to examine a suite of factors that could be responsible for the absence of the PP precursors. The take-off angles for PP and the precursors differ by only 1.2-1.5°; thus source-related complexity would affect PP and the precursors. A PP wave attenuated in the upper mantle would increase the relative amplitude of the PP precursors. Attenuation within the transition zone could reduce precursor amplitudes, but this would be a regional phenomenon restricted to particular source receiver geometries. We also find little evidence for deviations from the theoretical travel path of seismic rays expected for scattered arrivals. Factors that have a strong influence include the stacking procedures used in seismic array techniques in the presence of large, interfering phases, the presence of topography on the discontinuities on the order of tens of kilometres, and 3-D lateral heterogeneity in the velocity and density changes with depth across the transition zone. We also compare the observed precursors' amplitudes with seismic models from calculations of phase equilibria and find that a seismic velocity model derived from a pyrolite composition reproduces the data better than the currently available 1-D earth models. This largely owes to the pyrolite models producing a stronger minimum in the reflection coefficient across the epicentral distances where the reduction in amplitudes of the PP precursors is observed. To suppress the precursors entirely in a small subset of earthquakes, other effects, such as localized discontinuity topography and seismic signal processing effects are required in addition to the changed velocity model.

  15. Reduction of precursor decay anomaly in single crystal lithium fluoride

    NASA Astrophysics Data System (ADS)

    Sano, Yukio

    2000-08-01

    The purpose of this study is to reveal that the precursor decay anomaly in single crystal lithium fluoride is reduced by Sano's decay curve [Y. Sano, J. Appl. Phys. 85, 7616 (1999)], which is much smaller in slope than Asay's decay curve [J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972)]. To this end, strain, particle, velocity, and stress in a precursor and near the leading edge of the follower changing with time along Sano's decay curve are first analyzed quantitatively. The analysis verified the existence of degenerate contraction waves I and II and a subrarefaction wave R', and the decay process [Y. Sano, J. Appl. Phys. 77, 3746 (1995)] caused in sequence by evolving followers C, I, II, R', Rb. Next, inequalities relating decay rates qualitatively to plastic strain rates at the leading edge of the follower, which are derived using the properties of the followers, are incorporated into the analysis. Calculation results showed that the plastic strain rates were reduced by low decay rates. This indicates that the precursor decay anomaly might be greatly reduced by Sano's decay curve.

  16. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    USGS Publications Warehouse

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and other constituents to continuously track source-water conditions in near real-time. Treatability tests were conducted during the four event-based surveys to determine the effectiveness of coagulant and powdered activated carbon (PAC) on the removal of DBP precursors. Sample analyses included DOC, total particulate carbon (TPC), total and dissolved nutrients, absorbance and fluorescence spectroscopy, and, for regulated DBPs, concentrations of THMs and HAAs in finished water and laboratory-based THM and HAA formation potentials (THMFP and HAAFP, respectively) for source water and selected locations throughout the watershed. The results of this study may not be typical given the record and near record amounts of precipitation that occurred during spring that produced streamflow much higher than average in 2010-11. Although there were algal blooms, lower concentrations of chlorophyll-a were observed in the water column during the study period compared to historical data. Concentrations of DBPs in finished (treated) water averaged 0.024 milligrams per liter (mg/L) for THMs and 0.022 mg/L for HAAs; maximum values were about 0.040 mg/L for both classes of DBPs. Although DBP concentrations were somewhat higher within the distribution system, none of the samples collected for this study or for the quarterly compliance monitoring by the water utilities exceeded levels permissible under existing U.S. Environmental Protection Agency (USEPA) regulations: 0.080 mg/L for THMs and 0.060 mg/L for HAAs. DOC concentrations were generally low in the Clackamas River, typically about 1.0-1.5 mg/L. Concentrations in the mainstem occasionally increased to nearly 2.5 mg/L during storms; DOC concentrations in tributaries were sometimes much higher (up to 7.8 mg/L). The continuous in-situ FDOM measurements indicated sharp rises in DOC concentrations in the mainstem following rainfall events; concentrations were relatively stable during summer base flow. Even though the first autumn storm mobilized appreciable quantities of carbon, higher concentrations of DBPs in finished water were observed 3-weeks later, after the ground was saturated from additional rainfall. The majority of the DOC in the lower Clackamas River appears to originate from the upper basin, suggesting terrestrial carbon was commonly the dominant source. Lower-basin tributaries typically contained the highest concentrations of DOC and DBP precursors and contributed substantially to the overall loads in the mainstem during storms. During low-flow periods, tributaries were not major sources of DOC or DBP precursors to the Clackamas River. Although the dissolved fraction of organic carbon contributed the majority of DBP precursors, at times the particulate fraction (inorganic sediment and organic particles including detritus and algal material) contributed a substantial fraction of DBP precursors. Considering just the main-stem sites, on average, 10 percent of THMFP and 32 percent of HAAFP were attributed to particulate carbon. This finding suggests water-treatment methods that remove particles prior to chlorination would reduce finished-water DBP concentrations to some degree. Overall, concentrations of THM and HAA precursors were closely linked to DOC concentrations; laboratory DBP formation potentials (DBPFPs) clearly showed that THMFP and HAAFP were greatest in the downstream tributaries that contained elevated carbon concentrations. However, carbon-normalized "specific" formation potentials for THMs and HAAs (STHMFP and SHAAFP, respectively) revealed changes in carbon character over time that affected the two types of DBP classes differently. HAA precursors were elevated in waters containing aromatic-rich soil-derived material arising from forested areas. In contrast, THM precursors were associated with carbon having a lower aromatic content; highest STHMFP occurred in autumn 2011 in the mainstem from North Fork Reservoir downstream to LO DWTP. This pattern suggests the potential for a link between THM precursors and algal-derived carbon. The highest STHMFP value was measured within North Fork Reservoir, indicating reservoir derived carbon may be important for this class of DBPs. Weak correlations between STHMFP and SHAAFP emphasize that precursor sources for these types of DBPs may be different. This highlights not only that different locations within the watershed produce carbon with different reactivity (specific DBPFP), but also that different management approaches for each class of DBP precursors could be required for control. Treatability tests conducted on source water during four basin-wide surveys demonstrated that an average of about 40 percent of DOC can be removed by coagulation. While the decrease in THMFP following coagulation was similar to DOC, the decrease in HAAFP was much greater (approximately 70 percent), indicating coagulation is particularly effective at removing HAA precursors'likely because of the aromatic nature of the carbon associated with HAA precursors. Several findings from this study have direct implications for managing drinking-water resources and for providing useful information that may help improve treatment-plant operations. For example, the use of in-situ fluorometers that measure FDOM provided an excellent proxy for DOC concentration in this system and revealed short-term, rapid changes in DOC concentration during storm events. In addition, the strong correlation between FDOM values measured in-situ and HAA5 concentrations in finished water may permit estimation of continuous HAA concentrations, as was done here. As part of this study, multiple in-situ FDOM sensors were deployed continuously and in real-time to characterize the composition of dissolved organic matter. Although the initial results were promising, additional research and engineering developments will be needed to demonstrate the full utility of these sensors for this purpose. In conclusion, although DBPFPs were strongly correlated to DOC concentration, some DBPs formed from particulate carbon, including terrestrial leaf material and algal material such as planktonic species of blue-green algae and sloughed filaments, stalks, and cells of benthic algae. Different precursor sources in the watershed were evident from the data, suggesting specific actions may be available to address some of these sources. In-situ measurements of FDOM proved to be an excellent proxy for DOC concentration as well as HAA formation during treatment, which suggests further development and refinement of these sensors have the potential to provide real-time information about complex watershed processes to operators at the drinking-water treatment plants. Follow-up studies could examine the relative roles that terrestrial and algal sources have on the DBP precursor pool to better understand how watershed-management activities may be affecting the transport of these compounds to Clackamas River drinking-water intakes. Given the low concentrations of algae in the water column during this study, additional surveys during more typical river conditions could provide a more complete understanding of how algae contribute DBP precursors. Further development of FDOM-sensor technology can improve our understanding of carbon dynamics in the river and how concentrations may be trending over time. This study was conducted in collaboration with Clackamas River Water and the City of Lake Oswego water utilities. Other research partners included Oregon Health and Science University in Hillsboro, Oregon, Alexin Laboratory in Tigard, Oregon, U.S. Geological Survey National Research Program Laboratory in Denver, Colorado, and the U.S. Geological Survey Water Science Centers in Portland, Oregon, and Sacramento, California. This project was supported with funding from Clackamas River Water, City of Lake Oswego, the U.S. Geological Survey, and the Water Research Foundation.

  17. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE PAGES

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...

    2018-02-10

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  18. Naturally occurring 32Si and low-background silicon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  19. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  20. Naturally occurring 32 Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  1. A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heieh, B.R.; Antoniadis, H.; Bland, D.C.

    1995-12-01

    We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less

  2. SYNTHESIS AND MUTAGENICITY OF DIRECT DYES FROM 4,4'-DIAMINO-PARA-TERPHENYL AND 4,4'-DIAMINO-PARA-QUATERPHENYL

    EPA Science Inventory

    DBPs in drinking water can be controlled by the type of treatment and by knowing and controlling major sources of DBP toxicant precursors and toxicants that "evade" treatment processes. Efforts are being directed at one category at a time. The initial precursor categories to be c...

  3. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine the extent of regional pollutant transport among populated areas; and in support of secondary... sources within the area, transport of O3 and its precursors, and the photochemical processes related to O3... precursor concentrations entering the area and will identify those areas which are subjected to transport...

  4. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determine the extent of regional pollutant transport among populated areas; and in support of secondary... sources within the area, transport of O3 and its precursors, and the photochemical processes related to O3... precursor concentrations entering the area and will identify those areas which are subjected to transport...

  5. Isotopic composition of carbonaceous-chondrite kerogen Evidence for an interstellar origin of organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1983-01-01

    Stepwise combustion has revealed systematic patterns of isotopic heterogeneity for C, H and N in the insoluble organic fraction (m-kerogen) from the Orgueil and Murray carbonaceous chondrites. Those patterns are essentially identical for both meteorites, indicating a common source of m-kerogen. The data cannot be reconciled with a single mass-fractionation process acting upon a single precursor composition. This indicates either a multi-path history of mass-dependent processing or a significant nucleogenetic contribution, or both. If mass-fractionation were the dominant process, the magnitude of the observed isotopic variability strongly suggests that ion-molecule reactions at very low temperatures, probably in interstellar clouds, were responsible. In any case, an interstellar, rather than solar nebular, origin for at least some of the meteoritic organic matter is indicated. This has interesting implications for the origin of prebiotic molecules, temperatures in the early solar system, and the isotopic compositions of volatiles accreted by the terrestrial planets.

  6. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  7. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  8. Tannins and terpenoids as major precursors of Suwannee River fulvic acid

    USGS Publications Warehouse

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Suwannee River fulvic acid (SRFA) was fractionated into 7 fractions by normal-phase chromatography on silica gel followed by reverse-phase fractionation on XAD-8 resin that produced 18 subfractions. Selected major subfractions were characterized by 13C-nuclear magnetic resonance (NMR), infrared spectrometry, and elemental analyses. 13C-NMR spectra of the subfractions were more indicative of precursor structures than unfractionated SRFA, and gave spectral profiles that indicated SRFA mass was about equally split between tannin precursors and terpenoid precursors. Lignin precursors were minor components. Synthesis of 13C-NMR data with elemental data for subfractions derived from both tannin and terpenoid precursors revealed high ring contents and low numbers of carbon per rings which is indicative of fused ring structures that are extensively substituted with carboxyl and methyl groups. These results ruled out extended chain structures for SRFA. This information is useful for determining sources and properties of fulvic acid in drinking water supplies as tannins are more reactive with chlorine to produce undesirable disinfection by-products than are terpenoids.

  9. Experimental analysis of precursors to severe problem behavior.

    PubMed

    Fritz, Jennifer N; Iwata, Brian A; Hammond, Jennifer L; Bloom, Sarah E

    2013-01-01

    Some individuals engage in both mild and severe forms of problem behavior. Research has shown that when mild behaviors precede severe behaviors (i.e., the mild behaviors serve as precursors), they can (a) be maintained by the same source of reinforcement as severe behavior and (b) reduce rates of severe behavior observed during assessment. In Study 1, we developed an objective checklist to identify precursors via videotaped trials for 16 subjects who engaged in problem behavior and identified at least 1 precursor for every subject. In Study 2, we conducted separate functional analyses of precursor and severe problem behaviors for 8 subjects, and obtained correspondence between outcomes in 7 cases. In Study 3, we evaluated noncontingent reinforcement schedule thinning plus differential reinforcement of alternative behavior to reduce precursors, increase appropriate behavior, and maintain low rates of severe behavior during 3 treatment analyses for 2 subjects. Results showed that this treatment strategy was effective for behaviors maintained by positive and negative reinforcement. © Society for the Experimental Analysis of Behavior.

  10. RESEARCH AREA -- MOBILE SOURCE EMISSIONS (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, APPCD, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volotile organic compounds) in the U.S. The research objective of the Emissions Characterization and Prevention Br...

  11. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal.

    PubMed

    Sgroi, Massimiliano; Vagliasindi, Federico G A; Snyder, Shane A; Roccaro, Paolo

    2018-01-01

    This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  13. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-09-01

    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).

  14. Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water.

    PubMed

    Wei, Yuanyuan; Liu, Yan; Ma, Luming; Wang, Hongwu; Fan, Jinhong; Liu, Xiang; Dai, Rui-Hua

    2013-09-01

    Water sources are micro-polluted by the increasing range of anthropogenic activities around them. Disinfection byproduct (DBP) precursors in water have gradually expanded from humic acid (HA) and fulvic acid to other important sources of potential organic matter. This study aimed to provide further insights into the effects of microbially derived organic matter as precursors on iodinated trihalomethane (I-THM) speciation and formation during the biological treatment of micro-polluted source water. The occurrence of I-THMs in drinking water treated by biological processes was investigated. The results showed for the first time that CHCl2I and CHBrClI are emerging DBPs in China. Biological pre-treatment and biological activated carbon can increase levels of microbes, which could serve as DBP precursors. Chlorination experiments with bovine serum albumin (BSA), starch, HA, deoxyribonucleic acid (DNA), and fish oil, confirmed the close correlation between the I-THM species identified during the treatment processes and those predicted from the model compounds. The effects of iodide and bromide on the I-THM speciation and formation were related to the biochemical composition of microbially derived organic precursors. Lipids produced up to 16.98μgL(-1) of CHCl2I at an initial iodide concentration of 2mgL(-1). HA and starch produced less CHCl2I at 3.88 and 3.54μgL(-1), respectively, followed by BSA (1.50μgL(-1)) and DNA (1.35μgL(-1)). Only fish oil produced I-THMs when iodide and bromide were both present in solution; the four other model compounds formed brominated species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  16. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  17. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE PAGES

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...

    2017-02-02

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  18. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  19. Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same

    DOEpatents

    Yang, Ralph T.; Li, Yingwei; Qi, Gongshin; Lachawiec, Jr., Anthony J.

    2012-12-25

    A composition for hydrogen storage includes a source of hydrogen atoms, a receptor, and a chemical bridge formed between the source and the receptor. The chemical bridge is formed from a precursor material. The receptor is adapted to receive hydrogen spillover from the source.

  20. CVD method for forming B.sub.i -containing oxide superconducting films

    DOEpatents

    Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming

    1994-01-01

    Films of high T.sub.c Bi-Sr-Ca-Cu-O superconductor have been prepared by MOCVD using volatile metal organic precursors and water vapor. The metal organic precursors are volatized along with a bismuth source, such as Bi(C.sub.6 H.sub.5).sub.3, deposited on a heated substrate to form a film, and annealed.

  1. Microbial engineering for the production of fatty acids and fatty acid derivatives

    DOEpatents

    Stephanopoulos, Gregory; Abidi, Syed Hussain Imam

    2014-07-01

    Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.

  2. A Library of Selenourea Precursors to PbSe Nanocrystals with Size Distributions near the Homogeneous Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.

    Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less

  3. A Library of Selenourea Precursors to PbSe Nanocrystals with Size Distributions near the Homogeneous Limit

    DOE PAGES

    Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.; ...

    2017-01-19

    Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less

  4. High speed, mask-less, laser controlled deposition of microscale tungsten tracks using 405 nm wavelength diode laser

    NASA Astrophysics Data System (ADS)

    Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William

    2017-02-01

    A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.

  5. Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation.

    PubMed

    Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  6. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruberu, T. Purnima A.; Albright, Haley R.; Callis, Brandon

    We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS–CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine–chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR (31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine–chalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE < HPTE (E = S, Se). For a given phosphine, the selenide is always more reactivemore » than the sulfide. CdS1–xSex quantum dots were synthesized via single injection of a R3PS–R3PSe mixture to cadmium oleate at 250 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R3PS and R3PSe reactivity dictates CdS1–xSex dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS1–xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS–R3PSe mixture to cadmium–phosphonate at 320 or 250 °C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. Purposely matching or mismatching R3PS–R3PSe precursor reactivity leads to CdS1–xSex nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable “bottom-up” programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.« less

  8. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development.

    PubMed

    Brenna, J Thomas; Carlson, Susan E

    2014-12-01

    Humans evolved a uniquely large brain among terrestrial mammals. Brain and nervous tissue is rich in the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). Docosahexaenoic acid is required for lower and high order functions in humans because of understood and emerging molecular mechanisms. Among brain components that depend on dietary components, DHA is limiting because its synthesis from terrestrial plant food precursors is low but its utilization when consumed in diet is very efficient. Negligible DHA is found in terrestrial plants, but in contrast, DHA is plentiful at the shoreline where it is made by single-celled organisms and plants, and in the seas supports development of very large marine mammal brains. Modern human brains accumulate DHA up to age 18, most aggressively from about half-way through gestation to about two years of age. Studies in modern humans and non-human primates show that modern infants consuming infant formulas that include only DHA precursors have lower DHA levels than for those with a source of preformed DHA. Functional measures show that infants consuming preformed DHA have improved visual and cognitive function. Dietary preformed DHA in the breast milk of modern mothers supports many-fold greater breast milk DHA than is found in the breast milk of vegans, a phenomenon linked to consumption of shore-based foods. Most current evidence suggests that the DHA-rich human brain required an ample and sustained source of dietary DHA to reach its full potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors

    PubMed Central

    Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa

    2013-01-01

    The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pHrx) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite. PMID:28348326

  10. Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors.

