Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit
2010-12-01
If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of dual task on turning ability in stroke survivors and older adults.
Hollands, K L; Agnihotri, D; Tyson, S F
2014-09-01
Turning is an integral component of independent mobility in which stroke survivors frequently fall. This study sought to measure the effects of competing cognitive demands on the stepping patterns of stroke survivors, compared to healthy age-match adults, during turning as a putative mechanism for falls. Walking and turning (90°) was assessed under single (walking and turning alone) and dual task (subtracting serial 3s while walking and turning) conditions using an electronic, pressure-sensitive walkway. Dependent measures were time to turn, variability in time to turn, step length, step width and single support time during three steps of the turn. Turning ability in single and dual task conditions was compared between stroke survivors (n=17, mean ± SD: 59 ± 113 months post-stroke, 64 ± 10 years of age) and age-matched healthy counterparts (n=15). Both groups took longer, were more variable, tended to widen the second step and, crucially, increased single support time on the inside leg of the turn while turning and distracted. Increased single support time during turning may represent biomechanical mechanism, within stepping patterns of turning under distraction, for increased risk of falls for both stroke survivors and older adults. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Kim, Hong-Seok; Choi, Dasom; Kang, Il-Byeong; Kim, Dong-Hyeon; Yim, Jin-Hyeok; Kim, Young-Ji; Chon, Jung-Whan; Oh, Deog-Hwan; Seo, Kun-Ho
2017-02-01
Culture-based detection of nontyphoidal Salmonella spp. in foods requires at least four working days; therefore, new detection methods that shorten the test time are needed. In this study, we developed a novel single-step Salmonella enrichment broth, SSE-1, and compared its detection capability with that of commercial single-step ONE broth-Salmonella (OBS) medium and a conventional two-step enrichment method using buffered peptone water and Rappaport-Vassiliadis soy broth (BPW-RVS). Minimally processed lettuce samples were artificially inoculated with low levels of healthy and cold-injured Salmonella Enteritidis (10 0 or 10 1 colony-forming unit/25 g), incubated in OBS, BPW-RVS, and SSE-1 broths, and streaked on xylose lysine deoxycholate (XLD) agar. Salmonella recoverability was significantly higher in BPW-RVS (79.2%) and SSE-1 (83.3%) compared to OBS (39.3%) (p < 0.05). Our data suggest that the SSE-1 single-step enrichment broth could completely replace two-step enrichment with reduced enrichment time from 48 to 24 h, performing better than commercial single-step enrichment medium in the conventional nonchromogenic Salmonella detection, thus saving time, labor, and cost.
The stepping behavior analysis of pedestrians from different age groups via a single-file experiment
NASA Astrophysics Data System (ADS)
Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang
2018-03-01
The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.
Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J
2010-08-01
The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.
Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.
Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji
2010-04-01
To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.
Rapee, Ronald M; Lyneham, Heidi J; Wuthrich, Viviana; Chatterton, Mary Lou; Hudson, Jennifer L; Kangas, Maria; Mihalopoulos, Cathrine
2017-10-01
Stepped care is embraced as an ideal model of service delivery but is minimally evaluated. The aim of this study was to evaluate the efficacy of cognitive-behavioral therapy (CBT) for child anxiety delivered via a stepped-care framework compared against a single, empirically validated program. A total of 281 youth with anxiety disorders (6-17 years of age) were randomly allocated to receive either empirically validated treatment or stepped care involving the following: (1) low intensity; (2) standard CBT; and (3) individually tailored treatment. Therapist qualifications increased at each step. Interventions did not differ significantly on any outcome measures. Total therapist time per child was significantly shorter to deliver stepped care (774 minutes) compared with best practice (897 minutes). Within stepped care, the first 2 steps returned the strongest treatment gains. Stepped care and a single empirically validated program for youth with anxiety produced similar efficacy, but stepped care required slightly less therapist time. Restricting stepped care to only steps 1 and 2 would have led to considerable time saving with modest loss in efficacy. Clinical trial registration information-A Randomised Controlled Trial of Standard Care Versus Stepped Care for Children and Adolescents With Anxiety Disorders; http://anzctr.org.au/; ACTRN12612000351819. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2018-06-01
We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.
