Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong
2018-03-01
Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation
NASA Astrophysics Data System (ADS)
Yuan, Lihua; Kang, Long; Chen, Yuhong; Wang, Daobin; Gong, Jijun; Wang, Chunni; Zhang, Meiling; Wu, Xiaojuan
2018-03-01
Hydrogen storage capacity on Titanium (Ti) decorated porous graphene (PG) has been investigated using density functional theory simulations with generalized gradient approximation method. The possible adsorption sites of Ti atom on PG and electronic properties of Ti-PG system are also discussed.The results show a Ti atom prefers to strongly adsorb on the center site above the C hexagon with the binding energy of 3.65 eV, and the polarization and the hybridization mechanisms both contribute to the Ti atom adsorption on PG. To avoid a tendency of clustering among Ti atoms, the single side of the PG unit cell should only contain one Ti atom. For the single side of PG, four H2 molecules can be adsorbed around Ti atom, and the adsorption mechanism of H2 molecules come from not only the polarization mechanism between Ti and H atoms but also the orbital hybridization among Ti atom, H2 molecules and C atoms. For the case of double sides of PG, eight H2 molecules can be adsorbed on Ti-decorated PG unit cell with the average adsorption energy of -0.457 eV, and the gravimetric hydrogen storage capacity is 6.11 wt.%. Furthermore, ab inito molecular-dynaics simulation result shows that six H2 molecules can be adsorbed on double sides of unit cell of Ti-PG system and the configuration of Ti-PG is very stable at 300 K and without external pressure, which indicates Ti-decorated PG could be considered as a potential hydrogen storage medium at ambient conditions.
NASA Astrophysics Data System (ADS)
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu
2016-09-28
Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.
DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip
2017-10-11
Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.
Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts.
Li, Shu-Long; Yin, Hui; Kan, Xiang; Gan, Li-Yong; Schwingenschlögl, Udo; Zhao, Yong
2017-11-15
We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C 3 N 4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C 3 N 4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C 3 N 4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C 3 N 4 gives rise to promising single-atom catalysts at low temperature.
Direct observation of interfacial Au atoms on TiO₂ in three dimensions.
Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min
2015-04-08
Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.
C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.
Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng
2018-01-24
Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
High-Performance Ru1 /CeO2 Single-Atom Catalyst for CO Oxidation: A Computational Exploration.
Li, Fengyu; Li, Lei; Liu, Xinying; Zeng, Xiao Cheng; Chen, Zhongfang
2016-10-18
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO 2 (111), TiO 2 (110) and Al 2 O 3 (001) surfaces. The heterogeneous system Ru 1 /CeO 2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO 2 (110) and Al 2 O 3 (001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru 1 /CeO 2 exhibits good catalytic activity for CO oxidation via the Langmuir-Hinshelwood mechanism, thus is a promising single-atom catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Namai, Yoshimichi; Matsuoka, Osamu
2006-04-06
We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.
Atomic-scale analysis of cation ordering in reduced calcium titanate.
Li, Luying; Hu, Xiaokang; Jiang, Fan; Jing, Wenkui; Guo, Cong; Jia, Shuangfeng; Gao, Yihua; Wang, Jianbo
2017-11-03
The phenomenon of cation ordering is closely related to certain physical properties of complex oxides, which necessitates the search of underlying structure-property relationship at atomic resolution. Here we study the superlattices within reduced calcium titanate single crystal micro-pillars, which are unexpected from the originally proposed atomic model. Bright and dark contrasts at alternating Ti double layers perpendicular to b axis are clearly observed, but show no signs in corresponding image simulations based on the proposed atomic model. The multi-dimensional chemical analyses at atomic resolution reveal periodic lower Ti concentrations at alternating Ti double layers perpendicular to b axis. The following in-situ heating experiment shows no phase transition at the reported T c and temperature independence of the superlattices. The dimerization of the Ti-Ti bonds at neighboring double rutile-type chains within Ti puckered sheets are directly observed, which is found to be not disturbed by the cation ordering at alternating Ti double layers. The characterization of cation ordering of complex oxides from chemical and structural point of view at atomic resolution, and its reaction to temperature variations are important for further understanding their basic physical properties and exploiting potential applications.
Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.
Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo
2018-01-10
Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth
Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...
2016-01-01
The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less
EXAFS and XANES investigation of the ETS-10 microporous titanosilicate.
Prestipino, C; Solari, P L; Lamberti, C
2005-07-14
In this work, we report state-of-the-art analysis of both Ti K-edge high-resolution XANES and EXAFS data collected on the ETS-10 molecular sieve at the GILDA BM8 beamline of the ESRF facility. The interatomic distances and the angles obtained in our EXAFS study are in fair agreement with the single-crystal XRD data of Wang and Jacobson (Chem. Commun. 1999, 973) and with the recent ab initio periodic study of Damin et al. (J. Phys. Chem. B 2004, 108, 1328) Differently from previous EXAFS work (J. Phys. Chem. 1996, 100, 449), our study supports a model of ETS-10 where the Ti atoms are bonded with two equivalent axial oxygen atoms. This model is also able to reproduce the edge and the post-edge region of the XANES spectrum. Conversely, the weak but well-defined pre-edge peak at 4971.3 eV can be explained only by assuming that a fraction of Ti atoms are in a local geometry similar to that of the pentacoordinated Ti sites in the ETS-4 structure. These Ti atoms in ETS-10 should be the terminal of the -Ti-O-Ti-O-Ti- chains, of which the actual number is strongly increased by the high crystal defectivity (Ti vacancies).
Sun, Jin P; Dai, Jianhong; Song, Yan; Wang, You; Yang, Rui
2014-12-10
A basic understanding of the affinity between the hydroxyapatite (HA) and α-Ti surfaces is obtained through electronic structure calculations by first-principles method. The surface energies of HA(0001), HA (011̅0), HA (101̅1), and Ti(0001) surfaces have been calculated. The HA(0001) presents the most thermodynamically stable of HA. The HA/Ti interfaces were constructed by two kinds of interface models, the single interface (denoted as SI) and the double-interface (denoted as DI). Two methods, the full relaxation and the UBER, were applied to determine the interfacial separation and the atomic arrangement in the interfacial zone. The works of adhesion of interfaces with various stoichiometric HA surfaces were evaluated. For the HA(0001)/Ti(0001) interfaces, the work of adhesion is strongly dependent on the chemical environment of the HA surface. The values are -2.33, -1.52, and -0.80 J/m(2) for the none-, single-, and double-Ca terminated HA/Ti interfaces, respectively. The influence of atomic relaxation on the work of adhesion and interface separation is discussed. Full relaxation results include -1.99 J/m(2) work of adhesion and 0.220 nm separation between HA and Ti for the DI of 1-Ca-HA/Ti interface, while they are -1.14 J/m(2) and 0.235 nm by partial relaxation. Analysis of electronic structure reveals that charge transfer between HA and Ti slabs occurs during the formation of the HA/Ti interface. The transfer generates the Ti-O or Ti-Ca bonds across the interface and drives the HA/Ti interface system to metallic characteristic. The energetically favorable interfaces are formed when the outmost layer of HA comprises more O atoms at the interface.
Lee, S-H; Todai, M; Tane, M; Hagihara, K; Nakajima, H; Nakano, T
2012-10-01
The elastic anisotropy of the Ti-15Mo-5Zr-3Al (mass%) β-Ti alloy, an ISO certified biomedical material, was investigated using its single crystal. It was revealed that the Young's modulus exhibited pronounced anisotropy. The Young's modulus was reduced to 44.4GPa along the 〈100〉 direction in the Ti-15Mo-5Zr-3Al single crystal, that is comparable to that of human cortical bones. We determined the strategy that β-Ti alloys with extremely low moduli can be developed by reducing the electron-atom (e/a) ratio in alloys, and by suppressing the formation of the ω-phase at the same time. This new knowledge must lead to the development of "single crystalline β-Ti implant materials" as hard tissue replacements for reducing the stress shielding effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Kurt D.; Slepko, Alex; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu
2016-08-14
First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp){sub 2}] on TiO{sub 2}-terminated strontium titanate, SrTiO{sub 3} (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp){sub 2} precursor is shown to adsorb on the TiO{sub 2}-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C–Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculationsmore » are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr({sup i}Pr{sub 3}Cp){sub 2}], adsorbed on TiO{sub 2}-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO{sub 2}-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp){sub 2}, may initiate film growth on non-hydroxylated surfaces.« less
In situ monitoring of atomic layer epitaxy via optical ellipsometry
NASA Astrophysics Data System (ADS)
Lyzwa, F.; Marsik, P.; Roddatis, V.; Bernhard, C.; Jungbauer, M.; Moshnyaga, V.
2018-03-01
We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden-Popper thin films of SrO(SrTiO3) n=4 were grown by means of metalorganic aerosol deposition in the atomic layer epitaxy mode on SrTiO3(1 0 0), LSAT(1 0 0) and DyScO3(1 1 0) substrates. The measured time dependences of ellipsometric angles, Δ(t) and Ψ(t), were described by using a simple optical model, considering the sequence of atomic layers SrO and TiO2 with corresponding bulk refractive indices. As a result, valuable online information on the atomic layer epitaxy process was obtained. Ex situ characterization techniques, i.e. transmission electron microscopy, x-ray diffraction and x-ray reflectometry verify the crystal structure and confirm the predictions of optical ellipsometry.
Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Moya, Jaime M.; Yuan, Renliang
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.
TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
Bandura, Andrei V; Evarestov, Robert A
2014-02-15
Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.
RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.
2004-05-01
Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less
Srinivasadesikan, V; Raghunath, P; Lin, M C
2015-06-01
Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.
First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN
NASA Astrophysics Data System (ADS)
Guo, Fangyu; Wang, Jianchuan; Du, Yong; Wang, Jiong; Shang, Shun-Li; Li, Songlin; Chen, Li
2018-09-01
Using first-principles calculations based on density functional theory, we systematically study the adsorption and diffusion behaviors of single oxygen (O) atom on the (0 0 1) surfaces of TiN, ZrN and HfN nitride coatings. The top of N site (top(N)) is the most energetic favorable site for O atom and followed by the hollow site for all the three nitrides. O atom tends to diffuse on the (0 0 1) surfaces of the nitrides from the top of transition metal top(TM) sites to a neighboring top(TM) sites by avoiding N sites. The adsorption of O on ZrN and HfN is more stable than that on TiN. Our findings could explain the experimental phenomenon that the oxide thickness of TiN is smaller than that of ZrN under the same oxidation conditions.
Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.
2017-01-15
Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТРand KTP:6%Nbmore » crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.« less
Atomic defects in monolayer titanium carbide (Ti 3C 2T x) MXene
Sang, Xiahan; Xie, Yu; Lin, Ming -Wei; ...
2016-09-06
Here, the 2D transition metal carbides or nitrides, or MXenes, are emerging as a group of materials showing great promise in lithium ion batteries and supercapacitors. Until now, characterization and properties of single-layer MXenes have been scarcely reported. Here, using scanning transmission electron microscopy, we determined the atomic structure of freestanding monolayer Ti 3C 2T x flakes prepared via the minimally intensive layer delamination method and characterized different point defects that are prevalent in the monolayer flakes. We determine that the Ti vacancy concentration can be controlled by the etchant concentration during preparation. Density function theory-based calculations confirm the defectmore » structures and predict that the defects can influence the surface morphology and termination groups, but do not strongly influence the metallic conductivity. Using devices fabricated from single- and few-layer Ti 3C 2T x MXene flakes, the effect of the number of layers in the flake on conductivity has been demonstrated.« less
Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms ofmore » the absolute density of species, are stressed.« less
Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
NASA Astrophysics Data System (ADS)
Park, Young-Bae; Ruglovsky, Jennifer L.; Atwater, Harry A.
2004-07-01
Single crystal BaTiO3 thin films have been transferred onto Pt-coated and Si3N4-coated substrates by the ion implantation-induced layer transfer method using H + and He+ ion coimplantation and subsequent annealing. The transferred BaTiO3 films are single crystalline with root mean square roughness of 17nm. Polarized optical and piezoresponse force microscopy (PFM) indicate that the BaTiO3 film domain structure closely resembles that of bulk tetragonal BaTiO3 and atomic force microscopy shows a 90° a -c domain structure with a tetragonal angle of 0.5°-0.6°. Micro-Raman spectroscopy indicates that the local mode intensity is degraded in implanted BaTiO3 but recovers during anneals above the Curie temperature. The piezoelectric coefficient, d33, is estimated from PFM to be 80-100pm/V and the coercive electric field (Ec) is 12-20kV/cm, comparable to those in single crystal BaTiO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gall, Philippe; Guizouarn, Thierry; Gougeon, Patrick, E-mail: Patrick.Gougeon@univ-rennes1.fr
2015-07-15
Single crystals of the new quaternary compound In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} were obtained by solid state reaction. The crystal structure was determined by single-crystal X-ray diffraction. In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} crystallizes in the orthorhombic space group Pbca with unit-cell parameters a=9.4432(14) Å, b=11.4828(12) Å, c=20.299(4) Å and Z=4. Full-matrix least-squares refinement on F{sup 2} using 3807 independent reflections for 219 refinable parameters resulted in R{sub 1}=0.0259 and wR{sub 2}=0.0591. The crystal structure contains in addition to Mo{sub 14} clusters the first examples of mono- and bi-capped trioctahedral Mo{sub 14} i.e. Mo{sub 15} and Mo{sub 16} clusters.more » The oxygen framework derives from a stacking along the a direction of close-packed layers with sequence (…ABAC…). The Mo–Mo distances range between 2.6938(5) and 2.8420(6) Å and the Mo–O distances between 1.879(5) and 2.250(3) Å, as usually observed in molybdenum oxide clusters. The indium atoms form In{sub 4}{sup 6+} bent chains with In–In distances of 2.6682(5) and 2.6622(8) Å and the Ti atoms are in highly distorted octahedral sites of oxygen atoms with Ti–O distances ranging between 1.865(4) and 2.161(4) Å. Magnetic susceptibility measurements confirm the presence of Ti{sup 4+} cations and the absence of localized moments on the Mo network. Electrical resistivity measurements on a single crystal of In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} show a semimetallic behavior. - Graphical abstract: We present here the synthesis, the crystal structure, and the electrical and magnetic properties of the new compound In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} in which Mo{sub 14} clusters coexist statistically with mono- and bi-capped trioctahedral Mo{sub 14} that is Mo{sub 15} and Mo{sub 16} clusters. - Highlights: • Single crystals of In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} were obtained by solid state reaction. • The crystal structure contains Mo{sub 14}, Mo{sub 15} and Mo{sub 16} clusters. • The indium atoms form In{sub 4}{sup 6+} bent chains. • Poorly metallic behavior. • Absence of localized moments on the Mo network as well as on the Ti atoms.« less
Synthesis, structure, and physicochemical investigations of the new α Cu 0.50TiO(PO 4) oxyphosphate
NASA Astrophysics Data System (ADS)
Benmokhtar, S.; Belmal, H.; El Jazouli, A.; Chaminade, J. P.; Gravereau, P.; Pechev, S.; Grenier, J. C.; Villeneuve, G.; de Waal, D.
2007-02-01
The room-temperature crystal structure of a new Cu(II) oxyphosphate— α Cu 0.50IITiO(PO 4)—was determined from X-ray single crystals diffraction data, in the monoclinic system, space group P2 1/c. The refinement from 5561 independent reflections lead to the following parameters: a=7.5612(4)Å, b=7.0919(4)Å, c=7.4874(4)Å, β=122.25(1)°, Z=4, with the final R=0.0198, wR=0.0510. The structure of α Cu 0.50IITiO(PO 4) can be described as a TiOPO 4 framework constituted by chains of tilted corner-sharing [TiO 6] octahedra running parallel to the c-axis and cross linked by phosphate [PO 4] tetrahedra, where one-half of octahedral cavities created are occupied by Cu atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.308 Å) and short (1.722 Å) Ti-O(1) bonds along chains. Such O(1) atoms not linked to P atoms justify the oxyphosphate formulation α Cu 0.50TiO(PO 4). The divalent cations Cu 2+ occupy a Jahn-Teller distorted octahedron sharing two faces with two [TiO 6] octahedra. EPR and optical measurements are in good agreement with structural data. The X-ray diffraction results are supported by Raman and infrared spectroscopy studies that confirmed the existence of the infinite chains -Ti-O-Ti-O-Ti-. α Cu 0.50TiO(PO 4) shows a Curie-Weiss paramagnetic behavior in the temperature range 4-80 K.
Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.
1997-01-01
The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.
NASA Astrophysics Data System (ADS)
Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.
2014-02-01
Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.
Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition
NASA Astrophysics Data System (ADS)
Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós
2017-10-01
Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.
Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.
Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo
2015-03-14
H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.
NASA Astrophysics Data System (ADS)
Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry
2013-04-01
Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding defects in TM nano-grain oxides are qualitatively similar to vacant-site defects in non-crystalline SiO2 and GeO2 for ulta-thin films, < 0.2 nm thick, and yield similar performance in MOSCAPs on Ge substrates heralding applications in aggressively-scale CMOS devices.
García-Herbosa, Gabriel; Aparicio, Mario; Mosa, Jadra; Cuevas, José V; Torroba, Tomás
2016-09-21
(1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature. The methylene signals of free lithium ethoxide and Li[Ti3(OEt)13] coalesce at 20 °C when the atomic ratio is 5 : 5; however, the same coalescence is only observed above 60 °C when the atomic ratio is 4 : 5. We suggest that the highest chemical equivalence observed by (1)H NMR spectroscopy achieved through chemical exchange of ethoxide groups involves the highest microscopic structural homogeneity of the sol precursor and will lead to the best gel after hydrolysis. Variable temperature (1)H NMR spectra at 400 MHz of variable molar ratios of LiOEt/Ti(OPr(i))4 are discussed to understand the structural features of the sol precursor. While the precursor with the atomic ratio 5Li : 5Ti shows no signal of free LiOEt at 20 °C, both 4Li : 5Ti and 7Li : 5Ti show free LiOEt at 20 °C in their (1)H NMR spectra, indicating that the molar ratio 5Li : 5Ti gives the maximum rate of chemical exchange. DFT calculations have been performed to support the structure of the anion [Ti3(OEt)13](-) at room temperature.
Two-dimensional triangular lattice and its application to lithium-intercalated layered compounds
NASA Astrophysics Data System (ADS)
Decerqueira, R. O.
1982-08-01
Good rechargeable batteries are being searched for use in electric vehicles and in energy storage during off-peak consumption periods and from solar sources. The interest in lithium intercalation compounds has been recently enhanced by the search for such batteries. The process of intercalation of lithium in several transition metal dichalcogenides can provide an emf of several volts. The progress achieved in the last decade in the investigation of these intercalates has been facilitated by the availability of the dichalcogenides as single crystals and by their chemical stability. The transition-metal dichalcogenides and their Li-intercalates are studied, with emphasis on the Li/su xTa/sub yTi/sub l-y/S2 series. The interactions between the Li atoms and the applicability of a lattice gas model to the problem of ordering of these atoms is discussed. A formulation is presented of the cluster-variation aproximation to the lattice gas problem. The single-site and the nearest-neighbor triangle basic clusters are considered as models for Li/sub x TiS2. Also a theory is presented for the effects of a random distribution of different species of host atoms, as in Ta/sub y/Ti/sub l-y/S2.
Ganbaatar, Narangerel; Imai, Kanae; Yano, Taka-Aki; Hara, Masahiko
2017-01-01
Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO 2 ) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO 2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO 2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO 2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.
Yoo, Byung-Kuk; Su, Zixue; Thomas, John Meurig; Zewail, Ahmed H.
2016-01-01
Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti4+=O2− double bond transformation to a Ti3+−O1− single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti3+−O1− local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions. PMID:26729878
Nolan, Michael; Tofail, Syed A M
2010-05-01
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, M. B., E-mail: begonia@ubu.es; Vega, A.; Balbás, L. C.
2014-05-07
Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic propertiesmore » of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n{sub c} = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding energies.« less
First-principles study of Ti intercalation between graphene and Au surface
NASA Astrophysics Data System (ADS)
Kaneko, T.; Imamura, H.
2011-06-01
We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.
Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals
NASA Astrophysics Data System (ADS)
Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi
2014-06-01
The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.
Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.
2016-10-17
New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less
Strong polarization enhancement in asymmetric three-component ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.
2005-01-01
Theoretical predictions-motivated by recent advances in epitaxial engineering-indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.
Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers.
Bakr, Zinab H; Wali, Qamar; Ismail, Jamil; Elumalai, Naveen Kumar; Uddin, Ashraf; Jose, Rajan
2018-06-01
In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO 2 -TiO 2 ) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO 2 and TiO 2 in a single SnO 2 -TiO 2 composite nanowire for dye-sensitized solar cells" [1].
NASA Astrophysics Data System (ADS)
Deng, Hui-Xiong; Song, Zhi-Gang; Li, Shu-Shen; Wei, Su-Huai; Luo, Jun-Wei
2018-05-01
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, but the transition may also occur between different classes of topological Dirac phases. However, it is a fundamental challenge to realize quantum transition between Z2 nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because Z2 TI and TCI are hardly both co-exist in a single material due to their contradictory requirement on the number of band inversions. The Z2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas, the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Here, take PbSnTe2 alloy as an example, we show that at proper alloy composition the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z2 TI phase when the alloy is ordered from a random phase into a stable CuPt phase. Our results suggest that atomic-ordering provides a new platform to switch between different topological phases.
Structure of a model TiO2 photocatalytic interface
NASA Astrophysics Data System (ADS)
Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G.
2017-04-01
The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
Structure of a model TiO2 photocatalytic interface.
Hussain, H; Tocci, G; Woolcot, T; Torrelles, X; Pang, C L; Humphrey, D S; Yim, C M; Grinter, D C; Cabailh, G; Bikondoa, O; Lindsay, R; Zegenhagen, J; Michaelides, A; Thornton, G
2017-04-01
The interaction of water with TiO 2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO 2 (110) interface with water. This has provided an atomic-level understanding of the water-TiO 2 interaction. However, nearly all of the previous studies of water/TiO 2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO 2 (110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O 2 and H 2 O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO 2 photocatalysis.
Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.
Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B
2014-09-01
The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie
2018-06-13
Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.
Nanometer Scale Confined Growth of Single-Crystalline Gold Nanowires via Photocatalytic Reduction.
Lee, Seonhee; Bae, Changdeuck; Shin, Hyunjung
2018-06-20
Single-crystalline gold nanowires (Au NWs) are directly synthesized by the photocatalytic reduction of an aqueous HAuCl 4 solution inside high-aspect-ratio TiO 2 nanotubes (NTs). Crystalline TiO 2 (anatase) NTs are prepared by the template-assisted atomic layer deposition technique with a subsequent annealing. Under the irradiation of ultraviolet light, photoexcited electrons are formed on the surfaces of TiO 2 NTs and could reduce Au ions to create nuclei without using any surfactant, reducing agent, and/or seed. Once nucleation occurred, high-aspect-ratio Au NWs are grown inside the TiO 2 NTs in a diffusion-controlled manner. As the solution pH increased, the nucleation/growth rate decreased and twin-free (or not observed), single-crystalline Au NWs are formed. At a pH above 6, the nucleation/growth rates increased and Au nanoparticles are observed both inside and outside of the TiO 2 NTs. The confined nanoscale geometries of the interior of the TiO 2 NTs are found to play a key role in the controlled diffusion of Au species and in determining the crystal morphology of the resulting Au NWs.
Laser-assisted atom probe tomography of Ti/TiN films deposited on Si.
Sanford, N A; Blanchard, P T; White, R; Vissers, M R; Diercks, D R; Davydov, A V; Pappas, D P
2017-03-01
Laser-assisted atom probe tomography (L-APT) was used to examine superconducting TiN/Ti/TiN trilayer films with nominal respective thicknesses of 5/5/5 (nm). Such materials are of interest for applications that require large arrays of microwave kinetic inductance detectors. The trilayers were deposited on Si substrates by reactive sputtering. Electron energy loss microscopy performed in a scanning transmission electron microscope (STEM/EELS) was used to corroborate the L-APT results and establish the overall thicknesses of the trilayers. Three separate batches were studied where the first (bottom) TiN layer was deposited at 500°C (for all batches) and the subsequent TiN/Ti bilayer was deposited at ambient temperature, 250°C, and 500°C, respectively. L-APT rendered an approximately planar TiN/Si interface by making use of plausible mass-spectral assignments to N 3 1+ , SiN 1+ , and SiO 1+ . This was necessary since ambiguities associated with the likely simultaneous occurrence of Si 1+ and N 2 1+ prevented their use in rendering the TiN/Si interface upon reconstruction. The non-superconducting Ti 2 N phase was also revealed by L-APT. Neither L-APT nor STEM/EELS rendered sharp Ti/TiN interfaces and the contrast between these layers diminished with increased film deposition temperature. L-APT also revealed that hydrogen was present in varying degrees in all samples including control samples that were composed of single layers of Ti or TiN. Published by Elsevier Ltd.
Interactions of small platinum clusters with the TiC(001) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jianjun; Li, Shasha; Chu, Xingli
2015-11-14
Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Pt{sub n}, n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt{sub 2} cluster prefers dimerization and a Pt{sub 3} cluster forms a linear structure on the TiC(001). As for the Pt{sub 4} cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt{sub 5} cluster, the adsorbed Pt{submore » 5} cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Pt{sub n} clusters, resulting in the negatively charged Pt{sub n} clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed.« less
Kongkanand, Anusorn; Kamat, Prashant V
2007-08-01
The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.
NASA Astrophysics Data System (ADS)
Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain
2017-12-01
High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.
Fan, Lisha; Gao, Xiang; Lee, Dongkyu; ...
2017-03-01
Here, this study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO 2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO 2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growthmore » of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.« less
Atomic structure of (111) SrTiO3/Pt interfaces
NASA Astrophysics Data System (ADS)
Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne
2006-03-01
Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.