    PubMed

    Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa

    2013-03-01

    The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pH rx ) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite.

  11. Multiwavelength Diagnostics of the Precursor and Main Phases of an M1.8 Flare on 2011 April 22

    NASA Technical Reports Server (NTRS)

    Awasthi, A. K.; Jain, R.; Gadhiya, P. D.; Aschwanden, M. J.; Uddin, W.; Srivastava, A. K.; Chandra, R.; Gopalswamy, N.; Nitta, N. V.; Yashiro, S.; hide

    2013-01-01

    We study the temporal, spatial and spectral evolution of the M1.8 flare, which occurred in the active region 11195 (S17E31) on 2011 April 22, and explore the underlying physical processes during the precursor phase and their relation to the main phase. The study of the source morphology using the composite images in 131Å wavelength observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and 6-14 kiloelectronvolts [from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)] revealed a multi-loop system that destabilized systematically during the precursor and main phases. In contrast, hard X-ray emission (20-50 kiloelectronvolts) was absent during the precursor phase, appearing only from the onset of the impulsive phase in the form of foot-points of emitting loops. This study also revealed the heated loop-top prior to the loop emission, although no accompanying foot-point sources were observed during the precursor phase. We estimate the flare plasma parameters, namely temperature (T), emission measure (EM), power-law index (gamma) and photon turn-over energy (to), and found them to be varying in the ranges 12.4-23.4 megakelvins, 0.0003-0.6 x 10 (sup 49) per cubic centimeter, 5-9 and 14-18 kiloelectronvolts, respectively, by forward fitting RHESSI spectral observations. The energy released in the precursor phase was thermal and constituted approximately 1 percent of the total energy released during the flare. The study of morphological evolution of the filament in conjunction with synthesized T and EM maps was carried out, which reveals (a) partial filament eruption prior to the onset of the precursor emission and (b) heated dense plasma over the polarity inversion line and in the vicinity of the slowly rising filament during the precursor phase. Based on the implications from multiwavelength observations, we propose a scheme to unify the energy release during the precursor and main phase emissions in which the precursor phase emission was originated via conduction front that resulted due to the partial filament eruption. Next, the heated leftover S-shaped filament underwent slow-rise and heating due to magnetic reconnection and finally erupted to produce emission during the impulsive and gradual phases.

  12. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays.

    PubMed

    Zhang, Lin; Veres-Schalnat, Tracey A; Somogyi, Arpad; Pemberton, Jeanne E; Maier, Raina M

    2012-12-01

    Rhamnolipids have multiple potential applications as "green" surfactants for industry, remediation, and medicine. As a result, they have been intensively investigated to add to our understanding of their biosynthesis and improve yields. Several studies have noted that the addition of a fatty acid cosubstrate increases rhamnolipid yields, but a metabolic explanation has not been offered, partly because biosynthesis studies to date have used sugar or sugar derivatives as the carbon source. The objective of this study was to investigate the role of fatty acid cosubstrates in improving rhamnolipid biosynthesis. A combination of stable isotope tracing and gene expression assays was used to identify lipid precursors and potential lipid metabolic pathways used in rhamnolipid synthesis when fatty acid cosubstrates are present. To this end, we compared the rhamnolipids produced and their yields using either glucose alone or glucose and octadecanoic acid-d(35) as cosubstrates. Using a combination of sugar and fatty acids, the rhamnolipid yield was significantly higher (i.e., doubled) than when glucose was used alone. Two patterns of deuterium incorporation (either 1 or 15 deuterium atoms) in a single Rha-C(10) lipid chain were observed for octadecanoic acid-d(35) treatment, indicating that in the presence of a fatty acid cosubstrate, both de novo fatty acid synthesis and β-oxidation are used to provide lipid precursors for rhamnolipids. Gene expression assays showed a 200- to 600-fold increase in the expression of rhlA and rhlB rhamnolipid biosynthesis genes and a more modest increase of 3- to 4-fold of the fadA β-oxidation pathway gene when octadecanoic acid was present. Taken together, these results suggest that the simultaneous use of de novo fatty acid synthesis and β-oxidation pathways allows for higher production of lipid precursors, resulting in increased rhamnolipid yields.

  13. Overview of the SHARP campaign: Motivation, design, and major outcomes

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.; Kolb, Charles E.; Lefer, Barry; Rappenglück, Bernhard; Zhang, Renyi; Pinto, Joseph P.

    2014-03-01

    The Study of Houston Atmospheric Radical Precursors (SHARP) was a field campaign developed by the Houston Advanced Research Center on behalf of the Texas Environmental Research Consortium. SHARP capitalized on previous research associated with the Second Texas Air Quality Study and the development of the State Implementation Plan (SIP) for the Houston-Galveston-Brazoria (HGB) ozone nonattainment area. These earlier studies pointed to an apparent deficit in ozone production in the SIP attainment demonstration model despite the enhancement of simulated emissions of highly reactive volatile organic compounds in accordance with the findings of the original Texas Air Quality Study in 2000. The scientific hypothesis underlying the SHARP campaign was that there are significant undercounted primary and secondary sources of the radical precursors, formaldehyde, and nitrous acid, in both heavily industrialized and more typical urban areas of Houston. These sources, if properly taken into account, could increase the production of ozone in the SIP model and the simulated efficacy of control strategies designed to bring the HGB area into ozone attainment. This overview summarizes the precursor studies and motivations behind SHARP, as well as the overall experimental design and major findings of the 2009 field campaign. These findings include significant combustion sources of formaldehyde at levels greater than accounted for in current point source emission inventories; the underestimation of formaldehyde and nitrous acid emissions, as well as CO/NOx and NO2/NOx ratios, by mobile source models; and the enhancement of nitrous acid by atmospheric organic aerosol.

  14. Thermodynamic analysis of vapor-phase epitaxy of CdTe using a metallic Cd source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Murakami, Hisashi; Koukitu, Akinori

    2017-07-01

    Thermodynamic analysis of CdTe growth using cost-effective metallic Cd and dialkyl telluride was performed. The major vapor species at source zone in equilibrium were gaseous Cd for the group-II precursor, and Te2 and H2Te for the group-VI precursors. The driving force for the CdTe deposition was still positive even at 650 °C. This indicates that CdTe formation from gaseous Cd can proceed thermodynamically. Furthermore, the calculations showed that CdTe decomposes at higher temperature and increasing the II/VI ratio increases the limit of the growth temperature, which coincides with the experimental results.

  15. 77 FR 50021 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ..., such as owners of mobile sources that also contribute to ozone formation. EPA also believes that... percent of the ozone precursor emissions, while mobile sources are responsible for approximately 80...

  16. Global combined precursor isotopic labeling and isobaric tagging (cPILOT) approach with selective MS(3) acquisition.

    PubMed

    Evans, Adam R; Robinson, Renã A S

    2013-11-01

    Recently, we reported a novel proteomics quantitation scheme termed "combined precursor isotopic labeling and isobaric tagging (cPILOT)" that allows for the identification and quantitation of nitrated peptides in as many as 12-16 samples in a single experiment. cPILOT offers enhanced multiplexing and posttranslational modification specificity, however excludes global quantitation for all peptides present in a mixture and underestimates reporter ion ratios similar to other isobaric tagging methods due to precursor co-isolation. Here, we present a novel chemical workflow for cPILOT that can be used for global tagging of all peptides in a mixture. Specifically, through low pH precursor dimethylation of tryptic or LysC peptides followed by high pH tandem mass tags, the same reporter ion can be used twice in a single experiment. Also, to improve triple-stage mass spectrometry (MS(3) ) data acquisition, a selective MS(3) method that focuses on product selection of the y1 fragment of lysine-terminated peptides is incorporated into the workflow. This novel cPILOT workflow has potential for global peptide quantitation that could lead to enhanced sample multiplexing and increase the number of quantifiable spectra obtained from MS(3) acquisition methods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip

    DOEpatents

    Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin

    2010-06-01

    The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.

  18. Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

    NASA Astrophysics Data System (ADS)

    Emrul Kayesh, Md.; Matsuishi, Kiyoto; Chowdhury, Towhid H.; Kaneko, Ryuji; Noda, Takeshi; Islam, Ashraful

    2018-05-01

    In this letter, we have introduced copper chloride (CuCl2) as an additive in the CH3NH3PbI3 precursor solution to improve the surface morphology and crystallinity of CH3NH3PbI3 films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% CuCl2 additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by CuCl2 (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine CH3NH3PbI3.

  19. Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2(001) single surfaces.

    PubMed

    Senanayake, S D; Idriss, H

    2006-01-31

    We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe.

  20. Natural attenuation of NDMA precursors in an urban, wastewater-dominated wash.

    PubMed

    Woods, Gwen C; Dickenson, Eric R V

    2016-02-01

    N-Nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that is potentially carcinogenic and has been found to occur in drinking water treatment systems impacted with treated wastewater. A major gap in NDMA research is an understanding of the persistence of wastewater-derived precursors within the natural environment. This research sought to fill this knowledge gap by surveying NDMA precursors across the length of a wastewater effluent-dominated wash. Significant precursor reduction (17%) was found to occur from introduction into the wash to a point 9 h downstream. This reduction translates into a half-life of roughly 32 h for bulk NDMA precursors. Further laboratory experiments examining rates of photolysis, biodegradation and loss to sediments, illustrated that both photolytic and biological degradation were effective removal mechanisms for NDMA precursors. Loss to sediments that were acquired from the wash did not appear to reduce NDMA precursors in the water column, although a control conducted with DI water provided evidence that significant NDMA precursors could be released from autoclaved sediments (suggesting that sorption does occur). Microbial experiments revealed that microbes associated with sediments were much more effective at degrading precursors than microbes within the water column. Overall, this study demonstrated that natural processes are capable of attenuating NDMA precursors relatively quickly within the environment, and that utilities might benefit from maximizing source water residency time in the environment, prior to introduction into treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Detection and control of Ganoderma boninense: strategies and perspectives.

    PubMed

    Hushiarian, Roozbeh; Yusof, Nor Azah; Dutse, Sabo Wada

    2013-01-01

    The oil palm, an economically important tree, has been one of the world's major sources of edible oil and a significant precursor of biodiesel fuel. Unfortunately, it now faces the threat of a devastating disease. Many researchers have identified Ganoderma boninense as the major pathogen that affects the oil palm tree and eventually kills it. But identification of the pathogen is just the first step. No single method has yet been able to halt the continuing spread of the disease. This paper discusses the modes of infection and transmission of Ganoderma boninense and suggests techniques for its early detection. Additionally, the paper proposes some possible ways of controlling the disease. Such measures, if implemented, could contribute significantly to the sustainability of the palm oil industry in South East Asia.

  2. Ceramic fibers for matrix composites in high-temperature engine applications

    PubMed

    Baldus; Jansen; Sporn

    1999-07-30

    High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.

  3. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties

    NASA Astrophysics Data System (ADS)

    Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami

    2018-03-01

    This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.

  4. Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.

    2017-02-01

    A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.

  5. TGFbeta regulation of membrane mucin Muc4 via proteosome degradation.

    PubMed

    Lomako, Wieslawa M; Lomako, Joseph; Soto, Pedro; Carraway, Coralie A Carothers; Carraway, Kermit L

    2009-07-01

    Muc4 is a heterodimeric membrane mucin implicated in epithelial differentiation and tumor progression. It is expressed from a single gene as a 300 kDa precursor protein which is cleaved in the endoplasmic reticulum to its two subunits. Our previous work has shown that Muc4 is regulated by TGFbeta, which represses the precursor cleavage. Working with Muc4-transfected A375 tumor cells, we now show that Muc4 undergoes proteosomal degradation. Proteosome inhibitors prolong the life of the precursor, shunt the Muc4 into cytoplasmic aggresomes, increase the level of Muc4 associated with the endoplasmic reticulum chaperones calnexin and calreticulin and increase the levels of ubiquitinated Muc4. Most importantly, proteosome inhibitors repress the TGFbeta inhibition of Muc4 expression. These results suggest a model in which TGFbeta inhibits precursor cleavage, shunting the precursor into the proteosomal degradation pathway. Thus, the cells have evolved a mechanism to use the quality control pathway for glycoproteins to control the quantity of the protein produced. 2009 Wiley-Liss, Inc.

  6. Nitrous Oxide Production in an Eastern Corn Belt Soil: Sources and Redox Range

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) derived from soils is a main contributor to the greenhouse gas effect and a precursor to ozone-depleting substrates; however, the source processes and interacting controls are not well established. This study was conducted to estimate magnitude and source (nitrification vs. denit...

  7. Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling

    PubMed Central

    Chang, Linda; Noseda, Michela; Higginson, Michelle; Ly, Michelle; Patenaude, Alexandre; Fuller, Megan; Kyle, Alastair H.; Minchinton, Andrew I.; Puri, Mira C.; Dumont, Daniel J.; Karsan, Aly

    2012-01-01

    Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1+CD31dimvascular endothelial (VE)-cadherin−CD45− precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1+ precursor cell, but not the VE-cadherin+ endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1+ precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1+ local precursor to VSMC in a spatiotemporal fashion across all vascular beds. PMID:22509029

  8. Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water.

    PubMed

    McCurry, Daniel L; Krasner, Stuart W; von Gunten, Urs; Mitch, William A

    2015-11-01

    Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV. NDMA precursor abatement generally did not correlate well between oxidants, and waters exhibited different behaviors with respect to pH and temperature, suggesting a variety of source-dependent NDMA precursors. For wastewater-impacted waters, the observed pH dependence for precursor abatement suggested the important role of secondary or tertiary amine precursors. Although hydroxyl radicals did not appear to be important for NDMA precursor abatement during O3 or MPUV pretreatment, the efficacy of MPUV correlated strongly with dissolved organic carbon concentration (p = 0.01), suggesting alternative indirect photochemical pathways. The temperature dependences during pre- and post-disinfection indicated that NDMA formation is likely to increase during warm seasons for O3 pretreatment, decrease for HOCl pretreatment, and remain unchanged for MPUV treatment, although seasonal changes in source water quality may counteract the temperature effects. For two waters impacted by relatively high polyDADMAC coagulant doses, pretreatment with HOCl, O3, and MPUV increased NDMA formation during post-chloramination. For O3 pretreatment, hydroxyl radicals likely led to precursor formation from the polymer in the latter tests. MPUV treatment of polymer-impacted water increased subsequent NDMA formation through an indirect photochemical process. Many factors may mitigate the importance of this increased NDMA formation, including the low polyDADMAC doses typically applied, and simultaneous degradation of watershed-associated precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide

    PubMed Central

    1991-01-01

    Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532

  10. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis.

    PubMed

    Sun, Tuan-Wei; Zhu, Ying-Jie; Qi, Chao; Ding, Guan-Jun; Chen, Feng; Wu, Jin

    2016-02-01

    α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Single-phase and well-dispersed Cu1.75S nanocrystals by ambient pressure diethylene glycol solution synthesis

    NASA Astrophysics Data System (ADS)

    Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan

    2013-02-01

    Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.

  12. Single-crystalline chromium silicide nanowires and their physical properties.

    PubMed

    Hsu, Han-Fu; Tsai, Ping-Chen; Lu, Kuo-Chang

    2015-01-01

    In this work, chromium disilicide nanowires were synthesized by chemical vapor deposition (CVD) processes on Si (100) substrates with hydrous chromium chloride (CrCl3 · 6H2O) as precursors. Processing parameters, including the temperature of Si (100) substrates and precursors, the gas flow rate, the heating time, and the different flow gas of reactions were varied and studied; additionally, the physical properties of the chromium disilicide nanowires were measured. It was found that single-crystal CrSi2 nanowires with a unique morphology were grown at 700°C, while single-crystal Cr5Si3 nanowires were grown at 750°C in reducing gas atmosphere. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with magnetism, photoluminescence, and field emission measurements demonstrates that CrSi2 nanowires are attractive choices for future applications in magnetic storage, photovoltaic, and field emitters.

  13. Formation and specification of a Drosophila dopaminergic precursor cell.

    PubMed

    Watson, Joseph D; Crews, Stephen T

    2012-09-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb(+)/gsb-n(+) MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons.

  14. Formation and specification of a Drosophila dopaminergic precursor cell

    PubMed Central

    Watson, Joseph D.; Crews, Stephen T.

    2012-01-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb+/gsb-n+ MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons. PMID:22874915

  15. Theoretical modeling and experimental observations of the atomic layer deposition of SrO using a cyclopentadienyl Sr precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Kurt D.; Slepko, Alex; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu

    2016-08-14

    First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp){sub 2}] on TiO{sub 2}-terminated strontium titanate, SrTiO{sub 3} (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp){sub 2} precursor is shown to adsorb on the TiO{sub 2}-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C–Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculationsmore » are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr({sup i}Pr{sub 3}Cp){sub 2}], adsorbed on TiO{sub 2}-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO{sub 2}-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp){sub 2}, may initiate film growth on non-hydroxylated surfaces.« less

  16. Four residues of propeptide are essential for precursor folding of nattokinase.

    PubMed

    Jia, Yan; Cao, Xinhua; Deng, Yu; Bao, Wei; Tang, Changyan; Ding, Hanjing; Zheng, Zhongliang; Zou, Guolin

    2014-11-01

    Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  17. Concentration kinetics of secoisolariciresinol diglucoside and its biosynthetic precursor coniferin in developing flaxseed.