Nagano, Hanatsu; Levinger, Pazit; Downie, Calum; Hayes, Alan; Begg, Rezaul
2015-09-01
Falls during walking reflect susceptibility to balance loss and the individual's capacity to recover stability. Balance can be recovered using either one step or multiple steps but both responses are impaired with ageing. To investigate older adults' (n=15, 72.5±4.8 yrs) recovery step control a tether-release procedure was devised to induce unanticipated forward balance loss. Three-dimensional position-time data combined with foot-ground reaction forces were used to measure balance recovery. Dependent variables were; margin of stability (MoS) and available response time (ART) for spatial and temporal balance measures in the transverse and sagittal planes; lower limb joint angles and joint negative/positive work; and spatio-temporal gait parameters. Relative to multi-step responses, single-step recovery was more effective in maintaining balance, indicated by greater MoS and longer ART. MoS in the sagittal plane measure and ART in the transverse plane distinguished single step responses from multiple steps. When MoS and ART were negative (<0), balance was not secured and additional steps would be required to establish the new base of support for balance recovery. Single-step responses demonstrated greater step length and velocity and when the recovery foot landed, greater centre of mass downward velocity. Single-step strategies also showed greater ankle dorsiflexion, increased knee maximum flexion and more negative work at the ankle and knee. Collectively these findings suggest that single-step responses are more effective in forward balance recovery by directing falling momentum downward to be absorbed as lower limb eccentric work. Copyright © 2015 Elsevier B.V. All rights reserved.
Step Forward. Single Parent/Homemaker Annual Report for the Fiscal Year 1990-1991.
ERIC Educational Resources Information Center
Kentucky Tech Region 5, Elizabethtown.
The Step Forward Single Parent/Homemaker Program in Elizabethtown, Kentucky, was developed to provide information on career opportunities and assist the target individuals in career assessment, career counseling, and goal setting in order to develop self-esteem and time management skills. During the second year of the Step Forward program in…
Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong
2015-02-01
The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-07-21
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-01-01
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine
NASA Astrophysics Data System (ADS)
Chiu, Yu-Shuen; Hsieh, Mu-Tao; Chang, Chih-Min; Chen, Chun-Shuo; Whang, Thou-Jen
2014-04-01
Some difficulties have long been encountered by single-step electrodeposition such as the optimization of electrolyte composition, deposition potentials, deposition time, and pH values. The approach of introducing ternary components into single-step electrodeposition is rather challenging especially due to the different values of the equilibrium potential for each constituent. Complexing agents play an important role in single-step electrodeposition of CuInSe2 (CIS), since the equilibrium potential of every constituent can be brought closer to each other when complexing agents are employed. In this work, single-step electrodeposition of CIS was enhanced by adding triethanolamine (TEA) into deposition bath, the CIS thin films were improved consequently in the form of polycrystalline cauliflower structures through the examination of SEM images and XRD patterns. The optimum composition of the solution for single-step electrodeposition of CIS is found to be 5 mM CuCl2, 22 mM InCl3, and 22 mM SeO2 at pH 1.5 with 0.1 M TEA. The structures, compositions, and morphologies of as-deposited and of annealed films were investigated.
Changes in step-width during dual-task walking predicts falls.
Nordin, E; Moe-Nilssen, R; Ramnemark, A; Lundin-Olsson, L
2010-05-01
The aim was to evaluate whether gait pattern changes between single- and dual-task conditions were associated with risk of falling in older people. Dual-task cost (DTC) of 230 community living, physically independent people, 75 years or older, was determined with an electronic walkway. Participants were followed up each month for 1 year to record falls. Mean and variability measures of gait characteristics for 5 dual-task conditions were compared to single-task walking for each participant. Almost half (48%) of the participants fell at least once during follow-up. Risk of falling increased in individuals where DTC for performing a subtraction task demonstrated change in mean step-width compared to single-task walking. Risk of falling decreased in individuals where DTC for carrying a cup and saucer demonstrated change compared to single-task walking in mean step-width, mean step-time, and step-length variability. Degree of change in gait characteristics related to a change in risk of falling differed between measures. Prognostic guidance for fall risk was found for the above DTCs in mean step-width with a negative likelihood ratio of 0.5 and a positive likelihood ratio of 2.3, respectively. Findings suggest that changes in step-width, step-time, and step-length with dual tasking may be related to future risk of falling. Depending on the nature of the second task, DTC may indicate either an increased risk of falling, or a protective strategy to avoid falling. Copyright 2010. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo
2016-02-01
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
Composition of single-step media used for human embryo culture.
Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin
2017-04-01
To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Magnetic properties of mechanically alloyed Mn-Al-C powders
NASA Astrophysics Data System (ADS)
Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.