In vitro cytotoxicity evaluation of a 50.8% NiTi single crystal.
Manceur, Aziza; Chellat, Fatiha; Merhi, Yahye; Chumlyakov, Yuriy; Yahia, L'Hocine
2003-11-01
To our knowledge, the biocompatibility of nickel-titanium (NiTi) single crystals has not been reported. Yet certain orientations of single crystals present several advantages over the polycrystalline form in terms of maximal strain, fatigue resistance, and temperature range of superelasticity. Therefore we tested the in vitro biocompatibility of 50.8% NiTi single crystals in the orientation <001> after four different heat treatments in a helium atmosphere followed by mechanical polishing. The study was performed on the material extracts after immersion of the specimens in cell culture medium (DMEM) for 7 days at 37 degrees C. Cytotoxicity studies were performed on L-929 mouse fibroblasts using the MTT assay. J-774 macrophages were used to assess the potential inflammatory effect of the extracts by IL1-beta and TNF-alpha dosages (sandwich ELISA method). Exposure of L-929 to material extracts did not affect cell viability. In addition, IL1-beta and TNF-alpha secretion was not stimulated after incubation with NiTi extracts compared to the negative controls. These results were predictable since atomic absorption spectroscopy did not detect nickel ions in the extracts with a resolution of 1 ppm. Within the limits of in vitro testing, our results demonstrate that the TiNi(50.8%) single crystals do not trigger a cytotoxic reaction. Copyright 2003 Wiley Periodicals, Inc.
Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf
2018-06-01
A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures (<120 mbar s) little to no Pt is deposited after the first cycle and most of the Pt is atomically dispersed. Increasing the oxygen exposure above 120 mbar s results in a rapid increase in the Pt loading, which saturates at exposures > 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-01-01
Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613
Excess charge driven dissociative hydrogen adsorption on Ti2O4.
Song, Xiaowei; Fagiani, Matias R; Debnath, Sreekanta; Gao, Min; Maeda, Satoshi; Taketsugu, Tetsuya; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R; Lyalin, Andrey
2017-08-30
The mechanism of dissociative D 2 adsorption on Ti 2 O 4 - , which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti 2 O 4 - readily reacts with D 2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO-Ti-(O) 2 -Ti(D)-O) - . The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D 2 -bond cleavage followed by D-atom migration. We show that, compared to neutral Ti 2 O 4 , the excess negative charge in Ti 2 O 4 - is responsible for the substantial lowering of the D 2 dissociation barrier, but does not affect the molecular D 2 adsorption energy in the initial physisorption step.
NASA Astrophysics Data System (ADS)
Hansen, Robin Paul
Several roadblocks prevent the large-scale commercialization of hydrogen fuel cells, including the stability of the Pt catalysts and their substrates, as well as the high cost of Pt. This is particularly true for the cathode, which requires a higher Pt loading because of the slow kinetics of the oxygen reduction reaction (ORR). The problem with the stability of the substrate can be solved by replacing the traditional carbon support with a conductive metal oxide such as reduced TiO2, which will not easily corrode and should result in longer lasting fuel cells. In this study, Pt was deposited either by atomic layer deposition (ALD) or physical vapor deposition (PVD). The typical size of the Pt islands that were grown using these deposition techniques was 3-8 nm. One factor that can inhibit the catalytic activity of a metal catalyst on a metal oxide is the strong metal support interaction (SMSI). This is where a metal on a reducible metal oxide can be encapsulated by a layer of the metal oxide support material at elevated temperatures. The processing of materials through atomic layer deposition can exceed this temperature. The TiO2 substrates used in this study were either grown by ALD, which results in a polycrystalline anatase film, or were single-crystal rutile TiO2(110) samples prepared in ultra-high vacuum (UHV). The Pt/TiO2 samples were tested electrochemically using cyclic voltammetry (CV) to determine the level of catalytic activity. To determine the effect of the SMSI interaction on the catalytic activity of the PVD grown samples, CV was performed on samples that were annealed in high vacuum after Pt deposition. Additional characterization was performed with scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and four point probe analysis. Platinum that was deposited by PVD was used as a standard since it is not affected by the SMSI at the low temperature of the substrate during deposition. These samples were analyzed after deposition and then annealed to higher temperatures to induce the SMSI effect. The AR-XPS results for the single crystal TiO2 substrate show that there is an increase in the Ti emission at glancing exit angle after an anneal at 150 °C, which indicates the onset of the SMSI. For the ALD TiO2 substrate, the onset of SMSI was at 380 °C. This work is believed to be the first time in which the SMSI was observed in this fashion. The CV data for the samples with PVD Pt the single crystal TiO2 substrate showed a large reduction of the hydrogen adsortion at 380 °C. For the ORR, there was a reduction in the ORR signal at 380 °C. By 750 °C, the ORR was almost completely suppressed. For the PVD Pt grown on the ALD TiO2 substrates, there was a large increase in the resistivity of the samples after exposure to the acidic electrolyte used during the CV measurements. This resulted in no CV signal for those samples. Another aspect that was significantly different for the two different substrates was the Pt growth morphology. Both the AR-XPS and SEM measurements indicate that the Pt on the single crystal TiO2 substrates grows as distinct islands. For the ALD TiO2 substrates, the Pt islands had a lower profile than the islands grown on the single crystal substrates. This morphology difference is believed to be due to the large defect density of the ALD generated TiO2 or possibly from the different chemical properties of the anatase surface. These results indicate that the ALD generated substrates are more resistant to the effects of the SMSI, but that the ALD substrates are more sensitive to surface contamination.
Zhang, Zeng-Guang; Xu, Hong-Guang; Zhao, Yuchao; Zheng, Weijun
2010-10-21
Small titanium-aluminum oxide clusters, TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3), were studied by using anion photoelectron spectroscopy. The adiabatic detachment energies of TiAlO(y) (-) (y=1-3) were estimated to be 1.11±0.05, 1.70±0.08, and 2.47±0.08eV based on their photoelectron spectra; those of TiAl(2)O(2) (-) and TiAl(2)O(3) (-) were estimated to be 1.17±0.08 and 2.2±0.1eV, respectively. The structures of these clusters were determined by comparison of density functional calculations with the experimental results. The structure of TiAlO(-) is nearly linear with the O atom in the middle. That of TiAlO(2) (-) is a kite-shaped structure. TiAlO(3) (-) has a kite-shaped TiAlO(2) unit with the third O atom attaching to the Ti atom. TiAl(2)O(2) (-) has two nearly degenerate Al-O-Ti-O-Al chain structures that can be considered as cis and trans forms. TiAl(2)O(3) (-) has two low-lying isomers, kite structure and book structure. The structures of these clusters indicate that the Ti atom tends to bind to more O atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Wang, Shuqiu; Castell, Martin R.
The atomic structures of two reconstructions, (√7 × √7)R19.1° and (√13 × √13)R13.9°, on the SrTiO 3 (111) surface were determined using a combination of density functional theory and scanning tunneling microscopy data and simulations. The combination of these methods allows for potential surface structures to be generated and verified in the absence of diffraction data, providing another tool for solving surface reconstructions. These reconstructions belong to the same stoichiometric, nSrTiO 3 • mTiO 2, structural family made up of an interconnected, single layer of edge-sharing TiO 6 and TiO 5[] octahedra. This family is found to include the previously-solvedmore » (2 × 2)a reconstruction as its smallest unit-cell sized member and serves as a tool for better understanding and predicting the structure of other reconstructions of arbitrary surface unit-cell size on SrTiO 3 (111). This reconstruction family and the calculations of surface energies for different hypothesis structures also shed light on the structure of Schottky defects observed on these reconstructed SrTO 3 (111) surfaces.« less
Stability of Titanium Nitride and Titanium Carbide When Exposed to Hydrogen Atoms from 298 to 1950 K
NASA Technical Reports Server (NTRS)
Philipp, Warren H.
1961-01-01
Titanium nitride and titanium carbide deposited on tungsten wires were exposed to hydrogen atoms (10(exp -4) atm pressure) produced by the action of microwave radiation on molecular hydrogen. The results of these experiments in the temperature range 298 to 1950 K indicate that no appreciable reaction takes place between atomic hydrogen and TiN or TiC. The formation of reaction products (NH3, CH4, C2H2) should be favored at lower temperatures. However, because of the high catalytic activity of Ti for H atom recombination, the rate of such reactions with H atoms is controlled by the rate of evaporation of Ti from the surface, this rate being low at temperatures below 1200 K. In order to interpret the stability of TiN and TiC in H atoms more fully, the stability of TiN and TiC in vacuum and H2 gas was also studied. The thermodynamic computations conform in order of magnitude to the experimentally found rates of decomposition of TiN and TiC in vacuum and are also consistent with the fact that no appreciable reaction is found with these compounds in molecular H2 at a pressure of 10(exp -3) atmosphere in the temperature range 2980 to 2060 K. When TiN or TiC was heated in atomic H or molecular H2, no reaction products other than those obtained from the simple decomposition of the nitride and carbide were observed. The gaseous products were analyzed in a mass spectrometer.
Preparation of atomically flat TiO2(001) surfaces
NASA Astrophysics Data System (ADS)
Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.
2015-03-01
Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiko, M.; Nose, K.; Suenaga, R.
2013-12-28
The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study.
Armbrüster, Marc; Schnelle, Walter; Schwarz, Ulrich; Grin, Yuri
2007-08-06
The chemical bonding in the isostructural intermetallic compounds TiSb2 and VSb2, crystallizing in the CuAl2 type, was investigated by means of quantum chemical calculations, particularly the electron localization function (ELF), as well as by Raman spectroscopy, Hall effect and conductivity measurements on oriented single crystals, and high-pressure X-ray powder diffraction. The homogeneity ranges of the compounds were determined by powder X-ray diffraction, WDXS, and DSC measurements. TiSb2 exhibits no significant homogeneity range, while VSb2 shows a small homogeneity range of approximately 0.3 at. %. According to the ELF calculations, the Sb atoms form dumbbells via a two-center two-electron bond, while the T atoms (T = Ti, V) build up chains along the crystallographic c-axis. Both building units are connected by covalent T-Sb-T three-center bonds, thus forming a three-dimensional network. The strength of the bonds involving Sb was determined by fitting a force constant model to the vibrational mode frequencies observed by polarized Raman measurements on oriented single crystals. The resulting bond order of the Sb2 dumbbells is 1, while the strength of the three-center bonds resembles a bond order of 1.5. The weak pressure dependence of the c/a ratio confirms the slightly different bonding picture in TiSb2 compared to that in CuAl2. Electrical transport measurements show the presence of free charge carriers, as well as a metal-like temperature dependence of the electrical resistivity.
Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.
Knipling, Keith E; Dunand, David C; Seidman, David N
2007-12-01
Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.
Strengthening of Fe3Al Aluminides by One or Two Solute Elements
NASA Astrophysics Data System (ADS)
Kratochvíl, Petr; Daniš, Stanislav; Minárik, Peter; Pešička, Josef; Král, Robert
2017-09-01
The compressive yield stress of Fe-26Al with additives Ti (0.5 to 4 at. pct), Cr (0.5 to 8 at. pct), Mo (0.5 to 4 at. pct), and V (0.5 to 8 at. pct) at 1073 K (800 °C) has been determined. The effect of the concentration of diverse solutes on the yield stress at 1073 K (800 °C) was compared, and the additivity of the effects of solutes was tested. The effects in iron aluminides with two solutes (V and Ti, Ti and Cr, V and Cr) are compared with those of a single solute V, Ti, and Cr. It is found that the additivity of yield stress increments is valid only for lower solute concentrations. When the amount of the solute atoms increases, the yield stress increment is substantially higher than the sum of the yield stress increments of single solutes. This behavior is related to the high-temperature order in iron aluminides.
Meker, Sigalit; Manna, Cesar M; Peri, Dani; Tshuva, Edit Y
2011-10-14
A series of Ti(IV) complexes containing diamino bis(phenolato) "salan" type ligands with NH coordination were prepared, and their hydrolysis and cytotoxicity were analyzed and compared to the N-methylated analogues. Substituting methyl groups on the coordinative nitrogen donor of highly active and stable Ti(IV) salan complexes with H atoms has two main consequences: the hydrolysis rate increases and the cytotoxic activity diminishes. In addition, the small modification of a single replacement of Me with H leads to a different major hydrolysis product, where a dinuclear Ti(IV) complex with two bridging oxo ligands is obtained, as characterized by X-ray crystallography, rather than a trinuclear cluster. A partial hydrolysis product containing a single oxo bridge was also crystallographically analyzed. Investigation of a series of complexes with NH donors of different steric and electronic effects revealed that cytotoxicity may be restored by fine tuning these parameters even for complexes of low stability.
Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain
2017-01-01
Abstract High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10−4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately –60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements. PMID:28740558
Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain
2017-01-01
High-quality thermoelectric La 0.2 Sr 0.8 TiO 3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO 3 (001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10 -4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO 3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.
Process for growing a film epitaxially upon a MgO surface
McKee, Rodney Allen; Walker, Frederick Joseph
1997-01-01
A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
A comparative study of the Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15
NASA Astrophysics Data System (ADS)
Tellier, J.; Boullay, Ph.; Manier, M.; Mercurio, D.
2004-06-01
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi 4Ti 4O 15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A2 1am. For the BaBi 4Ti 4O 15 phase, only a weak variation with respect to the F2 mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [ M2O 2] slabs is confirmed in agreement with the previous works but specific Ba 2+ and Bi 3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.
NASA Astrophysics Data System (ADS)
Jastrzębska, Agnieszka Maria; Karwowska, Ewa; Wojciechowski, Tomasz; Ziemkowska, Wanda; Rozmysłowska, Anita; Chlubny, Leszek; Olszyna, Andrzej
2018-02-01
The expanded Ti2C and Ti3C2 MXene phases were synthesized from their parent Ti2AlC and Ti3AlC2 MAX phases using the same conditions of the classical acidic aluminum extraction method. The assumption for the study was that the expanded Ti2C and Ti3C2 MXenes are composed of the same atoms and if are synthesized from MAX phases using the same conditions of the classical acidic aluminum extraction method, the observed bio-effects can be related only to the changes in their structures. The scanning electron microscope investigations indicated that the expanded Ti2C and Ti3C2 sheets formed the specific network of slit-shaped nano-pores. The x-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS) showed almost no difference in surface chemistry of Ti2C and Ti3C2 MXenes. The high-resolution transmission electron microscope investigations revealed, however, differences in atomic structure of the individual Ti2C and Ti3C2 sheets. Measured distance between Ti-C atomic layers in Ti2C was 9.76 Å and was larger by 0.53 Å in comparison with Ti3C2 (9.23 Å). Our investigations of bioactive properties toward model gram-negative Escherichia coli bacterial strain showed that the Ti2C MXene did not influence the viability of bacteria. Contrarily, the Ti3C2 MXene showed antibacterial properties. The results of the study indicate that the structure at the atomic scale may play a key role in the bioactivity of MXenes of the same chemical composition, but different stoichiometry, just like in case of Ti2C and Ti3C2.
Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh
2014-01-01
Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049
DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl
NASA Astrophysics Data System (ADS)
Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka
2014-02-01
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.
NASA Astrophysics Data System (ADS)
Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming
2014-01-01
The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.
Synthesis and structural study of Ti-rich Mg-Ti hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji
2014-02-26
Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less
Interfacial charge-transfer transitions in a TiO2-benzenedithiol complex with Ti-S-C linkages.
Fujisawa, Jun-ichi; Muroga, Ryuki; Hanaya, Minoru
2015-11-28
Interfacial charge-transfer (ICT) transitions between organic materials and inorganic semiconductors are a new mechanism for light absorption at organic-semiconductor interfaces. ICT transitions cause one-step interfacial charge separation without loss of energy. This feature is potentially useful to realize efficient organic-inorganic hybrid solar cells. ICT transitions have been examined by employing titanium dioxide (TiO2) nanoparticles chemisorbed with π-conjugated molecules via Ti-O-C linkages. Here, we report ICT transitions in a TiO2 and 1,2-benzenedithiol (BDT) complex with Ti-S-C linkages. BDT adsorbs on TiO2 by the bridging bidentate coordination of the sulfur atoms to surface titanium atoms. The TiO2-BDT complex shows ICT transitions from the BDT moiety to the conduction band of TiO2 in the visible region. The ICT transitions occur by orbital overlaps between the d orbitals of the surface titanium atoms and the π orbitals of the benzene ring. Our density-functional-theory (DFT) analysis reveals that the 3p valence orbitals of the sulfur bridging atoms contribute to more than 50% of the highest occupied molecular orbital (HOMO) and the 3d-3p(sulfur)-π interaction via the Ti-S-C linkage enhances the electronic mixing between the titanium atoms and the benzene moiety as compared to the 3d-2p(oxygen)-πvia the Ti-O-C linkage. This result indicates the important role of the heavier-atom linkers for strong organic-inorganic electronic couplings.
Process for growing a film epitaxially upon a MGO surface and structures formed with the process
McKee, Rodney Allen; Walker, Frederick Joseph
1998-01-01
A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa
2017-01-01
Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962
Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa
2017-05-31
Pure TiO₂, Y-N single-doped and codoped TiO₂ powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO₂ was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms.
Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys
NASA Astrophysics Data System (ADS)
Kaya, Irfan
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
Zhang, Wenqiang; Cheng, Chuan; Fang, Peilin; Tang, Bin; Zhang, Jindou; Huang, Guoming; Cong, Xin; Zhang, Bao; Ji, Xiao; Miao, Ling
2016-02-14
Nowadays, MXenes have received extensive concern as a prominent electrode material of electrochemical capacitors. As two important factors to the capacitance, the influence of the intrinsical terminations (F, O and OH) and coordination atoms (C and N) is investigated using first-principles calculations. According to the density of states aligned with the standard hydrogen electrode, it turns out that a Ti3CNO2 monolayer is proven to show an obvious pseudocapacitive behavior, while the bare, F and OH terminated Ti3CN monolayers may only present electrochemical double layer characters in an aqueous electrolyte. Moreover, the illustration of molecular orbitals over the Fermi level are mainly contributed by the d-orbitals of Ti atoms coordinated with O and N atoms, indicating that the redox pseudocapacitance of the Ti3CNO2 monolayer is promoted by the coordination N atoms. Then the superiority of N bonded Ti atoms in accepting charges can be visualized through the charge population. Further, the larger ratio of C/N in the coordination environment of Ti atoms indicates that more electrons can be stored. Our investigation can give an instructional advice in the MXenes-electrode production.
Xie, Sanmu; Cao, Daxian; She, Yiyi; Wang, Hongkang; Shi, Jian-Wen; Leung, Micheal K H; Niu, Chunming
2018-06-26
Atomic layer deposition (ALD) of TiO2 shells on MoO3 nanobelts (denote as TiO2@MoO3) is realized using a home-made ALD system, which allows a controllable hydrolysis reaction of TiCl4-H2O on an atomic scale. When used as an anode material for lithium ion batteries, the TiO2@MoO3 electrode demonstrates much enhanced lithium storage performance including higher specific capacity, better cycling stability and rate capability.
Hennes, M; Schuler, V; Weng, X; Buchwald, J; Demaille, D; Zheng, Y; Vidal, F
2018-04-26
We employ kinetic Monte-Carlo simulations to study the growth process of metal-oxide nanocomposites obtained via sequential pulsed laser deposition. Using Ni-SrTiO3 (Ni-STO) as a model system, we reduce the complexity of the computational problem by choosing a coarse-grained approach mapping Sr, Ti and O atoms onto a single effective STO pseudo-atom species. With this ansatz, we scrutinize the kinetics of the sequential synthesis process, governed by alternating deposition and relaxation steps, and analyze the self-organization propensity of Ni atoms into straight vertically aligned nanowires embedded in the surrounding STO matrix. We finally compare the predictions of our binary toy model with experiments and demonstrate that our computational approach captures fundamental aspects of self-assembled nanowire synthesis. Despite its simplicity, our modeling strategy successfully describes the impact of relevant parameters like the concentration or laser frequency on the final nanoarchitecture of metal-oxide thin films grown via pulsed laser deposition.
Periodic table of 3d-metal dimers and their ions.
Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H
2004-10-08
The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.
NASA Astrophysics Data System (ADS)
Christensen, Steven Thomas
This dissertation examines growth of platinum nanoparticles from vapor deposition on SrTiO3 using a characterization approach that combines imaging techniques and X-ray methods. The primary suite of characterization probes includes atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray absorption spectroscopy (XAS). The vapor deposition techniques include physical vapor deposition (PVD) by evaporation and atomic layer deposition (ALD). For the PVD platinum study, AFM/XRF showed ˜10 nm nanoparticles separated by an average of 100 nm. The combination of AFM, GISAXS, and XRF indicated that the nanoparticles observed with AFM were actually comprised of closely spaced, smaller nanoparticles. These conclusions were supported by high-resolution SEM. The unusual behavior of platinum nanoparticles to aggregate without coalescence or sintering was observed previously by other researchers using transmissision electron microscopy (TEM). Platinum nanoparticle growth was also investigated on SrTiO3 (001) single crystals using ALD to nucleate nanoparticles that subsequently grew and coalesced into granular films as the ALD progresses. The expected growth rate for the early stages of ALD showed a two-fold increase which was attributed to the platinum deposition occurring faster on the bare substrate. Once the nanoparticles had coalesced into a film, steady state ALD growth proceeded. The formation of nanoparticles was attributed to the atomic diffusion of platinum atoms on the surface in addition to direct growth from the ALD precursor gases. The platinum ALD nanoparticles were also studied on SrTiO3 nanocube powders. The SrTiO3 nanocubes average 60 nm on a side and the cube faces have a {001} orientation. The ALD proceeded in a similar fashion as on the single crystal substrates where the deposition rate was twice as fast as the steady state growth rate. The Pt nanoparticle size increased linearly starting at ˜0.7 nm for 1 ALD cycle to ˜3 nm for 5 ALD cycles. The platinum chemical state was also investigated using X-ray absorption spectroscopy. Platinum nanoparticles ˜1 nm or smaller tended to be oxidized. For larger nanoparticles, the platinum state systematically approached that of bulk platinum metal as the size (number of ALD cycles) increased. The platinum loading was exceptionally low, ˜10 -3 mg cm-2.
NASA Astrophysics Data System (ADS)
Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.
2018-03-01
Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.
NASA Astrophysics Data System (ADS)
Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di
2017-01-01
In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuya; Ohta, Yukinori; Yunoki, Seiji
2018-04-01
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe2 using a realistic multiorbital d -p model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti 3 d and Se 4 p orbitals in the monolayer TiSe2 on the basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se 4 p and conduction Ti 3 d bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome network of Ti atoms.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Deadmore, Daniel L.
1993-01-01
The indentation microhardness of stoichiometric and reduced single crystal rutile (TiO2) from 25 to 800 C is presented in this paper. The results serve two main purposes. One is to assess the effect of rutile's stoichiometry on its hardness. The other is to test recently suggested theory on solid lubrication with sub Stoichiometric rutile in an effort to better understand shear controlled phenomenon. Microhardness was measured using a Vickers diamond indentor on both vacuum and hydrogen reduced single crystal rutile from 25 to 800 C. The results indicate that stoichiometry and temperature have a pronounced effect on rutile's hardness. The measured effects lend support to theory on solid lubrication by enhanced crystallographic slip and suggest that solid lubricant materials may be produced by careful atomic level tailoring (stoichiometry control).
NASA Astrophysics Data System (ADS)
Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M.
2016-10-01
Core-shell carbon-TiO2 composite and hollow TiO2 nanospheres were prepared using carbon nanospheres as hard-templates, coating them with TiO2 using atomic layer deposition, and subsequent burning out of the carbon cores. The bare carbon, the composite carbon-TiO2 and the hollow TiO2 nanospheres were characterized with TG/DTA-MS, FTIR, XRD and SEM-EDX.
Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films
NASA Astrophysics Data System (ADS)
Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi
2018-05-01
Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.
Design of refractory high-entropy alloys
Gao, M. C.; Carney, C. S.; Dogan, O. N.; ...
2015-09-15
Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less
Local structure in BaTi O 3 - BiSc O 3 dipole glasses
Levin, I.; Krayzman, V.; Woicik, J. C.; ...
2016-03-14
Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less
2012-07-02
from complex user interactions due to the use of liquid lasing medium with finite lifetime. Solid state lasers such as titanium sapphire (Ti:Sapphire...transitions for laser -induced fluorescence of an accelerated atomic iodine singly charged ion (I+). While the second spectrum of iodine has been analyzed...diagnostics tools, such as laser -induced fluorescence (LIF), to examine the plasma acceleration within an electro-static plasma propulsion thruster. While
Towards ALD thin film stabilized single-atom Pd 1 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
Towards ALD thin film stabilized single-atom Pd 1 catalysts
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...
2016-07-27
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
NASA Astrophysics Data System (ADS)
Skonieczny, R.; Makowiecki, J.; Bursa, B.; Krzykowski, A.; Szybowicz, M.
2018-02-01
The titanyl phthalocyanine (TiOPc) thin film deposited on glass, silicon and gold substrate have been studied using Raman spectroscopy, atomic force microscopy (AFM), absorption and profilometry measurements. The TiOPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The Raman spectra have been recorded using micro Raman system equipped with a confocal microscope. Using surface Raman mapping techni que with polarized Raman spectra the polymorphic forms of the TiOPc thin films distribution have been obtained. The AFM height and phase image were examined in order to find surface features and morphology of the thin films. Additionally to compare experimental results, structure optimization and vibrational spectra calculation of single TiOPc molecule were performed using DFT calculations. The received results showed that the parameters like polymorphic form, grain size, roughness of the surface in TiOPc thin films can well characterize the obtained organic thin films structures in terms of their use in optoelectronics and photovoltaics devices.