    PubMed

    Fang, Jingjing; Ramsay, Aina; Paetz, Christian; Tatsis, Evangelos C; Renouard, Sullivan; Hano, Christophe; Grand, Eric; Fliniaux, Ophélie; Roscher, Albrecht; Mesnard, Francois; Schneider, Bernd

    2013-01-01

    In the plant kingdom, flaxseed (Linum usitatissimum L.) is the richest source of secoisolariciresinol diglucoside (SDG), which is of great interest because of its potential health benefits for human beings. The information about the kinetics of SDG formation during flaxseed development is rare and incomplete. In this study, a reversed-phase high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed to quantify SDG and coniferin, a key biosynthetic precursor of SDG in flaxseed. Seeds from different developmental stages, which were scaled by days after flowering (DAF), were harvested. After alkaline hydrolysis, the validated HPLC method was applied to determine SDG and coniferin concentrations of flaxseed from different developing stages. Coniferin was found in the entire capsule as soon as flowering started and became undetectable 20 DAF. SDG was detected 6 DAF, and the concentration increased until maturity. On the other hand, the SDG amount in a single flaxseed approached the maximum around 25 DAF, before desiccation started. Concentration increase between 25 DAF and 35 DAF can be attributed to corresponding seed weight decrease. The biosynthesis of coniferin is not synchronous with that of SDG. Hence, the concentrations of SDG and coniferin change during flaxseed development. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ˜20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso/microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: (1) growth by precursor addition, and (2) by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. A detailed investigation of the defect structures in aluminosilicate single-walled nanotubes via multiple advanced solid-state NMR techniques is reported. A combination of 1H-29Si and 1H- 27Al FSLG-HETCOR, 1H CRAMPS, and 1H- 29Si CP/MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. (Abstract shortened by UMI.).

  19. Precursors of hexoneogenesis within the human mammary gland

    USDA-ARS?s Scientific Manuscript database

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  20. Measurement of gas and particulate amines at a dairy operation

    USDA-ARS?s Scientific Manuscript database

    Agricultural facilities are a source of particles and gases that can exhibit influences on air quality. Particle mass concentration influences from agricultural sources can include both primary emissions and secondary particle formation through the emission of gaseous precursors. Reports showing ami...

  1. Source attribution of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both geographical regions and to emission sectors. Source-receptor relationships are defined for intercontinental transport of ozone and its precursors, and the relative contributions of NOx, methane, CO, NMVOC, and stratosphere-troposphere exchange to tropospheric background ozone are determined.

  2. Quality degradation: Implications for DBP formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasner, S.W.; Sclimenti, M.J.; Means, E.G.

    1994-06-01

    During development of the draft Disinfectants-Disinfection By-products (D-DBP) Rule, the issue of watershed management for DBP precursor control was discussed but not included in the rule. This article focuses on a major California watershed, describing examples of the types of studies that utilities can use to determine precursor sources and develop solutions for control. In addition, a chlorination and ozonation study of a five-by-five matrix of total organic carbon and bromide levels--which spanned a wide range of concentrations that can be expected in many US waters--provided insights into the effects of organic and inorganic precursors and disinfectants in DBP formation.

  3. Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors

    DTIC Science & Technology

    1989-02-15

    pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at 򒸀 C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a

  4. A study of formaldehyde sources in air

    NASA Astrophysics Data System (ADS)

    Shen, Haiwei

    Formaldehyde (CH2O) is a central component of photooxidation chemistry. The atmospheric sources of CH2O involve a complex mixture of biogenic and anthropogenic volatile organic compounds (VOCs). This study explores the geographical and altitudinal variations of CH2O production from its precursors over the Eastern U.S. and assesses the contributions from biogenic and anthropogenic VOC emissions to atmospheric CH2O. Measurements of airborne CH2O and hydrocarbons over North America and model results were used to evaluate CH2O production from its precursors. Source attribution results from a photochemical box model indicate 95% of the CH2O arose in various proportions from a mixture of methane, isoprene, methyl hydroperoxide, methanol, and a peroxyacetyl group. Methane on average contributed 32% at altitudes below 2 km to CH2O production, 43% in 2-6 km, and 52% in 6-12 km. It was the predominant CH 2O source in 1-12 km. Isoprene served as a major source of CH2 O (range 0-72%, average 17%) over the southeastern U.S. region within 0-1-km layer. Methyl hydroperoxide was one of the predominant contributors over the ocean and averaged from 6 to 33% in all layers. Production from the peroxyacetyl group and methanol were 7-17% and 10-14% on average in the layers in 0-12 km, respectively. A compound specific radiocarbon analysis technique was developed for atmospheric CH2O to examine its biogenic and anthropogenic carbon fraction. The method used filter collection, a preparative capillary gas chromatography isolation technique, and AMS detection. Ambient samples were collected on the roof of the CACS building at the Bay Campus of the University of RI, Narragansett, RI. The 14CH2O data, 48-hour back trajectories, and VOC observations from the RI Department of Environmental Management were used to assess the relative contributions of biogenic and fossil precursors to CH2O. The results show a large fraction of fossil/industrial carbon in collected CH2O samples and imply the precursors of CH 2O were dominated by fossil/industrial sources even during summer when biogenic sources are expected at their highest. It is suggested that pollutants from upwind coastal cities carried by the southwest sea breeze strongly influenced the site during our limited summer sample collection.

  5. 75 FR 13436 - Approval and Promulgation of State Implementation Plans: Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... presumptive policies for NO X , ammonia, and VOC for all nonattainment areas. The rule provides a mechanism by... ammonia as a PM 2.5 attainment plan precursor and evaluate sources of ammonia emissions from sources in... specific area showing that ammonia emissions from sources in the State significantly contribute to PM 2.5...

  6. A Versatile Bioorthogonal Copper-free Click Chemistry Platform to Functionalize Cisplatin Prodrugs

    PubMed Central

    Pathak, Rakesh K.; McNitt, Christopher D.; Popik, Vladimir V.; Dhar, Shanta

    2015-01-01

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities by considering the sensitivity of Pt(IV) centers to reduction, thiols, etc, we used a strain promoted azide alkyne cycloaddition (SPAAC) approach to provide a novel platform where new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nano-delivery vehicle and conjugation to fluorescent reporters were also investigated. PMID:24756923

  7. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

    PubMed

    Pathak, Rakesh K; McNitt, Christopher D; Popik, Vladimir V; Dhar, Shanta

    2014-06-02

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  9. LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification.

    PubMed

    Hanigan, David; Ferrer, Imma; Thurman, E Michael; Herckes, Pierre; Westerhoff, Paul

    2017-02-05

    N-Nitrosodimethylamine (NDMA) is carcinogenic in rodents and occurs in chloraminated drinking water and wastewater effluents. NDMA forms via reactions between chloramines and mostly unidentified, N-containing organic matter. We developed a mass spectrometry technique to identify NDMA precursors by analyzing 25 model compounds with LC/QTOF-MS. We searched isolates of 11 drinking water sources and 1 wastewater using a custom MATLAB ® program and extracted ion chromatograms for two fragmentation patterns that were specific to the model compounds. Once a diagnostic fragment was discovered, we conducted MS/MS during a subsequent injection to confirm the precursor ion. Using non-target searches and two diagnostic fragmentation patterns, we discovered 158 potential NDMA precursors. Of these, 16 were identified using accurate mass combined with fragment and retention time matches of analytical standards when available. Five of these sixteen NDMA precursors were previously unidentified in the literature, three of which were metabolites of pharmaceuticals. Except methadone, the newly identified precursors all had NDMA molar yields of less than 5%, indicating that NDMA formation could be additive from multiple compounds, each with low yield. We demonstrate that the method is applicable to other disinfection by-product precursors by predicting and verifying the fragmentation patterns for one nitrosodiethylamine precursor. Copyright © 2016. Published by Elsevier B.V.

  10. Total N-nitrosamine Precursor Adsorption with Carbon Nanotubes: Elucidating Controlling Physiochemical Properties and Developing a Size-Resolved Precursor Surrogate

    NASA Astrophysics Data System (ADS)

    Needham, Erin Michelle

    As drinking water sources become increasingly impaired with nutrients and wastewater treatment plant (WWTP) effluent, formation of disinfection byproducts (DBPs)--such as trihalomethanes (THMs), dihaloacetonitriles (DHANs), and N-nitrosamines--during water treatment may also increase. N-nitrosamines may comprise the bulk of the chronic toxicity in treated drinking waters despite forming at low ng/L levels. This research seeks to elucidate physicochemical properties of carbon nanotubes (CNTs) for removal of DBP precursors, with an emphasis on total N-nitrosamines (TONO). Batch experiments with CNTs were completed to assess adsorption of THM, DHAN, and TONO precursors; physiochemical properties of CNTs were quantified through gas adsorption isotherms and x-ray photoelectron spectroscopy. Numerical modeling was used to elucidate characteristics of CNTs controlling DBP precursor adsorption. Multivariate models developed with unmodified CNTs revealed that surface carboxyl groups and, for TONO precursors, cumulative pore volume (CPV), controlled DBP precursor adsorption. Models developed with modified CNTs revealed that specific surface area controlled adsorption of THM and DHAN precursors while CPV and surface oxygen content were significant for adsorption of TONO precursors. While surrogates of THM and DHAN precursors leverage metrics from UV absorbance and fluorescence spectroscopy, a TONO precursor surrogate has proved elusive. This is important as measurements of TONO formation potential (TONOFP) require large sample volumes and long processing times, which impairs development of treatment processes. TONO precursor surrogates were developed using samples that had undergone oxidative or sorption treatments. Precursors were analyzed with asymmetric flow field-flow fractionation (AF4) with inline fluorescence detection (FLD) and whole water fluorescence excitation-emission matrices (EEMs). TONO precursor surrogates were discovered, capable of predicting changes in TONOFP in WWTP samples that have undergone oxidation (R2 = 0.996) and sorption (R2 = 0.576). Importantly, both surrogates only require just 2 mL of sample volume to measure and take only 1 hour. Application of the sorption precursor surrogate revealed that DBP precursor adsorption was feasible with freeform CNT microstructures with various dimensions and surface chemistries, establishing a framework for development of this novel CNT application for drinking water treatment.

  11. Single-phase ceramics with La 1- xSr xGa 1- yMg yO 3- δ composition from precursors obtained by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Moure, A.; Castro, A.; Tartaj, J.; Moure, C.

    Dense ceramics with La 0.80Sr 0.20Ga 0.85Mg 0.15O 2.825 and La 0.80Sr 0.15Ga 0.85Mg 0.20O 2.825 compositions have been prepared by sintering of mechanosynthesized precursors. The perovskite is synthesized after 85 h of milling in a planetary mill. Single phases have been obtained at conditions that are not possible if traditional solid-state reaction (SSR) method is used. The influence of milling time and composition in the reactivity of the precursors is studied. Highest purity is obtained in Sr = 0.15 and Mg = 0.20 composition, with relative density higher than 97%. The total elimination of typical secondary phases for these compositions, as SrLaGaO 4 and SrLaGa 3O 7, allows the total conductivity of the ceramics to be improved. The influence of the grain size and the nature of the grain boundaries on the electrical characteristic of the ceramics are also discussed.

  12. A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells.

    PubMed

    Hadland, Brandon K; Varnum-Finney, Barbara; Mandal, Pankaj K; Rossi, Derrick J; Poulos, Michael G; Butler, Jason M; Rafii, Shahin; Yoder, Mervin C; Yoshimoto, Momoko; Bernstein, Irwin D

    2017-06-06

    Recent evidence points to the embryonic emergence of some tissue-resident innate immune cells, such as B-1a lymphocytes, prior to and independently of hematopoietic stem cells (HSCs). However, whether the full hematopoietic repertoire of embryonic HSCs initially includes these unique lineages of innate immune cells has been difficult to assess due to lack of clonal assays that identify and assess HSC precursor (pre-HSC) potential. Here, by combining index sorting of single embryonic hemogenic precursors with in vitro HSC maturation and transplantation assays, we analyze emerging pre-HSCs at the single-cell level, revealing their unique stage-specific properties and clonal lineage potential. Remarkably, clonal pre-HSCs detected between E9.5 and E11.5 contribute to the complete B cell repertoire, including B-1a lymphocytes, revealing a previously unappreciated common precursor for all B cell lineages at the pre-HSC stage and a second embryonic origin for B-1a lymphocytes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. New precursors for direct synthesis of single phase Na- and K-{beta}{double_prime}-aluminas for use in AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, R.L.; MacQueen, D.B.; Bader, K.E.

    1997-12-31

    Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less

  14. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.

    PubMed

    Li, Maofan; Liu, Jiajie; Liu, Tongchao; Zhang, Mingjian; Pan, Feng

    2018-02-01

    A carbonyl-bridged single molecular precursor LiTM(acac) 3 [transition metal (TM) = cobalt/manganese/nickel (Co/Mn/Ni), acac = acetylacetone], featuring a one-dimensional chain structure, was designed and applied to achieve the layered oxide cathode materials: LiTMO 2 (TM = Ni/Mn/Co, NMC). As examples, layered oxides, primary LiCoO 2 , binary LiNi 0.8 Co 0.2 O 2 and ternary LiNi 0.5 Mn 0.3 Co 0.2 O 2 were successfully prepared to be used as cathode materials. When they are applied to lithium-ion batteries (LIBs), all exhibit good electrochemical performance because of their unique morphology and great uniformity of element distribution. This versatile precursor is predicted to accommodate many other metal cations, such as aluminum (Al 3+ ), iron (Fe 2+ ), and sodium (Na + ), because of the flexibility of organic ligand, which not only facilitates the doping-modification of the NMC system, but also enables synthesis of Na-ion layered oxides. This opens a new direction of research for the synthesis of high-performance layered oxide cathode materials for LIBs.

  15. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    PubMed

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  16. Synthesis, Dielectric, Electrical and Optical characterization of ZnO synthesized by chemical route using polymer precursors

    NASA Astrophysics Data System (ADS)

    Mishra, Raman; Bajpai, P. K.

    2011-11-01

    Nano-size ZnO (particle size 7.8 nm) have been prepared from a versatile, efficient and technically simple polymer matrix based precursor solution. The precursor solution constituted of zinc nitrates with polymer PVA in presence of mono-/disaccharides. Annealing the precursor mass at 900 °C single phase zinc oxide nano-particles are obtained. X-ray diffraction analysis confirms hexagonal crystal structure with lattice parameter a = b = 3.261 A0, c = 5.220 A0. The estimated average particle size obtained from XRD data is ≈7.8 nm. The impedance analysis reveals that the grain resistance decreases with increase in temperature as expected for a semi-conducting material. The relaxation is polydispersive and conduction is mainly through grains. Optical properties and AC/DC conduction activation energies are estimated from Arrhenius plots and conduction mechanism is discussed.

  17. CHARACTERIZATION OF NITROUS OXIDE EMISSION SOURCES

    EPA Science Inventory

    The report presents a global inventory of nitrous oxide (N2O) based on reevaluation of previous estimates and additions of previously uninventoried source categories. (NOTE: N2O is both a greenhouse gas and a precursor of nitric oxide (NO) which destroys stratospheric ozone.) The...

  18. The fate of wastewater-derived NDMA precursors in the aquatic environment.

    PubMed

    Pehlivanoglu-Mantas, Elif; Sedlak, David L

    2006-03-01

    To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.

  19. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  20. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1

  1. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    DOE PAGES

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; ...

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formationmore » of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.« less

  2. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  3. Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)

    NASA Astrophysics Data System (ADS)

    Tyagi, Parul; Mowll, Tyler; Robinson, Zachary; Ventrice, Carl

    2013-03-01

    Copper foil is one of the most common substrates for growing large area graphene films. The main reason for this is that Cu has a very low carbon solubility, which results in the self-termination of a single layer of graphene when grown using hydrocarbon precursors at low pressure. Our previous results on Cu(111) substrates has found that temperatures of at least 900 °C are needed to form single domain epitaxial films. By using a CuNi alloy, the catalytic activity of the substrate is expected to increase, which will allow the catalytic decomposition of the hydrocarbon precursor at lower temperatures. In this study, the growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was attempted. The growths were done in an ultra-high vacuum system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the deposition of carbon atoms on the surface at temperatures too low for the carbon to crystallize into graphene. This research was supported by the NSF (DMR-1006411).

  4. Cell size control and a cell-intrinsic maturation program in proliferating oligodendrocyte precursor cells.

    PubMed

    Gao, F B; Raff, M

    1997-09-22

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by "transition probability" models, may explain the random variability of cell cycle times seen within clonal cell lines in culture.

  5. Cell Size Control and a Cell-intrinsic Maturation Program in Proliferating Oligodendrocyte Precursor Cells

    PubMed Central

    Gao, Fen-Biao; Raff, Martin

    1997-01-01

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by “transition probability” models, may explain the random variability of cell cycle times seen within clonal cell lines in culture. PMID:9298991

  6. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs).

    PubMed

    Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel

    2014-10-06

    Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.

  7. A motif for infinite metal atom wires.

    PubMed

    Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong

    2014-12-15

    A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  9. Life Cycle Assessment of III-V Precursors for Photovoltaic and Semiconductor Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Smith, Brittany L.; Babbitt, Callie W.

    This study provides detailed information on the manufacture of III-V metal organic vapor phase epitaxy precursors through extensive literature and patent research. This data informed a cradle-to-gate life cycle assessment of these chemicals. Reported impacts include cumulative energy demand and greenhouse gas emissions. The results were interpreted to identify sources of environmental burden within the life cycle and were compared to energy demand reported in previous studies.

  10. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  11. Small scatterers in the lower mantle observed at German broadband arrays

    USGS Publications Warehouse

    Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.

    1999-01-01

    Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.

  12. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    EPA Science Inventory

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  14. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  15. Perfluoroalkyl acids and their precursors in Swedish food: The relative importance of direct and indirect dietary exposure.