2011-01-01
We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
Azar, Nabih; Leblond, Veronique; Ouzegdouh, Maya; Button, Paul
2017-12-01
The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos ® CELLEX ® fully integrated system in 2012. This report summarizes our single-center experience of transitioning from the use of multi-step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. The total number of ECP procedures performed 2011-2015 was derived from department records. The time taken to complete a single ECP treatment using a multi-step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time-driven activity-based costing methods were applied to provide a cost comparison. The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi-step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per-session cost of performing ECP using the multi-step procedure was greater than with the CELLEX ® system (€1,429.37 and €1,264.70 per treatment, respectively). For hospitals considering a transition from multi-step procedures to fully integrated methods for ECP where cost may be a barrier, time-driven activity-based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX ® allow for more patient treatments per year. © 2017 The Authors Journal of Clinical Apheresis Published by Wiley Periodicals, Inc.
This product is an LC/MS/MS single laboratory validated method for the determination of cylindrospermopsin and anatoxin-a in ambient waters. The product contains step-by-step instructions for sample preparation, analyses, preservation, sample holding time and QC protocols to ensu...
A successful backward step correlates with hip flexion moment of supporting limb in elderly people.
Takeuchi, Yahiko
2018-01-01
The objective of this study was to determine the positional relationship between the center of mass (COM) and the center of pressure (COP) at the time of step landing, and to examine their relationship with the joint moments exerted by the supporting limb, with regard to factors of the successful backward step response. The study population comprised 8 community-dwelling elderly people that were observed to take successive multi steps after the landing of a backward stepping. Using a motion capture system and force plate, we measured the COM, COP and COM-COP deviation distance on landing during backward stepping. In addition, we measured the moment of the supporting limb joint during backward stepping. The multi-step data were compared with data from instances when only one step was taken (single-step). Variables that differed significantly between the single- and multi-step data were used as objective variables and the joint moments of the supporting limb were used as explanatory variables in single regression analyses. The COM-COP deviation in the anteroposterior was significantly larger in the single-step. A regression analysis with COM-COP deviation as the objective variable obtained a significant regression equation in the hip flexion moment (R2 = 0.74). The hip flexion moment of supporting limb was shown to be a significant explanatory variable in both the PS and SS phases for the relationship with COM-COP distance. This study found that to create an appropriate backward step response after an external disturbance (i.e. the ability to stop after 1 step), posterior braking of the COM by a hip flexion moment are important during the single-limbed standing phase.
Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity
NASA Technical Reports Server (NTRS)
Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)
2014-01-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity
Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng
2014-04-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi
2013-12-01
To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Matthew R
2014-01-01
The novel ADER-DT time discretization is applied to two-dimensional transport in a quadrature-free, WENO- and FCT-limited, Finite-Volume context. Emphasis is placed on (1) the serial and parallel computational properties of ADER-DT and this framework and (2) the flexibility of ADER-DT and this framework in efficiently balancing accuracy with other constraints important to transport applications. This study demonstrates a range of choices for the user when approaching their specific application while maintaining good parallel properties. In this method, genuine multi-dimensionality, single-step and single-stage time stepping, strict positivity, and a flexible range of limiting are all achieved with only one parallel synchronizationmore » and data exchange per time step. In terms of parallel data transfers per simulated time interval, this improves upon multi-stage time stepping and post-hoc filtering techniques such as hyperdiffusion. This method is evaluated with standard transport test cases over a range of limiting options to demonstrate quantitatively and qualitatively what a user should expect when employing this method in their application.« less
Imaging workflow and calibration for CT-guided time-domain fluorescence tomography
Tichauer, Kenneth M.; Holt, Robert W.; El-Ghussein, Fadi; Zhu, Qun; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W.