First-principles studies on 3d transition metal atom adsorbed twin graphene
NASA Astrophysics Data System (ADS)
Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki
2018-05-01
Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.
Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin
2016-09-01
CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysinghe, Dileka; Smith, Mark D.; Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu
Single crystals of mixed valent barium titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were grown in a high temperature molten chloride flux involving an in situ reduction step. The fresnoite structure related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} crystallizes in the tetragonal space group P4/mbm with lattice parameters of a=8.6717(2) Å, c=18.6492(5) Å. The title compound exhibits a 3D structure consisting of 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} groups and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} groups that are linked via barium atoms. The in situmore » reduction of Ti(IV) to Ti(III) is achieved via the addition of metallic Mg to the flux to function as the reducing agent. The temperature dependence of the magnetic susceptibility shows simple paramagnetism above 100 K. There is a discontinuity in the susceptibility data below 100 K, which might be due to a structural change that takes place resulting in charge ordering. - Graphical abstract: The fresnoite structure related novel reduced barium titanium chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were synthesized via flux method. An in situ reduction of Ti(IV) to Ti(III) achieved using Mg metal. The 3D structure consists 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connected via barium atoms. Compound shows simple paramagnetism above 100 K. - Highlights: • The fresnoite related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} were grown via molten flux method. • The in situ reduction of Ti(IV) to Ti(III) is achieved using metallic Mg. • 2D layers of Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connect via Ba atoms. • The magnetic susceptibility shows simple paramagnetism above 100 K.« less
NASA Astrophysics Data System (ADS)
Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning
2018-04-01
This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.
Structure and Formation Mechanism of Black TiO 2 Nanoparticles
Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; ...
2015-10-27
The remarkable properties of black TiO 2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO 2 nanoparticles consists of a disordered Ti 2O 3 shell. The measurements show a transition region that connects the disordered Ti 2O 3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitialmore » atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti 2O 3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO 2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti 2O 3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti 3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO 2 for preserving and stabilizing Ti 3+ surface species that are the key to the enhanced photocatalytic activity of black TiO 2.« less
Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In
2016-01-07
Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less
Fast diffusion of silver in TiO2 nanotube arrays
Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui
2016-01-01
Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.
2005-01-01
Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.
Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H
2014-11-01
A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.
On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum
NASA Astrophysics Data System (ADS)
Persson, Ingemar; Näslund, Lars-Åke; Halim, Joseph; Barsoum, Michel W.; Darakchieva, Vanya; Palisaitis, Justinas; Rosen, Johanna; Persson, Per O. Å.
2018-03-01
The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.
Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Bola; Yadav, Devinder; Raj, Rishi
In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.
Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments
Yoon, Bola; Yadav, Devinder; Raj, Rishi; ...
2017-12-29
In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.
Atomic and electronic structures of single-layer FeSe on SrTiO 3(001): The role of oxygen deficiency
Bang, Junhyeok; Li, Zhi; Sun, Y. Y.; ...
2013-06-06
Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO 3(001) surface, a high-T c superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO 3 substrate, as a result of Se etching used in preparing the high-T c samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of T c observed in experiment. The O vacancies also serve as themore » source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.« less
Fokwa, Boniface P T; Hermus, Martin
2011-04-18
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.
Electronic properties of Cr-N codoped rutile TiO2(110) thin films
NASA Astrophysics Data System (ADS)
Cheng, Zhengwang; Zhang, Lili; Dong, Shihui; Ma, Xiaochuan; Ju, Huanxin; Zhu, Junfa; Cui, Xuefeng; Zhao, Jin; Wang, Bing
2017-12-01
We report our investigation on the electronic properties of Cr-N codoped rutile TiO2(110) single crystal thin films, homoepitaxially grown by pulsed-laser-deposition method, and characterized using scanning tunneling microscopy and spectroscopy (STM/STS), X-ray/ultraviolet photoemission spectroscopy (XPS/UPS), in combination with first-principles calculations. Our results show that the bandgap reduction of the TiO2(110) surface is mainly contributed by the delocalized states whose position is at 2.0 eV below the Fermi level, introduced by the substitutional codoped Cr-2N pair, which is evidenced by the accordance of the results between the STS spectra and the calculated DOS. The codoped Cr-N pair contributes the gap state at about 0.8 eV below the Fermi level, in consistent with the theoretical calculations. While, the monodoped Cr contributes the states either close to the valence band maximum or the conduction band minimum, which should not contribute to the bandgap reduction too much. Our experimental results joint with theoretical calculations provide an atomic view of the bandgap reduction of the rutile TiO2(110) surface, which indicates that the excess substitutional N atoms should be important to efficiently narrow the bandgap by introducing the Cr-2N pairs.
Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4
NASA Astrophysics Data System (ADS)
Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.
2017-10-01
We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.
Kawakita, Jin; Weitzel, Matthias
2011-04-01
Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.
NASA Astrophysics Data System (ADS)
Plymill, Austin; Xu, Haixuan
2018-04-01
Flexoelectric coefficients for several bulk and superlattice perovskite systems are determined using a direct approach from first principles density functional theory calculations. A strong enhancement in the longitudinal flexoelectric coefficient has been observed in the 1SrTiO3/1PbTiO3 superlattice with alternating single atomic layers of SrTiO3 and PbTiO3. It was found that atomistic displacement, charge response under strain, and interfaces affect the flexoelectric properties of perovskite superlattice systems. These factors can be used to tune this effect in dielectrics. It was further found that the calculated Born effective charge for an ion under the influence of strain can differ significantly from the bulk value. These insights can be used to help search for more effective flexoelectric materials to be implemented in electromechanical devices.
Electronic and geometric properties of ETS-10: QM/MM studies of cluster models.
Zimmerman, Anne Marie; Doren, Douglas J; Lobo, Raul F
2006-05-11
Hybrid DFT/MM methods have been used to investigate the electronic and geometric properties of the microporous titanosilicate ETS-10. A comparison of finite length and periodic models demonstrates that band gap energies for ETS-10 can be well represented with relatively small cluster models. Optimization of finite clusters leads to different local geometries for bulk and end sites, where the local bulk TiO6 geometry is in good agreement with recent experimental results. Geometry optimizations reveal that any asymmetry within the axial O-Ti-O chain is negligible. The band gap in the optimized model corresponds to a O(2p) --> Tibulk(3d) transition. The results suggest that the three Ti atom, single chain, symmetric, finite cluster is an effective model for the geometric and electronic properties of bulk and end TiO6 groups in ETS-10.
Grinter, David C.; R. Remesal, Elena; Luo, Si; ...
2016-09-15
Potassium deposition on TiO 2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (~3.2 eV) with a small barrier (~0.25 eV) for diffusion on the oxide surface. In scanning tunneling microscopy images, the adsorbed alkali atoms lose their mobility when in contact with surface OH groups. Furthermore, K adatoms facilitate the dissociation of water on the titania surface. Lastly, the K–(OH) species generated are good sites for the binding of gold clustersmore » on the TiO 2(110) surface, producing Au/K/TiO 2(110) systems with high activity for the water–gas shift.« less
First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface
NASA Astrophysics Data System (ADS)
She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng
2018-06-01
The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.
Gu, Quan; Long, Jinlin; Zhuang, Huaqiang; Zhang, Chaoqiang; Zhou, Yangen; Wang, Xuxu
2014-06-28
A variety of ternary nanoheterostructures composed of Pt nanoparticles (NPs), SnOx species, and anatase TiO2 are designed elaborately to explore the effect of interfacial electron transfer on photocatalytic H2 evolution from a biofuel-water solution. Among numerous factors controlling the H2 evolution, the significance of Pt sites for the H2 evolution is highlighted by tuning the loading procedure of Pt NPs and SnOx species over TiO2. A synergistic enhancement of H2 evolution can be achieved over the Pt/SnOx/TiO2 heterostructures formed by anchoring Pt NPs at atomically-isolated Sn-oxo sites, whereas the Pt/TiO2/SnOx counterparts prepared by grafting single-site Sn-oxo species on Pt/TiO2 show a marked decrease in the rate of H2 evolution. The characterization results clearly reveal that the synergy of Pt NPs and SnOx species originates from the vectorial electron transfer of TiO2 → SnOx → Pt occurring on the former, while the latter results from the competitive electron transfer from TiO2 to SnOx and to Pt NPs.
Park, Sang Wook; Choi, Jong Youn; Siddiqui, Shariq; Sahu, Bhagawan; Galatage, Rohit; Yoshida, Naomi; Kachian, Jessica; Kummel, Andrew C
2017-02-07
Si 0.5 Ge 0.5 (110) surfaces were passivated and functionalized using atomic H, hydrogen peroxide (H 2 O 2 ), and either tetrakis(dimethylamino)titanium (TDMAT) or titanium tetrachloride (TiCl 4 ) and studied in situ with multiple spectroscopic techniques. To passivate the dangling bonds, atomic H and H 2 O 2 (g) were utilized and scanning tunneling spectroscopy (STS) demonstrated unpinning of the surface Fermi level. The H 2 O 2 (g) could also be used to functionalize the surface for metal atomic layer deposition. After subsequent TDMAT or TiCl 4 dosing followed by a post-deposition annealing, scanning tunneling microscopy demonstrated that a thermally stable and well-ordered monolayer of TiO x was deposited on Si 0.5 Ge 0.5 (110), and X-ray photoelectron spectroscopy verified that the interfaces only contained Si-O-Ti bonds and a complete absence of GeO x . STS measurements confirmed a TiO x monolayer without mid-gap and conduction band edge states, which should be an ideal ultrathin insulating layer in a metal-insulator-semiconductor structure. Regardless of the Ti precursors, the final Ti density and electronic structure were identical since the Ti bonding is limited by the high coordination of Ti to O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I.; Krayzman, V.; Woicik, J. C.
Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less
Laser frequency stabilization using a commercial wavelength meter
NASA Astrophysics Data System (ADS)
Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias
2018-04-01
We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.
Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.
2017-01-01
Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.
Senary refractory high-entropy alloy HfNbTaTiVZr
Gao, Michael C.; Zhang, B.; Yang, S.; ...
2015-09-03
Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. Here, the microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported bymore » both simulation and experimental results, the HEA formation rules are discussed.« less
Growth and Electronic Structure Characterization of (SrCoOx)n :(SrTiO3)1 Superlattices
NASA Astrophysics Data System (ADS)
Cook, Say Young; Andersen, Tassie; Rosenberg, Richard; Hong, Hawoong; Marks, Laurence; Fong, Dillon
We report on the synthesis of a (SrCoOx)1 :(SrTiO3)1 superlattice by oxide molecular beam epitaxy and the characterization of its electronic structure by soft x-ray spectroscopy. X-ray photoelectron and absorption spectroscopy reveal that Ti remains octahedrally coordinated with a 4 + oxidation state, while the Co oxidation state is intermediate of 3 + and 4 +. Despite having the same half an oxygen vacancy per Co atom found in brownmillerite SrCoO2.5, which consists of alternating tetrahedral and octahedral layers of Co, the confinement of oxygen vacancies to isolated single atomic layers of SrCoOx stabilizes square pyramidal coordination of Co, as observed by the linear dichroism in the Co 2p-3d x-ray absorption. The corresponding stabilization of Co4+ along with Co3 + within the square pyramidal SrCoO2.5 layers gives rise to a Fermi-edge step observed at strong Co 2p-3d resonance in the resonant photoemission spectroscopy of the valence band, and reveals a band gap of 1.7 eV. Comparisons with a Sr(Co,Ti)Ox alloy and a (SrCoOx)2 :(SrTiO3)1 superlattice also will also be presented. The obtained results demonstrate artificial superlattices as effective means to defect engineer complex oxides by harnessing the confinement of oxygen vacancies to control the oxygen coordination environment of the transition metal.
Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.
Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan
2015-02-25
MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.
Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut
2017-02-13
Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.
NASA Astrophysics Data System (ADS)
Liu, Zheng-Tang; Li, Chen-Yu; Chen, Jhy-Der; Liu, Wan-Ling; Tsai, Chen-Yen; Ko, Bao-Tsan
2017-04-01
Structurally diverse metal complexes bearing diamine-bis(benzotriazole phenolate) (DiBTP) ligands have been synthesized and fully characterized by single crystal X-ray crystallography. The reaction of Ti(OiPr)4 with C8MEADiBTP-H2 or C8BEADiBTP-H2 (1.0 mol equiv.) generated the monomeric titanium alkoxy complexes [(C8MEADiBTP)Ti(OiPr)2] (1) and [(C8BEADiBTP)Ti(OiPr)2] (2), respectively. Moreover, C8BEADiBTP-H2 reacted with 2.0 molar equiv. of AlMe3 to give the tetra-coordinated di-aluminum complex [(C8BEADiBTP)Al2Me4] (3). Zinc complex [(C8BEADiBTP)Zn2Et2] (4) could be obtained by the alkane elimination of ZnEt2 (2.0 equiv.) with C8BEADiBTP-H2 as the pro-ligand under similar synthetic methods in good yield. Single-crystal X-ray diffraction indicates that 3 is a bimetallic aluminum dimethyl complex with a tetradentate C8BEADiBTP moiety chelating two metal atoms, whereas complex 4 displays the dinuclear feature containing both tetra- and penta-coordinated zinc atoms bonded by one ONNON-pentadentate C8BEADiBTP ligand. Catalytic studies for ring-opening polymerization of ε-caprolactone of complex 1-4 were systematic explored; the comparative studies of such polymerization were also discussed.
Sattonnay, G; Tétot, R
2014-02-05
Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.; ...
2017-12-14
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Atomistic Modeling of Pd Site Preference in NiTi
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.
2004-01-01
An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.
NASA Astrophysics Data System (ADS)
Qiao, Yanqiang; Guo, Xiping
2010-10-01
Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X) 5Si 3 (X represents Nb, Cr and Hf elements). (Ti,X) 5Si 4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X) 5Si 3 phase that was derived from the decomposition of (Ti,X) 5Si 4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X) 5Si 3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was found in the outmost layers besides (Ti,X) 5Si 3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X) 5Si 4 → (Ti,X) 5Si 3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X) 5Si 3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350 °C for 10 h showed a good oxidation resistance due to the formation of SiO 2 and Nb, Cr-doped TiO 2 scale after oxidation at 1250 °C for 10 h.
NASA Technical Reports Server (NTRS)
Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.
1995-01-01
We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.
NASA Astrophysics Data System (ADS)
Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo
2018-04-01
A model (112) surface slab of anatase TiO2 (112) was optimized, and the adsorption of Au atoms onto the (112) surface was investigated by first-principles calculations based on DFT (density functional theory) with the generalized gradient approximation (GGA). Furthermore, the results were compared with those of Au/anatase TiO2 (101) system. The (112) surface has a ridge and a groove (zig-zag structure). The Au atoms were strongly adsorbed in the grooves but became unstable as they climbed toward the ridges, and the promotion of electrons in the 5d orbitals to the 6s and 6p orbitals in the absorbed Au atom occurred. At the Au/anatase TiO2 interface, the Au-Ti4+ coordinate bond in the (112) system is stronger than that in the (101) system because the promotion of electrons is greater in the former interaction than the latter. The results suggest that Au/anatase TiO2 catalysts with a higher dispersion of Au nanoparticles could be prepared when the (112) surface is preferentially exposed.
Free Form Low Cost Fabrication Using Titanium
2007-06-29
Compaction Metals) "* CP Ti (International Titanium Powders, LLC) "* Gas Atomized Ti-6AI- 4V (Carpenter Powder Products, Bridgeville, PA) "* Gas Atomized CP...analytical data for the titanium alloys represented in this report Alloy Al C Fe H Mo N2 02 al V TI CP-Ti Grade II 0.1 0.3 0.015 0.03 025 Balance TI-6AI- 4V ...Ti-6A1- 4V is titanium alloyed with 6% Aluminum and 4% Vanadium. This alloy has a melting point range of 1604-1660’C, which is not suitable for
Relaxation peak near 200 K in NiTi alloy
NASA Astrophysics Data System (ADS)
Zhu, J. S.; Schaller, R.; Benoit, W.
1989-10-01
Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.
Marincel, Dan M.; Zhang, H. R.; Briston, J.; ...
2015-04-27
The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O 3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO 3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domainmore » structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.« less
NASA Astrophysics Data System (ADS)
Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.
2018-02-01
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D
2018-02-21
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong
2013-01-01
Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.
Is the interaction between Ti atoms and fullerenes the origin of the 21-μ m feature?
NASA Astrophysics Data System (ADS)
Kimura, Y.; Nuth, J. A., III; Ferguson, F. T.
2005-12-01
A 21-μ m-emission feature has been observed in the shells of carbon-rich post-asymptotic giant branch (AGB) stars. The carrier of the 21-μ m feature remains unidentified, although many candidate materials have been proposed, including nanodiamond, SiS2, a derivative of SiC and nanometer-sized TiC. In particular, TiC grains were extensively discussed after the report by von Helden (2000). Gas-phase TiC clusters less than 1 nm in diameter have been suggested as the source of the 21-μ m dust feature. The spectrum of TiC clusters recorded in the laboratory provides a good fit with the observational data. However, only negative results have been reported for both theoretical and laboratory experimental studies concerning TiC since the discovery by von Helden. Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 μ m. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-AGB stars. In our experimental system, large-cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti-metal-wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 μ m that closely corresponds to the 20.1-μ m feature observed in post-AGB stars. Both the laboratory and stellar spectra also show a small but significant peak at 19.0 μ m, which is attributed to fullerenes. We propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-μ m feature seen in some post-AGB stars.
NASA Astrophysics Data System (ADS)
Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.
2016-07-01
We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.
Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.
Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi
The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.
Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene
NASA Astrophysics Data System (ADS)
Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei
2017-06-01
Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-24
The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-01
The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161
NASA Astrophysics Data System (ADS)
Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang
2018-04-01
Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.
Oxidation of Ti silicide surfaces
NASA Astrophysics Data System (ADS)
Cros, A.; Pirri, C.; Derrien, J.
1985-04-01
The oxidation of clean Ti suicide surface prepared under ultra high vacuum conditions, has been studied by ultraviolet and X-ray photo-emission spectroscopy techniques. At room temperature, the oxide overlayer is composed of both TiO 2 and SiO 2. An annealing at 400-600°C provokes the reduction of TiO 2 in the form of Ti suboxide while the liberated oxygen atoms bond to Si. This is not due to the presence of Si atoms and is rather an intrinsic property of native TiO 2. The simultaneous presence at high temperature of both SiO 2 and Ti suboxide is attributed to the existence of a rate limiting process due to diffusion barriers.
Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.
Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man
2018-02-13
Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. L.; Han, Y. F., E-mail: yfhan@sjtu.edu.cn, E-mail: bdsun@sjtu.edu.cn; Zhou, W.
2015-01-26
Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energymore » in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.« less
Epitaxial titanium diboride films grown by pulsed-laser deposition
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.
2002-03-01
Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanrikulu, Mahmud Yusuf, E-mail: mytanrikulu@adanabtu.edu.tr; Rasouli, Hamid Reza; Ghaffari, Mohammad
2016-05-15
This paper demonstrates the possible usage of TiO{sub x} thin films synthesized by atomic layer deposition as a microbolometer active material. Thin film electrical resistance is investigated as a function of thermal annealing. It is found that the temperature coefficient of resistance values can be controlled by coating/annealing processes, and the value as high as −9%/K near room temperature is obtained. The noise properties of TiO{sub x} films are characterized. It is shown that TiO{sub x} films grown by atomic layer deposition technique could have a significant potential to be used as a new active material for microbolometer-based applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Todd R.; Campos, Michael P.; Gray, Kimberly A.
2014-01-01
It can be difficult to determine the number of active atoms accessible to the fluid phase in mixed oxide catalysts, as required for obtaining true turnover frequencies (TOF). Here, we utilize the selective titration of surface Ti atoms with phenylphosphonic acid (PPA) on TiO 2–SiO 2 materials to estimate the number of reactant-accessible sites. TiO 2–SiO 2 composites were synthesized over a range of Ti loadings from grafting of titanocene dichloride (Cp 2TiCl 2) or tetraethoxy orthotitanate (TEOT) on SiO 2 and sol–gel co-hydrolysis of Si and Ti alkoxides. The materials were characterized by DRUV–vis, XRD, BET, and XANES. Despitemore » the significant morphological and electronic differences, materials prepared by Cp 2TiCl 2 and TEOT yielded a near-constant TOF of 0.14 h -1 (±0.04) across Ti loadings, for benzyl alcohol photooxidation, when normalizing rates by sites titrated by PPA. The fraction of Ti atoms titrated by PPA was strongly dependent on synthesis method and surface density. PPA titration and benzyl alcohol photooxidation may be useful measures of surface accessibility in other supported oxides.« less
Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng
2017-10-01
Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.
Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I., E-mail: igor.levin@nist.gov; Krayzman, V.; Vanderah, T.A.
Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{submore » 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere. - Graphical abstract: Concurrent redox reactions involving Ti and Mn yield facile absorption/desorption of excess oxygen. - Highlights: • Concurrent redox reactions involving Ti and Mn yield oxygen absorption/desorption. • Excess oxygen is accommodated as interstitials via correlated atomic shifts. • Oxygen breathing is facilitated by the under-bonding of host Mn and O atoms.« less
Chen, Liang; Wang, Huiran; Deng, Xuebin
2014-09-01
In the mononuclear Ti(IV) title complex, [Ti(C29H33NO2)(C3H6O)2], the TiNO4 coordination polyhedron comprises an N-atom and two O-atom donors from the dianionic Schiff base ligand and two O-atom donors from monodentate isopropoxide anions. The stereochemistry is distorted trigonal-bipyramidal with the N-donor in an elongated axial site [Ti-N = 2.2540 (17) Å], the O-donors having normal Ti-O bond lengths [1.7937 (14) Å (axial)-1.8690 (14) Å]. In the crystal, C-H⋯π inter-actions link mol-ecules into centrosymmetric dimers.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-03-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-06-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seung Sae; Yu, Jung Ho; Lu, Di
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.
Kim, Ki Sung; Kim, Young-Min; Mun, Hyeona; Kim, Jisoo; Park, Jucheol; Borisevich, Albina Y; Lee, Kyu Hyoung; Kim, Sung Wng
2017-09-01
Structural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge. Herein, the use of scanning transmission electron microscopy to visualize atomic defects directly is described and disordered atomic-scale defects are demonstrated to be responsible for the enhancement of TE performance in nanostructured Ti 1- x Hf x NiSn 1- y Sb y half-Heusler alloys. The disordered defects at all atomic sites induce a local composition fluctuation, effectively scattering phonons and improving the power factor. It is observed that the Ni interstitial and Ti,Hf/Sn antisite defects are collectively formed, leading to significant atomic disorder that causes the additional reduction of lattice thermal conductivity. The Ti 1- x Hf x NiSn 1- y Sb y alloys containing inherent atomic-scale defect disorders are produced in one hour by a newly developed process of temperature-regulated rapid solidification followed by sintering. The collective atomic-scale defect disorder improves the zT to 1.09 ± 0.12 at 800 K for the Ti 0.5 Hf 0.5 NiSn 0.98 Sb 0.02 alloy. These results provide a promising avenue for improving the TE performance of state-of-the-art materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Jinlei; Wu, Jinghe; Zhao, Xingju; ...
2016-10-07
Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO 2(110) can be tuned into a highly effective catalyst, e.g. for O 2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhancedmore » EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O 2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O 2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts.« less
Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3
NASA Astrophysics Data System (ADS)
Hamid, A. S.
2009-12-01
We present the results of a first-principle full-potential linearized augmented plane wave (FLAPW) method to study the effect of defects on the electronic structure of SrTiO3. In addition, the relaxation of nearest neighbor atoms around those defects were calculated self-consistently. The calculations were performed using the local (spin) density approximations (L(S)DA), for the exchange-correlation potential. SrTiO3 was found to experience an insulator-to-metal transition upon the formation of oxygen vacancies or the substitution of Nb at the Ti site. The formation of oxygen divacancy disclosed additional states below the conduction band edge. The crystalline lattice relaxation showed displacements of atoms in rather large defective region. The magnitudes of atomic movements, however, were not large, normally not exceeding 0.15 Å. Our results were compared to the available experimental observations.
Characteristics of growth of complex ferroelectric oxide films by plasma-ion sputtering
NASA Astrophysics Data System (ADS)
Mukhortov, V. M.; Golovko, Yu. I.; Mukhortov, Vl. M.; Dudkevich, V. P.
1981-02-01
An experimental investigation was made of the process of growth of a complex oxide film, such as BaTiO3 or (Ba, Sr)TiO3, by plasma-ion sputtering. It was found that ion bombardment of a ceramic target knocked out neutral excited atoms. These atoms lost energy away from the target by collisions and at a certain critical distance hcr they were capable of oxidation to produce BaO, TiO, TiO2, and SrO. Therefore, depending on the distance between the cathode and the substrate, the “construction” material arrived in the form of atoms or molecules of simple oxides. These two (atomic and molecular) deposition mechanisms corresponded to two mechanisms of synthesis and crystallization differing in respect of the dependences of the growth rate, unit cell parameters, and other structural properties on the deposition temperature. The role of re-evaporation and of oxidation-reduction processes was analyzed.
Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study
NASA Astrophysics Data System (ADS)
Jaiganesh, G.; Jaya, S. Mathi
2018-05-01
Using the ab-initio computations that are based on the density functional theory, we have investigated the magnetism and electronic properties of one and two Ti atom substituted Cd3P2 compound. The magnetic stability of the substituted compounds was obtained by analyzing the minimum total energies in nonmagnetic, ferromagnetic and antiferromagnetic phases. Our results indicated the formation of magnetic order in one and two Ti atom substituted Cd3P2 as well as metallic characteristics in these systems. A significant value of the magnetic moment of Ti atom is observed from our calculations. We further find that the neighboring Cd and P atoms too acquire a small magnetic moment.
Elementary photocatalytic chemistry on TiO2 surfaces.
Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming
2016-07-07
Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models.