    PubMed

    Gebbink, Wouter A; Glynn, Anders; Darnerud, Per Ola; Berger, Urs

    2015-03-01

    We analyzed food market basket samples obtained in Sweden from 1999, 2005, and 2010 for perfluoroalkyl acids (PFAAs) and a range of precursor compounds. Perfluorooctane sulfonic acid (PFOS) precursors were detected in all food year pools with the highest concentrations in 1999. Six polyfluoroalkyl phosphate diesters (diPAPs, 4:2/6:2, 6:2/6:2, 6:2/8:2, 8:2/8:2, 6:2/10:2, and 10:2/10:2) were detected in the year pools with the highest ∑diPAP concentrations in 1999 and 2005. All precursors were predominantly found in meat, fish, and/or eggs based on analysis of individual food groups from 1999. Based on year pools, PFOS precursors contributed between 4 and 1% as an indirect source to total dietary PFOS intakes between 1999 and 2010. Perfluorohexanoic acid (PFHxA) exposure originated entirely from diPAPs, whereas for perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), diPAPs contributed between 1 and 19% to total exposure. The lowest precursor contributions were generally seen in food samples from 2010. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE PAGES

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; ...

    2018-01-17

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  17. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.

  18. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  19. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 µg m −3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  20. IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution

    NASA Astrophysics Data System (ADS)

    Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław

    2018-07-01

    Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.

  1. A search for precursors of ultracompact H II regions in a sample of luminous IRAS sources. III. Circumstellar dust properties

    NASA Technical Reports Server (NTRS)

    Molinari, S.; Brand, J.; Cesaroni, R.; Palla, F.

    2000-01-01

    The James Clerk Maxwell Telescope has been used to obtain submillimeter and millimeter continuum photometry of a sample of 30 IRAS sources previously studied in molecular lines and centimeter radio continuum. All the sources have IRAS colours typical of very young stellar objects (YSOs) and are associated with dense gas.

  2. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    DOE PAGES

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; ...

    2017-04-28

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient datamore » with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.« less

  3. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; Ma, J.; Song, M.; Partridge, D. G.; Kirkevâg, A.; Leong, Y.; Hu, W. W.; Taylor, N. F.; Lambe, A.; Cerully, K.; Bougiatioti, A.; Liu, P.; Krejci, R.; Petäjä, T.; Percival, C.; Davidovits, P.; Worsnop, D. R.; Ekman, A. M. L.; Nenes, A.; Martin, S.; Jimenez, J. L.; Collins, D. R.; Topping, D. O.; Bertram, A. K.; Zuend, A.; Virtanen, A.; Riipinen, I.

    2017-05-01

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.

  4. VCSEL technologies and applications

    NASA Astrophysics Data System (ADS)

    Steinle, Gunther; Ramakrishnan, A.; Supper, D.; Kristen, Guenter; Pfeiffer, J.; Degen, Ch.; Riechert, Henning; Ebbinghaus, G.; Wolf, H. D.

    2002-07-01

    VCSEL devices for 850nm and 1300nm emission wavelength are presented, suitable for operation in single-channel interconnects as well as parallel optical links. Necessary properties for applications such as 10 Gigabit Ethernet and actual limits for the use of VCSELs are discussed in some detail. Recent progress is demonstrated in developing devices with production-friendly diameters larger than 5´m for 10Gbit/s operation. Also devices with a temperature insensitive monolithically integrated monitordiode are presented and discussed. In order to reach the emission wavelength of 1300nm with a GaAs-based monolithic VCSEL-structure, we use GaInNxAs1-x quantum-wells with a small nitrogen concentration x between one and two percent. We have two different growth approaches, such as solid source MBE with a rf-plasma source to produce reactive nitrogen from nitrogen gas N2 and MOCVD with unsymmetrical di-methylhydrazine as a precursor for nitrogen. The long-wavelength devices comprise intracavity contacts in order to reduce absorption losses due to doped layers. Bitrates up to 10Gbit/s per channel can be achieved within both wavelength regimes.

  5. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate.

    PubMed

    Rastak, N; Pajunoja, A; Acosta Navarro, J C; Ma, J; Song, M; Partridge, D G; Kirkevåg, A; Leong, Y; Hu, W W; Taylor, N F; Lambe, A; Cerully, K; Bougiatioti, A; Liu, P; Krejci, R; Petäjä, T; Percival, C; Davidovits, P; Worsnop, D R; Ekman, A M L; Nenes, A; Martin, S; Jimenez, J L; Collins, D R; Topping, D O; Bertram, A K; Zuend, A; Virtanen, A; Riipinen, I

    2017-05-28

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.

  6. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient datamore » with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.« less

  7. Fabrication and properties of multilayer structures

    NASA Astrophysics Data System (ADS)

    Tiller, W. A.

    1983-09-01

    The synthesis of SiC films and Pd2Si films via single source and dual source sputtering, respectively, has been experimentally investigated while the reactive sputter deposition of SiO sub x films has been theoretically analyzed. The SiO sub x film data requires a mobile precursor adsorption process to be operative for the oxygen and an oxygen sticking coefficient of between 1.56 x 10 to the minus 3rd power and 4.17 x 10 to the minus 3rd power. An analysis of in-situ electrical diagnostics of the films via a non-contact technique shows the method to be of marginal accuracy for the example selected. An important new formulation of the stress and elastic constant tensors in the vicinity of interfaces has been developed and applied to the simple example of adsorbed layer/substrate interactions via a parametric analysis. Atomic modeling of the SiO system yields peroxide bond formation for oxygen-rich (100) alpha-cristobalite surfaces. Radial distribution function and angular distribution function data have been calculated for bulk alpha-quartz and bulk alpha-cristobalite in good agreement with experiment.

  8. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  9. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    PubMed

    Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M

    2011-01-01

    The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  10. Low-Cost III-V Photovoltaic Materials by Chloride Vapor Transport Deposition Using Safe Solid Precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, Shannon; Aloni, Shaul; Weiss, Robert

    Si-based photovoltaic devices dominate the market. As photovoltaic (PV) manufacturing costs have plummeted, technologies which increase efficiency have become critical. Si cell efficiencies are nearing theoretical limits and Si-based PV modules are unlikely to reach the 25-30% efficiency range. The use of III-V semiconductors is an obvious technical solution to improve efficiency, especially if they can be integrated directly with existing Si technology as tandems. High coefficients of light absorption along with tunable bandgaps and lattice constants have resulted in record conversion efficiencies for both one-sun and concentrator PV applications. GaAs, for example, has been used to manufacture single-junction photovoltaicsmore » with world-record efficiencies of 28.8% at one sun.2 However, costs for III-Vs must be dramatically reduced to produce cost-effective, high-efficiency PV solutions. III-V costs are controlled by two factors: semiconductor growth and the substrate. III-V growth is dominated today by metal-organic vapor phase epitaxy (MOVPE) with a lesser role played by molecular beam epitaxy (MBE). MOVPE costs are high due to the expense and low utilization (~30%) of precursors, modest growth rates (~100 nm min-1), equipment complexity, and safety infrastructure needed to handle toxic, pyrophoric gases.3 MBE costs are high due to slow growth rates and limitations of scalability. Details comparing plausible low-cost III-V growth methods are available in a review article published as a result of this project. The primary goal of this project was to demonstrate that close-spaced vapor transport (CSVT) using chloride (from HCl) as a transport agent can be used for the rapid growth of device-ready III-V layers from safe, solid-source precursors. In pursuit of this goal, we designed, built, and installed a new Cl-CSVT reactor based on insights from our previous H2O-CSVT growth system and in collaboration with equipment professionals at Malachite Technologies. This system was successfully used to grow epitaxial GaAs with controlled n-type doping, having mobilities similar to MOVPE. Detailed technical information and results can also be found in the primary publication resulting from this project. This work sets the stage for tackling the development of high-performance III-V single junctions and tandem devices directly on Si substrates, which was beyond the capabilities of our H2O-CSVT system. The design of the reactor’s source and substrate transfer system should allow for direct deposition of device structures. The collective innovations of our Cl-CSVT system might ultimately serve as an enabling process for commercialization of the technology through a collaboration with appropriate industrial partners.« less

  11. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  12. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  13. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications

    NASA Astrophysics Data System (ADS)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of the properties of conductive HfN grown via plasma-assisted atomic layer deposition (PA-ALD) using tetrakis(ethylmethylamido)hafnium on a modified commercially available wafer processing tool. Key properties of these materials for use as gate stack replacement materials are addressed and future directions for further characterization and novel material investigations are proposed.

  14. Investigating the Formation Mechanisms and Inorganic Precursors of Formate and Acetate in Lost City Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Lang, S. Q.; Bernasconi, S. M.; Früh-Green, G.

    2010-12-01

    Fluids from the Lost City Hydrothermal Field are rich in hydrogen and methane, with high pHs (9 - 11), as a result of serpentinization reactions at moderate temperatures of approximately 120-200°C. It has been predicted that organic carbon compounds would form abiologically under these chemical and thermal conditions from inorganic precursors, in the form of hydrocarbons and organic acids. Previous work has demonstrated the presence of high concentrations of both formate and acetate in the Lost City fluids [Lang et al., 2010, GCA]. Formate is the second most prevalent carbon species in the fluids and may provide local microbial communities with a necessary carbon source in the face of low dissolved inorganic carbon concentrations. The goals of this study are to constrain the formation mechanisms of these organic acids (abiotic vs. biotic) and to identify their inorganic precursors. Formate and acetate were isolated from multiple fluid samples by preparative high-performance liquid chromatography for isotopic analysis. The δ13C of formate is similar to that of Lost City methane, and consistent with an abiological origin. The isotopic signature of acetate is significantly different from these values, and may be indicative of a biological source. Radiocarbon measurements of the isolated formate are in progress and should allow us to determine if the precursor carbon is derived from a mantle or deep-seawater source. Alkaline hydrothermal systems have been proposed as potential sites to the origin of life and formate has been proposed as a critical intermediate towards the kinds of reduced carbon species found in biochemistry. Evidence of an abiological formation mechanism of formate at Lost City may significantly further our understanding of prebiotic chemistry.

  15. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  16. Chaotic Time Series Analysis Method Developed for Stall Precursor Identification in High-Speed Compressors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.

  17. A process-based emission model for volatile organic compounds from silage sources on farms

    USDA-ARS?s Scientific Manuscript database

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources suc...

  18. Ethane: A Key to Evaluating Natural Gas Industrial Emissions

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Agnese, M.; Roscioli, J. R.; Floerchinger, C. R.; Knighton, W. B.; Pusede, S. E.; Diskin, G. S.; DiGangi, J. P.; Sachse, G. W.; Eichler, P.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Conley, S. A.; Petron, G.

    2014-12-01

    Airborne and mobile-surface measurements of ethane at 1Hz in the Denver-Julesberg oil and gas production basin in NE Colorado reveal a rich set of emission sources and magnitudes. Although ethane has only a mild influence on hemispheric ozone levels, it is often co-emitted with larger hydrocarbons including hazardous air pollutants (HAPs) and ozone precursors that impact local and regional air quality. Ethane/methane enhancement ratios provide a map of expected emission source types in different areas around greater Denver. Links are drawn between the ethane content of isolated methane emission plumes and the prevalence of concomitant HAP and ozone precursor species. The efficacy of using ethane as a dilution tracer specific to the oil & gas footprint will be demonstrated.

  19. Wakes and precursor soliton excitations by a moving charged object in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Tiwari, Sanat, E-mail: sanat-tiwari@uiowa.edu; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242; Sen, Abhijit, E-mail: senabhijit@gmail.com

    2016-02-15

    We study the evolution of nonlinear ion acoustic wave excitations due to a moving charged source in a plasma. Our numerical investigations of the full set of cold fluid equations go beyond the usual weak nonlinearity approximation and show the existence of a rich variety of solutions including wakes, precursor solitons, and “pinned” solitons that travel with the source velocity. These solutions represent a large amplitude generalization of solutions obtained in the past for the forced Korteweg deVries equation and can find useful applications in a variety of situations in the laboratory and in space, wherever there is a largemore » relative velocity between the plasma and a charged object.« less

  20. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  1. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  2. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  3. Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms

    PubMed Central

    Abylkassimova, Nikara; Hugall, Andrew F.; O'Hara, Timothy D.; Elphick, Maurice R.

    2017-01-01

    Neuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, Ophionotus victoriae, Amphiura filiformis and Ophiopsila aranea, has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata. Representatives of over 30 bilaterian neuropeptide precursor families were identified, some of which occur as paralogues. Furthermore, homologues of endothelin/CCHamide, eclosion hormone, neuropeptide-F/Y and nucleobinin/nesfatin were discovered here in a deuterostome/echinoderm for the first time. The majority of ophiuroid neuropeptide precursors contain a single copy of a neuropeptide, but several precursors comprise multiple copies of identical or non-identical, but structurally related, neuropeptides. Here, we performed an unprecedented investigation of the evolution of neuropeptide copy number over a period of approximately 270 Myr by analysing sequence data from over 50 ophiuroid species, with reference to a robust phylogeny. Our analysis indicates that the composition of neuropeptide ‘cocktails’ is functionally important, but with plasticity over long evolutionary time scales. PMID:28878039

  4. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations

    USGS Publications Warehouse

    Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.

    2011-01-01

    Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  5. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  6. Ozone process insights from field experiments - part I: overview

    NASA Astrophysics Data System (ADS)

    Hidy, G. M.

    This paper gives an overview of selected approaches recently adopted to analyze observations from field experiments that characterize the tropospheric physics and chemistry of ozone and related oxidation products. Analysis of ambient oxidant and precursor concentration measurements, combined with meteorological observations, has provided important information about tropospheric processes. Projection of the response of tropospheric ozone concentrations to changes in precursor emissions is achieved through emissions based air quality models (AQMs). These models integrate several "process" elements from source emissions to meteorological and chemical phenomena. Through field campaigns, new knowledge has become available which has enabled workers to better understand the strengths and weaknesses of AQMs and their components. Examples of insightful results include: (a) reconciliation of ambient concentrations of speciated volatile organic compounds (VOCs) with estimates from emissions models, and inventories, (b) verification of chemical mechanisms for ozone formation from its precursors using approximations applicable in different chemical regimes, (c) inference of regimes of sensitivity in ozone concentration to changes in VOC and NO x precursors from ozone management practices, (d) conceptualization of important air mass transport and mixing processes on different spatial and temporal scales that affect ozone and precursor concentrations distributions, and (e) application of the analysis of spatial and temporal variance to infer the origins of chemical product transport, and precursor distributions. Studies from the first category have been used to improve emissions models substantially over previous forms. The remainder of the analyses has yielded valuable insight into the chemical and meteorological mechanisms at work on different spatial and temporal scales. The methods have provided an observationally based framework for effective choices to improve ozone management, notably in terms of NO x or VOC sensitive regimes. Investigation of meteorological processes relevant to ozone accumulation has illustrated the importance of accounting for both transport winds and the day-night vertical structure of the atmosphere in AQM analyses. Finally, variance analyses of O 3 concentrations with other aerometric parameters offer significant opportunities to use semi-empirically air monitoring data as a means determining space and time scales of O 3 variance, and detecting precursor emissions source-ozone receptor relationships.

  7. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-07-02

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less

  8. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.

    PubMed

    Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2016-12-10

    By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550  μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3  dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100  dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.

  9. In situ TEM near-field optical probing of nanoscale silicon crystallization.

    PubMed

    Xiang, Bin; Hwang, David J; In, Jung Bin; Ryu, Sang-Gil; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M; Grigoropoulos, Costas P

    2012-05-09

    Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.

  10. Mexico's methamphetamine precursor chemical interventions: impacts on drug treatment admissions.

    PubMed

    Cunningham, James K; Bojorquez, Ietza; Campollo, Octavio; Liu, Lon-Mu; Maxwell, Jane Carlisle

    2010-11-01

    To help counter problems related to methamphetamine, Mexico has implemented interventions targeting pseudoephedrine and ephedrine, the precursor chemicals commonly used in the drug's synthesis. This study examines whether the interventions impacted methamphetamine treatment admissions-an indicator of methamphetamine consequences. Quasi-experiment: autoregressive integrated moving average (ARIMA)-based intervention time-series analysis. precursor chemical restrictions implemented beginning November 2005; major rogue precursor chemical company closed (including possibly the largest single drug-cash seizure in history) March 2007; precursor chemicals banned from Mexico (North America's first precursor ban) August 2008. Mexico and Texas (1996-2008). Monthly treatment admissions for methamphetamine (intervention series) and cocaine, heroin and alcohol (quasi-control series). The precursor restriction was associated with temporary methamphetamine admissions decreases of 12% in Mexico and 11% in Texas. The company closure was associated with decreases of 56% in Mexico and 48% in Texas; these decreases generally remained to the end of the study period. Neither intervention was associated with significant changes in the Mexico or Texas quasi-control series. The analysis of Mexico's ban was indeterminate due largely to a short post-ban series. This study, one of the first quasi-experimental analyses of an illicit-drug policy in Mexico, indicates that the country's precursor interventions were associated with positive impacts domestically and in one of the Unites States' most populous states--Texas. These interventions, coupled with previous US and Canadian interventions, amount to a new, relatively cohesive level of methamphetamine precursor control across North America's largest nations, raising the possibility that the impacts found here could continue for an extended period. © 2010 The Authors. Journal compilation © 2010 Society for the Study of Addiction.

  11. Methyl 3-[3',4'-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia.

    PubMed

    Collins, Michael; Heagney, Aaron; Cordaro, Frank; Odgers, David; Tarrant, Gregory; Stewart, Samantha

    2007-07-01

    Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography-mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy ((1)H NMR), carbon nuclear magnetic resonance spectroscopy ((13)C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3',4'(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor."

  12. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  13. Chromospheric Response during the Precursor and the Main Phase of a B6.4 Flare on 2005 August 20

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Rudawy, Pawel; Falewicz, Robert; Berlicki, Arkadiusz; Liu, Rui

    2018-05-01

    Solar flare precursors depict a constrained rate of energy release, in contrast to the imminent rapid energy release, which calls for a different regime of plasma processes to be at play. Due to the subtle emission during the precursor phase, its diagnostics remain delusive, revealing either nonthermal electrons (NTEs) or thermal conduction to be the driver. In this regard, we investigate the chromospheric response during various phases of a B6.4 flare on 2005 August 20. Spatiotemporal investigation of flare ribbon enhancement during the precursor phase, carried out using spectra images recorded in several wavelength positions on the Hα line profile, revealed its delayed response (180 s) compared to the X-ray emission, as well as a sequential increment in the width of the line profile, which are indicative of a slow heating process. However, the energy contained in the Hα emission during the precursor phase can reach as high as 80% of that estimated during the main phase. Additionally, the plasma hydrodynamics during the precursor phase, resulting from the application of a single-loop one-dimensional model, revealed the presence of a power-law extension in the model-generated X-ray spectra, with a flux lower than the RHESSI background. Therefore, our multiwavelength diagnostics and hydrodynamical modeling of the precursor emission indicates the role of a two-stage process. First, reconnection-triggered NTEs, although too small in flux to overcome the observational constraints, thermalize in the upper chromosphere. This leads to the generation of a slow conduction front, which causes plasma heating during the precursor phase.

  14. Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yajing; Zhu, Yuan; Wang, Kangjun; Li, Da; Wang, Dongping; Ding, Fu; Meng, Dan; Wang, Xiaolei; Choi, Chuljin; Zhang, Zhidong

    2018-06-01

    Cobalt carbides (Co2C and Co3C) nanocomposites exhibit interesting hard magnetic property, controlled synthesis of individual phase facilitates to clarify the magnetism of each, but it is difficult to obtain the single phase. We present a new approach to address this issue via a polyol refluxing process, using cobalt laurate as the precursor. The single phase Co2C magnetic nanochains self-assembled by nanoparticles are synthesized. The precursor is the key factor for controlling the growth kinetics of the Co2C nanochains. Cobalt, instead of cobalt carbides, is produced if cobalt chloride, acetate and acetylacetonate replace cobalt laurate as the precursor, respectively. The evolution of the growth process has been studied. In the formation of Co2C, first fcc-Co produces, then it transforms into Co2C by carbon diffusion process, and the produced carbon first exists in disordered state and then a small amount of them transforms into graphite. Saturation magnetization (Ms) of Co2C nanochains obtained at 300 °C for 20, 60, and 180 min are 27.1, 18.9, and 10.9 emu g-1, respectively. The decrease of Ms caused by increasing carbon content, and the carbon content are much larger than the stoichiometric ratio value of Co2C (9.2 wt%). The Co2C nanochains have mesoporous pore of 3.8 nm and the specific surface area of 48.6 m2 g-1.

  15. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    PubMed

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    PubMed

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide LiFeO 2 , the prospective cathode material for lithium ion batteries.

  17. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China.

    PubMed

    Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao

    2008-06-01

    Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.

  18. Determination of the ionization potentials of security-relevant substances with single photon ionization mass spectrometry using synchrotron radiation.

    PubMed

    Schramm, E; Mühlberger, F; Mitschke, S; Reichardt, G; Schulte-Ladbeck, R; Pütz, M; Zimmermann, R

    2008-02-01

    Several ionization potentials (IPs) of security relevant substances were determined with single photon ionization time of flight mass spectrometry (SPI-TOFMS) using monochromatized synchrotron radiation from the "Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung" (BESSY). In detail, the IPs of nine explosives and related compounds, seven narcotics and narcotics precursors, and one chemical warfare agent (CWA) precursor were determined, whereas six IPs already known from the literature were verified correctly. From seven other substances, including one CWA precursor, the IP could not be determined as the molecule ion peak could not be detected. For these substances the appearance energy (AE) of a main fragment was determined. The analyzed security-relevant substances showed IPs significantly below the IPs of common matrix compounds such as nitrogen and oxygen. Therefore, it is possible to find photon energies in between, whereby the molecules of interest can be detected with SPI in very low concentrations due to the shielding of the matrix. All determined IPs except the one of the explosive EGDN were below 10.5 eV. Hence, laser-generated 118 nm photons can be applied for detecting almost all security-relevant substances by, e.g., SPI-TOFMS.

  19. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  20. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  1. Sentinel-5 Precursor: First Copernicus Atmospheric Mission Ready for Launch

    NASA Astrophysics Data System (ADS)

    McMullan, Kevin; Nett, Herbert; Fehr, Thorsten; Ingmann, Paul

    2016-08-01

    Sentinel-5 Precursor (S-5P) will be the first of a series of atmospheric missions to be launched within the European Commission's Copernicus (former GMES) Programme. With the current launch window mid October - mid November 2016 and a nominal lifetime of 7 years S-5P is expected to provide continuity in the availability of global atmospheric data products between its predecessor missions SCIAMACHY (Envisat) and OMI (AURA) and the future Sentinel-4 and -5 series.S-5P will deliver unique data regarding the sources and sinks of trace gases with a focus on the lower Troposphere including the planet boundary layer. Due to its enhanced spatial, temporal and spectral sampling capabilities, as compared to its predecessors.The S-5P satellite will carry a single payload, TROPOMI (TROPOspheric Monitoring Instrument) which is jointly developed by The Netherlands and ESA. Covering spectral channels in the UV, visible, near- and short-wave infrared it will measure various key species including tropospheric/stratospheric ozone, NO2, SO2, CO, CH4, CH2O as well as cloud and aerosol parameters.The S-5P Project has successfully passed the Ground Segment Acceptance Review (GS-AR) and the satellite level Qualification Acceptance Review (QAR) in March and April 2016, respectively. Remaining pre-launch tasks focus on the detailed planning of Phase E1 activities and the training of the operations teams.

  2. Plasma CVD of hydrogenated boron-carbon thin films from triethylboron

    NASA Astrophysics Data System (ADS)

    Imam, Mewlude; Höglund, Carina; Schmidt, Susann; Hall-Wilton, Richard; Birch, Jens; Pedersen, Henrik

    2018-01-01

    Low-temperature chemical vapor deposition (CVD) of B—C thin films is of importance for neutron voltaics and semiconductor technology. The highly reactive trialkylboranes, with alkyl groups of 1-4 carbon atoms, are a class of precursors that have been less explored for low-temperature CVD of B—C films. Herein, we demonstrate plasma CVD of B—C thin films using triethylboron (TEB) as a single source precursor in an Ar plasma. We show that the film density and B/C ratio increases with increasing plasma power, reaching a density of 2.20 g/cm3 and B/C = 1.7. This is attributed to a more intense energetic bombardment during deposition and more complete dissociation of the TEB molecule in the plasma at higher plasma power. The hydrogen content in the films ranges between 14 and 20 at. %. Optical emission spectroscopy of the plasma shows that BH, CH, C2, and H are the optically active plasma species from TEB. We suggest a plasma chemical model based on β-hydrogen elimination of C2H4 to form BH3, in which BH3 and C2H4 are then dehydrogenated to form BH and C2H2. Furthermore, C2H2 decomposes in the plasma to produce C2 and CH, which together with BH and possibly BH3-x(C2H5)x are the film forming species.

  3. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  4. 78 FR 16785 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Cleveland-Akron-Lorain and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... mobile source emissions for criteria pollutants and/or their precursors to address pollution from cars, trucks and other on-road vehicles. These mobile source SIP budgets are the portions of the total...(c) of the CAA, transportation plans, Transportation Improvement Programs (TIPs), and transportation...

  5. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions

    EPA Science Inventory

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module ...

  6. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  7. From bismuth oxide/hydroxide precursor clusters towards stable oxides: Proton transfer reactions and structural reorganization govern the stability of [Bi18O13(OH)10]-nitrate clusters

    NASA Astrophysics Data System (ADS)

    Walther, M.; Zahn, D.

    2018-01-01

    Structural relaxation and stability of a Bi18-cluster as obtained from association of [Bi6O4(OH)4](NO3)6 precursor clusters in DMSO solution is investigated from a combination of quantum chemical calculations and μs-scale molecular dynamics simulations using empirical interaction potentials. The Bi18-cluster undergoes a OH⋯OH proton transfer reaction, followed by considerable structural relaxation. While the aggregation of the Bi18-cluster is induced by the dissociation of a single nitrate ion leading to [Bi6O4(OH)4](NO3)5+ as an activated precursor species that can bind two more Bi6-clusters, we find the [Bi18O13(OH)10](NO3)18-x+x species (explored for x = 1-6) rather inert against either nitrate dissociation, collision with Bi6-precursors or combinations thereof.

  8. Processing approach towards the formation of thin-film Cu(In,Ga)Se2

    DOEpatents

    Beck, Markus E.; Noufi, Rommel

    2003-01-01

    A two-stage method of producing thin-films of group IB-IIIA-VIA on a substrate for semiconductor device applications includes a first stage of depositing an amorphous group IB-IIIA-VIA precursor onto an unheated substrate, wherein the precursor contains all of the group IB and group IIIA constituents of the semiconductor thin-film to be produced in the stoichiometric amounts desired for the final product, and a second stage which involves subjecting the precursor to a short thermal treatment at 420.degree. C.-550.degree. C. in a vacuum or under an inert atmosphere to produce a single-phase, group IB-III-VIA film. Preferably the precursor also comprises the group VIA element in the stoichiometric amount desired for the final semiconductor thin-film. The group IB-IIIA-VIA semiconductor films may be, for example, Cu(In,Ga)(Se,S).sub.2 mixed-metal chalcogenides. The resultant supported group IB-IIIA-VIA semiconductor film is suitable for use in photovoltaic applications.

  9. Multi-Decadal Variation of Aerosols: Sources, Transport, and Climate Effects

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Streets, David

    2008-01-01

    We present a global model study of multi-decadal changes of atmospheric aerosols and their climate effects using a global chemistry transport model along with the near-term to longterm data records. We focus on a 27-year time period of satellite era from 1980 to 2006, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which involves a time-varying, comprehensive global emission dataset that we put together in our previous investigations and will be improved/extended in this project. This global emission dataset includes emissions of aerosols and their precursors from fuel combustion, biomass burning, volcanic eruptions, and other sources from 1980 to the present. Using the model and satellite data, we will analyze (1) the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions from anthropogenic and natural sources, (2) the intercontinental source-receptor relationships controlled by emission, transport pathway, and climate variability.

  10. High volume method of making low-cost, lightweight solar materials

    DOEpatents

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  11. Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.

  12. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In{sub 2}O{sub 3} from In(tmhd){sub 3} as a solid precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkutnik, P. D., E-mail: pierre.szkutnik@cea.fr; Jiménez, C.; Angélidès, L.

    2016-02-15

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd){sub 3} solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min{sup −1} in specified conditions) and the critical mass (defined as the minimum amount of precursor ablemore » to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In{sub 2}O{sub 3} layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.« less

  13. Waterproof Silicone Coatings of Thermal Insulation and Vaporization Method

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E. (Inventor)

    1999-01-01

    Thermal insulation composed of porous ceramic material can be waterproofed by producing a thin silicone film on the surface of the insulation by exposing it to volatile silicone precursors at ambient conditions. When the silicone precursor reactants are multi-functional siloxanes or silanes containing alkenes or alkynes carbon groups higher molecular weight films can be produced. Catalyst are usually required for the silicone precursors to react at room temperature to form the films. The catalyst are particularly useful in the single component system e.g. dimethylethoxysilane (DNMS) to accelerate the reaction and decrease the time to waterproof and protect the insulation. In comparison to other methods, the chemical vapor technique assures better control over the quantity and location of the film being deposited on the ceramic insulation to improve the waterproof coating.

  14. Tilt precursors before earthquakes on the San Andreas fault, California

    USGS Publications Warehouse

    Johnston, M.J.S.; Mortensen, C.E.

    1974-01-01

    An array of 14 biaxial shallow-borehole tiltmeters (at 10-7 radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (>10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  15. Method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.; Halani, Arvind T.; Leidholm, Craig R.; Roe, Robert A.

    1999-01-01

    A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  16. MultipleColposcopyJCO

    Cancer.gov

    Performing multiple biopsies during a procedure known as colposcopy—visual inspection of the cervix—is more effective than performing only a single biopsy of the worst-appearing area for detecting cervical cancer precursors. This multiple biopsy approach

  17. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States.

    PubMed

    Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I

    2017-03-01

    Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324-332; http://dx.doi.org/10.1289/EHP550.

  18. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  19. Comment on "Acoustical observation of bubble oscillations induced by bubble popping"

    NASA Astrophysics Data System (ADS)

    Blanc, É.; Ollivier, F.; Antkowiak, A.; Wunenburger, R.

    2015-03-01

    We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aa Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1 V Pa-1 and frequency range is 500 Hz-100 kHz.

  20. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting.

    PubMed

    Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2018-05-29

    In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

  1. Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.

  2. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-03-14

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii , in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13 R -manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13 R -manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana . The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

  3. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  4. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.

  5. A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control

    DOE PAGES

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; ...

    2009-01-01

    We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less

  6. Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics.

    PubMed

    Peckner, Ryan; Myers, Samuel A; Jacome, Alvaro Sebastian Vaca; Egertson, Jarrett D; Abelin, Jennifer G; MacCoss, Michael J; Carr, Steven A; Jaffe, Jacob D

    2018-05-01

    Mass spectrometry with data-independent acquisition (DIA) is a promising method to improve the comprehensiveness and reproducibility of targeted and discovery proteomics, in theory by systematically measuring all peptide precursors in a biological sample. However, the analytical challenges involved in discriminating between peptides with similar sequences in convoluted spectra have limited its applicability in important cases, such as the detection of single-nucleotide polymorphisms (SNPs) and alternative site localizations in phosphoproteomics data. We report Specter (https://github.com/rpeckner-broad/Specter), an open-source software tool that uses linear algebra to deconvolute DIA mixture spectra directly through comparison to a spectral library, thus circumventing the problems associated with typical fragment-correlation-based approaches. We validate the sensitivity of Specter and its performance relative to that of other methods, and show that Specter is able to successfully analyze cases involving highly similar peptides that are typically challenging for DIA analysis methods.

  7. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  8. Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties

    NASA Astrophysics Data System (ADS)

    Han, Yuzhi; Tang, Di; Yang, Yanmei; Li, Chuanxi; Kong, Weiqian; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-03-01

    A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction.A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction. Electronic supplementary information (ESI) available: TEM images, UV-Vis absorption, PL, Raman, FTIR, XPS, CV, and LSV data of single/dual doped CQDs, a table for the calculated mass concentrations of different atoms in various B, N, P or S containing CQDs and a table for summary of the ORR performance of various catalysts in an O2-saturated 0.1 M KOH solution. See DOI: 10.1039/c4nr07116f

  9. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity

    PubMed Central

    Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R.; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali

    2016-01-01

    Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation. PMID:27566152

  10. A Preliminary Study of the Spreading of AKD in the Presence of Capillary Structures.

    PubMed

    Shen, Wei; Parker, Ian H.

    2001-08-01

    There may be several mechanisms at work in the process of migration or redistribution of alkyl ketene dimers (AKD) on cellulose fiber surfaces during paper sizing and curing. This work is the second part of a continuing investigation of the spreading behavior of AKD on the surfaces of hydrophilic substrates. Paper sheets, single cotton, and cotton lint fibers and smooth cellulose film were used as substrates. These represent samples that have pores, V-shaped grooves, and no capillary structure at all. A very simple and effective testing method for studying the AKD migration behavior through these substrates was designed. AFM was used to study the surface capillary structures of cotton and cotton lint fibers. The results of this study provide hard evidence supporting our finding that capillary structures in the form of either interfiber pores in a paper sheet or V-shaped grooves on the surface of single fibers are essential in order for the spreading of molten AKD on a cellulose substrate to occur. Some preliminary results on the existence and the surface diffusion of an autophobic precursor of AKD are also presented. The results support the conclusion we reached in the first part of this investigation; i.e., the molten AKD wets but does not spread on smooth, capillary-free hydrophilic surfaces such as glass and cellulose. The driving force from interfacial energy alone does not cause spontaneous "flow-like" spreading of molten AKD on these surfaces. This is possibly associated with the formation of an autophobic precursor in front of an AKD droplet. The results in this study do not support the perception that molten AKD forms a single molecular layer on the surface of cellulose fibers by spreading during heat treatment, although the autophobic precursor in front of an AKD droplet could theoretically be of a monolayer thickness and the surface diffusion of this precursor may contribute to the sizing development after heat treatment. Copyright 2001 Academic Press.

  11. High power beta electron device - Beyond betavoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, William M.; Gentile, Charles A.

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  12. High power beta electron device - Beyond betavoltaics

    DOE PAGES

    Ayers, William M.; Gentile, Charles A.

    2017-11-10

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  13. High power beta electron device - Beyond betavoltaics.

    PubMed

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  14. Shape-programmed nanofabrication: understanding the reactivity of dichalcogenide precursors.