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...
2017-01-07
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.A.; Feria, L.; Jirsak, T.
2010-03-10
High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociationmore » is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.; Feria, L; Jirsak, T
2010-01-01
High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociationmore » is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.« less
NASA Astrophysics Data System (ADS)
Wakui, Kentaro; Hayasaka, Kazuhiro; Ido, Tetsuya
2014-12-01
Vacuum ultraviolet (VUV) radiation around 159 nm is obtained toward direct excitation of a single trapped ion. An efficient fluoride-based VUV output coupler is employed for intracavity high-harmonic generation of a Ti:S oscillator. Using this coupler, where we measured its reflectance to be about 90 %, an average power reaching 6.4 W is coupled out from a modest fundamental power of 650 mW. When a single comb component out of 1.9 10 teeth is resonant to the atomic transition, 100s of fluorescence photons per second will be detectable under a realistic condition.
Effects of atomic oxygen on titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi
2018-05-01
In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.
JPRS Report, Science & Technology Japan.
1989-07-11
Kimura , honorary professor, Tokyo University, as the leader) to design research for the recovery of rare metals and the annihilation of radioactivity...et al.; JOURNAL OF THE JAPANESE ASSOCIATION OF CRYSTAL GROWTH, 10 Jul 88] 39 Optical Absorption of Ti:Al203 Single Crystal [Shigeyuki Kimura ...IGENSH1RY0KU SANGYO SHIMBUN, 26 Jan 89] 132 Atomic Lasers for Uranium Enrichment Tested IGENSHIRYOKU SANGYO SHIMBUN, 2 Feb 89] 133 NUCLEAR ENGINEERING
NASA Astrophysics Data System (ADS)
Sim, Eun Seob; Chung, Yong-Chae
2018-03-01
In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.
NASA Astrophysics Data System (ADS)
Enyashin, A. N.; Ivanovskii, A. L.
2013-11-01
The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti3C2-xNx and their hydroxylated derivatives Ti3C2-xNx(OH)2 are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti3C2 (Ti3N2)→hydroxylated forms Ti3C2(OH)2 (Ti3N2(OH)2)→pristine MXene Ti3C2-xNx→hydroxylated Ti3C2-xNx(OH)2. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides with random distribution of C and N atoms are found to be thermodynamically more favorable.
Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering
NASA Astrophysics Data System (ADS)
Wang, Chun; Kryder, Mark H.
2009-09-01
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.
NASA Astrophysics Data System (ADS)
Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.
2015-02-01
We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7
Fully CMOS-compatible titanium nitride nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Justin A., E-mail: jabriggs@stanford.edu; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305; Naik, Gururaj V.
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements onmore » plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.« less
Decomposition pathways in age hardening of Ti-Al-N films
NASA Astrophysics Data System (ADS)
Rachbauer, R.; Massl, S.; Stergar, E.; Holec, D.; Kiener, D.; Keckes, J.; Patscheider, J.; Stiefel, M.; Leitner, H.; Mayrhofer, P. H.
2011-07-01
The ability to increase the thermal stability of protective coatings under work load gives rise to scientific and industrial interest in age hardening of complex nitride coating systems such as ceramic-like Ti1-xAlxN. However, the decomposition pathway of these systems from single-phase cubic to the thermodynamically stable binary nitrides (cubic TiN and wurtzite AlN), which are essential for age hardening, are not yet fully understood. In particular, the role of decomposition kinetics still requires more detailed investigation. In the present work, the combined effect of annealing time and temperature upon the nano-structural development of Ti0.46Al0.54N thin films is studied, with a thermal exposure of either 1 min or 120 min in 100 °C steps from 500 °C to 1400 °C. The impact of chemical changes at the atomic scale on the development of micro-strain and mechanical properties is studied by post-annealing investigations using X-ray diffraction, nanoindentation, 3D-atom probe tomography and high-resolution transmission electron microscopy. The results clearly demonstrate that the spinodal decomposition process, triggering the increase of micro-strain and hardness, although taking place throughout the entire volume, is enhanced at high diffusivity paths such as grain or column boundaries and followed within the grains. Ab initio calculations further show that the early stages of wurtzite AlN precipitation are connected with increased strain formation, which is in excellent agreement with experimental observations.
Ti12Xe: A twelve-coordinated Xe-containing molecule
NASA Astrophysics Data System (ADS)
Miao, Junjian; Xu, Wenwu; Zhu, Beien; Gao, Yi
2017-08-01
A twelve-coordinated Xe-containing molecule Ti12Xe has been predicted by DFT calculations with quasi-icosahedral symmetry. Structural and NBO analyses show the chemical bonding exists between the central Xe atom and peripheral Ti atoms, which leads to the high stability of the molecule to a considerable degree. First principle molecular dynamics simulations further reveal the particularly high thermal stability of Ti12Xe up to 1500 K. This unique species may disclose new physics and chemistry of xenon element and stir interest in the Xe-transition metal cluster physics and chemistry.
NASA Astrophysics Data System (ADS)
Bultinck, E.; Bogaerts, A.
2009-10-01
The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O- ions and O atoms. This model accounts for plasma-target interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O- density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.
NASA Astrophysics Data System (ADS)
Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
2016-02-01
The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k
The atomic level structure of the TiO(2)-NiTi interface.
Nolan, M; Tofail, S A M
2010-09-07
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.
NASA Astrophysics Data System (ADS)
Bayati, Mohammad Reza
The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.
Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.
2013-07-15
Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honma, Kenji, E-mail: honm@sci.u-hyogo.ac.jp; Tanaka, Yuhki
Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angularmore » and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.« less
Studies of Highly Excited Atoms.
1986-04-02
R 2 o i86 Chemical Physics Laboratory " i 0. R . Abrahamson i Vice President Physical Fciences Division ri" - c. -:OP...34 - men I IN RO U TI, .. . . . . . . . . . - .... .... o .. . . . o ......... - TI R SOPA T C LLIS OWZ.... ... . 6 ... ... oo ... .... ... .... . - A...by WA =W + 1ns- 0 (3a) and R = 1’np + ’(n-l)p (3b) .* 7_7. ’ P. z Atom 2 ’b y tom1 SA-846 1-30A FIGURE 2 GEOMETRY OF THE COLLISION OF TWO ATOMS Atom I
A high-temperature neutron diffraction study of Nb 2AlC and TiNbAlC
Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; ...
2014-12-16
In this paper, we report on the crystal structures of Nb 2AlC and TiNbAlC actual composition (Ti 0.45,Nb 0.55) 2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb 2AlC sample in the a and c directions are, respectively, 7.9(5)x10 -6 K -1 and 7.7(5)x10 -6 K -1 on one neutron diffractometer and 7.3(3)x10 -6 K -1 and 7.0(2)x10 -6 K -1 on a second diffractometer. The respective values for the (Ti 0.45,Nb 0.55) 2AlC composition - only tested on one diffractometer - are 8.5(3)x10more » -6 K -1 and 7.5(5)x10 -6 K -1. These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less
Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2017-04-01
Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].
NASA Astrophysics Data System (ADS)
Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.
2018-01-01
In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.
NASA Astrophysics Data System (ADS)
Xiong, Gang; Li, Shuiqing; Tse, Stephen D.
2018-02-01
In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.
NASA Astrophysics Data System (ADS)
Siokou, Angeliki; Ntais, Spyridon
2003-08-01
Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO 2 supported MgCl 2/TiCl 4 and TiCl 4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO 2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl 2 is not present while a significant amount of the Ti atoms is reduced to the Ti 3+ state.
Oxygen-storage behavior and local structure in Ti-substituted YMnO3
NASA Astrophysics Data System (ADS)
Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.
2017-02-01
Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.
Oxygen-storage behavior and local structure in Ti-substituted YMnO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I.; Krayzman, V.; Vanderah, T. A.
Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.« less
NASA Astrophysics Data System (ADS)
Pykavy, M.; Staemmler, V.; Rittner, F.
2000-04-01
Quantum chemical ab initio cluster calculations were performed for the adsorption of small molecules on metal oxide surfaces. Two systems were studied in detail: The adsorption of N2 on the (110) surface plane of TiO2 (rutile) and the adsorption of CO on the polar (0001) surface of Cr2O3. In both cases a full five-dimensional potential for the interaction of a single molecule with the respective surface was calculated. For N2/TiO2 (110) the minimum was found for the end-on adsorption of N2 atop a coordinately unsaturated surface Ti atom, with an adsorption energy of (35 ± 5) kJ/mol. In the case of CO/Cr2O3 (0001) the CO molecule is adsorbed strongly tilted (almost side-on) along a line connecting two Cr3+ ions at the surface; the calculated adsorption energy is 22 kJ/mol. In conjunction with empirical pair potentials for the N2/N2 and CO/CO interaction in the gas phase, Monte Carlo simulations were carried out to determine adsorption isotherms and the geometric structure of adsorbed monolayers.
Lan, Tian; Li, Chen W.; Hellman, O.; ...
2015-08-11
Although the rutile structure of TiO 2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO 2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic tomore » quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadias, G.; Koutsokeras, L. E.; Dub, S. N.
2010-07-15
Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by eithermore » Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.« less
NASA Astrophysics Data System (ADS)
Venkataraman, Ajey; Shade, Paul A.; Adebisi, R.; Sathish, S.; Pilchak, Adam L.; Viswanathan, G. Babu; Brandes, Matt C.; Mills, Michael J.; Sangid, Michael D.
2017-05-01
Ti-7Al is a good model material for mimicking the α phase response of near- α and α+ β phases of many widely used titanium-based engineering alloys, including Ti-6Al-4V. In this study, three model structures of Ti-7Al are investigated using atomistic simulations by varying the Ti and Al atom positions within the crystalline lattice. These atomic arrangements are based on transmission electron microscopy observations of short-range order. The elastic constants of the three model structures considered are calculated using molecular dynamics simulations. Resonant ultrasound spectroscopy experiments are conducted to obtain the elastic constants at room temperature and a good agreement is found between the simulation and experimental results, providing confidence that the model structures are reasonable. Additionally, energy barriers for crystalline slip are established for these structures by means of calculating the γ-surfaces for different slip systems. Finally, the positions of Al atoms in regards to solid solution strengthening are studied using density functional theory simulations, which demonstrate a higher energy barrier for slip when the Al solute atom is closer to (or at) the fault plane. These results provide quantitative insights into the deformation mechanisms of this alloy.
Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M
2011-02-01
The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.
Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata
2017-11-01
An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.
Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedl, H., E-mail: helmut.riedl@tuwien.ac.at; Zálešák, J.; Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben
2015-09-28
The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required tomore » implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.« less
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
NASA Astrophysics Data System (ADS)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; Pitike, Krishna C.; Sohn, Changhee; Nakhmanson, Serge M.; Takoudis, Christos G.; Lee, Ho Nyung; Tonelli, Rachel; Gardner, Jonathan; Scott, James F.; Katiyar, Ram S.; Hong, Seungbum
2018-02-01
Tin titanate (SnTi O3 ) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the S n2 + to S n4 + . In the present paper, we show two things: first, perovskite phase SnTi O3 can be prepared by atomic-layer deposition directly onto p -type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p -type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTi O3 . Our films showed well-saturated, square, and repeatable hysteresis loops of around 3 μ C /c m2 remnant polarization at room temperature, as detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt /SnTi O3/Si /SnTi O3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. This is a lead-free room-temperature ferroelectric oxide of potential device application.
Synthesis and structure determination of La{sub 8}Ti{sub 10}S{sub 24}O{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cario, L.; Deudon, C.; Meerschaut, A.
1998-02-15
The new compound La{sub 8}Ti{sub 10}S{sub 24}O{sub 4} has been prepared from a mixture of La{sub 2}Ti{sub 2}O{sub 7} and La{sub 2}O{sub 3} (in a 5:1 ratio) heated at 1,200 C under a H{sub 2}S gas flow. This new quaternary phase was obtained due to an incomplete sulfidizing process. Single-crystal X-ray diffraction studies show that La{sub 8}Ti{sub 10}S{sub 24}O{sub 4} crystallizes in space group P4/mmm, with Z = 1, in a cell of dimensions a = b = 10.421 {angstrom} and c = 8.384 {angstrom}. Least-squares refinement converged to values of R - 0.045 and R{sub w} = 0.048. Themore » structure can be viewed as a stacking of two types of layers along the {rvec c} axis. These layers are built up from infinite rutile-like chains (Ti octahedra) that cross perpendicularly. La atoms, in a tricapped prismatic coordination, are located in tunnels that develop parallel to the {rvec c} direction.« less
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; ...
2018-02-20
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
2009-06-15
titanium isopropoxide (TTIP) as metal precursors. The deposition rate of titania films from TiCl4 was found to be stable in the 150-300 °C...tetrachloride (TiCl4) and titanium isopropoxide (TTIP) are widely used as metal precursors and water or hydrogen peroxide are used as oxygen precursors.29-36... titanium dioxide supported on high surface area silica gel have been synthesized by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and
Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.
Role of strained nano-regions in the formation of subgrains in CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Fang, Tsang-Tse; Wang, Yong-Huei; Kuo, Jui-Chao
2011-07-01
Single-phase CaCu3Ti4O12 (CCTO) was synthesized by solid-state reaction. Electron backscatter diffraction, scanning electron microscopy, and atomic force microscopy were adopted to characterize the grain orientation, microstructure, and surface morphology of the CCTO samples with or without thermal etching. Bump strained nano-regions induced by the local compositional disorder at a nano-scale have been discovered, being the origin of the formation of subgrains in CCTO. The proposed mechanism for the formation of subgrains involves the formation of etched pits and subboundaries pertaining to the strained nano-regions rather than dislocation displacement. The dielectric response inside the grains of CCTO relevant to the strained nano-regions is also discussed.
Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.
Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng
2015-12-01
As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.
Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2
NASA Astrophysics Data System (ADS)
Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.
2018-05-01
Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO 3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less
Enhancement in Thermoelectric Properties of TiS2 by Sn Addition
NASA Astrophysics Data System (ADS)
Ramakrishnan, Anbalagan; Raman, Sankar; Chen, Li-Chyong; Chen, Kuei-Hsien
2018-06-01
A series of Sn added TiS2 (TiS2:Sn x ; x = 0, 0.05, 0.075 and 0.1) were prepared by solid state synthesis with subsequent annealing. The Sn atoms interacted with sulfur atoms in TiS2 and formed a trace amount of misfit layer (SnS)1+m(TiS2-δ)n compound with sulfur deficiency. A significant reduction in electrical resistivity with moderate decrease in the Seebeck coefficient was observed in Sn added TiS2. Hence, a maximum power factor of 1.71 mW/m-K2 at 373 K was obtained in TiS2:Sn0.05. In addition, the thermal conductivity was decreased with Sn addition and reached a minimum value of 2.11 W/m-K at 623 K in TiS2:Sn0.075, due to the impurity phase (misfit phase) and defects (excess Ti) scattering. The zT values increased from 0.08 in pristine TiS2 to an optimized value of 0.46 K at 623 K in TiS2:Sn0.05.
First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces
NASA Astrophysics Data System (ADS)
Orellana, Walter; Gutiérrez, Gonzalo
2011-12-01
The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.
High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest
NASA Astrophysics Data System (ADS)
Wiese, Lm; Fedchak, Ja; Lawler, Je
2000-06-01
The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.
Atomic resolution characterization of a SrTiO{sub 3} grain boundary in the STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
This paper uses the complementary techniques of high resolution Z-contrast imaging and PEELS (parallel detection electron energy loss spectroscopy) to investigate the atomic structure and chemistry of a 25 degree symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}. The gain boundary is composed of two different boundary structural units which occur in about equal numbers: one which contains Ti-O columns and the other without.
Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities
NASA Astrophysics Data System (ADS)
Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong
2016-12-01
Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.
NASA Astrophysics Data System (ADS)
Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.
2016-09-01
We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.
NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad
2017-08-01
This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.
2017-01-01
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822
NASA Astrophysics Data System (ADS)
Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.
2016-12-01
We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Zhu, Y.; Liu, S.
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. Thismore » effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Zhu, Y.; Liu, S.
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
Chen, F.; Zhu, Y.; Liu, S.; ...
2016-11-22
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...
2017-11-17
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
Band structures of TiO2 doped with N, C and B*
Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong
2006-01-01
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532
Hu, Wen; Hayaski, Kouichi; Fukumura, Tomoteru; ...
2015-06-02
To evaluate local atomic structures around Co in high temperature diluted ferromagnetic semiconductor Co-doped TiO 2, x-ray fluorescence holography and x-ray absorption fine structure experiments were carried out on rutile paramagnetic Ti 0.99Co 0.01O 2 and ferromagnetic Ti 0.95Co 0.05O 2 films. The Co atoms in the Ti 0.99Co 0.01O 2 simply substituted for Ti sites in the rutile structure, whereas a suboxidic arrangement of CoO 2Ti 4 formed around Co in the Ti 0.95Co 0.05O 2 films. A theoretical investigation based on a series of first-principles calculations indicated the stability of the aggregated suboxidic clusters in the rutile TiOmore » 2, supporting our hypothesis for the formation of suboxidic coordination in the highly Co-doped sample. As a result, the suboxidic coordination may be the source of strong exchange interaction, resulting in the high Curie temperature in Co-doped TiO 2.« less
Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew
2017-04-29
Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.
Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew
2017-01-01
Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation. PMID:28468248
NASA Astrophysics Data System (ADS)
Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.
2018-05-01
TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.
Assad, M; Lemieux, N; Rivard, C H; Yahia, L H
1999-01-01
The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.
2017-10-01
Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.
Atomic scale study of surface orientations and energies of Ti 2 O 3 crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Meng; Wang, Zhiguo; Wang, Chongmin
2017-10-30
For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern the chemical behavior of the particle. The surface atomistic structure and termination of the Ti2O3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combining with density functional theory (DFT) calculations. STEM imaging reveals that the Ti2O3 crystal are most often faceted along (001), (012), (-114) and (1-20) planes. DFT calculation indicates that the (012) surface with TiO-termination have the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stable and prevalent surfaces inmore » Ti2O3 nanocrystals. These observations provide insights for exploring the interfacial process involving Ti2O3 nanoparticles.« less
Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon
2016-01-14
Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto
2017-02-01
We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.
NASA Astrophysics Data System (ADS)
Alvarez, Inmaculada; Biskup, Neven; Lopez, Maria; Garcia-Hernandez, Mar; Veiga, Luisa; Varela, Maria; UCM Collaboration; ORNL Collaboration; CSIC Collaboration
2013-03-01
We report on visualizing the chemical and structural order of double perovskite Sr2-xGdxMnTiO6. The antisite disorder of Mn and Ti is detected even at atomic scale at all x, resulting in Mn-rich and Ti-rich regions. For x ?0.75, the majority of manganese ions are in Mn3+ state and are centered in Jahn-Teller distorted MnO6octahedra. The Fourier transformation of atomic resolution images along the [110] zone axis reveals a superstructure that corresponds to the tilting of oxygen octahedra and that doubles the unit cell along [001]c. This superstructure is spatially inhomogeneous and coincides with the regions where B-site ion (Mn/Ti) is displaced along the [110] direction. We discuss these findings in the frame of possible local ferroelectricity and in the light of strong electroresistance observed in Sr1.25Gd0.75MnTiO6. Research at ORNL supported by the U.S. DOE-BES, Materials Sciences and Engineering Division, and also by ORNL's ShaRE User Program (sponsored by DOE-BES). Research at UCM supported by the ERC Starting Investigator Award and MAT2010-20117.
Structural, electronic and magnetic properties of Ti n Mo ( n = 1 - 7) clusters
NASA Astrophysics Data System (ADS)
Zhang, Ge; Zhai, Zhongyuan; Sheng, Yong
2017-04-01
The ground state structures of TinMo and Tin+1 (n = 1 - 7) clusters and their structural, electronic and magnetic properties are investigated with the density functional method at B3LYP/LanL2DZ level. One Mo atom substituted Tin+1 structure is the dominant growth pattern, and the TinMo clusters exhibit enhanced structural stabilities according to the averaged binding energies. The electronic properties are also discussed by investigating chemical hardness and HOMO-LUMO energy gap. The results reveal that Ti3Mo and Ti5Mo keep higher chemical stabilities when compared with the other clusters. For all the studied clusters, the Mo atoms always get electrons from Ti atoms and present negative charges. Moreover, the doping of Mo in the bare titanium clusters can alter the magnetic moments of them. Ti3Mo and Ti5Mo show relatively large total magnetic moments, which may be related to the presence of exchange splitting behavior in their densities of states. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70589-8
Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; ...
2015-10-01
In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO 3 andmore » Na ½Bi ½TiO 3, and dielectric SrTiO 3. For Na ½Bi ½TiO 3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO 3 and SrTiO 3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less
Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S
2017-09-07
The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enyashin, A.N.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru
2013-11-15
The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti{sub 3}C{sub 2−x}N{sub x} and their hydroxylated derivatives Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti{sub 3}C{sub 2} (Ti{sub 3}N{sub 2})→hydroxylated forms Ti{sub 3}C{sub 2}(OH){sub 2} (Ti{sub 3}N{sub 2}(OH){sub 2})→pristine MXene Ti{sub 3}C{sub 2−x}N{sub x}→hydroxylated Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2}. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides withmore » random distribution of C and N atoms are found to be thermodynamically more favorable. - Graphical abstract: The side views of the optimized atomic structures of some examined hydroxylated derivatives of MXene Ti{sub 3}CN and their electronic band structures. Display Omitted - Highlights: • Very recently 2D titanium carbonitrides have been synthesized. • Structural, electronic properties and stability for these materials were evaluated. • The hydroxylated derivatives of 2D titanium carbonitrides are examined.« less
Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C
2005-07-28
Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.
Room temperature magnetization in Co-doped anatase phase of TiO2
NASA Astrophysics Data System (ADS)
Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh
2013-01-01
CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.
Au/Ti resistors used for Nb/Pb-alloy Josephson junctions. II. Thermal stability
NASA Astrophysics Data System (ADS)
Murakami, Masanori; Kim, K. K.
1984-10-01
In the preceding paper bilayered Au/Ti resistors were found to have excellent electrical stability during storage at room temperature after preannealing at an elevated temperature, which is essential to design logic and memory circuits of Nb/Pb-alloy Josephson junction devices. The resistors could contact directly with the Pb-alloy control lines in which Pb and In atoms which are known to intermix easily with Au atoms are contained. Since Pb and In atoms in the control lines are separated from Au atoms of the resistors by thin Ti layers, thermal stability at the contacts is a major concern for use of the Au/Ti resistor material in the Josephson devices. In the present study, surface morphology change and diffusion mechanism at the resistor/control-line contacts were studied using x-ray diffraction and scanning electron microscopy for square-shaped Au/Ti resistors covered by Pb-In layers. The samples were isothermally annealed at temperatures ranging from 353 to 423 K. The diffusion did not occur immediately after annealing at these temperatures. After the incubation period, the interdiffusion was observed to initiate at the edges of the resistors facing to the center of the cathode. Significant amounts of the In atoms in the Pb-In layers were observed to diffuse into the Au layers of the resistors, forming AuIn2 compounds under the Ti layers. By measuring growth rates of the AuIn2 layers, the diffusion coefficients and the activation energy for the layer growth were determined. Also, by analyzing changes in the In concentration in the Pb-In layers during annealing, interdiffusion coefficients of In atoms in the Pb-In layers were determined using a computer simulation technique. The activation energy was about 1.1 eV. Since these diffusion coefficients were found to be very close to those determined previously in bulk materials, the diffusion kinetics is believed to be controlled by the lattice diffusion. Based on the present results, several methods to reduce the interdiffusion between Pb-alloy and Au/Ti resistors were proposed.
An Atomic-Scale X-ray View of Functional Oxide Films
NASA Astrophysics Data System (ADS)
Tung, I.-Cheng
Complex oxides are a class of materials that exhibit a wide variety of physical functionalities, such as ferroelectricity, colossal magnetoresistance, mulitferroicity and superconductivity, with outstanding potential for meeting many of our technological demands. The primary objective of this dissertation is to understand the structural and electronic behavior of complex oxide ultrathin films subjected to confinement, lattice misfit and broken symmetry at the interface. In complex oxide ultrathin films, heteroepitaxial synthesis has evolved into a reliable strategy to engineer orbital-lattice interactions in correlated materials and led to new and entirely unexpected phenomena at their interfaces. I experimentally demonstrated that the bulk crystal symmetry directs the atomic and orbital responses adopted by coherently strained ultrathin films of RNiO3 (R = La, Nd) with detailed X-ray scattering, polarization-dependent X-ray absorption spectroscopy (XAS) and supported by a mathematical point group symmetry analysis, found that strain-stabilized phases maintain a ``memory'' of their bulk state. This topic, however, touched only upon the properties of such films. A fundamental challenge in this research area occurs before this and centers around the understanding of how to create high-quality films with arbitrary configurations. A longstanding challenge in the oxide thin film community has been the growth of An+1BnO3 n+1 Ruddlesden-Popper (RP) compounds. To understand this problem, we have utilized a newly constructed oxide MBE with in situ synchrotron X-ray scattering capability to study the initial growth of such layered oxides and track the dynamic evolution. X-ray results are supported by theoretical calculations that demonstrated the layered oxide films dynamically rearrange during growth, leading to structures that are highly unexpected, and suggest a general approach that may be essential for the construction of metastable RP phases with performing the first atomically controlled synthesis of single-crystalline La3Ni2O7. By building upon this knowledge, I have completed the first to date study of in situ surface X-ray scattering during homoepitaxial MBE growth of SrTiO3, which demonstrates codeposition is consistent with a 2D island growth mode with SrTiO3 islands, but shuttered deposition proceeds by the growth of SrO islands which then restructure into atomically flat SrTiO3 layer during the deposition of the TiO2. From this point, we have conducted a detailed microscopic study of epitaxial LaNiO3 ultrathin films grown on SrTiO3 (001) by using reactive MBE with in situ surface X-ray diffraction and ex situ soft XAS to explore the influence of polar mismatch on the resulting structural and electronic properties. Overall, this thesis highlights the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision.
Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...
2016-02-24
In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anasori, Babak; Shi, Chenyang; Moon, Eun Ju
In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less
Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edström, Daniel, E-mail: daned@ifm.liu.se; Sangiovanni, Davide G.; Hultman, Lars
2016-07-15
Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200 K are carried out using incident flux ratios N/Ti = 1, 2, and 4. The films are analyzed as a function of composition, island size distribution, island edge orientation, and vacancy formation. Results show that N/Ti = 1 films are globally understoichiometric with dispersed Ti-rich surface regions which serve as traps to nucleate 111-oriented islands, leading to local epitaxial breakdown. Films grown with N/Ti = 2 are approximately stoichiometric and the growth mode is closer to layer-by-layer, while N/Ti = 4 films are stoichiometric with N-rich surfaces. As N/Ti is increased from 1 to 4, islandmore » edges are increasingly polar, i.e., 110-oriented, and N-terminated to accommodate the excess N flux, some of which is lost by reflection of incident N atoms. N vacancies are produced in the surface layer during film deposition with N/Ti = 1 due to the formation and subsequent desorption of N{sub 2} molecules composed of a N adatom and a N surface atom, as well as itinerant Ti adatoms pulling up N surface atoms. The N vacancy concentration is significantly reduced as N/Ti is increased to 2; with N/Ti = 4, Ti vacancies dominate. Overall, our results show that an insufficient N/Ti ratio leads to surface roughening via nucleation of small dispersed 111 islands, whereas high N/Ti ratios result in surface roughening due to more rapid upper-layer nucleation and mound formation. The growth mode of N/Ti = 2 films, which have smoother surfaces, is closer to layer-by-layer.« less
NASA Astrophysics Data System (ADS)
Chakir, M.; El Jazouli, A.; Chaminade, J. P.; Bouree, F.; de Waal, D.
2006-01-01
LiTiOAs 1-xP xO 4 (0⩽ x⩽1) compounds have been prepared using solutions of Li, Ti, As and P elements as starting products. Selected compositions have been investigated by powder X-ray or neutrons diffraction analysis, Raman and infrared spectroscopy. The structure of LiTiOAs 1-xP xO 4 ( x=0, 0.5 and 1) samples determined by Rietveld analysis is orthorhombic with Pnma space group. It is formed by a 3D network of TiO 6 octahedra and XO 4 ( X=As 1-xP x) tetrahedra where octahedral cavities are occupied by lithium atoms. TiO 6 octahedra are linked together by corners and form infinite chains along a-axis. Ti atoms are displaced from the centre of octahedral units in alternating short (1.700-1.709 Å) and long (2.301-2.275 Å) Ti-O bonds. Raman and infrared studies confirm the existence of Ti-O-Ti chains. Thermal stability of LiTiOAsO 4 has been reported.
Temperature dependence of Ti 1s near-edge spectra in Ti-based perovskites: theory and experiment
NASA Astrophysics Data System (ADS)
Shirley, Eric; Cockayne, Eric; Ravel, Bruce; Woicik, Joseph
Ti 1s near-edge spectra (around 4970 eV) in SrTiO3 and PbTiO3 reveal electric-dipole and quadrupole transitions to Ti 3d, 4p and mixed 3d-4p states. Crystal field-split pre-edge features attributed to 1s ->3d transitions are small compared to the main edge jump at the onset of the Ti 4s/4p continuum. Pre-edge and subsequent near-edge features are predicted to be weaker than what is observed, unless one accounts for ferroelectric polarization in PbTiO3 and thermal motion in both compounds. Using density-functional theory molecular dynamics simulations at various temperatures (including sampling two phases of PbTiO3), we capture the statistically averaged root-mean-square deviations of Ti4+ ions from the centers of their oxygen cages. By sampling appropriate snapshots of atomic configurations and averaging Ti 1s absorption spectra computed within a Bethe-Salpeter Equation framework, we obtain absorption spectra that agree well with experiment, including details related to ferroelectric polarization, phase transitions, and fluctuations of atomic coordinates.
Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films
NASA Astrophysics Data System (ADS)
Canulescu, S.; Borca, C. N.; Rechendorff, K.; Davidsdóttir, S.; Pagh Almtoft, K.; Nielsen, L. P.; Schou, J.
2016-04-01
The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys. The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the electrical resistivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyu; Park, Hun; Paik, Ungyu
We have discovered a methodology to realize the fabrication of flexible metal oxide film using two-dimensional (2D) nanosheets. Atomic scale titanium oxide (TiO{sub x}) nanosheets were exfoliated from bulk TiO{sub x} powder that had a layered structure via the modified Sasaki’s method. The vacuum-assisted filtration generates films with laterally aligned TiO{sub x} nanosheets. The 2D sheet-like structure and hydrophilic nature of TiO{sub x} nanosheets enables the film consisting of TiO{sub x} nanosheets to be bendable. Also, we demonstrate the fabrication of electrochemical capacitors using this film. The mechanically flexible metal oxide film is expected to open up the possibility ofmore » fabricating flexible energy storage devices from 2D metal oxide nanosheets. - Graphical abstract: The modified Sasaki’s method, combined process of hydrothermal reaction and bulky ion exchange, enables to obtain TiO{sub x} monolayer nanosheets. The vacuum-assisted filtration generates bendable films with laterally aligned TiO{sub x} nanosheets. Also, we demonstrate the fabrication of electrochemical capacitors using this film. - Highlights: • TiO{sub x} single sheets, a novel 2-dimensional material, were exfoliated from bulk powders via the modified Sasaki’s method. • In our method, the acid treatment of TiO{sub x} bulk powders was simply modified by applying the hydrothermal reaction. • Then, the delamination procedures of large cation exchange were conducted following the method proposed by Sasaki et al. • Reassembly of TiO{sub x} sheets into flexible free-standing films was simply achieved via vacuum assisted filtration method. • TiO{sub x} films were used as a flexible supercapaictor electrode material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L. X.; Rajh, T.; Wang, Z.
1997-01-01
To probe the origin of the unique functions of titanium dioxide (TiO{sub 2}) nanoparticles observed in photocatalytic reactions, structures of Ti atom sites in titanium dioxide (TiO{sub 2}) nanoparticles with different sizes were studied by Ti K-edge XAFS (X-ray absorption fine structure). Compared to the bulk TiO{sub 2} structure, a shorter Ti-O distance from surface TiO{sub 2} resulting from Ti-OH bonding was observed. The XAFS spectra also revealed an increasing disorder of the lattice with decreasing sizes of the nanoparticles based on a coordination number decrease for the third-shell O atoms as well as changes in relative intensities of pre-edgemore » peaks A1, A2, and A3. However, the Ti sites largely remain octahedral even in the 30 Angstrom diameter particles. These results imply that the increasing number of surface Ti sites as well as possible corner defects in small nanoparticles may be the main cause of the unique surface chemistry exhibited by nanoparticles of TiO{sub 2}. XAFS was also used in monitoring the photoreduction reaction products of Cu{sup 2+} and Hg{sup 2+} on TiO{sub 2} nanoparticle surfaces, with or without surface adsorbers, alanine (Ala) and thiolactic acid (TLA). Ala dramatically enhanced photoreduction of Cu{sup 2+} on TiO{sub 2} nanoparticle surfaces, whereas thiolactic acid did not affect or even hindered Hg{sup 2+} photoreduction. Although both surface adsorbers chelated with the metal ions in the absence of TiO{sub 2} nanoparticles, this chelation was drastically changed in the Cu-Ala complex but was largely retained in the Hg-TLA complex when TiO{sub 2} was present. This may correlate with the different effects of the adsorbers on the photoreduction of the metal. Our experimental results suggest that a proper balance between the affinities of the adsorber to the metal ions and to the surface Ti atoms of TiO{sub 2} may be one of the keys in selecting a surface adsorber for enhanced photoreduction efficiency.« less
Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong
2010-05-14
This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.
Atomic Layer-Deposited TiO2 Coatings on NiTi Surface
NASA Astrophysics Data System (ADS)
Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.
2018-02-01
NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.
Growth mechanism of atomic-layer-deposited TiAlC metal gate based on TiCl4 and TMA precursors
NASA Astrophysics Data System (ADS)
Jinjuan, Xiang; Yuqiang, Ding; Liyong, Du; Junfeng, Li; Wenwu, Wang; Chao, Zhao
2016-03-01
TiAlC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atomic layer deposition method using TiCl4 and Al(CH3)3(TMA) as precursors. It is found that the major product of the TiCl4 and TMA reaction is TiAlC, and the components of C and Al are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCl4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TiCl4 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving Al into the TiC film and leading to TiAlC formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and Al in the TiAlC film. Thus, the film composition can be controlled by the growth temperature to a certain extent. Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China (Grant No. 2013ZX02303).
Titanium dioxide thin films by atomic layer deposition: a review
NASA Astrophysics Data System (ADS)
Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit
2017-09-01
Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.
Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals
Rodenbücher, C.; Luysberg, M.; Schwedt, A.; Havel, V.; Gunkel, F.; Mayer, J.; Waser, R.
2016-01-01
The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth. PMID:27577508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jinlei; Wu, Jinghe; Zhao, Xingju
Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO 2(110) can be tuned into a highly effective catalyst, e.g. for O 2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhancedmore » EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O 2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O 2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts.« less
NASA Astrophysics Data System (ADS)
Gil, E.; Cortés, J.; Iturriza, I.; Ordás, N.
2018-01-01
An innovative powder metallurgy route to produce ODS FS, named STARS, has succeeded in atomizing steel powders containing the oxide formers (Y and Ti) and, hence, avoids the mechanical alloying (MA) step to dissolve Y in the matrix. A metastable oxide layer forms at the surface of atomized powders and dissociates during HIP consolidation at high temperatures, leading to precipitation of more stable Y-Ti-O nanoparticles.
Unprecedented H-atom transfer from water to ketyl radicals mediated by Cp(2)TiCl.
Paradas, Miguel; Campaña, Araceli G; Marcos, Maria Luisa; Justicia, Jose; Haidour, Ali; Robles, Rafael; Cárdenas, Diego J; Oltra, J Enrique; Cuerva, Juan M
2010-10-07
The H-atom transfer (HAT) from water to ketyl radicals, mediated by titanocene(iii) aqua-complexes, can explain the Ti(III)-promoted reduction of ketones in aqueous medium better than the conventional House mechanism. Moreover, we also report novel evidences supporting the existence of these titanocene(iii) aqua-complexes.
KPFM/AFM imaging on TiO2(110) surface in O2 gas
NASA Astrophysics Data System (ADS)
Arima, Eiji; Wen, Huan Fei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro
2018-03-01
We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
NASA Astrophysics Data System (ADS)
Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin
2017-08-01
Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.
ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES
NASA Astrophysics Data System (ADS)
Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting
2015-05-01
The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.
Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition.
Meng, Xiangbo; Geng, Dongsheng; Liu, Jian; Li, Ruying; Sun, Xueliang
2011-04-22
Atomic layer deposition (ALD) was used to synthesize graphene-based metal oxide nanocomposites. This strategy was fulfilled on the preparation of TiO(2)-graphene nanosheet (TiO(2)-GNS) nanocomposites using titanium isopropoxide and water as precursors. The synthesized nanocomposites demonstrated that ALD exhibited many benefits in a controllable means. It was found that the as-deposited TiO(2) was tunable not only in its morphologies but also in its structural phases. As for the former, TiO(2) was transferable from nanoparticles to nanofilms with increased cycles. With regard to the latter, TiO(2) was changeable from amorphous to crystalline phase, and even a mixture of the two with increased growth temperatures (up to 250 °C). The underlying growth mechanisms were discussed and the resultant TiO(2)-GNS nanocomposites have great potentials for many applications, such as photocatalysis, lithium-ion batteries, fuel cells, and sensors.
Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying
2016-02-15
A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.
Atomic scale study of surface orientations and energies of Ti 2O 3 crystals
Gu, Meng; Wang, Zhiguo; Wang, Chongmin; ...
2017-11-01
For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern their chemical behavior. In this paper, the surface atomistic structure and termination of Ti 2O 3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combined with density functional theory (DFT) calculations. STEM imaging reveals that the Ti 2O 3 crystals are most often faceted along (001), (012), (-114), and (1–20) planes. The DFT calculation indicates that the (012) surface with TiO-termination has the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stablemore » and prevalent surfaces in Ti 2O 3 nanocrystals. Finally, these observations provide insights for exploring the interfacial process involving Ti 2O 3 nanoparticles.« less
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
Scanning probes for lithography: Manipulation and devices
NASA Astrophysics Data System (ADS)
Rolandi, Marco
2005-11-01
Scanning probes are relatively low cost equipment that can push the limit of lithography in the nanometer range, with the advantages of high resolution, accuracy in the positioning of the overlayers and no proximity aberrations. We have developed three novel scanning probe lithography (SPL) resists based on thin films of Titanium, Molybdenum and Tungsten and we have manipulated single walled carbon nanotubes using the sharp tip of an atomic force microscope (AFM) for the fabrication of nanostructures. A dendrimer-passivated Ti film was imaged in the positive and the negative tone using SPL. This is the first example of SPL imaging in both tones using a unique resist. Positive tone patterning was obtained by locally scribing the dendrimer molecules and subsequent acid etch of the deprotected Ti film. Local anodic oxidation transforms Ti into TiO2 and deposits a thin layer of amorphous carbon on the patterned areas. This is very resistive to base etch and affords negative tone imaging of the Ti surface. Molybdenum and Tungsten were patterned using local anodic oxidation. This scheme is particularly flexible thanks to the solubility in water of the fully oxidized states of the two metals. We will present the facile fabrication of several nanostructures such as of trenches, dots wires and nanoelectrodes and show the potential of this scheme for competing with conventional lithographic techniques based on radiation. Quasi one dimensional electrodes for molecular electronics applications were also fabricated by creating nanogaps in single walled carbon nanotubes. The tubes, connected to microscopic contacts, were controllably cut via local anodic oxidation using the tip of the AFM. This technique leads to nanoscopic carboxyl terminated wires to which organic molecules can be linked using covalent chemistry. This geometry is particularly useful for the high gate efficiency without the need of a thin gate dielectric and the stability of the junction. Room temperature and low temperature measurements were performed and show single electron transistor behavior for the molecular junction.
Fabrication of Highly Ordered and Well-Aligned PbTiO 3/TiN Core–Shell Nanotube Arrays
Yoon, Jaesung; Kim, Sangjoon; Kim, Dongjin; ...
2015-04-30
Highly ordered and well-aligned PbTiO 3/TiN core–shell nanotubes are fabricated in this paper via an anodic aluminum oxide templating route followed by TiN and TiO 2 atomic layer deposition deposition and a subsequent PbO vapor reaction. Finally, PbTiO 3/TiN nanotubes keep their original shape after the vapor phase reaction, and they display well-defined piezoresponse hysteresis curves with remnant piezoresponse of 38 pm V -1.
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-01-01
We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.
Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.
Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L
2015-12-01
The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and magnetism of new rare-earth-free intermetallic compounds: Fe 3+xCo 3-xTi 2 (0 ≤ x ≤ 3)
Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...
2016-11-28
Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe 3Co 3Ti 2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe 3Co 3Ti 2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe 3Co 3Ti 2 lattice leads to the formation of Fe 4Co 2Ti 2, Fe 5CoTi, and Fe 6Ti 2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm 3) and saturation magnetic polarizationmore » (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.« less
Interaction of SO2 with Cu/TiC(0 0 1) and Au/TiC(0 0 1): Toward a New Family of DeSOx Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Feria; J Rodriguez; T Jirsak
2011-12-31
Experiments carried out under well-controlled conditions and density functional theory (DFT)-based calculations evidence that Cu and Au nanoparticles supported on a TiC(0 0 1) surface are quite active for the dissociation of the SO{sub 2} molecule. The Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems cleave both S-O bonds of SO{sub 2} at a temperature of 150 K, displaying a reactivity much larger than that of TiC(0 0 1) or extended surfaces of bulk copper and gold. The origin of the high activity of the Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems lies on the interaction between the Cmore » atoms of the substrate and the metal atoms of the supported particle, which results in a large polarization of its electron density. Experiments and theory consistently indicate that the Cu/TiC system is more active toward SO{sub 2} dissociation than the Au/TiC system. This type of systems may provide alternative and efficient DeSO{sub x} catalysts.« less
Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Towards a New Family of DeSOx Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.A.; Feria, L.; Jirsak, T.
2011-04-25
Experiments carried out under well-controlled conditions and density functional theory (DFT)-based calculations evidence that Cu and Au nanoparticles supported on a TiC(0 0 1) surface are quite active for the dissociation of the SO{sub 2} molecule. The Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems cleave both S-O bonds of SO{sub 2} at a temperature of 150 K, displaying a reactivity much larger than that of TiC(0 0 1) or extended surfaces of bulk copper and gold. The origin of the high activity of the Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems lies on the interaction between the Cmore » atoms of the substrate and the metal atoms of the supported particle, which results in a large polarization of its electron density. Experiments and theory consistently indicate that the Cu/TiC system is more active toward SO{sub 2} dissociation than the Au/TiC system. This type of systems may provide alternative and efficient DeSO{sub x} catalysts.« less
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-01-01
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature. PMID:28772641
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding.
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-03-11
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature.
Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films
Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan
2014-01-01
Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000
Elucidating the Phase Transformation of Li 4Ti 5O 12 Lithiation at the Nanoscale
Verde, Michael G.; Baggetto, Loïc; Balke, Nina; ...
2016-03-15
Here this work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li 4Ti 5O 12 (LTO). Our results quantify the extent of reaction between Li 4Ti 5O 12 and Li 7Ti 5O 12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li 4Ti 5O 12 and Li 7Ti 5O 12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of thismore » critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. Additionally, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.« less
Atomic-scale electrochemistry on the surface of a manganite
Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; ...
2015-04-09
The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La 0.625Ca 0.375MnO 3 grown on (001) SrTiO 3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring themore » tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less
Influence of annealing atmosphere on formation of electrically-active defects in rutile TiO2
NASA Astrophysics Data System (ADS)
Zimmermann, C.; Bonkerud, J.; Herklotz, F.; Sky, T. N.; Hupfer, A.; Monakhov, E.; Svensson, B. G.; Vines, L.
2018-04-01
Electronic states in the upper part of the bandgap of reduced and/or hydrogenated n-type rutile TiO2 single crystals have been studied by means of thermal admittance and deep-level transient spectroscopy measurements. The studies were performed at sample temperatures between 28 and 300 K. The results reveal limited charge carrier freeze-out even at 28 K and evidence the existence of dominant shallow donors with ionization energies below 25 meV. Interstitial atomic hydrogen is considered to be a major contributor to these shallow donors, substantiated by infrared absorption measurements. Three defect energy levels with positions of about 70 meV, 95 meV, and 120 meV below the conduction band edge occur in all the studied samples, irrespective of the sample production batch and the post-growth heat treatment used. The origin of these levels is discussed in terms of electron polarons, intrinsic point defects, and/or common residual impurities, where especially interstitial titanium atoms, oxygen vacancies, and complexes involving Al atoms appear as likely candidates. In contrast, no common deep-level defect, exhibiting a charge state transition in the 200-700 meV range below the conduction band edge, is found in different samples. This may possibly indicate a strong influence on deep-level defects by the post-growth heat treatments employed.
NASA Astrophysics Data System (ADS)
Arkhurst, Barton Mensah; Kim, Jeoung Han
2018-05-01
Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungbauer, M.; Hühn, S.; Moshnyaga, V.
2014-12-22
We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO{sub 3}){sub n} (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO{sub 3}(001) substrates by means of a sequential deposition of Sr-O/Ti-O{sub 2} atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2–4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidlymore » decreases and saturates after 5–6 repetitions of the SrO(SrTiO{sub 3}){sub 4} block at the level of 2.4%. This identifies the SrTiO{sub 3} substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy.« less
Design and development of hot corrosion-resistant
NASA Astrophysics Data System (ADS)
Zhang, J. S.; Hu, Z. Q.; Murata, Y.; Morinaga, M.; Yukawa, N.
1993-11-01
A systematic study of the effects of refractory metals Ti, Ta, and Nb on the microstructures and properties was conducted with a hot corrosion-resistant alloy system Ni-16Cr-9Al-4Co-2W-lMo-(0~4)Ti-(0~4)Ta-(0~4)Nb (in atomic percent) which was selected based on the d-electrons alloy design theory and some basic considerations in alloying features of single-crystal nickel-base superalloys. The contour lines of solidification reaction temperatures and eutectic (γ + γ') volume fraction in the Ti-Ta-Nb compositional triangle were determined by differential thermal analysis (DTA) and imaging analyzer. Compared with the reference alloy IN738LC, in most of the compositional ranges studied, the designed alloys show very low amounts of eutectic (γ + γ') (⪯0.4 vol pct), narrow solidification ranges (⪯65 °C), and wide “heat-treatment windows” (>100 °C). This indicates that the alloys should have the promising microstructural stability, single-crystal castability, and be easier for complete solution treatment. In a wide compositional range, the designed alloys showed good hot corrosion resistance (weight loss less than 20 mg/cm2 after 24 hours kept in molten salt at 900 °C). By summarizing the results, the promising alloy compositional ranges of the alloys with balanced properties were determined for the final step of the alloy design, i.e., to grow single crystal and characterize mechanical properties of the alloys selected from the previously mentioned regions.
Gutsev, G L; Weatherford, C W; Belay, K G; Ramachandran, B R; Jena, P
2013-04-28
The electronic and geometrical structures of the M12 and M13 clusters where M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn along with their singly negatively and positively charged ions are studied using all-electron density functional theory within the generalized gradient approximation. The geometries corresponding to the lowest total energy states of singly and negatively charged ions of V13, Mn12, Co12, Ni13, Cu13, Zn12, and Zn13 are found to be different from the geometries of the corresponding neutral parents. The computed ionization energies of the neutrals, vertical electron detachment energies from the anions, and energies required to remove a single atom from the M13 and M13(+) clusters are in good agreement with experiment. The change in a total spin magnetic moment of the cation or anion with respect to a total spin magnetic moment of the corresponding neutral is consistent with the one-electron model in most cases, i.e., they differ by ±1.0 μ(B). Exceptions are found only for Sc12(-), Ti12(+), Mn12(-), Mn12(+), Fe12(-), Fe13(+), and Co12(+).
Researches on tungsten carbide
NASA Astrophysics Data System (ADS)
1994-11-01
This paper summarizes results of the researches on tungsten carbide (WC), carried out in the 5-year period starting 1989 by the Science and Technology Agency's National Institute for Researches in Inorganic Materials. The high-frequency heating, floating zone technique, generally suited for growth of large-size, single crystals of high melting materials, is inapplicable to the hexagonal WC system, which is decomposed. This problem has been solved by adding boron to the system, to allow it to exist with the W-C-B melt at an equilibrium. The computer-aided control techniques have enabled automatic growth of the single crystals of carbides and borides. The de Haas-Van Alphen effect of the single WC crystals has been observed, to establish the Fermi surface model. The single crystals of transition metal carbides, such as WC, have been coated with the monolayer of graphite at high repeatability, to create the surface layer materials. An attempt has been done to produce the halite type structure by substituting Ti as the atom in the outermost layer of TiC by W. The new method, based on the low-speed deuterium ion scattering, has been developed to analyze the surface bonding conditions, clarifying the conditions of alkalis adsorbed on and bonded to metallic surfaces, and their surface reactivities.
NASA Astrophysics Data System (ADS)
Carey, John J.; Nolan, Michael
2017-10-01
Modification of metal oxides with dopants that have a stable oxidation in their parent oxides which is higher than the host system is expected to introduce extra electrons into the material to improve carrier mobility. This is essential for applications in catalysis, SOFCs and solar energy materials. Density functional theory calculations are used to investigate the change in electronic and geometric structure of chromium (III) oxide by higher valence dopants, namely; Ce, Ti, V and Zr. For single metal doping, we find that the dopants with variable oxidation states, Ce, Ti and V, adopt a valence state of +3, while Zr dopant has a +4 oxidation state and reduces a neighbouring Cr cation. Chromium vacancy formation is greatly enhanced for all dopants, and favoured over oxygen vacancy formation. The Cr vacancies generate holes which oxidise Ce, Ti and V from +3 to +4, while also oxidising lattice oxygen sites. For Zr doping, the generated holes oxidise the reduced Cr2+ cation back to Cr3+ and also two lattice oxygen atoms. Three metal atoms in the bulk lattice facilitate spontaneous Cr vacancy from charge compensation. A non-classical compensation mechanism is observed for Ce, Ti and V; all three metals are oxidised from +3 to +4, which explains experimental observations that these metals have a +4 oxidation state in Cr2O3. Charge compensation of the three Zr metals proceeds by a classical higher valence doping mechanism; the three dopants reduce three Cr cations, which are subsequently charge compensated by a Cr vacancy oxidising three Cr2+ to Cr3+. The compensated structures are the correct ground state electronic structure for these doped systems, and used as a platform to investigate cation/anion vacancy formation. Unlike the single metal doped bulks, preference is now given for oxygen vacancy formation over Cr vacancy formation, indicating that the dopants increase the reducibility of Cr2O3 with Ce doping showing the strongest enhancement. The importance of the correct ground state in determining the formation of defects is emphasised.
NASA Astrophysics Data System (ADS)
Hinata, Sintaro; Jo, Shin; Saito, Shin
2018-05-01
Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.
NASA Astrophysics Data System (ADS)
Garcia-Castro, A. C.; Vergniory, M. G.; Bousquet, E.; Romero, A. H.