    PubMed

    Guo, Yijun; Alvarado, Samuel R; Barclay, Joshua D; Vela, Javier

    2013-04-23

    Dialkyl and diaryl dichalcogenides are highly versatile and modular precursors for the synthesis of colloidal chalcogenide nanocrystals. We have used a series of commercially available dichalcogenide precursors to unveil the molecular basis for the outcome of nanocrystal preparations, more specifically, how precursor molecular structure and reactivity affect the final shape and size of II-VI semiconductor nanocrystals. Dichalcogenide precursors used were diallyl, dibenzyl, di-tert-butyl, diisopropyl, diethyl, dimethyl, and diphenyl disulfides and diethyl, dimethyl, and diphenyl diselenides. We find that the presence of two distinctively reactive C-E and E-E bonds makes the chemistry of these precursors much richer and interesting than that of other conventional precursors such as the more common phosphine chalcogenides. Computational studies (DFT) reveal that the dissociation energy of carbon-chalcogen (C-E) bonds in dichalcogenide precursors (R-E-E-R, E=S or Se) increases in the order (R): diallyl

  15. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  16. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion

    PubMed Central

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D.; Schulz, Stefan; Fleißner, André

    2016-01-01

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion. PMID:27708165

  17. A systematic review of methamphetamine precursor regulations.

    PubMed

    McKetin, Rebecca; Sutherland, Rachel; Bright, David A; Norberg, Melissa M

    2011-11-01

    To assess the effectiveness of methamphetamine precursor regulations in reducing illicit methamphetamine supply and use. A systematic review of 12 databases was used to identify studies that had evaluated the impact of methamphetamine precursor regulations on methamphetamine supply and/or use. The guidelines of the Effective Practice and Organization of Care Group (EPOC) of The Cochrane Collaboration were used to determine which study designs were included and assess their quality. Ten studies met the inclusion criteria. These studies evaluated 15 interventions (13 regulations and two related interdiction efforts), all of which were located in North America. Interventions had consistent impacts across various indicators of methamphetamine supply and use. Seven of the 15 interventions produced reductions in methamphetamine indicators (ranging from 12% to 77%). Two of the largest impacts were seen following interdiction efforts, involving the closure of rogue pharmaceutical companies. There was no evidence of a shift into other types of drug use, or injecting use, although the impact on the synthetic drug market was not examined. Null effects were related largely to the existence of alternative sources of precursor chemicals or the availability of imported methamphetamine. Methamphetamine precursor regulations can reduce indicators of methamphetamine supply and use. Further research is needed to determine whether regulations can be effective outside North America, particularly in developing countries, and what impact they have on the broader synthetic drug market. Improved data on precursor diversion are needed to facilitate the evaluation of precursor regulations. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  18. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  19. AxBAxB… pulsed atomic layer deposition: Numerical growth model and experiments

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2016-02-01

    Atomic layer deposition (ALD) is widely used for the fabrication of advanced semiconductor devices and related nanoscale structures. During ALD, large precursor doses (>1000 L per pulse) are often required to achieve surface saturation, of which only a small fraction is utilized in film growth while the rest is pumped from the system. Since the metal precursor constitutes a significant cost of ALD, strategies to enhance precursor utilization are essential for the scaling of ALD processes. In the precursor reaction step, precursor physisorption is restricted by steric hindrance (mA1) from ligands on the precursor molecules. On reaction, some of these ligands are removed as by-products resulting in chemisorbed species with reduced steric hindrance (mA1 → mA2, where mA2 < mA1) and some of the initially hindered surface reaction sites becoming accessible for further precursor physisorption. To utilize these additional reaction sites, we propose a generalized AxBAxB… pulsed deposition where the total precursor dose (ΦA) is introduced as multiple x (x > 1, x ∈ I) short-pulses rather than a single pulse. A numerical first-order surface reaction kinetics growth model is presented and applied to study the effect of AxBAxB… pulsed ALD on the growth per cycle (GPC). The model calculations predict higher GPC for AxBAxB… pulsing than with ABAB… deposition. In agreement with the model predictions, with AxBAxB… pulsed deposition, the GPC was found to increase by ˜46% for ZrN plasma enhanced ALD (PEALD), ˜49% for HfO2 PEALD, and ˜8% for thermal Al2O3 ALD with respect to conventional ABAB… pulsed growth.

  20. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Ryan; Naskar, Amit; Gallego, Nidia

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin asmore » carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.« less

  1. Analysis of Summer-Time Ozone and Precursor Species in the Southeast United States

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.

  2. Analysis of Summer-time Ozone and Precursor Species in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Kuang, S.; Newchurch, M.; Hair, J. W.

    2015-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to ~12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25° × 0.3125° resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.

  3. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential.

    PubMed

    Lee, Changha; Schmidt, Carsten; Yoon, Jeyong; von Gunten, Urs

    2007-03-15

    The oxidation of N-nitrosodimethylamine (NDMA) precursors chlorine dioxide (ClO2). Second-order rate constants for the reactions of model NDMA precursors (dimethylamine (DMA) and 7 tertiary amines) with ozone (kapp at pH 7 = 2.4 x 10(-1) to 2.3 x 10(9) M(-1) s(-1)), ClO2 (kapp at pH 7 = 6.7 x 10(-3) to 3.0 x 10(7) M(-1) s(-1)), and hydroxyl radical (*OH) (kapp at pH 7 = 6.2 x 10(7) to 1.4 x 10(10) M(-1) s(-1)) were determined, which showed that the selected NDMA precursors, with the exception of dimethylformamide (DMFA) can be completely transformed via their direct reaction with ozone. During ozonation, DMFA may be partially transformed through oxidation by the secondary oxidant *OH. ClO2 was also shown to effectively transform most of the precursors, with the exceptions of DMA and DMFA. In the second part of the study, the NDMA formation potentials (NDMA-FP) in synthetic and natural waters were measured with and without pre-oxidation with ozone and ClO2. A significant reduction in the NDMA-FPs was observed after complete transformation of the model NDMA precursors. Ozonation generally led to more effective reduction of the NDMA-FP than ClO2. For most of the precursors, the formation of DMA could account for the NDMA-FPs remaining after complete transformation of the model NDMA precursors. In contrast, dimethylethanolamine and dimethyldithiocarbamate yielded other NDMA precursors (not DMA) as their oxidation products. Pre-oxidation by ozone and ClO2 of several natural waters showed behavior similar to that of the oxidation of model NDMA precursors with a reduction of the NDMA-FP by 32-94% for various natural water sources.

  4. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record

    NASA Astrophysics Data System (ADS)

    Pickard, Heidi M.; Criscitiello, Alison S.; Spencer, Christine; Sharp, Martin J.; Muir, Derek C. G.; De Silva, Amila O.; Young, Cora J.

    2018-04-01

    Perfluoroalkyl acids (PFAAs) are persistent, in some cases, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport (LRT) through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs in polar or mountainous regions, as well as in understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977-2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from < LOD to 141 ng m-2 yr-1. Our results demonstrate that the PFCAs and perfluorooctane sulfonate (PFOS) have continuous and increasing deposition on the Devon Ice Cap, despite recent North American and international regulations and phase-outs. We propose that this is the result of on-going manufacture, use and emissions of these compounds, their precursors and other newly unidentified compounds in regions outside of North America. By modelling air mass transport densities, and comparing temporal trends in deposition with production changes of possible sources, we find that Eurasian sources, particularly from Continental Asia, are large contributors to the global pollutants impacting the Devon Ice Cap. Comparison of PFAAs to their precursors and correlations of PFCA pairs showed that deposition of PFAAs is dominated by atmospheric formation from volatile precursor sources. Major ion analysis confirmed that marine aerosol inputs are unimportant to the long-range transport mechanisms of these compounds. Assessments of deposition, homologue profiles, ion tracers, air mass transport models, and production and regulation trends allow us to characterize the PFAA depositional profile on the Devon Ice Cap and further understand the LRT mechanisms of these persistent pollutants.

  5. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water.

    PubMed

    Chen, Zhuo; Valentine, Richard L

    2007-09-01

    N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.

  6. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu H.; Woody, Matthew; Pye, Havala O. T.; Baker, Kirk R.; Robinson, Allen L.

    2017-03-01

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30-40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.

  7. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  8. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 andmore » J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different resulting in the formation of peaks corresponding to reaction products. The length of the ligand exerts only a minor influence on the charge retention and reactivity of gold clusters. Based on the observed reactivity of (10,4)2+ it is anticipated that in-source CID will be increasingly applied for the preparation of a distribution of product ions, including undercoordinated and reactive species, for soft landing onto surfaces.« less

  9. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    PubMed

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro . The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  10. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA

    PubMed Central

    James, Amanda Marie; Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples. PMID:28255356

  11. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.

    PubMed

    Zazouli, Mohammad Ali; Kalankesh, Laleh R

    2017-01-01

    Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.

  12. Bi-Sr-Ca-Cu-O and Pb-Bi-Sr-Ca-Cu-O superconductor films via an electrodeposition process

    NASA Astrophysics Data System (ADS)

    Maxfield, M.; Eckhardt, H.; Iqbal, Z.; Reidinger, F.; Baughman, R. H.

    1989-05-01

    A novel electrochemical process has been developed for the formation of superconducting films. Using this process, superconducting films of Bi2Sr2Ca1Cu2O8 and (Pb,Bi)2Sr2Ca1Cu2O8 have been formed. The process consists of simultaneously depositing the metallic constituents of the superconductor from a single electrolyte, and thermally oxidizing the resulting precursors film to form the superconducting phase. Application of -4 to -5 V vs Ag/Ag(+) to a conductive cathode substrate which is immersed in an electrolyte containing salts of all of the metals reduces the metal cations, causing then to deposit on the cathode as a metallic film precursor. Precursor films having desired stoichiometries were obtained by regulating the electrolyte bath composition.

  13. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients.

    PubMed

    Yamamoto, N; Naraparaju, V R; Asbell, S O

    1996-06-15

    Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices.

  14. Isolation of pheromone precursor genes of Magnaporthe grisea.

    PubMed

    Shen, W C; Bobrowicz, P; Ebbole, D J

    1999-01-01

    In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.

  15. Predicting Thermal Behavior of Secondary Organic Aerosols

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...

  16. Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine.

    PubMed

    Musshoff, F

    2000-02-01

    The interpretation of methamphetamine and amphetamine positive test results in biological samples is a challenge to clinical and forensic toxicology for several reasons. The effects of pH and dilution of urine samples and the knowledge about legitimate and illicit sources have to be taken into account. Besides a potentially legal prescription of amphetamines, many substances metabolize to methamphetamine or amphetamine in the body: amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Especially the knowledge of potential origins of methamphetamine and amphetamine turns out to be very important to prevent a misinterpretation of the surrounding circumstances and to prove illegal drug abuse. In this review, potential precursor compounds are described, including their medical use and major clinical effects and their metabolic profiles, as well as some clues which help to identify the sources.

  17. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  18. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  19. Tricyanomethane and Its Ketenimine Tautomer: Generation from Different Precursors and Analysis in Solution, Argon Matrix, and as a Single Crystal.

    PubMed

    Banert, Klaus; Chityala, Madhu; Hagedorn, Manfred; Beckers, Helmut; Stüker, Tony; Riedel, Sebastian; Rüffer, Tobias; Lang, Heinrich

    2017-08-01

    Solutions of azidomethylidenemalononitrile were photolyzed at low temperatures to produce the corresponding 2H-azirine and tricyanomethane, which were analyzed by low-temperature NMR spectroscopy. The latter product was also observed after short thermolysis of the azide precursor in solution whereas irradiation of the azide isolated in an argon matrix did not lead to tricyanomethane, but to unequivocal detection of the tautomeric ketenimine by IR spectroscopy for the first time. When the long-known "aquoethereal" greenish phase generated from potassium tricyanomethanide, dilute sulfuric acid, and diethyl ether was rapidly evaporated and sublimed, a mixture of hydronium tricyanomethanide and tricyanomethane was formed instead of the previously claimed ketenimine tautomer. Under special conditions of sublimation, single crystals of tricyanomethane could be isolated, which enabled the analysis of the molecular structure by X-ray diffraction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of platinum precursor concentrations on chlorine sensing characteristics of platinum nanoparticles-loaded single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Choi, Sun-Woo; Byun, Young Tae

    2018-03-01

    The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.

  1. Physical Principles of Skeletal Minerals Revealed with Spectromicroscopy

    ScienceCinema

    Gilbert, Pupa [U of Wisconsin-Madison, Wisconsin, United States

    2017-12-09

    Skeletal elements of marine and terrestrial organisms have the most fascinating nano-to-macro-structures, attracting the attention of physicists, biologists, chemists, and materials scientists. Using X-PEEM spectromicroscopy we revealed some of the fundamental mechanisms leading to the formation of these biominerals. Specifically, we addressed the following questions and provided the answers: 1Q) How do teeth, bones, and echinoderm and mollusk shells acquire their unusual, curved and complex morphology, if they are composed of single crystals? 1A) Via amorphous precursor phases; 2Q) How does crystallinity propagate through the amorophous precursor phases in sea urchin spicules and teeth? 2A) By secondary nucleation, following random walk patterns; 3Q) How does iridescent mother-of-pearl become ordered? 3A) Gradually, through a kinetic mechanisms in which fastest growing single-crystals win the competition for space, thus end up being approximately co-oriented.

  2. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    NASA Astrophysics Data System (ADS)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  3. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.

    PubMed

    Cheng, Xingguo; Gower, Laurie B

    2006-01-01

    Natural biominerals often have exquisite morphologies, where the cells exercise a high degree of crystallographic control through secretion of biological macromolecules and regulation of ion transport. One important example is the sea urchin spine. It has recently been shown to be formed through deposition of a transient amorphous calcium carbonate (ACC) precursor phase that later transforms to single-crystalline calcite, ultimately forming an elaborate three-dimensional microporous calcium carbonate structure with interconnected pores. Macromolecules associated with the mineral phase are thought to play a key role in regulating this transformation. The work described here mimics this type of morphological control by "molding" an amorphous calcium carbonate precursor within a porous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel that has been prepared as a negative replica from the void space of an urchin spine. Using an acidic biomimetic polymer as a process-directing agent, we show that polyaspartic acid induces amorphous calcium carbonate (ACC) nanoparticles, which have fluidic character and therefore are able to infiltrate the PHEMA hydrogel replica and coalesce into the convoluted morphology that replicates the original microporous structure of the sea urchin spine. By "molding" calcium carbonate into a complex morphology at room temperature, using a precursor process that is induced by a biomimetic acidic macromolecule, the PILP process is a useful in vitro model for examining different aspects of the amorphous-to-crystalline transformation process that is apparently used by a variety of biomineralizing organisms. For example, although we were able to replicate the overall morphology of the spine, it had polycrystalline texture; further studies with this system will focus on controlling the nucleation event, which may help to elucidate how such a convoluted structure can be prepared with single-crystalline texture via an amorphous precursor. Through a better understanding of the mechanisms used by organisms to regulate crystal properties, such biomimetic processes can lead to the synthesis of materials with superior electronic, mechanical, and optical properties.

  4. EXAFS Study on LiFePO4 Powders Produced From Two Sol-Gel Routes

    NASA Astrophysics Data System (ADS)

    Negara, V. S. I.; Latif, C.; Wongtepa, W.; Pratapa, S.

    2018-04-01

    The local structure of LiFePO4 powders has been investigated using Fe K-edge Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy data. The synthesis of LFP powders was carried out using two different sol-gel methods. The raw materials for Fe source were ironstone and commercial precursor of FeCl2·4H2O. Synthesis using natural materials produced two phases, namely LiFePO4 olivine and Li3Fe2(PO4)3 nasicon, whereas that using a commercial product produced a single phase of LiFePO4 olivine. The EXAFS data for both samples were collected at Synchrotron Light Research Institute (SLRI), Thailand. Fitting of the model on the experimental curve provided parameters that can be interpreted as the distance between Fe as the absorber and the nearest atoms on the LFP materials. The EXAFS data analysis has shown that synthesis of LFPs using different Fe sources gives slightly different nearest-neighbor distances, namely Fe-O of 0.21% -0.23%, Fe-P of 0.14% - 0.16%, Fe-Fe of 0.12% for both samples, respectively.

  5. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  6. Phase transitions in colloidal fluids: Kinetically or thermodynamically controlled?

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim

    2017-11-01

    In recent years, a flurry of experimental observations suggests that most phase transitions occur in a multistage manner and via intermediate phases. These precursors to the final phase are commonly understood as the local minima of the free energy of the system. Inherently, the classical paradigm of nucleation has no capacity to describe neither the origin nor the role played by these precursors in the nucleation pathway. Here we present a systematic theoretical framework capable of describing the precursor phases in a self-consistent way. We demonstrate that nucleation precursors can appear even in situations involving a single free-energy barrier. This contradicts previous phenomenological approaches, which always characterise intermediate phases as the minima of a complex free-energy landscape. We show that a kinetically-induced mechanism temporarily stabilises an intermediate phase, which thus is not the result of a local minimum of the free energy but a consequence of the entropic cost of cluster formation. Moreover, the appearance of precursors does not seem to influence the overall nucleation time, which is governed by the free-energy barrier. The mechanism uncovered in this study can be used to explain recently reported experimental findings in crystallisation. European Research Council - Advanced Grant No. 247031; Engineering and Physical Sciences Research Council - Grant Nos. EP/L020564 and EP/L025159.

  7. Gas-phase kinetics modifies the CCN activity of a biogenic SOA.

    PubMed

    Vizenor, A E; Asa-Awuku, A A

    2018-02-28

    Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.

  8. Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins.

    PubMed

    Amiche, M; Ducancel, F; Lajeunesse, E; Boulain, J C; Ménez, A; Nicolas, P

    1993-03-31

    Adenoregulin has recently been isolated from Phyllomedusa skin as a 33 amino acid residues peptide which enhanced binding of agonists to the A1 adenosine receptor. In order to study the structure of the precursor of adenoregulin we constructed a cDNA library from mRNAs extracted from the skin of Phyllomedusa bicolor. We detected the complete nucleotide sequence of a cDNA encoding the adenoregulin biosynthetic precursor. The deduced sequence of the precursor is 81 amino acids long, exhibits a putative signal sequence at the NH2 terminus and contains a single copy of the biologically active peptide at the COOH terminus. Structural and conformational homologies that are observed between adenoregulin and the dermaseptins, antimicrobial peptides exhibiting strong membranolytic activities against various pathogenic agents, suggest that adenoregulin is an additional member of the growing family of cytotropic antimicrobial peptides that allow vertebrate animals to defend themselves against microorganisms. As such, the adenosine receptor regulating activity of adenoregulin could be due to its ability to interact with and disrupt membranes lipid bilayers.