2016-01-01
The electronic structure of SrTiO3 and SrHfO3 (001) surfaces with oxygen vacancies is studied by means of first-principles calculations. We reveal how oxygen vacancies within the first atomic layer of the SrTiO3 surface (i) induce a large antiferrodistortive motion of the oxygen octahedra at the surface, (ii) drive localized magnetic moments on the Ti 3 d orbitals close to the vacancies, and (iii) form a two-dimensional electron gas localized within the first layers. The analysis of the spin texture of this system exhibits a splitting of the energy bands according to the Zeeman interaction, lowering of the Ti 3 dx y level in comparison with dx z and dy z, and also an in-plane precession of the spins. No Rashba-like splitting for the ground state or for the ab initio molecular dynamics trajectory at 400 K is recognized as suggested recently by A. F. Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Instead, a sizable Rashba-like splitting is observed when the Ti atom is replaced by a heavier Hf atom with a much larger spin-orbit interaction. However, we observe the disappearance of the magnetism and the surface two-dimensional electron gas when full structural optimization of the SrHfO3 surface is performed. Our results uncover the sensitive interplay of spin-orbit coupling, atomic relaxations, and magnetism when tuning these Sr-based perovskites.
NASA Astrophysics Data System (ADS)
Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam
2018-04-01
TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Qi; Jiang Yulong; Detavernier, Christophe
2007-10-15
Atomic layer deposition (ALD) of TiO{sub 2} thin films using Ti isopropoxide and tetrakis-dimethyl-amido titanium (TDMAT) as two kinds of Ti precursors and water as another reactant was investigated. TiO{sub 2} films with high purity can be grown in a self-limited ALD growth mode by using either Ti isopropoxide or TDMAT as Ti precursors. Different growth behaviors as a function of deposition temperature were observed. A typical growth rate curve-increased growth rate per cycle (GPC) with increasing temperatures was observed for the TiO{sub 2} film deposited by Ti isopropoxide and H{sub 2}O, while surprisingly high GPC was observed at lowmore » temperatures for the TiO{sub 2} film deposited by TDMAT and H{sub 2}O. An energetic model was proposed to explain the different growth behaviors with different precursors. Density functional theory (DFT) calculation was made. The GPC in the low temperature region is determined by the reaction energy barrier. From the experimental results and DFT calculation, we found that the intermediate product stability after the ligand exchange is determined by the desorption behavior, which has a huge effect on the width of the ALD process window.« less
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.; Auciello, O.; Premnath, R. N.
2010-01-01
Nanolaminates consisting of Al{sub 2}O{sub 3} and TiO{sub 2} oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant ({approx}1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al{sub 2}O{sub 3} and TiO{sub 2} dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation.
NASA Astrophysics Data System (ADS)
Jeon, S.; Kang, D.-H.; Lee, Y. H.; Lee, S.; Lee, G. W.
2016-11-01
We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.
NASA Astrophysics Data System (ADS)
Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.
2017-11-01
Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.
BaTiO3-based nanolayers and nanotubes: first-principles calculations.
Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D
2013-01-30
The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter. Copyright © 2012 Wiley Periodicals, Inc.
Mg/Ti multilayers: Structural and hydrogen absorption properties
NASA Astrophysics Data System (ADS)
Baldi, A.; Pálsson, G. K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J. H.; Krishnan, G.; Kooi, B. J.; Walker, G. S.; Fay, M. W.; Hjörvarsson, B.; Wijngaarden, R. J.; Dam, B.; Griessen, R.
2010-06-01
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a “spinodal-like” microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities. Notwithstanding the large lattice mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. On exposure to H2 gas a two-step hydrogenation process occurs with the Ti layers forming the hydride before Mg. From in situ measurements of the bilayer thickness Λ at different hydrogen pressures, we observe large out-of-plane expansions of Mg and Ti layers on hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. On unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.
Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.
Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia
2018-06-06
The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N
2018-04-14
Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.
Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet
NASA Astrophysics Data System (ADS)
Tian, Qianren; Wang, Guocheng; Zhao, Yang; Li, Jing; Wang, Qi
2018-06-01
There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.
NASA Astrophysics Data System (ADS)
Mujtaba, Jawayria; Sun, Hongyu; Zhao, Yanyan; Xiang, Guolei; Xu, Shengming; Zhu, Jing
2017-09-01
Lithium ion batteries (LIBs) are critical constituents of modern day vehicular and telecommunication technologies. Transition metal oxides and their composites have been extensively studied as potential electrode materials for LIBs. However, inefficient lithiation, poor electrical conductivity, and drastic volume change during cycling result in low reversible capacity and rapid capacity fading, and thus hinder the practical applications of those electrodes. In this work, we report a facile synthesis of a novel hierarchical composites, which consist of ultrafine Co3O4 nanoparticles uniformly dispersed on TiO2(B) nanosheets with atomic thickness (Co3O4 NPs@TiO2(B) NSs). When tested as anode material for LIBs, the Co3O4 NPs@TiO2(B) NSs sample with optimized composition shows a reversible capacity of ∼677.3 mAhg-1 after 80 cycles at a current density of 100 mAg-1. A capacity of 386.2 mAhg-1 is still achieved at 1000 mAg-1. The synergistic effect of ultrafine Co3O4 nanoparticles and atomic-thickness TiO2(B) nanosheets is responsible for the enhanced electrochemical performance.
Diffusion anisotropy of poor metal solute atoms in hcp-Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotti, Lucia, E-mail: lxs234@bham.ac.uk; Mottura, Alessandro, E-mail: a.mottura@bham.ac.uk
2015-05-28
Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a resultmore » of the bond angle distortion.« less
Spectroscopic determination of surface geometry: Ti(0001)-H(1×1)
NASA Astrophysics Data System (ADS)
Feibelman, Peter J.; Hamann, D. R.
1980-02-01
The electronic structure of a Ti(0001) film covered by a monolayer of H is shown to depend strongly on the location of the H atom in the surface unit cell. Best agreement with experiment is found with the H's in three-fold sites, 0.8 a.u. outside the outer Ti layer. In this geometry the H atoms "heal" the surface-the clean Ti(0001) surface state near the Fermi level is removed and the outer layer d-like local density of states (LDOS) is quite similar to that of the interior. Additionally, the calculated work function is 4.0 eV and an H-derived peak in the calculated LDOS appears 5 eV below EF, in agreement with photoemission measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jing; Yan, Yong; Young, James
2017-05-01
We demonstrate that by employing a hybrid molecular/semiconductor interface with atomic layer deposited (ALD) TiO2 as an intermediate layer, a robust and corrosion resistant GaInP2-TiO2-cobaltoxime-TiO2 photocathode can be operated in alkaline media (pH =13).
NASA Astrophysics Data System (ADS)
Greczynski, Grzegorz
2016-09-01
High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic heavy-metal ions to densify the dilute TiTaN and/or TiAlTaN alloys. No external heating is used and the substrate temperature does not exceed 120 °C. This development allows for widening the application range of hard TM nitride coatings to new classes of technologically-relevant temperature-sensitive substrates, such as components made by plastics, glasses, aluminum alloys, and tempered steels. Author wants to acknowledge the financial support from VINN Excellence Center Functional Nanoscale Materials (FunMat) Grant 2005 02666.
The shear instability energy: a new parameter for materials design?
NASA Astrophysics Data System (ADS)
Kanani, M.; Hartmaier, A.; Janisch, R.
2017-10-01
Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.
Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com; Banerjee, Alok
Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples.more » EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.« less
Nature of adsorption on TiC(111) investigated with density-functional calculations
NASA Astrophysics Data System (ADS)
Ruberto, Carlo; Lundqvist, Bengt I.
2007-06-01
Extensive density-functional calculations are performed for chemisorption of atoms in the three first periods (H, B, C, N, O, F, Al, Si, P, S, and Cl) on the polar TiC(111) surface. Calculations are also performed for O on TiC(001), for full O(1×1) monolayer on TiC(111), as well as for bulk TiC and for the clean TiC(111) and (001) surfaces. Detailed results concerning atomic structures, energetics, and electronic structures are presented. For the bulk and the clean surfaces, previous results are confirmed. In addition, detailed results are given on the presence of C-C bonds in the bulk and at the surface, as well as on the presence of a Ti-based surface resonance (TiSR) at the Fermi level and of C-based surface resonances (CSR’s) in the lower part of the surface upper valence band. For the adsorption, adsorption energies Eads and relaxed geometries are presented, showing great variations characterized by pyramid-shaped Eads trends within each period. An extraordinarily strong chemisorption is found for the O atom, 8.8eV /adatom. On the basis of the calculated electronic structures, a concerted-coupling model for the chemisorption is proposed, in which two different types of adatom-substrate interactions work together to provide the obtained strong chemisorption: (i) adatom-TiSR and (ii) adatom-CSR’s. This model is used to successfully describe the essential features of the calculated Eads trends. The fundamental nature of this model, based on the Newns-Anderson model, should make it apt for general application to transition-metal carbides and nitrides and for predictive purposes in technological applications, such as cutting-tool multilayer coatings and MAX phases.
Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang
2014-02-12
High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.
Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts
NASA Astrophysics Data System (ADS)
Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun
2017-11-01
We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.
Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Ian
Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO 2 is responsible for oxidative catalytic activity. O 2 molecules bind with Au atoms and Ti4+ ions in the TiO 2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atomsmore » which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO 2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO 2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO 2 catalysts with surface science on the TiO 2(110) and TiO 2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti 4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.« less
Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D
2015-11-01
Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.
NASA Astrophysics Data System (ADS)
Iwagoshi, Joel A.
Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V. Our research on the deposition process will contribute to the understanding of PVDF/TiO2 composite thin films. These results will lead to further investigation of PVDF/TiO2 high density energy storage capacitors. These capacitors can potentially increase the efficiency of alternative energy sources already in use.
NASA Astrophysics Data System (ADS)
Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing
2017-12-01
Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.
Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)
1998-01-01
A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)
Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...
2015-01-21
This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less
Fine-grained BaZr0.2Ti0.8O3 thin films for tunable device applications
NASA Astrophysics Data System (ADS)
Ying, Z.; Yun, P.; Wang, D. Y.; Zhou, X. Y.; Song, Z. T.; Feng, S. L.; Wang, Y.; Chan, H. L. W.
2007-04-01
A study of the structure and in-plane dielectric properties of BaZr0.2Ti0.8O3 thin film epitaxially grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) single-crystal substrates through pulsed-laser deposition has been carried out. X-ray diffraction measurements revealed a good crystallinity and tensile in-plane stress in the film. Fine grains with an average size of ˜20 nm were observed using atomic force microscopy. Curie temperature of the film was found to be ˜120 °C, which is 100 °C higher than that of the ceramic. Butterfly-shaped C-V curve confirmed the in-plane ferroelectric state in the film. A large dielectric tunability of ˜50% was found in the film.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
NASA Astrophysics Data System (ADS)
Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit
2018-04-01
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.
Properties at the interface of graphene and Ti2C MXene
NASA Astrophysics Data System (ADS)
Paul, Pallavi; Chakraborty, Poulami; Das, Tilak; Nafday, Dhani; Saha-Dasgupta, Tanusri
2017-07-01
Employing ab initio calculations, we characterize the interfaces formed between graphene, a much discussed two-dimensional material, and MXene, another two-dimensional material of recent interest. Our study considering the specific case of Ti2C , a member of the MXene family, shows the formation of chemical bonds between Ti atoms and C atoms of graphene. This results in reconstruction of the electronic structure at the interface, making the interface metallic, though graphene is a zero-gap semiconductor and Ti2C is an antiferromagnetic insulator in their respective native form. The optical and phonon properties of the interfaces are found to be strongly dependent on the stacking arrangement, driven by the nature of chemical-bond formation. Consideration of O-passivated Ti2C is found to weaken the interaction between graphene and Ti2C substantially, making it a physisorption process rather than chemisorption in the unpassivated situation. Our first-principles study is expected to motivate future experimental investigation.
Deng, Qingming; Heine, Thomas
2016-01-01
The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243
NASA Astrophysics Data System (ADS)
Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa
2017-05-01
The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.
Dynamics of oxygen species on reduced TiO2 (110) rutile
NASA Astrophysics Data System (ADS)
Wang, Yun; Pillay, Devina; Hwang, Gyeong S.
2004-11-01
Using density functional theory calculations, we have investigated the adsorption and diffusion of oxygen species on the reduced TiO2(110) surface. We have found that molecular O2 strongly binds not only to O vacancies, but also to Ti(5c) neighbors, due to delocalization of unpaired electrons arising from removal of neutral bridging oxygen. Our results show that molecular O2 can jump across an oxygen vacancy and diffuse along a Ti(5c) row with moderate barriers. On the other hand, atomic O diffusion along a Ti(5c) row is rather unlikely at low temperatures (<300K) , because of the relatively higher probability of O-O formation from interaction with an adjacent bridging O(2c) atom. Based on our calculation results, we discuss the diffusion and healing of O vacancies associated with O2 adsorption.
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.; Ross, P. N.
1985-01-01
The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end.
Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films
Yu, Ing-Song; Cheng, Hsyi-En; Chang, Chun-Chieh; ...
2017-02-06
The plasmonic properties of titanium nitride (TiN) films depend on the type of substrate when using typical deposition methods such as sputtering. We show atomic layer deposition (ALD) of TiN films with very weak dependence of plasmonic properties on the substrate, which also suggests the prediction and evaluation of plasmonic performance of TiN nanostructures on arbitrary substrates under a given deposition condition. Our results also observe that substrates with more nitrogen-terminated (N-terminated) surfaces will have significant impact on the deposition rate as well as the film plasmonic properties. Furthermore, we illustrate that the plasmonic properties of ALD TiN films canmore » be tailored by simply adjusting the deposition and/or post-deposition annealing temperatures. These characteristics and the capability of conformal coating make ALD TiN films on templates ideal for applications that require the fabrication of complex 3D plasmonic nanostructures.« less
NASA Astrophysics Data System (ADS)
Boyadjiev, Stefan I.; Kéri, Orsolya; Bárdos, Péter; Firkala, Tamás; Gáber, Fanni; Nagy, Zsombor K.; Baji, Zsófia; Takács, Máté; Szilágyi, Imre M.
2017-12-01
In the present work, core TiO2 and ZnO oxide nanofibers were prepared by electrospinning, then shell oxide (ZnO, TiO2) layers were deposited on them by atomic layer deposition (ALD). The aim of preparing ZnO and TiO2 nanofibers, as well as ZnO/TiO2 and TiO2/ZnO nanocomposites is to study the interaction between the oxide materials when a pure oxide fiber is covered with thin film of the other oxide, and explore the influence of exchanging the core and shell materials on their photocatalytic and gas sensing properties. The composition, structure and morphology of the pure and composite nanofibers were studied by SEM-EDX, TEM, XRD, FTIR, UV-vis and Raman. The photocatalytic activity of the as-prepared materials was analyzed by UV-vis spectroscopy through decomposing aqueous methyl orange under UV irradiation. The gas sensing of the nanofibers was investigated by detecting 100 ppm NH3 at 150 and 220 °C using interdigital electrode based sensors.
Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih
2013-05-01
2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.
The role of molybdenum in suppressing cold dwell fatigue in titanium alloys
NASA Astrophysics Data System (ADS)
Ready, Adam J.; Haynes, Peter D.; Grabowski, Blazej; Rugg, David; Sutton, Adrian P.
2017-07-01
We test a hypothesis to explain why Ti-6242 is susceptible to cold dwell fatigue (CDF), whereas Ti-6246 is not. The hypothesis is that, in Ti-6246, substitutional Mo-atoms in α-Ti grains trap vacancies, thereby limiting creep relaxation. In Ti-6242, this creep relaxation enhances the loading of grains unfavourably oriented for slip and they subsequently fracture. Using density functional theory to calculate formation and binding energies between Mo-atoms and vacancies, we find no support for the hypothesis. In the light of this result, and experimental observations of the microstructures in these alloys, we agree with the recent suggestion (Qiu et al. 2014 Metall. Mater. Trans. A 45, 6075-6087. (doi:10.1007/s11661-014-2541-5)) that Ti-6246 has a much smaller susceptibility to CDF because it has a smaller grain size and a more homogeneous distribution of grain orientations. We propose that the reduction of the susceptibility to CDF of Ti-6242 at temperatures above about 200°C is due to the activation of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, J.; Gao, Y.; Miao, Y.
The observations on quantity and configuration of dislocations by TEM conventional diffraction contrast method as well as the determinations of the electron charge density distributions by the quantitative electron crystallography method in Ti47.5Al2.5V deformed at 400 C and room temperature (R.T.) have been carried out. The metallic bonding between Al-Al or Ti-Ti atom pair along {l_angle}110] and Ti-Ti along {l_angle}112] direction is strengthened; while the metallic bonding between Ti-Al atom pair both along {l_angle}101] and {l_angle}121] direction is weakened at 400 C. The quantities of a/2{l_angle}110], a/2{l_angle}112] and dissociated a{l_angle}101] (a[101]{yields}a/2[1{bar 1}0] + a/3[112] + SISF + a/6[112]) dislocations aremore » increased at 400 C, compared with that at R. T.. The a/2 {l_angle}121] super dislocations have not been seen both at 400 C and R.T.« less
NASA Astrophysics Data System (ADS)
Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.
2017-07-01
Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.
Interaction of ammonia with semiconducting oxide surfaces
NASA Astrophysics Data System (ADS)
Nigam, Sandeep; Sahoo, Suman Kalyan; Majumder, Chiranjib
2018-04-01
Using density functional theory (DFT) we have investigated the adsorption of NH3 molecule on the rutile SnO2(110) and mixed Sn0.5Ti0.5O2(110) surfaces. NH3 molecule gets absorbed on the 5-coordinated Sn atom (Sn5c) of the surface in tilted mode having an additional hydrogen bond with nearby surface bridged oxygen (Obr) atom. After adsorption, 3a1 molecular orbital of ammonia undergo significant dispersal as it donates its electron to surface atoms. The adsorption energy is found to be 1.4-1.6eV. Inclusion of Ti atoms in the SnO2 lattice leads to decrease in the adsorption energy value.
Electric field dependent local structure of (KxNa1-x) 0.5B i0.5Ti O3
NASA Astrophysics Data System (ADS)
Goetzee-Barral, A. J.; Usher, T.-M.; Stevenson, T. J.; Jones, J. L.; Levin, I.; Brown, A. P.; Bell, A. J.
2017-07-01
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (KxNa1-x) 0.5B i0.5Ti O3 , as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x =0.15 , 0.18 and at the morphotropic phase boundary composition x =0.20 . X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks in the 3-4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from <110 > to <112 > -type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x . Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. The combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.; ...
2017-07-31
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Periodic oxidation for fabricating titanium oxynitride thin films via atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwashita, Shinya, E-mail: shinya.iwashita@tel.com; Aoyama, Shintaro; Nasu, Masayuki
2016-01-15
This paper demonstrates thermal atomic layer deposition (ALD) combined with periodic oxidation for synthesizing titanium oxynitride (TiON) thin films. The process used a typical ALD reactor for the synthesis of titanium nitride (TiN) films wherein oxygen was supplied periodically between the ALD-TiN cycles. The great advantage of the process proposed here was that it allowed the TiN films to be oxidized efficiently. Also, a uniform depth profile of the oxygen concentration in the films could be obtained by tuning the oxidation conditions, allowing the process to produce a wide variety of TiON films. The resistivity measurement is a convenient methodmore » to confirm the reproducibility of metal film fabrication but may not be applicable for TiON films depending upon the oxidation condition because the films can easily turn into insulators when subjected to periodic oxidation. Therefore, an alternative reproducibility confirmation method was required. In this study, spectroscopic ellipsometry was applied to monitor the variation of TiON films and was able to detect changes in film structures such as conductor–insulator transitions in the TiON films.« less
Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe2.
Wang, Hong; Chen, Yu; Duchamp, Martial; Zeng, Qingsheng; Wang, Xuewen; Tsang, Siu Hon; Li, Hongling; Jing, Lin; Yu, Ting; Teo, Edwin Hang Tong; Liu, Zheng
2018-02-01
Layered transition metal (Ti, Ta, Nb, etc.) dichalcogenides are important prototypes for the study of the collective charge density wave (CDW). Reducing the system dimensionality is expected to lead to novel properties, as exemplified by the discovery of enhanced CDW order in ultrathin TiSe 2 . However, the syntheses of monolayer and large-area 2D CDW conductors can currently only be achieved by molecular beam epitaxy under ultrahigh vacuum. This study reports the growth of monolayer crystals and up to 5 × 10 5 µm 2 large films of the typical 2D CDW conductor-TiSe 2 -by ambient-pressure chemical vapor deposition. Atomic resolution scanning transmission electron microscopy indicates the as-grown samples are highly crystalline 1T-phase TiSe 2 . Variable-temperature Raman spectroscopy shows a CDW phase transition temperature of 212.5 K in few layer TiSe 2 , indicative of high crystal quality. This work not only allows the exploration of many-body state of TiSe 2 in 2D limit but also offers the possibility of utilizing large-area TiSe 2 in ultrathin electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.
2015-03-01
We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triyono, D., E-mail: djoko.triyono@sci.ui.ac.id; Laysandra, Heidi
2016-04-19
The structure, thermal, and electrical properties of double perovskite material Sr{sub 2}(Fe,Ti)O{sub 6} at high temperature have been studied. This material was synthesized by a solid state reaction method. X-ray diffraction characterization at room temperature for all samples shows a single phase and having a structure of cubic double perovskite with Pm3m space group. The variation of Fe and Ti atoms are seen in an increasing of lattice parameter and grain size which is found between 30 nm and 80 nm. The electrical properties as a function of temperature and frequency are characterized by using RLC-meter with impedance spectroscopy method. The impedancemore » data are presented in Nyquist and Bode plot resulting in the equivalent circuit and its parameters. The equivalent circuit shows the effect of grain and grain boundary in the electrical properties of materials. DC conductivity of Sr{sub 2}(Fe,Ti)O{sub 6} as a function of temperature was explained by using Arrhenius equation. The value of the activation energy which is evaluated from dc conductivity as a function of temperature shows the effect of grain and grain boundary. The activation energy exhibits of oxygen vacancy in Sr{sub 2}(Fe,Ti)O{sub 6} which is also supported by morphology of Sr{sub 2}(Fe,Ti)O{sub 6} is characterized by field emission scanning electron microscopy (FESEM).« less
Crested Tunnel Barriers for Fast, Scalable, Nonvolatile Semiconductor Memories (Theme 3)
2006-12-01
single layer Si0 2 with similar EOT [19]. In Fig. 2, the solid symbols represent the typical I-V characteristics of an AI/(HfON-Si3N4)/Si structure. The...black curve (with open symbols ) is a simulated I-V curve for theoretical Si0 2 with the same EOT. It can be seen clearly that it takes only 3 volts for...R. Wasser , B. Reichenberg, and S. Tiedke, "Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition", J. App/. Phys., vol
NASA Astrophysics Data System (ADS)
Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi
2018-05-01
Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.
Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.
2014-11-01
Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.
Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans
2014-12-01
The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.
Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming
2018-02-01
Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optoelectronic properties analysis of Ti-substituted GaP.
Tablero, C
2005-11-08
A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.
Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110)
NASA Astrophysics Data System (ADS)
Diebold, Ulrike
2017-07-01
The interaction of water with the single-crystalline rutile TiO2(110) surface has been the object of intense investigations with both experimental and computational methods. Not only is TiO2(110) widely considered the prototypical oxide surface, its interaction with water is also important in many applications where this material is used. At first, experimental measurements were hampered by the fact that preparation recipes for well-controlled surfaces had yet to be developed, but clear experimental evidence that water dissociation at defects including oxygen vacancies and steps emerged. For a perfect TiO2(110) surface, however, an intense debate has evolved whether or not water adsorbs as an intact molecule or if it dissociates by donating a proton to a so-called bridge-bonded surface oxygen atom. Computational studies agree that the energy difference between these two states is very small and thus depends sensitively on the computational setup and on the approximations used in density functional theory (DFT). While a recent molecular beam/STM experiment [Z.-T. Wang et al., Proc. Natl. Acad. Sci. U. S. A. 114(8), 1801-1805 (2017)] gives conclusive evidence for a slight preference (0.035 eV) for molecular water and a small activation energy of (0.36 eV) for dissociation, understanding the interface between liquid water and TiO2(110) arises as the next controversial frontier.
Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3
NASA Astrophysics Data System (ADS)
Beanland, Richard; Thomas, Pam A.
2014-05-01
Recent work has indicated that the symmetry of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 can be changed from monoclinic to rhombohedral through the application of an electric field, which may have implications for the study and design of piezoelectric materials close to a morphotropic phase boundary. We have examined high-quality, single-crystal Na0.5Bi0.5TiO3 using transmission electron microscopy and have used digital electron diffraction to observe the symmetry of defect-free regions of material on length scales of a few nanometers. This unequivocally demonstrates that the material is rhombohedral with space group R3c on this length scale. We find that a model that allows disordered displacements of Bi atoms from their nominal sites in the R3c symmetry, while retaining this symmetry on average, gives a very significant improvement in fit to simulations. We use conventional transmission electron microscopy to enumerate the different types of defects that are observed in other regions of the crystal and find a complex microstructure of antiphase boundaries, domain walls, and tetragonal platelets. Their interaction leads to the formation of very high densities of nanotwins. We show that these are expected to have a variable monoclinic Cc symmetry that is driven by the constraint of continuity of the crystal across a domain wall.
Thermal desorption behavior of helium in aged titanium tritide films
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.
2015-11-01
The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.
Tiered deposition of sub-5 nm ferroelectric Hf1-xZrxO2 films on metal and semiconductor substrates
NASA Astrophysics Data System (ADS)
Walters, Glen; Shekhawat, Aniruddh; Rudawski, Nicholas G.; Moghaddam, Saeed; Nishida, Toshikazu
2018-05-01
Using a tiered deposition approach, Hf1-xZrxO2 (HZO) films with varying atomic layer deposition (ALD) cycles from 36 to 52 cycles were grown on Ge, Ir, and TiN substrates in single runs and annealed at 500 °C. 40 ALD cycle films grown on Ir exhibit a switched polarization (Psw) of 13 μC/cm2, while those grown on Ge and TiN did not exhibit measurable Psw values until 44 and 52 ALD cycles, respectively. High-resolution cross-sectional transmission electron microscopy confirmed these results; the ferroelectric films are crystalline with defined lattice fringes, while non-ferroelectric films remain amorphous. 52 ALD cycle 1:1 HZO grown on Ge had the highest Psw of all the films fabricated at 39 μC/cm2, while the 1:1 HZO grown on TiN displayed continuous wake-up and no fatigue up to 1010 cycles with the Psw increasing from <1 μC/cm2 to 21 μC/cm2.
A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe
NASA Astrophysics Data System (ADS)
Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.
2018-03-01
The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).
NASA Astrophysics Data System (ADS)
Kim, Eun-ah; Lee, Dong Woo; Ok, Kang Min
2012-11-01
The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A2TiF6 (A[N(CH3)4] or [C(NH2)3]), are reported. Phase pure samples of A2TiF6 were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH3)4]2TiF6 crystallizes in a centrosymmetric space group, R-3, [C(NH2)3]2TiF6 crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF6 octahedra in polar [C(NH2)3]2TiF6 are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF6 octahedra and the nitrogen atoms in the [C(NH2)3]+ cation. Powder second-harmonic generation (SHG) measurements on the [C(NH2)3]2TiF6, using 1064 nm radiation, indicate the material has SHG efficiency of 25× that of α-SiO2, which indicates an average nonlinear optical susceptibility,
Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts
NASA Astrophysics Data System (ADS)
Bahri-Laleh, Naeimeh
2016-08-01
Adsorption of different poison molecules on activated MgCl2 is investigated within DFT using a cluster model of the MgCl2 surface with (MgCl2)16 formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1-4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl2, as well as their adsorption on [MgCl2]/TiCl2Et active center and AlEt3 cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (ETS) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change ETS, coordination of it into the first Mg atom increases ETS by 0.9-1.2 kcal mol-1. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.
Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G
2013-11-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.
Ershov, Kirill S; Kochubei, Sergei A; Kiselev, Vitaly G; Baklanov, Alexey V
2018-02-01
The UV-photodissociation at 266 nm of a widely used TiO 2 precursor, titanium tetraisopropoxide (Ti(O i Pr) 4 , TTIP), was studied under molecular-beam conditions. Using the MS-TOF technique, atomic titanium and titanium(II) oxide (TiO) were detected among the most abundant photofragments. Experimental results were rationalized with the aid of quantum chemical calculations (DLPNO-CCSD(T) and DFT). Contrary to the existing data in the literature, the new four-centered acetone-elimination reaction was found to be the primary decomposition process of TTIP. According to computational results, the effective activation barrier of this channel was ∼49 kcal/mol, which was ∼13 kcal/mol lower than that of the competing propylene elimination. The former process, followed by the dissociative loss of an H atom, was a dominating channel of TTIP unimolecular decay. The sequential loss of isopropoxy moieties via these two-step processes was supposed to produce the experimentally observed titanium atoms. In turn, the combination of these reactions with propylene elimination can lead to another detected species, TiO. These results indicate that the existing mechanisms of TTIP thermal and photoinitiated decomposition in the chemical-vapor deposition (CVD) of titanium dioxide should be reconsidered.
Light-induced charge separation across bio-inorganic interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N. M.; Rajh, T.; De La Garza, L.
Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO{sub 2} nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodatemore » for high curvature in nanoscale regime, the surfaces of TiO{sub 2} nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D{sub 2d}) to square pyramidal structures (C{sub 4v}). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.« less
Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.
2013-01-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558
Topological mosaics in moiré superlattices of van der Waals heterobilayers
NASA Astrophysics Data System (ADS)
Tong, Qingjun; Yu, Hongyi; Zhu, Qizhong; Wang, Yong; Xu, Xiaodong; Yao, Wang
2017-04-01
Van der Waals (vdW) heterostructures formed by two-dimensional atomic crystals provide a powerful approach towards designer condensed matter systems. Incommensurate heterobilayers with small twisting and/or lattice mismatch lead to the interesting concept of moiré superlattices, where the atomic registry is locally indistinguishable from commensurate bilayers but has local-to-local variation over long range. Here we show that such moiré superlattices can lead to periodic modulation of local topological order in vdW heterobilayers formed by two massive Dirac materials. By tuning the vdW heterojunction from normal to the inverted type-II regime via an interlayer bias, the commensurate heterobilayer can become a topological insulator (TI), depending on the interlayer hybridization controlled by the atomic registry between the vdW layers. This results in a mosaic pattern of TI regions and normal insulator (NI) regions in moiré superlattices, where topologically protected helical modes exist at the TI/NI phase boundaries. By using symmetry-based k .p and tight-binding models, we predict that this topological phenomenon can be present in inverted transition metal dichalcogenides heterobilayers. Our work points to a new means of realizing programmable and electrically switchable topological superstructures from two-dimensional arrays of TI nano-dots to one-dimensional arrays of TI nano-stripes.
Lee, Woongkyu; Yoo, Sijung; Yoon, Kyung Jean; Yeu, In Won; Chang, Hye Jung; Choi, Jung-Hae; Hoffmann-Eifert, Susanne; Waser, Rainer; Hwang, Cheol Seong
2016-01-01
Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset. PMID:26830978
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...
2016-12-22
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
Ion blocking dip shape analysis around a LaAlO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Jalabert, D.; Zaid, H.; Berger, M. H.; Fongkaew, I.; Lambrecht, W. R. L.; Sehirlioglu, A.
2018-05-01
We present an analysis of the widths of the blocking dips obtained in MEIS ion blocking experiments of two LaAlO3/SrTiO3 heterostructures differing in their LaAlO3 layer thicknesses. In the LaAlO3 layers, the observed blocking dips are larger than expected. This enlargement is the result of the superposition of individual dips at slightly different angular positions revealing a local disorder in the atomic alignment, i.e., layer buckling. By contrast, in the SrTiO3 substrate, just below the interface, the obtained blocking dips are thinner than expected. This thinning indicates that the blocking atoms stand at a larger distance from the scattering center than expected. This is attributed to an accumulation of Sr vacancies at the layer/substrate interface which induces lattice distortions shifting the atoms off the scattering plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
Multi-component solid solution alloys having high mixing entropy
Bei, Hongbin
2015-10-06
A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.
The latent fingerprint in mass transport of polycrystalline materials
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata
2016-02-01
Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni-atoms into SS reaches its peak value of ~1.615 × 10-14 m2/s for the sample bonded using 5-MPa bonding-pressure.
Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.
Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc
2009-06-28
The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.
Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...
2016-09-02
Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less
Magneto-transport in LaTi1-xMnxO3/SrTiO3 oxide heterostructures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Budhani, R. C.
2014-04-01
We report the growth of ultrathin film of Mn doped LaTiO3 on TiO2 terminated SrTiO3 (001) substrate by pulsed laser deposition (PLD) and their electrical transport characteristics including magnetoresistance (MR). Though the replacement of Mn in LaTiO3 at the Ti site in dilute limit does not affect the metallic behaviour of films but variation in resistance is observed. Normalised resistance behaviour is explained on the basis of variation in charge carriers and increased interaction between Mn atoms in the system under investigation.
Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface
Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...
2015-02-09
The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZr xTi 1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x.more » We present structural and electrical characterization of SrZr xTi 1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata
2016-11-01
We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.
Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation
NASA Astrophysics Data System (ADS)
van der Heide, P. A. W.
2005-02-01
Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.
Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication
NASA Astrophysics Data System (ADS)
Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.
2018-04-01
In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; ...
2016-12-01
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Effects of Small Addition of Ti on Strength and Microstructure of a Cu-Ni-Si Alloy
NASA Astrophysics Data System (ADS)
Watanabe, Chihiro; Takeshita, Satoshi; Monzen, Ryoichi
2015-06-01
The effect of addition of 0.04 or 0.2 mass pct Ti on the mechanical properties of a Cu-2.0 mass pct Ni-0.5 mass pct Si alloy has been investigated. The addition of 0.04 mass pct Ti enhances the strength of the Cu-Ni-Si alloy without reducing its electrical conductivity. This increase in strength is caused by the decrease in inter-precipitate spacing of δ-Ni2Si precipitates. The addition of trace Ti reduces the equilibrium concentration of Ni and Si atoms in the alloy bearing the δ precipitates, resulting in an increase in the volume fraction of δ precipitates and decrease in the inter-precipitate spacing. However, the addition of 0.2 mass pct Ti to the Cu-Ni-Si alloy decreases the strength of the alloy. The reduction in strength is attributed to the decrease in the volume fraction of δ precipitates caused by the reduction in Ni and Si atoms in the Cu matrix resulting from the formation of Ni16Si7Ti6 particles.
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
NASA Astrophysics Data System (ADS)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-01
We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping
2013-09-09
GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.
Preparation of core-shell Ti-Nb oxide nanocrystals
NASA Astrophysics Data System (ADS)
Simakov, David S. A.; Tsur, Yoed
2008-01-01
Nanosized powders of Ti-Nb oxide core-shell nanocrystals with atomic ratios of Nb/Ti = 0.11, 0.25, and 0.38 have been prepared by two preparation routes. The first route was co-precipitation, followed by␣annealing, using NbCl5 as a source of Nb. The second route was coating of pure TiO2 nanocrystals by Nb-isopropoxide in liquid medium, followed by impregnation of the Nb into the nanoparticles by annealing. Both methods yielded anatase nanocrystals with a Nb-rich shell and a core, which had much lower Nb loadings. The anatase structure solid solution (with Nb incorporated) was stable under annealing up to 760°C. The particle size remained within the nanometric scale ( <50 nm) under heat-treatment up to 760°C. It has been shown that the fabricated powders can be redispersed in aqueous media by simple ultrasound treatment, resulting in nanosized dispersions. Using a variety of analytical techniques, including depth profiling of single nanocrystallites by AES combined with sputtering by Ar ions, the mechanism of the core-shell structure creation was studied. It is proposed that the formation of the core-shell structure is governed by solubility limitations in the co-precipitation route and by solubility and diffusion limitations in the coating-incorporation route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urushihara, Daisuke; Asaka, Toru, E-mail: asaka.toru@nitech.ac.jp; Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555
We investigated the crystal structure and ferroelectric domains of Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) by means of transmission electron microscopy (TEM) and single-crystal X-ray diffractometry. From the extinction rule, we determined that the space group in the ferroelectric phase of BTO is P1a1 rather than B2cb and B1a1 which have been proposed previously. We successfully refined the crystal structure based on the space group P1a1. The 180° and 90° ferroelectric domain structures were observed by the [001]-zone dark-field TEM imaging. In the 180° domain structure, we determined that one component of the polarization vector is parallel to the a-axis. Anmore » annular bright-field scanning transmission electron microscopy (ABF-STEM) was performed for the direct observation of the crystal structures. The ABF-STEM images displayed the contrasts with respect to every atomic position in spite of the highly distorted structure of BTO. We could evaluate the tilting and distortion of the [TiO{sub 6}] octahedra relatively. Therefore, we directly observed the ferroelectric displacements of Bi and Ti ions.« less
NASA Astrophysics Data System (ADS)
Meyer, John Louis Lamb
A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated as a function of reactive-gas composition and bulk alloy composition. The results indicate that the pulsation mechanism and optimum PSDs reported in the literature were not observed. Also, it was determined that reactive gas may marginally improve the PSD, but further experiments are required. The oxygen content in the gas was also not found to be detrimental to the microstructure (i.e., did not catalyze nucleation), but may have removed potent catalytic nucleation sites, although not enough to significantly alter the microstructure. Overall, the downstream injection of oxygen was not found to significantly affect either the PSD or undercooling (as inferred from microstructure and XRD observations), but injection further upstream, including in the gas atomization nozzle, remains to be investigated.
Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation.
Sofianou, Maria-Veronica; Trapalis, Christos; Psycharis, Vassils; Boukos, Nikos; Vaimakis, Tiverios; Yu, Jiaguo; Wang, Wenguang
2012-11-01
TiO(2) anatase nanoplates and hollow microspheres were fabricated by a solvothermal-hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals. These different morphological structures of TiO(2) anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal-hydrothermal process. After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO(2) anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO(2) anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO(2) anatase structures. All TiO(2) anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference. The fluoride free TiO(2) anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO(2) and NO(3) (-).
First-principles study of Mn-S codoped anatase TiO2
NASA Astrophysics Data System (ADS)
Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui
2018-04-01
In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.
NASA Astrophysics Data System (ADS)
An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub
2015-10-01
Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x < 0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.
Synthesis of MAX Phases in the Zr-Ti-Al-C System.
Tunca, Bensu; Lapauw, Thomas; Karakulina, Olesia M; Batuk, Maria; Cabioc'h, Thierry; Hadermann, Joke; Delville, Rémi; Lambrinou, Konstantina; Vleugels, Jozef
2017-03-20
This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti) n+1 AlC n system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl 2 , ZrAl 3 , and Zr 2 Al 3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr 0.33 ,Ti 0.67 ) 3 Al 1.2 C 1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M 6 X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.
Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver
2014-08-05
A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less
Molecular ways to nanoscale particles and films
NASA Astrophysics Data System (ADS)
Shen, H.; Mathur, S.
2002-06-01
Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.
NASA Astrophysics Data System (ADS)
Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.
2018-05-01
Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.
Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A
2018-03-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.
Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel
2015-11-11
Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.
Plentiful magnetic moments in oxygen deficient SrTiO 3
Ganesh, Panchapakesan; Lopez-Bezanilla, Alejandro; Littlewood, Peter B.
2015-10-06
In this research, correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO 3. Hole and electron doping of oxygen deficient SrTiO 3 yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO 3–δ is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments inmore » the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.« less
Structure and properties of microporous titanosilicate determined by first-principles calculations
NASA Astrophysics Data System (ADS)
Ching, W. Y.; Xu, Yong-Nian; Gu, Zong-Quan
1996-12-01
The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.
Klein, Thomas; Clemens, Helmut; Mayer, Svea
2016-01-01
Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880
Klein, Thomas; Clemens, Helmut; Mayer, Svea
2016-09-06
Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin
2016-12-19
Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less
Kandegedara, R. M. E. B.; Bollen, G.; Eibach, M.; ...
2017-10-20
This manuscript describes a measurement of the Q value for the highly forbidden beta-decays of 50V and the double electron capture decay of 50Cr. The Q value corresponds to the total energy released during the decay and is equivalent to the mass difference between parent and daughter atoms. This mass difference was measured using high precision Penning trap mass spectrometry with the Low Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. The Q value enters into theoretical calculations of the half-life and beta-decay spectrum for the decay, so improves these calculations. In addition the Q valuemore » corresponds to the end point energy of the beta-decay spectrum, which has been precisely measured for several highly-forbidden decays using modern low background detector techniques. Hence, our Q value measurements provide a test of systematics for these detectors. In addition, we have measured the absolute atomic masses of 46,47,49,50Ti, 50,51V, and 50,52-52Cr, providing improvements in precision by factors of up to 3. These atomic masses help to strengthen global evaluations of all atomic mass data, such as the Atomic Mass Evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandegedara, R. M. E. B.; Bollen, G.; Eibach, M.
This manuscript describes a measurement of the Q value for the highly forbidden beta-decays of 50V and the double electron capture decay of 50Cr. The Q value corresponds to the total energy released during the decay and is equivalent to the mass difference between parent and daughter atoms. This mass difference was measured using high precision Penning trap mass spectrometry with the Low Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. The Q value enters into theoretical calculations of the half-life and beta-decay spectrum for the decay, so improves these calculations. In addition the Q valuemore » corresponds to the end point energy of the beta-decay spectrum, which has been precisely measured for several highly-forbidden decays using modern low background detector techniques. Hence, our Q value measurements provide a test of systematics for these detectors. In addition, we have measured the absolute atomic masses of 46,47,49,50Ti, 50,51V, and 50,52-52Cr, providing improvements in precision by factors of up to 3. These atomic masses help to strengthen global evaluations of all atomic mass data, such as the Atomic Mass Evaluation.« less
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mirseraji, Mojtaba; Shahraki, Mehran Gholipour
2018-06-01
A Local Density Approximation (LDA) was employed to investigate the influence of applied strains on valence charge distributions, atomic displacements, Tisbnd O (3) bond distances and the total polarizations in barium titanate (BaTiO3). Four types of various strains were imposed on perfect tetragonal BaTiO3 along the a, c, ab and abc axial directions. Electromechanical properties of BaTiO3 were evaluated in LDA framework and a good agreement with previous results was achieved. The results show that, in the cases of a, ab strains, the values of polarization are almost constant in negative strains and increased by gradual increasing of the positive strains after a sudden enhancement at about +0.1% strain. In the case of c-strain, axial oxygen and Ti atoms underwent the highest displacements and the polarization linearly increased by applied strain. The case of abc-strain, represent the both types of features. In negative abc-strain show a similar polarization behavior like c-strain case and in positive region, polarization behavior is the same as a- and ab-strain cases. In the abc-strains of -0.3% and +0.1%, an abrupt jump in total polarization curve and a small change, are observed due to abnormal atomic displacements. In the most cases a direct relation between polarization and Tisbnd O (3) bond distance was also beheld. Finally, the effects of valence charge distributions on the atomic displacements and total polarizations are studied. It is found that there is a direct relation between polarization and Valence Charge Asymmetry of 3d -orbitals.
NASA Astrophysics Data System (ADS)
Ricard, André; Sarrette, Jean-Philippe; Wang, Yunfei; Kim, Yu-Kwon
2017-10-01
N2/0-5% H2 flowing afterglows from Radio Frequency (RF) and High Frequency (HF) sources have been analyzed by optical emission spectroscopy. In similar conditions (pressure 5-6 Torr, flow rate 0.5 slm and power 100 W), it is found in pure N2 a nearly constant N-atom density from the pink to the late afterglow, which is higher in HF than in RF: (1-2) and 0.4 × 1015 cm-3, respectively. With a N2/2% H2 gas mixture, the early afterglows is changed to a late afterglow with about the same N-atom density for both RF and HF cases: (8-9) × 1014 cm-3. Anatase TiO2 nanocrystals and Atomic Layer Deposition-grown films were exposed to the RF afterglows at room temperature. XPS analysis of the samples has shown that the highest N/Ti ratio of 0.24 can be achieved with the pure N2 late afterglow. In the HF pure N2 late afterglow, however, the N/Ti coverage was limited to 0.04 in spite of higher N-atom density. Such differences in the N content between the two RF and HF cases are attributed to the presence of a high O-atom impurity of 2 × 1013 cm-3 in HF as compared to that (8 × 1011 cm-3) in RF. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea
Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus
2015-02-03
To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.
Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan; Schneeloch, John A.; Liu, Tiansheng; Valla, Tonica; Tranquada, John M.; Gu, Genda; Davis, J. C. Séamus
2015-01-01
To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm2. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential. PMID:25605947
Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite
NASA Astrophysics Data System (ADS)
Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei
2018-04-01
Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.
Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel
2015-06-30
Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less
A theoretical study of the omega-phase transformation in metals
NASA Astrophysics Data System (ADS)
Sanati, Mahdi
I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.
Asymmetry of radiation damage properties in Al-Ti nanolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Gerboth, Matthew D.; Yao, Bo
2014-02-01
Molecular dynamics (MD) simulations were employed with empirical potentials to study the effects of multilayer interfaces and interface spacing in Al-Ti nanolayers. Several model interfaces derived from stacking of close-packed layers or face-centered cubic \\{100\\} layers were investigated. The simulations reveal significant and important asymmetries in defect production withmore » $$\\sim$$60\\% of vacancies created in Al layers compared to Ti layers within the Al-Ti multilayer system. The asymmetry in the creation of interstitials is even more pronounced. The asymmetries cause an imbalance in the ratio of vacancies and interstitials in films of dissimilar materials leading to $>$$90\\% of the surviving interstitials located in the Al layers. While in the close-packed nanolayers the interstitials migrate to the atomic layers adjacent to the interface of the Al layers, in the \\{100\\} nanolayers the interstitials migrate to the center of the Al layers and away from the interfaces. The degree of asymmetry and defect ratio imbalance increases as the layer spacing decreases in the multilayer films. Underlying physical processes are discussed including the interfacial strain fields and the individual elemental layer stopping power in nanolayered systems. In addition, experimental work was performed on low-dose (10$$^{16}$ atoms/cm$^2$) helium (He) irradiation on Al/Ti nanolayers (5 nm per film), resulting in He bubble formation $$\\sim$$1 nm in diameter in the Ti film near the interface. The correlation between the preferential flux of displaced atoms from Ti films to Al films during the defect production that is revealed in the simulations and the morphology and location of He bubbles from the experiments is discussed.« less
Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo
2016-04-07
Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Timore » interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.« less
NASA Astrophysics Data System (ADS)
Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.
2015-03-01
Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.
Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...
2015-04-27
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO 2/TiO 2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO 3H 2) 2bpy) 2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH 2)] 4+ ([RuaII-RubII-OH 2] 4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO 2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al 2O 3 or TiO 2 overlayers. Illumination of the resulting fluorine-dopedmore » tin oxide (FTO)|SnO 2/TiO 2|-[Ru a II-Ru b II-OH 2] 4+(Al 2O 3 or TiO 2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H 2 and O 2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO 2/TiO 2 core/shell compared with nanoITO/TiO 2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm 2 with 445-nm, ~90-mW/cm 2 illumination in a phosphate buffer at pH 7.« less
TiO2--a prototypical memristive material.
Szot, K; Rogala, M; Speier, W; Klusek, Z; Besmehn, A; Waser, R
2011-06-24
Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.
TiCN/TiNbCN multilayer coatings with enhanced mechanical properties
NASA Astrophysics Data System (ADS)
Caicedo, J. C.; Amaya, C.; Yate, L.; Gómez, M. E.; Zambrano, G.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.
2010-08-01
Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods ( Λ) and bilayer numbers ( n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 15 nm ( n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin; Nahm, Ho-Hyun; Murugavel, Pattukkannu; Kim, Jeong Rae; Cho, Myung Rae; Wang, Lingfei; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Zhou, Hua; Chang, Seo Hyoung; Noh, Tae Won
2017-05-01
The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3 /BaTiO 3 /SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO 2 -BaO and SrO-TiO 2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung -Jin; ...
2017-03-03
Here, the atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (P O2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3/BaTiO 3/SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high P O2 (around 150 mTorr), usually exhibits a mixture of RuO 2-BaOmore » and SrO-TiO 2 terminations. By reducing P O2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.« less
Liang, Jing; Wang, Qiuquan; Huang, Benli
2005-01-01
An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.
NASA Astrophysics Data System (ADS)
Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.
2016-05-01
Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale. Electronic supplementary information (ESI) available: Experimental details (ESI Methods) of the optic axis orientation of TiO2 nanocylinders, Cr etch mask fabrication, surface functionalization and its evaluation using fluorescence microscopy, preparation of DNA constructs, assembly of flow cells, bioconjugation of TiO2 nanocylinders, OTW instrumentation and measurements; TiO2 dry etching optimization and the etching parameters employed (Tables S1 and S2); dimensional analysis of TiO2 nanocylinders (Table S3); diverse applications of TiO2 at the nanoscale (Fig. S1); selection of etch mask material (Fig. S2); control of sidewall profiles in TiO2 etching (Fig. S3); size distributions of TiO2 nanocylinders (Fig. S4); quantitative comparisons of different surface linker molecules (Fig. S5); DLS measurements on TiO2 nanocylinders (Fig. S6); optical trap calibration (Fig. S7); and supplementary references. See DOI: 10.1039/c6nr00898d
Venugopal, Adith; Muthuchamy, Nallal; Tejani, Harsh; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill; Lee, Heon-Jin
2017-01-01
Objective Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial. PMID:28127534
Coating and functionalization of high density ion track structures by atomic layer deposition
NASA Astrophysics Data System (ADS)
Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo
2016-10-01
In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.
Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Nazir, S.; Singh, N.; Schwingenschlögl, U.
2011-03-01
The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.
a Study of Dilute Aluminum and Vanadium NMR in Alpha-Titanium and in Hydrogen Doped Alpha-Titanium
NASA Astrophysics Data System (ADS)
Chou, Lih-Hsin
Nuclear magnetic resonance was used to investigate Ti-1 at.% V, Ti-2 at.% V, Ti-1 at.% Al, Ti-2 at.% Al and in addition samples of these alloys containing 1 and 2 at.% H. Computer simulation of the absorption curves incorporates the effects of nuclear quadrupole and anisotropic shift interactions, dipolar broadening, and inhomogeneous Knight shift distribution. From the simulation work, experimental parameters such as electric field gradient (EFG), axial anisotropic Knight shift K(,ax), and isotropic Knight shift are obtained. In addition to shedding light on certain features of bonding of V and Al in Ti, this information is used to discuss the trapping of hydrogen in these systems. The resonance of a simple metal (Al) and transition metal (V) at low concentration in a transition metal (Ti) matrix are compared. The localized states of an Al impurity appear to differ radically from the host Ti atomic structure; V present as a dilute solute appears to join the Ti lattice smoothly. Very small isotropic and anisotropic Knight shifts were observed for ('27)Al in Ti. This implies an absence of an orbital contribution and a small value for the s conduction electron density at the local Fermi surface in the vicinity of Al in Ti. A sizeable isotropic and anisotropic Knight shift was observed for ('51)V in Ti. This is thought to be the result of a large orbital contribution. The substitutional vanadium retains much of the character of V, but experiences the symmetry of the Ti lattice. Four outer electrons of V may form nearest neighbor bonds similarly to those between Ti atoms in pure titanium. The one extra electron on the V may be more s-like in character. Measurement of the temperature dependence of K(,ax) and EFG values at V solute atoms in a Ti matrix show that both K(,ax) and EFG increase as temperature decreases. The local electric field gradient contribution from non-s-electrons q(,non -s-el) is about 2 to 5 times larger than the q(,ion) values in magnitude. Because the sign of the EFG is not determined, the validity of the so called "universal correlation" could not be tested. For hydrogen charged Ti-2V alloys, a line shape change was observed at both room and liquid nitrogen temperatures. Thermodynamic and kinetic arguments which include the presence of hydride, dissolved hydrogen, and trapped hydrogen (trapping enthalpy 0.05 eV or greater) are offered to explain the data. No change in the solute resonance line was detected for hydrogen charged Ti-1V, or for hydrogen charged Ti-1Al and Ti-2Al.
Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru
Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.
XAFS atomistic insight of the oxygen gettering in Ti/HfO 2 based OxRRAM
NASA Astrophysics Data System (ADS)
Viennet, R.; Roussel, H.; Rapenne, L.; Deschanvres, J. L.; Renevier, H.; Jousseaume, V.; Jalaguier, E.; Proietti, M. G.
2018-05-01
Hafnia-based resistive memories technology has come to maturation and acceded to the market of nonvolatile memories. Nevertheless, the physical mechanisms involved in resistive switching are not yet fully understood and the numerous ab initio simulations studies have few many atomic-scale experimental counterparts. In this study we investigate the oxygen migration mechanism from an amorphous HfO2 layer to the Ti cap layer at a local scale before and after a thermal treatment. X-ray absorption spectroscopy at the Ti K edge and Hf LIII edge has been performed on samples as-deposited and annealed in Ar at 400 ∘C to mimic the back-end-of-line thermal budget (BEOL) of CMOS technology. The short-range Ti and Hf environments have been determined, showing that annealing promotes the migration of O from HfO2 to Ti, the amount of which is quantified. This provokes an expansion and an increase of atomic disorder in the Ti lattice. The nature of the oxygen gettering mechanism by the Ti metal is understood by comparing samples with increasing Ti-capping thickness. We show that the Ti getter effect has to be activated by thermal treatment and that the O diffusion takes place in a region of a few nanometers close to the Ti /HfO2 interface. Therefore, the thermal budget history and the Ti cap-layer thickness determine the oxygen vacancy content in the HfO2 layer, which in turn controls the electrical properties, especially the forming operation.
Liu, Wan-bing; Deng, Jian; Zhao, Yu-bao; Xu, Jin-sheng; Zhou, Liang
2009-05-01
Using tetrabutyl titanate as the titanium source, and ammonia and ferric nitrate as the sources of nitrogen and ferrum respectively, iron and nitrogen-codoped nano-TiO2 gelatins were prepared by sol-gel method. The iron and nitrogen-codoped nano-TiO2 complex films were prepared with the obtained gelatins used to coat the surface of cleaned glass slides by several times of dipping-lifting procedure, followed by natural seasoning at room temperature and calcined at 450 degrees C for 3 hours, then the films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectrum (XPS) and ultraviolet-visible diffuse reflectance spectrum (UV-Vis). The XRD spectra o f samples showed that the Fe-TiO(2-x)Nx, filmswere of anatase structure with a few of oxygen atoms in the lattice of anatase TiO2 substituted by nitrogen atoms, resulting in the distortion of crystal lattice. The SEM image showed that the nanoparticles of the films have a good dispersion characteristic and uniform orbicular shape with an average diameter of about 19 nm. The absorption edges of UV-Vis spectra exhibited a red shift up to 740 nm when the TiO2 films were codoped with iron and nitrogen. The XPS of the Fe-TiO(2-x)Nx film presented a lowering of Ti 2p(3/2) electron binding energy because of the codoping of iron and nitrogen, which then resulted in the widening of the absorption of visible light range. The photocatalytic properties were studied by photocatalytical degradation of sudan I as a model reaction in a self-assembled light-reactor. When the atomic ratio of Fe3+/Ti4+ reached 0.4%, the Fe-TiO(2-x)Nx film showed the highest catalytic performance in degradation of sudan I which was decomposed by up to 97% after 4 hours of photocatalytic reaction. Codoping of nitrogen and appropriate amount of iron in TiO2 enhances photoresponse and utilizing efficiency in visible light region, and then improves the performances of Fe-TiO(2-x)Nx photocatalyst. The complex film catalyst prepared by this method will have potential application in areas of wastewater disposal.
Demiroglu, Ilker; Fan, Tian-E; Li, Z Y; Yuan, Jun; Liu, Tun-Dong; Piccolo, Laurent; Johnston, Roy L
2018-05-24
The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.
NASA Astrophysics Data System (ADS)
Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong
2017-11-01
MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.
Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D
2010-01-01
Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.
Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential.
Kong, Desheng; Dang, Wenhui; Cha, Judy J; Li, Hui; Meister, Stefan; Peng, Hailin; Liu, Zhongfan; Cui, Yi
2010-06-09
A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi(2)Se(3), Bi(2)Te(3), and Sb(2)Te(3) are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi(2)Te(3) and Bi(2)Se(3) nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO(2)/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.
Jin, L; Guo, X; Jia, C L
2013-11-01
The dislocations created by mechanical polishing of SrTiO₃ (100) single crystals were investigated by means of transmission electron microscopy (TEM) techniques combined with scanning TEM (STEM) techniques. A high density of dislocations was observed in the surface layer with a thickness of about 5 μm. These dislocations were found to be straight and highly aligned along the 〈111〉 directions. In most cases they appear in pairs or as a bundle. The nature of the dislocations was determined as mixed 〈110〉-type with the line vector t=〈111〉. They are 〈110〉-type 35.26° dislocations. The isolated 〈110〉-type 35.26° dislocations possess a compact core structure with a core spreading of ~0.5 nm. Dissociation of the dislocation occurs on the {1−10} glide plane, leading to the formation of two b=a/2〈110〉 partials separated by a stacking fault. The separation of the two partials was estimated to be 2.53 ± 0.32 nm based on a cross-correlation analysis of atomic-resolution images. Our results provide a solid experimental evidence for this special type of dislocation in SrTiO₃. The high density of straight and highly 〈111〉-orientated dislocations is expected to have an important influence on the anisotropy in electrical and mass transport properties. © 2013 Elsevier B.V. All rights reserved.
Structure and properties of microporous titanosilicate determined by first-principles calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, W.Y.; Xu, Y.; Gu, Z.
1996-12-01
The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain. {copyright} {ital 1996 The American Physicalmore » Society.}« less
Czakler, Matthias; Artner, Christine; Schubert, Ulrich
2012-07-01
Reaction of titanium(IV) isopropoxide, Ti(O i Pr) 4 , with an equimolar amount of phthalic anhydride resulted in the transfer of an isopropoxido group from the metal atom to one carbonyl group of the anhydride and coordination of the thus formed monoester to the titanium atom. One monoester ligand in Ti 2 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr)(η 1 -OOC-C 6 H 4 -COO i Pr)( i PrOH) is bridging and the other is η 1 -coordinated. When the reaction is performed in the presence of 1 mol-equiv. of acetic acid, the oxido cluster Ti 6 (μ 3 -O) 6 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr) 6 was instead obtained. The μ 3 -oxygen groups in the latter compound are due to esterification of acetic acid by the cleaved isopropyl alcohol.
Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation
NASA Astrophysics Data System (ADS)
Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury
2018-03-01
The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.
Ti K-edge EXAFS and XANES study on tektites from different strewnfields
NASA Astrophysics Data System (ADS)
Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.
2011-12-01
The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in the impact event and the following stage. Tektites splashed to the space and travel in several kinds of processes and routes, which lead to different temperature and pressure history. Local structure of Ti should be related with the temperature, pressure, quenching rate, sizes of impact meteorite and size of falling melts. [1] Koeberl. Ann.Rev.Earth Planet.Sci. 14, 323-350 (1986) [2] François Farges & Gordon E. Brown Jr Geochim. Cosmo. Acta.61, 1863-1870 (1997). [3]Paris, E., Dingwell, D., Seifert, F., Mottana, A. & Romano, C. (1994). Phys. Chem. Miner. 21, 520-525.
Table 1 Structure parameters determined by EXAFS
Atomic structures and electronic properties of 2H-NbSe2: The impact of Ti doping
NASA Astrophysics Data System (ADS)
Li, Hongping; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang
2014-09-01
Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe2. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe2 is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe2, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe2.
Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P
2016-06-29
The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.
NASA Astrophysics Data System (ADS)
Wu, Jun; Shi, Chentian; Zhang, Yupeng; Fu, Qiang; Pan, Chunxu
2017-12-01
Anatase TiO2 with a variant percentage of exposed (001) facets was prepared under hydrothermal processes by adjusting the volume of HF, and the photocatalytic mechanism was studied from atomic-molecular scale by HRTEM and Raman spectroscopy. It was revealed that: 1) From HRTEM observations, the surface of original TiO2 with exposed (001) facets was clean without impurity, and the crystal lattice was clear and completed; however, when mixed with methylene blue (MB) solution, there were many 1 nm molecular absorbed at the surface of TiO2; after the photocatalytic experiment, MB molecules disappeared and the TiO2 lattice image became fuzzy. 2) The broken path of the MB chemical bond was obtained by Raman spectroscopy, i.e., after the irradiation of the light, the vibrational mode of C-N-C disappeared due to the chemical bond breakage, and the groups containing C-N bond and carbon rings were gradually decomposed. Accordingly, we propose that the driving force for breaking the chemical bond and the disappearance of groups is from the surface lattice distortion of TiO2 during photocatalyzation.
NASA Astrophysics Data System (ADS)
Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro
2017-10-01
The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.
Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang
2015-01-01
A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737
Neutron Diffraction Study Oxygen Dissolution Alpha(sub 2)-Ti3Al
NASA Technical Reports Server (NTRS)
Jones, Camille Y.; Luecke, William E.; Copland, Evan
2005-01-01
Rietveld refinements of neutron powder diffraction data on alpha(sub 2)-Ti3Al have been performed to determine the crystal structure as a function of interstitial oxygen (O) concentration for three alloys with a Ti/Al ratio of approximately equal to 2.34 and O concentrations of 0.25%, 3.99% and 7.71%. The structures of the allows are hexagonal in space group P6(sub 3)/mmc where Ti and Al atoms populate unique sites with excess Al at the Ti site and O atoms occupy octahedral interstitial sites surrounded by six Ti sites. The length of the c-axis was found to increase linearly as the O occupancy of the interstitial sites increased; this lattice lengthening effect was much less pronounced along the alpha axis. Correspondingly, the increases in the lengths of Ti-Al and Ti-Ti bonds with a major component of their direction parallel to the c-axis were roughly an order of magnitude greater than the increases in the lengths of Ti-al and Ti-Ti bonds more closely aligned with the alpha-axis. Densities calculated form the lattice parameters and occupancy factors fall in the range (4.118 plus or minus 0.004) grams per cubic centimeter to (4.194 plus or minus 0.004) grams per cubic centimeter, and exhibit a nearly linear increase with oxygen concentration. Measured densities of (4.113 plus or minus 0.001) grams per cubic centimeter, (4.146 plus or minus 0.009) grams per cubic centimeter, and (4.191 plus or minus 0.002) grams per cubic centimeter for these alloys agree with the results of the refinements.
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...
2016-03-24
Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less
Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong
2016-11-01
The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.
Lee, Inhee; Kim, Chung Koo; Lee, Jinho; ...
2015-01-20
To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themore » ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less
Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L
2000-09-15
Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed.
Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films
NASA Astrophysics Data System (ADS)
Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao
2018-02-01
The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.
Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik
2014-01-01
This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325
NASA Astrophysics Data System (ADS)
Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar
2017-07-01
The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.
2017-12-01
In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.
Kondo, Yukihito; Okunishi, Eiji
2014-10-01
Moiré method in scanning transmission electron microscopy allows observing a magnified two-dimensional atomic column elemental map of a higher pixel resolution with a lower electron dose unlike conventional atomic column mapping. The magnification of the map is determined by the ratio between the pixel size and the lattice spacing. With proper ratios for the x and y directions, we could observe magnified elemental maps, homothetic to the atomic arrangement in the sample of SrTiO3 [0 0 1]. The map showed peaks at all expected oxygen sites in SrTiO3 [0 0 1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2018-03-01
We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.
Photocatalysis of Modified Transition Metal Oxide Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batzill, Matthias
The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO 2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anatase TiO 2 samples bymore » pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO 2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.« less
Perlich, J; Schulz, L; Abul Kashem, M M; Cheng, Y-J; Memesa, M; Gutmann, J S; Roth, S V; Müller-Buschbaum, P
2007-09-25
For the controlled modification of sol-gel-templated polymer nanocomposites, which are transferred to a nanostructured, crystalline TiO2 phase by a calcination process, the addition of a single homopolymer was investigated. For the preparation, the homopolymer polystyrene (PS) is added in different amounts to the diblock copolymer P(S-b-EO) acting as a templating agent. The homopolymer/diblock copolymer blend system is combined with sol-gel chemistry to provide and attach the TiO2 nanoparticles to the diblock copolymer. So-called good-poor solvent-pair-induced phase separation leads to the formation of nanostructures by film preparation via spin coating. The fabricated morphologies are studied as a function of added homopolymer before and after calcination with atomic force microscopy, field emission scanning electron microscopy, and grazing incidence small-angle X-ray scattering. The observed behavior is discussed in the framework of controlling the block copolymer morphologies by the addition of homopolymers. At small homopolymer concentrations, the increase in homopolymer concentration changes the structure size, whereas at high homopolymer concentrations, a change in morphology is triggered. Thus, the behavior of a pure polymer system is transferred to a more complex hybrid system.
Electronic Asymmetry by Compositionally Braking Inversion Symmetry
NASA Astrophysics Data System (ADS)
Warusawithana, Maitri
2005-03-01
By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.
Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe
NASA Astrophysics Data System (ADS)
Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2018-02-01
In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.
Khavrutskii, Ilja V; Wallqvist, Anders
2010-11-09
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
Modulation of ferroelectricity and resistance switching in SrTiO3 films
NASA Astrophysics Data System (ADS)
Yang, Fang; Wang, Weihua; Guo, Jiandong
SrTiO3 has remarkable dielectric property; it also exhibits ferroelectricity in thin films with strain or defects. It is expected that modulation of its ferroelectricity and electricity is potential in oxide electronics. The nonstoichiometry SrTiO3 thin films with different cation concentrations were prepared on Si (001) substrates. Piezoresponse force microscopy measurements show that those films with Sr deficiency display obvious ferroelectricity. The scanning transmission electron microscopy results show that there are interstitial Ti atoms in the unit cells. Polar defect pairs can be formed by the interstitial Ti atoms and Sr vacancies along [100] or [110] direction. Such antisitelike defects observed in SrTiO3 films are considered as the origin of the ferroelectricity. In this way, the SrTiO3 ferroelectricity can be modulated by control the concentration of the antisitelike defects via changing the cation concentration. Further, [(SrTiO3)3 /(LaTiO3)2 ]3 superlattices have been prepared on 0.67[Pb(Mg1/3Nb2/3) O3]-0.33[PbTiO3] (PMN-PT) substrate. The superlattices show resistance switching under the ferroelectric polarization of the PMN-PT substrate. The on/off ratio of the interfacial resistance is about 20% 25%. This can be applied in oxide electronics in potential. This work is supported by Chinese MOST (Grant No. 2014CB921001), Chinese NSFC (Grant No. 11404381 & Grant No. 11225422) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).
The corrosivity and passivity of sputtered Mg-Ti alloys
Song, Guang -Ling; Unocic, Kinga A.; Meyer, III, Harry M.; ...
2015-11-30
Our study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. Moreover, the surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide filmmore » was formed on a sputtered Ti–Mg based alloy.« less
On the small angle twist sub-grain boundaries in Ti3AlC2.
Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun
2016-04-01
Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al-Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Huiyuan; Wu, Zili; Dong, Su
2015-08-05
This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO 2-supported PtFe–FeO x nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO x within each NW and the interactions between NWs and support (TiO 2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO x and TiO 2 participate in the initial CO oxidation, facilitating the reactionmore » through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeO x/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less
Wilson, Rachel L.; Blackman, Christopher S.; Carmalt, Claire J.; Stanoiu, Adelina; Di Maggio, Francesco
2018-01-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated. PMID:29494504
Tunability of morphological properties of Nd-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran
2016-11-01
In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.
Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders
2013-01-01
This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.
NASA Astrophysics Data System (ADS)
Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang
2018-07-01
A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.
NASA Astrophysics Data System (ADS)
Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang
2018-05-01
A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.
Microstructure and wear properties of laser clad Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings
NASA Astrophysics Data System (ADS)
Wang, H. M.; Tang, H. B.; Cai, L. X.; Cao, F.; Zhang, L. Y.; Yu, R. L.
2005-05-01
Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Daqiang, E-mail: dq80jiang@126.com; Cui, Lishan; Jiang, Jiang
Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level aftermore » the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength.« less
Tribological characterization of TiN coatings prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.
Growth of Nanoscale BaTiO3/SrTiO3 Superlattices by Molecular-Beam Epitaxy
2008-05-01
also of interest for novel acous- tic phonon devices including mirrors, filters, and cavities for coherent acoustic phonon generation and control...phonon “laser”).4 The structure of these devices is de- termined by the acoustic phonon wavelength, which is typically in the range of a few nanometers...nanoscale [(BaTiO3)n /(SrTiO3)m]p superlattices with atomically abrupt interfaces that are vital for the perfor- mance of acoustic phonon devices as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lhoste, Jérôme, E-mail: jerome.lhoste@univ-lemans.fr; Body, Monique, E-mail: monique.body@univ-lemans.fr; Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr
2014-09-15
Three [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO{sub 2}, tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H{sub 4}tren]·(TiF{sub 4.6}(OH){sub 1.4}){sub 2}·2.7H{sub 2}O (I) and β-[H{sub 3}tren]·(TiF{sub 4.5}(OH){sub 1.5})·(F) (II) are described for the first time. The third compound, α-[H{sub 3}tren]·(TiF{sub 4.7}(OH){sub 1.3})·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F{sup −}/OH{sup −} substitution, expected from the presence of water in the reaction medium, is characterized by chemicalmore » analyses and {sup 19}F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F{sup −}/OH{sup −} substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed. - Graphical abstract: The ratio of the relative intensities of the {sup 19}F NMR lines assigned to F atoms belonging to isolated TiF{sub 6−x}(OH){sub x} octahedra and to “free” fluoride ions shows that the F{sup −}/OH{sup −} substitution concerns only F atoms bonded to titanium. - Highlights: • Three tren templated hydroxyfluorotitanates(IV) have been solvothermally synthesized. • They are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” F{sup −} ions or H{sub 2}O molecules. • F{sup −}/OH{sup −} substitution does not affect “free” F{sup −} sites. • [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} cations adopt specific configurations. • A classification of the configurations of tren cations is proposed.« less
NASA Astrophysics Data System (ADS)
Goerens, Christian; Fokwa, Boniface P. T.
2012-08-01
Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.
Human Action Recognition in Surveillance Videos using Abductive Reasoning on Linear Temporal Logic
2012-08-29
help of the optical flows (Lucas 75 and Kanade, 1981). 76 3.2 Atomic Propositions 77 isAt (ti, Oj, Lk) Object Oj is at location Lk at time...simultaneously at two locations in the same frame. This can 84 be represented mathematically as: 85 isAt (ti, Oj, Lk... isAt (ti, Oj, Lm) Lk Lm
First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters
NASA Astrophysics Data System (ADS)
Baishya, Kopinjol
Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules, a typical approach has been to use a finite, appropriately passivated TiO2 nanocrystal in order to limit the computational demand. In real systems on the other hand, the size of nanocrystalline TiO2 is of the order of several hundreds of nanometers, and hence, they can be considered to be essentially bulk-like. The question is then, whether finite TiO2 nanoparticles can accurately model the optical properties of bulk TiO2. I show in my thesis that the optical absorption absorption spectra of such TiO2 nanocrystals do not have the particular features seen in the imaginary part of the bulk dielectric function of TiO 2 associated with the van Hove singularities in the electronic density of states. Instead, the absorption spectra of bulk-terminated TiO2 nanocrystals can be reproduced quite well by the Mie-Gans theory.
Application of cluster-plus-glue-atom model to barrierless Cu–Ni–Ti and Cu–Ni–Ta films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaona, E-mail: lixiaona@dlut.edu.cn; Ding, Jianxin; Wang, Miao
To improve the thermal stability of copper and avoid its diffusion into surrounding dielectrics or interfacial reactions with them, the authors applied the cluster-plus-glue-atom model to investigate barrierless Cu–Ni–M (M = Ti or Ta) seed layers. The dissolution of the third element (Ti or Ta) in the Cu lattice with the aid of Ni significantly improved the thermal stability of the Cu seed layer. The appropriate M/Ni (M = Ti or Ta) ratio was selected to obtain a low resistivity: the resistivity was as low as 2.5 μΩ cm for the (Ti{sub 1.5/13.5}Ni{sub 12/13.5}){sub 0.3}Cu{sub 99.7} film and 2.8 μΩ cm for the (Ta{sub 1.1/13.1}Ni{sub 12/13.1}){submore » 0.4}Cu{sub 99.6} film after annealing at 500 °C for 1 h. After annealing at 500 °C for 40 h, the two films remained stable without forming a Cu{sub 3}Si compound. The authors confirmed that the range of applications of the cluster-plus-glue-atom model could be extended. Therefore, a third element M with negative enthalpies of mixing with both Cu and Ni could be selected, under the premise that the mixing enthalpy of M–Ni is more negative than that of M–Cu.« less
Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.
Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós
2017-06-28
Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.
Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin
2018-06-27
A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.
Burgers vector content of an interfacial ledge
NASA Astrophysics Data System (ADS)
Bonnet, R.; Loubradou, M.; Pénisson, J. M.
1992-07-01
A new way of investigating the elastic field around a ledge of a faceted interface is proposed for crystalline materials. The length and/or angular misfits along two adjacent facets are accommodated by slightly deforming the atomic structural units with an appropriate distribution of translation dislocations. The Burgers vector content of the ledge is not defined as usual from a circuit crossing the interface twice, a method which proves to be sometimes misleading. An example treats, at the atomic scale, an unusual ledge of the interface TiAl/Ti3Al.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
Engberg, David L J; Johnson, Lars J S; Jensen, Jens; Thuvander, Mattias; Hultman, Lars
2018-01-01
Mass spectral overlaps in atom probe tomography (APT) analyses of complex compounds typically limit the identification of elements and microstructural analysis of a material. This study concerns the TiSiN system, chosen because of severe mass-to-charge-state ratio overlaps of the 14 N + and 28 Si 2+ peaks as well as the 14 N 2 + and 28 Si + peaks. By substituting 14 N with 15 N, mass spectrum peaks generated by ions composed of one or more N atoms will be shifted toward higher mass-to-charge-state ratios, thereby enabling the separation of N from the predominant Si isotope. We thus resolve thermodynamically driven Si segregation on the nanometer scale in cubic phase Ti 1- x Si x 15 N thin films for Si contents 0.08 ≤ x ≤ 0.19 by APT, as corroborated by transmission electron microscopy. The APT analysis yields a composition determination that is in good agreement with energy dispersive X-ray spectroscopy and elastic recoil detection analyses. Additionally, a method for determining good voxel sizes for visualizing small-scale fluctuations is presented and demonstrated for the TiSiN system. Copyright © 2017 Elsevier B.V. All rights reserved.
Insights on dramatic radial fluctuations in track formation by energetic ions
Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...
2016-06-02
We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less
Insights on dramatic radial fluctuations in track formation by energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Lang, Maik; Trautmann, Christina
We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less
The influence of water and redox conditions on the seismic properties of olivine
NASA Astrophysics Data System (ADS)
Cline, C. J., II; Jackson, I.; Faul, U.; David, E. C.; Berry, A.
2017-12-01
Eight polycrystalline olivine specimens of both synthetic (solution-gelation derived) and natural (San Carlos) origins were fabricated by hot-pressing at 1200°C and 300 MPa. Amongst these specimens, six contained varying concentrations of Ti, allowing control of hydroxyl (or `water') content through the creation of the energetically favored Ti-clinohumite-like defect (doubly protonated Si vacancy associated with a Ti/Mg substitution). Along with a Ti-free Fo90 specimen, these materials have Ti contents ranging between 0 and 802 atom ppm Ti/Si and associated chemically bound `water' contents between 0 and 1150 atom ppm H/Si, along with molecular water concentrations between 0 and 245 atom ppm H/Si. Each hot-pressed specimen was then subsequently wrapped in Pt, Ni or NiFe foil to control oxygen fugacity (fO2), and interrogated under water-undersaturated conditions via forced torsional oscillation. Testing was conducted at seismic periods of 1 - 1000 s and 200 MPa confining pressure during slow staged cooling from 1200 to 25°C. All specimens, regardless of water content or metal sleeving, exhibit high temperature background behavior, involving monotonically increasing levels of dissipation and concomitantly decreasing shear modulus with increasing oscillation period and increasing temperature. Our experimental results demonstrate unambiguously that water content (and water fugacity) has a negligible effect on the measured seismic properties olivine. Rather, a relationship between the prevailing redox conditions set by the metal sleeving and the magnitude of anelastic relaxation was observed. These results suggest that low velocity and high attenuation anomalies in the upper mantle are not due to elevated water contents. Instead, in oxidized and hydrous regions above subducting slabs and perhaps in the oceanic asthenosphere, high attenuation may reflect elevated fO2 conditions.
Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Rentao; Dahal, Arjun; Wang, Zhi-Tao
Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. Themore » probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.« less
Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang
2018-06-20
Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.
Methanethiol chemistry on TiO 2-supported Ni clusters
NASA Astrophysics Data System (ADS)
Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.
2008-10-01
The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.