  9. A mobile precursor determines protein resistance on nanostructured surfaces.

    PubMed

    Wang, Kang; Chen, Ye; Gong, Xiangjun; Xia, Jianlong; Zhao, Junpeng; Shen, Lei

    2018-05-09

    Biomaterials are often engineered with nanostructured surfaces to control interactions with proteins and thus regulate their biofunctions. However, the mechanism of how nanostructured surfaces resist or attract proteins together with the underlying design rules remains poorly understood at a molecular level, greatly limiting attempts to develop high-performance biomaterials and devices through the rational design of nanostructures. Here, we study the dynamics of nonspecific protein adsorption on block copolymer nanostructures of varying adhesive domain areas in a resistant matrix. Using surface plasmon resonance and single molecule tracking techniques, we show that weakly adsorbed proteins with two-dimensional diffusivity are critical precursors to protein resistance on nanostructured surfaces. The adhesive domain areas must be more than tens or hundreds of times those of the protein footprints to slow down the 2D-mobility of the precursor proteins for their irreversible adsorption. This precursor model can be used to quantitatively analyze the kinetics of nonspecific protein adsorption on nanostructured surfaces. Our method is applicable to precisely manipulate protein adsorption and resistance on various nanostructured surfaces, e.g., amphiphilic, low-surface-energy, and charged nanostructures, for the design of protein-compatible materials.

  10. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  11. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors.

    PubMed

    Zhao, Xiulan; Yang, Feng; Chen, Junhan; Ding, Li; Liu, Xiyan; Yao, Fengrui; Li, Meihui; Zhang, Daqi; Zhang, Zeyao; Liu, Xu; Yang, Juan; Liu, Kaihui; Li, Yan

    2018-04-19

    Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.

  12. Simplifying the growth of hybrid single-crystals by using nanoparticle precursors: the case of AgI

    NASA Astrophysics Data System (ADS)

    Xu, Biao; Wang, Ruji; Wang, Xun

    2012-03-01

    We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals.We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals. Electronic supplementary information (ESI) available: XPS spectra of AgI NPs, schematic representation of the formation process of [Ag4I8]4- in 2, UV-Vis spectra of the DTMA-Ag-I clusters, analysis of force balance of a crystal at the interface between H2O and CH2Cl2 and crystal structure depiction of 1-4. CIF files of 1-4 are also provided. CCDC reference numbers 863848, 863849, 863850 and 863851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30139c

  13. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM).

    PubMed

    Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M

    2017-07-11

    Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have applied this method to profile amino acids and their labeling patterns in 13 C and 2 H doubly labeled PC9 cell extracts, cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13 C 6 -glucose (Glc). The multi-element isotopologue distributions provided key insights into amino acid metabolism and intracellular pools in human lung cancer tissues in high detail. The 13 C labeling of Asp and Glu revealed de novo synthesis of these amino acids from 13 C 6 -Glc via the Krebs cycle, specifically the elevated level of 13 C 3 -labeled Asp and Glu in cancerous versus non-cancerous lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of double tracers, ( 13 C 6 -Glc +  2 H 2 -Gly or 13 C 6 -Glc +  2 H 3 -Ser) in PC9 cells clearly resolved pools of Ser and Gly synthesized de novo from 13 C 6 -Glc ( 13 C 3 -Ser and 13 C 2 -Gly) versus Ser and Gly derived from external sources ( 2 H 3 -Ser, 2 H 2 -Gly). Moreover the complex 2 H labeling patterns of the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic pathway in PC9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dem'yanets, L. N., E-mail: demianets@ns.crys.ras.ru; Artemov, V. V.; Li, L. E.

    Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.

  15. Platinum-free catalysts for low temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Lastovina, Tatiana; Pimonova, Julia; Budnyk, Andriy

    2017-04-01

    In this work, we have successfully prepared Zn/Co-N/C and Zn/Co-Fe/N/C composites, both derived from single zeolitic imidazolate framework (ZIF) precursor Zn/Co-ZIF containing equivalent quantities of Zn and Co metal sites. The composites were formed by pyrolysis of the precursor at 700 °C in inert gas atmosphere as such and after mixing it with Fe(II) salt and 1,10-phenontraline in ethanol. Catalytic tests for oxygen reduction reaction (ORR) in electrochemical cell demonstrated promising results allowing us to consider these composites as potential Pt-free catalysts for low temperature fuel cells.

  16. An efficient synthesis of bis-1,3-(3'-aryl-N-heterocycl-1'-yl)arenes as CCC-NHC pincer ligand precursors.

    PubMed

    Howell, Tyler O; Huckaba, Aron J; Hollis, T Keith

    2014-05-02

    A report that demonstrated an efficient methodology for the arylation of imidazoles has been extended to bis(N-heterocyclic) compounds. Using bis(aryl) iodonium salts provides high-yielding access to CCC-NHC ligand precursors in a single step. Examples of arylation using various iodonium salts are reported herein with an investigation into the factors governing their relative rate of reactivity. The metalation of one of these compounds using Zr(NMe2)4 and its subsequent treatment with [Pt(COD)Cl2] to yield a transmetalated product are reported.

  17. PM RESEARCH

    EPA Science Inventory

    Activity Area (F03): PM Implementation NRMRL conducts research to improve the techniques used to quantify PM and PM precursor emissions from stationary, mobile, and fugitive sources and investigates the performance and cost of innovative control technology systems. The emission...

  18. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors.

    PubMed

    Alberti-Servera, Llucia; von Muenchow, Lilly; Tsapogas, Panagiotis; Capoferri, Giuseppina; Eschbach, Katja; Beisel, Christian; Ceredig, Rhodri; Ivanek, Robert; Rolink, Antonius

    2017-12-15

    Single-cell RNA sequencing is a powerful technology for assessing heterogeneity within defined cell populations. Here, we describe the heterogeneity of a B220 + CD117 int CD19 - NK1.1 - uncommitted hematopoietic progenitor having combined lymphoid and myeloid potential. Phenotypic and functional assays revealed four subpopulations within the progenitor with distinct lineage developmental potentials. Among them, the Ly6D + SiglecH - CD11c - fraction was lymphoid-restricted exhibiting strong B-cell potential, whereas the Ly6D - SiglecH - CD11c - fraction showed mixed lympho-myeloid potential. Single-cell RNA sequencing of these subsets revealed that the latter population comprised a mixture of cells with distinct lymphoid and myeloid transcriptional signatures and identified a subgroup as the potential precursor of Ly6D + SiglecH - CD11c - Subsequent functional assays confirmed that B220 + CD117 int CD19 - NK1.1 - single cells are, with rare exceptions, not bipotent for lymphoid and myeloid lineages. A B-cell priming gradient was observed within the Ly6D + SiglecH - CD11c - subset and we propose a herein newly identified subgroup as the direct precursor of the first B-cell committed stage. Therefore, the apparent multipotency of B220 + CD117 int CD19 - NK1.1 - progenitors results from underlying heterogeneity at the single-cell level and highlights the validity of single-cell transcriptomics for resolving cellular heterogeneity and developmental relationships among hematopoietic progenitors. © 2017 The Authors.

  19. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity and deformation; they may work as a template for modelling future events in the case the volcano was approaching eruption conditions.

  20. Genetic Dissection of Sexual Reproduction in a Primary Homothallic Basidiomycete

    PubMed Central

    Sampaio, José Paulo; Gonçalves, Paula

    2016-01-01

    In fungi belonging to the phylum Basidiomycota, sexual compatibility is usually determined by two genetically unlinked MAT loci, one of which encodes one or more pheromone receptors (P/R) and pheromone precursors, and the other comprehends at least one pair of divergently transcribed genes encoding homeodomain (HD) transcription factors. Most species are heterothallic, meaning that sexual reproduction requires mating between two sexually compatible individuals harboring different alleles at both MAT loci. However, some species are known to be homothallic, one individual being capable of completing the sexual cycle without mating with a genetically distinct partner. While the molecular underpinnings of the heterothallic life cycles of several basidiomycete model species have been dissected in great detail, much less is known concerning the molecular basis for homothallism. Following the discovery in available draft genomes of the homothallic basidiomycetous yeast Phaffia rhodozyma of P/R and HD genes, we employed available genetic tools to determine their role in sexual development. Two P/R clusters, each harboring one pheromone receptor and one pheromone precursor gene were found in close vicinity of each other and were shown to form two redundant P/R pairs, each receptor being activated by the pheromone encoded by the most distal pheromone precursor gene. The HD locus is apparently genetically unlinked to the P/R locus and encodes a single pair of divergently transcribed HD1 and HD2 transcription factors, both required for normal completion of the sexual cycle. Given the genetic makeup of P. rhodozyma MAT loci, we postulate that it is a primarily homothallic organism and we propose a model for the interplay of molecular interactions required for sexual development in this species. Phaffia rhodozyma is considered one of the most promising microbial source of the carotenoid astaxanthin. Further development of this yeast as an industrial organism will benefit from new insights regarding its sexual reproduction system. PMID:27327578

  1. Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation.

    PubMed

    Oda-Ishii, Izumi; Ishii, Yasuo; Mikawa, Takashi

    2010-10-29

    The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood. Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete. Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.

  2. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  3. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  4. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  5. Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J.

    2010-07-01

    A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes - if any - a very small contribution (~2%). The peak radical production of ~7.5 107 molec cm-3 s-1 is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of radical sources and radical chain reactions in photochemical models. Since the photochemical processing of pollutants in the MCMA is radical limited, our analysis identifies the drivers for ozone and SOA formation. We conclude that reductions in VOC emissions provide an efficient opportunity to reduce peak concentrations of these secondary pollutants, because (1) about 70% of radical production is linked to VOC precursors; (2) lowering the VOC/NOx ratio has the further benefit of reducing the radical re-cycling efficiency from radical chain reactions (chemical amplification of radical sources); (3) a positive feedback is identified: lowering the rate of radical production from organic precursors also reduces that from inorganic precursors, like ozone, as pollution export from the MCMA caps the amount of ozone that accumulates at a lower rate inside the MCMA. Continued VOC reductions will in the future result in decreasing peak concentrations of ozone and SOA in the MCMA.

  6. Peptide reranking with protein-peptide correspondence and precursor peak intensity information.

    PubMed

    Yang, Chao; He, Zengyou; Yang, Can; Yu, Weichuan

    2012-01-01

    Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.

  7. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    NASA Astrophysics Data System (ADS)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  8. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys.

    PubMed

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-19

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn 2 ][Ir(NO 2 ) 6 ], [AuEn 2 ][Ir(NO 2 ) 6 ] х [Rh(NO 2 ) 6 ] 1-х and [AuEn 2 ][Rh(NO 2 ) 6 ]. The precursors employed contain all desired metals 'mixed' at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr 0.75 Rh 0.25 , AuIr 0.50 Rh 0.50 and AuIr 0.25 Rh 0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the 'conversion chemistry' mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  9. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  10. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.

    2018-05-01

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.

  11. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills.

    PubMed

    Hamid, Hanna; Li, Loretta Y; Grace, John R

    2018-04-01

    A critical review of existing publications is presented i) to summarize the occurrence of various classes of per- and polyfluoroalkyl substances (PFASs) and their sources in landfills, ii) to identify temporal and geographical trends of PFASs in landfills; iii) to delineate the factors affecting PFASs in landfills; and iv) to identify research gaps and future research directions. Studies have shown that perfluoroalkyl acids (PFAAs) are routinely detected in landfill leachate, with short chain (C4-C7) PFAAs being most abundant, possibly indicating their greater mobility, and reflecting the industrial shift towards shorter-chain compounds. Despite its restricted use, perfluorooctanoic acid (PFOA) remains one of the most abundant PFAAs in landfill leachates. Recent studies have also documented the presence of PFAA-precursors (e.g., saturated and unsaturated fluorotelomer carboxylic acids) in landfill leachates at concentrations comparable to, or higher than, the most frequently detected PFAAs. Landfill ambient air also contains elevated concentrations of PFASs, primarily semi-volatile precursors (e.g., fluorotelomer alcohols) compared to upwind control sites, suggesting that landfills are potential sources of atmospheric PFASs. The fate of PFASs inside landfills is controlled by a combination of biological and abiotic processes, with biodegradation releasing most of the PFASs from landfilled waste to leachate. Biodegradation in simulated anaerobic reactors has been found to be closely related to the methanogenic phase. The methane-yielding stage also results in higher pH (>7) of leachates, correlated with higher mobility of PFAAs. Little information exists regarding PFAA-precursors in landfills. To avoid significant underestimation of the total PFAS released from landfills, PFAA-precursors and their degradation products should be determined in future studies. Owing to the semi-volatile nature of some precursor compounds and their degradation products, future studies also need to include landfill gas to clarify degradation pathways and the overall fate of PFASs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Intramolecular amide bonds stabilize pili on the surface of bacilli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili.more » We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.« less

  13. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

    PubMed

    Tetteh, Paul W; Basak, Onur; Farin, Henner F; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; de Sauvage, Frederic; van Es, Johan H; van Oudenaarden, Alexander; Clevers, Hans

    2016-02-04

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less

  15. Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water.

    PubMed

    Chu, Wenhai; Krasner, Stuart W; Gao, Naiyun; Templeton, Michael R; Yin, Daqiang

    2016-01-05

    Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.

  16. Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.

    PubMed

    Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D

    2018-06-19

    The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 78 FR 52733 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Redesignation of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... through chemical reactions in the atmosphere involving precursor pollutants emitted from a variety of sources. Sulfates are a type of secondary fine particulates formed from reactions involving SO 2 emissions...

  18. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  19. Chemical vapor deposition of Mo thin films from Mo(CO){sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.; Bond, J.; Westmore, T.

    1995-12-01

    Low levels of carbon and/or oxygen contamination in metallic thin films significantly alter the physical and chemical properties of these films often rendering them useless for any commercial applications. These impurities are often observed in films grown by a technique called metallorganic chemical vapor deposition (MOCVD). MOCVD films are grown by heating a substrate in the presence of a metallorganic precursor. We wish to identify the source(s) of contamination in films produced from the Group VIB metal hexacarbonyls, M(CO){sub 6}. Towards attaining this goal we have initiated studies on the elemental composition of thin films deposited by MOCVD using Mo(CO){submore » 6} as the precursor. The results obtained so far indicate that the level of contamination of the films partially depends on the deposition temperature. Our results will be compared to published work on films deposited by laser assisted CVD from Mo(CO){sub 6}.« less

  20. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots.

    PubMed

    Panzer, René; Guhrenz, Chris; Haubold, Danny; Hübner, René; Gaponik, Nikolai; Eychmüller, Alexander; Weigand, Jan J

    2017-11-13

    Tri(pyrazolyl)phosphanes (5 R1,R2 ) are utilized as an alternative, cheap and low-toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long-term stable stock solutions (>6 months) of P(OLA) 3 (OLAH=oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA) 3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530-620 nm and photoluminescence quantum yields (PL QYs) between 51-62 %. A proof-of-concept white light-emitting diode (LED) applying the InP/ZnS QDs as a color-conversion layer was built to demonstrate their applicability and processibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of a combination of elicitation and precursor feeding on grape amino acid composition through foliar applications to Garnacha vineyard.

    PubMed

    Gutiérrez-Gamboa, Gastón; Portu, Javier; López, Rosa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2018-04-01

    Vine foliar applications of phenylalanine (Phe) or methyl jasmonate (MeJ) could improve the synthesis of secondary metabolites. However, there are no reports focusing on the effects of elicitation supported by precursor feeding on must amino acid composition in grapevines. The aim of this research was to study the effect of the elicitation of methyl jasmonate (MeJ) supported by phenylalanine (Phe) as a precursor feeding (MeJ+Phe) and its application individually on must amino acid composition. Results showed that foliar Phe and MeJ treatments decreased the concentration of most of the studied amino acids with respect to the control (p≤0.05). MeJ+Phe treatment did not affect must nitrogen content. Musts obtained from MeJ+Phe showed higher concentration of several amino acids than samples from Phe and MeJ applications. Therefore, other sources of precursor feeding could support elicitation, to improve amino acid composition and be considered as a tool for viticulture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.; hide

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.

  3. Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken

    2015-11-15

    Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreasedmore » both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.« less

  4. Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.

    PubMed

    Tiong, Soon Huat; Saparin, Norliza; Teh, Huey Fang; Ng, Theresa Lee Mei; Md Zain, Mohd Zairey Bin; Neoh, Bee Keat; Md Noor, Ahmadilfitri; Tan, Chin Ping; Lai, Oi Ming; Appleton, David Ross

    2018-01-31

    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.

  5. Using Source Apportionment to Evaluate the Cross State Transport of Ozone in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.

  6. Seasonal and spatial variability of nitrosamines and their precursor sources at a large-scale urban drinking water system.

    PubMed

    Woods, Gwen C; Trenholm, Rebecca A; Hale, Bruce; Campbell, Zeke; Dickenson, Eric R V

    2015-07-01

    Nitrosamines are considered to pose greater health risks than currently regulated DBPs and are subsequently listed as a priority pollutant by the EPA, with potential for future regulation. Denver Water, as part of the EPA's Unregulated Contaminant Monitoring Rule 2 (UCMR2) monitoring campaign, found detectable levels of N-nitrosodimethylamine (NDMA) at all sites of maximum residency within the distribution system. To better understand the occurrence of nitrosamines and nitrosamine precursors, Denver Water undertook a comprehensive year-long monitoring campaign. Samples were taken every two weeks to monitor for NDMA in the distribution system, and quarterly sampling events further examined 9 nitrosamines and nitrosamine precursors throughout the treatment and distribution systems. NDMA levels within the distribution system were typically low (>1.3 to 7.2 ng/L) with a remote distribution site (frequently >200 h of residency) experiencing the highest concentrations found. Eight other nitrosamines (N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitroso-di-n-propylamine, N-nitroso-di-n-butylamine, N-nitroso-di-phenylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine) were also monitored but none of these 8, or precursors of these 8 [as estimated with formation potential (FP) tests], were detected anywhere in raw, partially-treated or distribution samples. Throughout the year, there was evidence that seasonality may impact NDMA formation, such that lower temperatures (~5-10°C) produced greater NDMA than during warmer months. The year of sampling further provided evidence that water quality and weather events may impact NDMA precursor loads. Precursor loading estimates demonstrated that NDMA precursors increased during treatment (potentially from cationic polymer coagulant aids). The precursor analysis also provided evidence that precursors may have increased further within the distribution system itself. This comprehensive study of a large-scale drinking water system provides insight into the variability of NDMA occurrence in a chloraminated system, which may be impacted by seasonality, water quality changes and/or the varied origins of NDMA precursors within a given system. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States

    PubMed Central

    Penn, Stefani L.; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I.

    2016-01-01

    Background: Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. Objectives: In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. Methods: We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration–response functions to calculate associated health impacts. Results: We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM2.5. More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Conclusions: Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324–332; http://dx.doi.org/10.1289/EHP550 PMID:27586513

  8. Potential of IRMS technology for tracing gamma-butyrolactone (GBL).

    PubMed

    Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe

    2010-05-20

    Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SD<0.3 per thousand). Furthermore, testing on the purification of GBL by distillation has not been found to be consistent with such a large range of delta(13)C-values, which are likely to result from the isotopic composition of the organic precursors used to produce GBL together with the kinetic isotope effect associated with the synthesis routes. Finally, inter- and intra-variability measurements of the delta(13)C-values demonstrated the high potential of IRMS for discriminating between seizures of GBL and for source determination.

  9. Particulate Matter Pollution and its Regional Transport in the Mid-Atlantic States

    NASA Astrophysics Data System (ADS)

    He, H.; Goldberg, D. L.; Hembeck, L.; Canty, T. P.; Vinciguerra, T.; Ring, A.; Salawitch, R. J.; Dickerson, R. R.

    2015-12-01

    Particulate matter (PM) causes negative effects on human health, impair visibility in scenic areas, and affect regional/global climate. PM can be formed through chemical changes of precursors, including biogenic VOCs and anthropogenic SO2 and NOx often from fossil fuel combustion. In the past decades, PM pollution in the US has improved substantially. However, some areas in the Mid-Atlantic States are still designated as 'moderate' nonattainment by EPA. We utilize datasets obtained during the NASA 2011 DISCOVER-AQ campaign to characterize the composition and distribution of summertime PM pollution in the Mid-Atlantic States. Aircraft measurements and OMI satellite retrieval of major anthropogenic precursors (NO2 and SO2) are analyzed to investigate the regional transport of PM precursors from upwind sources. We compare PM concentration and chemical composition observed during the field campaign to CMAQ simulations with the latest EPA emission inventory. Specifically, we focus on the secondary organic aerosol (SOA) chemistry in CMAQ simulations using various biogenic VOCs estimates from the MEGAN and BEIS models. Airborne PM observations including PILS measurements from DISCOVER-AQ campaign and OMI retrievals of HCHO are also used to validate and improve the representation of SOA chemistry and PM pollution within CMAQ. The comparison reveals the source and evolution of PM pollution in the Mid-Atlantic States.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  11. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    PubMed

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  12. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (˜20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  13. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (~20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  14. Identification, by molecular cloning, of a novel type of I2-superfamily conotoxin precursor and two novel I2-conotoxins from the worm-hunter snail Conus spurius from the Gulf of México.

    PubMed

    Zamora-Bustillos, Roberto; Aguilar, Manuel B; Falcón, Andrés

    2010-03-01

    cDNA was prepared from the venom duct of a single Conus spurius specimen collected near the coast of Campeche, México. From it, PCR products were generated aiming to clone I-conotoxin precursors. Thirty clones were sequenced and predicted to encode ten distinct precursors: seven of I(2)-conotoxins and three of I(2)-like-conotoxins. These precursors contain three different, mature toxins, sr11a, sr11b and sr11c, of which two are novel and one (sr11a) has been previously purified and characterized from the venom of this species. The precursors include a 26- (I(2)) or 23- residue signal peptide (I(2)-like), a 31-residue "pro" region (I(2)-like), and a 32-residue mature toxin region (I(2) and I(2)-like). In addition, all the precursors have a 13-residue "post" region which contains a gamma-carboxylation recognition sequence that directs the gamma-carboxylation of Glu-9 and Glu-10 of toxin sr11a and, possibly, Glu-13 of toxin sr11b and Glu-9 of toxin sr11c. This is the first time that a "post" region has been found in precursors of I-conotoxins that also contain a "pro" region. The "post" peptide is enzymatically processed to yield the amidated mature toxin sr11a, which implies that gamma-carboxylation occurs before amidation. Phylogenetic analysis at the whole precursor level indicates that the I(2)-like-conotoxins of C. spurius are more related to I(2)-conotoxins than to I(1)- and I(3)-conotoxins from other species, and that they might represent a new subgroup of the I(2)-superfamily. The three I-conotoxins from C. spurius have charge differences at seven to nine positions, suggesting that they might have different molecular target types or subtypes. (c) 2009 Elsevier Inc. All rights reserved.

  15. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  16. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary inorganic PM2. 5 emissions to PM2. 5 concentrations are dominated by local emission sources, which account for over 75 % of the total primary inorganic PM2. 5 contributions. For precursors, however, emissions from other regions could play similar roles to local emission sources in the summer and over the northern part of BTH. The source contribution features for various types of heavy-pollution episodes are distinctly different from each other and from the monthly mean results, illustrating that control strategies should be differentiated based on the major contributing sources during different types of episodes.

  17. NDMA formation during chlorination and chloramination of aqueous diuron solutions.

    PubMed

    Chen, Wei-Hsiang; Young, Thomas M

    2008-02-15

    Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California's water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron solutions under varied chlorine and chloramine conditions. NDMA formation was consistently observed even in the absence of added ammonia, which has usually been the source of the nitroso-nitrogen during chloramination of other precursors. It appears that both nitrogen atoms in NDMA are donated by diuron during chlorination in the absence of added ammonia. For a given chlorine and diuron dose, NDMA formation increased in the order OCl- < NH2Cl < NHCl2, a result consistentwith previous NDMAformation studies. Significant quantities of NDMA (170 ng/L) were produced during dichloramination of diuron using a low dichloramine concentration and a diuron concentration at the upper end of typically detected concentrations in California (20 microg/L), suggesting a need for further investigation to accurately assess the human health risks posed by diuron with respect to NDMA formation potential. A reaction pathway is proposed to provide a possible explanation for NDMA formation from diuron during chlorination or chloramination. The findings in this study identify a specific potential precursor of NDMA formation, one that arises from nonpoint sources. This further highlights the difficulties associated with determining the environmental safety of chemicals and their associated byproducts.

  18. Multiple NEO Rendezvous Using Solar Sails

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    Mission concept is to assess the feasibility of using solar sail propulsion to enable a robotic precursor that would survey multiple Near Earth Objects (NEOs) for potential future human visits. Single spacecraft will rendezvous with and image 3 NEOs within 6 years of launch

  19. High Temperature Stability of Binary Microstructures Derived from Liquid Precursors

    DTIC Science & Technology

    1994-06-30

    isopropoxide , Ti(OC3H7 )4 was stirred into the solution under nitrogen to produce a composition with a 1:1 Pb:Ti ratio. The solution was then boiled and...This program has emphasized two topics: 1) the crystallization of metastable, solid- solution structures, their partitioning into equilibrium structures...structural ceramics and their composites, and 2) the formation of single crystal thin films via spin coating single crystal substrates with solution

  20. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  1. NDMA formation from amine-based pharmaceuticals--impact from prechlorination and water matrix.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2013-05-01

    The presence of N-nitrosodimethylamine (NDMA) in drinking water is most commonly associated with the chloramination of amine-based precursors. One option to control the NDMA formation is to remove the precursors via pre-oxidation, and prechlorination is among the most effective options in reducing NDMA formation. However, most of the findings to-date are based on single-precursor scenarios using the model precursor dimethylamine (DMA) and natural organic matter (NOM), while few studies have considered the potential interactions between water matrix components and the target precursors when investigating the prechlorination impact. Specifically, little is known for the behaviour of amine-based pharmaceuticals which have recently been reported to contribute to NDMA formation upon chloramination. This work demonstrates that prechlorination can affect both the ultimate NDMA conversion and the reaction kinetics from selected pharmaceuticals, and the nature and extent of the impact was compound-specific and matrix-specific. In the absence of NOM, the NDMA formation from most pharmaceuticals was reduced upon prechlorination, except for sumatriptan which showed a consistent increase in NDMA formation with increasing free chlorine contact time. In the presence of NOM, prechlorination was shown to enhance initial reactions by reducing the binding between NOM and pharmaceuticals, but prolonged prechlorination broke down NOM into smaller products which could then form new bonds with pharmaceuticals and thus inhibit their further conversion into NDMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  3. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    NASA Astrophysics Data System (ADS)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorsman, F.; Bywater, M.; Knott, T.J.

    The human platelet-derived growth factor (PDGF) A-chain locus was characterized by restriction endonuclease analysis, and the nucleotide sequence of its exons was determined. Seven exons were identified, spanning approximately 22 kilobase pairs of genomic DNA. Alternative exon usage, identified by cDNA cloning, occurs in a human glioblastoma cell line and may give rise to two types of A-chain precursors with different C termini. The exon-intron arrangement was similar to that of the PDGF B-chain/sis locus and seemed to divide the precursor proteins into functional domains. Southern blot analysis of genomic DNA showed that a single PDGF A-chain gene was presentmore » in the human genome.« less

  5. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    PubMed

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-06-01

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures (<120 mbar s) little to no Pt is deposited after the first cycle and most of the Pt is atomically dispersed. Increasing the oxygen exposure above 120 mbar s results in a rapid increase in the Pt loading, which saturates at exposures > 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of N-acetylcysteine on microcirculation of mucosa in rat ileum in a model of intestinal inflammation.

    PubMed

    Ruh, Joachim; Schmidt, Eduard; Vogel, Frank

    2003-05-01

    Oxygen radicals are formed by the endothelium and blood cells and have specific functions in various organs systems. On the level of the microcirculation, oxygen radicals take part in the regulation of the leukocyte-endothelial interaction. The involvement of oxygen radicals has previously been found in conditions such as sepsis, ischemia-reperfusion, and inflammation. Indomethacin is a clinically applied nonsteroidal antiphlogistic, and in previous studies in the rat, it has been found to induce an inflammatory reaction in the small intestine characterized by edema and reddening of the intestinal epithelium, ulceration, and dysregulation in the intestinal-epithelial barrier function. In the present study, we investigated the effect of N-acetylcysteine on erythrocyte velocity and the arteriolar diameter of the main arteriole in single villi, thus providing insight in the perfusion of the mucosa in indomethacin-induced intestinal inflammation. N-Acetylcysteine is known to inactivate superoxide and its precursors. Therefore, we used N-acetylcysteine to investigate whether superoxide and its precursors participate in the regulation of blood supply to single villi in this animal model. We found that indomethacin induced an increase in villous perfusion that was significantly reduced by N-acetylcysteine, indicating that superoxide and its precursors may participate in the regulation of blood supply to the mucosa in this animal model of intestinal inflammation.

  7. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    PubMed

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    DTIC Science & Technology

    2013-04-11

    derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is...from lignin • Oxidative and reductive coupling reactions lead to precursor phenols, which are then treated with cyanogen bromide to generate cyanate

  9. Split2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors.

    PubMed

    Moll, Jens M; Wehmöller, Melanie; Frank, Nils C; Homey, Lisa; Baran, Paul; Garbers, Christoph; Lamertz, Larissa; Axelrod, Jonathan H; Galun, Eithan; Mootz, Henning D; Scheller, Jürgen

    2017-12-15

    Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E 134 /S 135 ) and IL-11 (G 116 /S 117 ) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.

  10. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  11. Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors

    NASA Astrophysics Data System (ADS)

    Iftikhar, Bushra; Javed, Kanwal; Khan, Muhammad Saif Ullah; Akhter, Zareen; Mirza, Bushra; Mckee, Vickie

    2018-03-01

    Three new Schiff base ligands were synthesized by the reaction of Salicylaldehyde with semi-aromatic diamines, prepared by the reduction of corresponding dinitro-compounds, and were further used for the formation of complexes with Cu(II) metal ion. The structural features of the synthesized compounds were confirmed by their physical properties and infrared, electronic and NMR spectroscopic techniques. The studies revealed that the synthesized Schiff bases existed as tetradentate ligands and bonded to the metal ion through the phenolic oxygen and azomethine nitrogen. One of the dinitro precursors was also analyzed by single crystal X-ray crystallography, which showed that it crystallizes in monoclinic system with space group P2/n. The thermal behavior of the Cu(II) complexes was determined by thermogravimetric analysis (TGA) and kinetic parameters were evaluated from the data. Schiff base ligands, their precursors and metal complexes were also screened for antibacterial, antifungal, antitumor, Brine shrimp lethality, DPPH free radical scavenging and DNA damage assays. The results of these analyses indicated the substantial potential of the synthesized Schiff bases, their precursors and Cu(II) complexes in biological field as future drugs.

  12. The Chlorine Isotope Composition of the Solar Nebula & Implications to the Sources of Volatiles to the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Gargano, A. M.; Sharp, Z. D.

    2017-12-01

    It was originally proposed by Sharp et al., 2016 that the solar nebula was isotopically light based on limited sampling of the Ol-phyric shergottites and two ordinary chondrites (Parnallee LL3.00, and NWA 8276 L3.00). Iron meteorites are remnants of early planetesimals which segregated cores <1Ma after CAI's and have δ37Cl values as low as -7‰, consistent with a light nebular source. Chondrules are relatively younger than iron meteorite parent bodies (2-3Ma after CAI's) and exhibit evidence for mixing with & recycling numerous isotopically distinct precursors as observed by Cl rich chondrules in Semarkona, and Qingzhen. The average δ37Cl values of chondrites are around 0‰, independent of petrologic type or [Cl], suggesting that chondrule forming regions have similar chlorine isotope sources. The average δ37Cl values of chondrites are consistent with a +3 to +6‰ isotopic fractionation of HCl clathrate from HCl gas, which occurred beyond the snow-line at 150K. The recycling of chondritic precursors mixed with HCl clathrate can account for pristine type 3.00 chondrites with δ37Cl values at approximately 0‰ independent of [Cl], or petrologic type. The source of volatiles to the terrestrial planets is commonly assumed to be chondritic in origin. These preliminary chlorine isotope data suggest that early planetesimals and planetary embryos had a solar Cl component at -7‰ or less, and secondary processes has since increased the δ37Cl values of Earth, Mars, and most chondrites. The chlorine isotope system therefore provides a new constraint regarding the sources of volatiles to the terrestrial planets. The δ37Cl value of the bulk Earth is around 0‰, inconsistent with a nebular source as measured in the Martian mantle but similar to that of chondrites with HCl clathrate precursors. The prolonged accretion of heavy chondritic material to Earth can account for the chlorine isotope discrepancy between the Earth and Mars, but is unconstrained by HSE abundances before complete core-mantle differentiation. Here, we examine the amount of chondritic chlorine and water that can added to the Earth allowable by HSE abundances and explore other potential sources of volatiles to the terrestrial planets to account for isotopic and elemental discrepancies.

  13. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.

  14. Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2

    PubMed Central

    Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057

  15. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  16. Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts.

    PubMed

    Houtz, Erika F; Sutton, Rebecca; Park, June-Soo; Sedlak, Margaret

    2016-05-15

    In late 2014, wastewater effluent samples were collected from eight treatment plants that discharge to San Francisco (SF) Bay in order to assess poly- and perfluoroalkyl substances (PFASs) currently released from municipal and industrial sources. In addition to direct measurement of twenty specific PFAS analytes, the total concentration of perfluoroalkyl acid (PFAA) precursors was also indirectly measured by adapting a previously developed oxidation assay. Effluent from six municipal treatment plants contained similar amounts of total PFASs, with highest median concentrations of PFHxA (24 ng/L), followed by PFOA (23 ng/L), PFBA (19 ng/L), and PFOS (15 ng/L). Compared to SF Bay municipal wastewater samples collected in 2009, the short chain perfluorinated carboxylates PFBA and PFHxA rose significantly in concentration. Effluent samples from two treatment plants contained much higher levels of PFASs: over two samplings, wastewater from one municipal plant contained an average of 420 ng/L PFOS and wastewater from an airport industrial treatment plant contained 560 ng/L PFOS, 390 ng/L 6:2 FtS, 570 ng/L PFPeA, and 500 ng/L PFHxA. The elevated levels observed in effluent samples from these two plants are likely related to aqueous film forming foam (AFFF) sources impacting their influent; PFASs attributable to both current use and discontinued AFFF formulations were observed. Indirectly measured PFAA precursor compounds accounted for 33%-63% of the total molar concentration of PFASs across all effluent samples and the PFAA precursors indicated by the oxidation assay were predominately short-chained. PFAS levels in SF Bay effluent samples reflect the manufacturing shifts towards shorter chained PFASs while also demonstrating significant impacts from localized usage of AFFF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors.

    PubMed

    Minguillón, M C; Pérez, N; Marchand, N; Bertrand, A; Temime-Roussel, B; Agrios, K; Szidat, S; van Drooge, B; Sylvestre, A; Alastuey, A; Reche, C; Ripoll, A; Marco, E; Grimalt, J O; Querol, X

    2016-07-18

    Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by (14)C analysis increased from 43% to 54% of the total OC. The combination of (14)C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 μg m(-3) from the first to the last sample.

  18. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    EPA Science Inventory

    Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, ...

  19. Method for forming solar cell materials from particulars

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2001-01-01

    Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.

  20. AMMONIA EMISSION FACTORS FROM SWINE FINISHING OPERATIONS

    EPA Science Inventory

    The paper presents results from two new studies at swine finishing facilities. (NOTE: Concentrated anaimal feeding operations (CAFOs) are being examined in several regions of the U.S. as major sources of ammonia and particulate matter precursors. EPA's National Risk Management Re...

Top