2011-01-01
In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates. PMID:22076264
Yamaguchi, Akemi; Matsuda, Kazuyuki; Sueki, Akane; Taira, Chiaki; Uehara, Masayuki; Saito, Yasunori; Honda, Takayuki
2015-08-25
Reverse transcription (RT)-nested polymerase chain reaction (PCR) is a time-consuming procedure because it has several handling steps and is associated with the risk of cross-contamination during each step. Therefore, a rapid and sensitive one-step RT-nested PCR was developed that could be performed in a single tube using a droplet-PCR machine. The K562 BCR-ABL mRNA-positive cell line as well as bone marrow aspirates from 5 patients with chronic myelogenous leukemia (CML) and 5 controls without CML were used. We evaluated one-step RT-nested PCR using the droplet-PCR machine. One-step RT-nested PCR performed in a single tube using the droplet-PCR machine enabled the detection of BCR-ABL mRNA within 40min, which was 10(3)-fold superior to conventional RT nested PCR using three steps in separate tubes. The sensitivity of the one-step RT-nested PCR was 0.001%, with sample reactivity comparable to that of the conventional assay. One-step RT-nested PCR was developed using the droplet-PCR machine, which enabled all reactions to be performed in a single tube accurately and rapidly and with high sensitivity. This one-step RT-nested PCR may be applicable to a wide spectrum of genetic tests in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N
2014-02-01
Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks
Lewis, Cara L.; Foch, Eric; Luko, Marc M.; Loverro, Kari L.; Khuu, Anne
2015-01-01
The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16cm and 24cm). The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r) between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003), but more hip external rotation and knee abduction (p ≤ 0.030), than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24cm step down task (p ≤ 0.029). While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001). Angles at the knee and hip had a moderate to excellent correlation (r = 0.51–0.98), but less consistently so at the pelvis and trunk (r = 0.21–0.96). The differences in movement patterns between the single leg squat and the step down should be considered when selecting a single leg task for evaluation or treatment. The high correlation of knee and hip angles between the three tasks indicates that similar information about knee and hip kinematics was gained from each of these tasks, while pelvis and trunk angles were less well predicted. PMID:25955321
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.
Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus
2018-06-01
Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.
Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size
Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.
2013-01-01
Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdot’s were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length β-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646
Thelen, D G; Muriuki, M; James, J; Schultz, A B; Ashton-Miller, J A; Alexander, N B
2000-04-01
The current study was undertaken to determine if age-related differences in muscle activities might relate to older adults being significantly less able than young adults to recover balance during a forward fall. Fourteen young and twelve older healthy males were released from forward leans of various magnitudes and asked to regain standing balance by taking a single forward step. Myoelectric signals were recorded from 12 lower extremity muscles and processed to compare the muscle activation patterns of young and older adults. Young adults successfully recovered from significantly larger leans than older adults using a single step (32.2 degrees vs. 23.5 degrees ). Muscular latency times, the time between release and activity onset, ranged from 73 to 114 ms with no significant age-related differences in the shortest muscular latency times. The overall response muscular activation patterns were similar for young and older adults. However older adults were slower to deactivate three stance leg muscles and also demonstrated delays in activating the step leg hip flexors and knee extensors prior to and during the swing phase. In the forward fall paradigm studied, age-differences in balance recovery performance do not seem due to slowness in response onset but may relate to differences in muscle activation timing during the stepping movement.
Kim, Jeong-Soo; Kang, Sun-Young; Jeon, Hye-Seon
2015-01-01
The body-weight-support treadmill (BWST) is commonly used for gait rehabilitation, but other forms of BWST are in development, such as visual-deprivation BWST (VDBWST). In this study, we compare the effect of VDBWST training and conventional BWST training on spatiotemporal gait parameters for three individuals who had hemiparetic strokes. We used a single-subject experimental design, alternating multiple baselines across the individuals. We recruited three individuals with hemiparesis from stroke; two on the left side and one on the right. For the main outcome measures we assessed spatiotemporal gait parameters using GAITRite, including: gait velocity; cadence; step time of the affected side (STA); step time of the non-affected side (STN); step length of the affected side (SLA); step length of the non-affected side (SLN); step-time asymmetry (ST-asymmetry); and step-length asymmetry (SL-asymmetry). Gait velocity, cadence, SLA, and SLN increased from baseline after both interventions, but STA, ST-asymmetry, and SL-asymmetry decreased from the baseline after the interventions. The VDBWST was significantly more effective than the BWST for increasing gait velocity and cadence and for decreasing ST-asymmetry. VDBWST is more effective than BWST for improving gait performance during the rehabilitation for ground walking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Daniel; Boresch, Stefan; Steinhauser, Othmar
Long-term molecular dynamics simulations are used to compare the single particle dipole reorientation time, the diffusion constant, the viscosity, and the frequency-dependent dielectric constant of the coarse-grained big multipole water (BMW) model to two common atomistic three-point water models, SPC/E and TIP3P. In particular, the agreement between the calculated viscosity of BMW and the experimental viscosity of water is satisfactory. We also discuss contradictory values for the static dielectric properties reported in the literature. Employing molecular hydrodynamics, we show that the viscosity can be computed from single particle dynamics, circumventing the slow convergence of the standard approaches. Furthermore, our datamore » indicate that the Kivelson relation connecting single particle and collective reorientation time holds true for all systems investigated. Since simulations with coarse-grained force fields often employ extremely large time steps, we also investigate the influence of time step on dynamical properties. We observe a systematic acceleration of system dynamics when increasing the time step. Carefully monitoring energy/temperature conservation is found to be a sufficient criterion for the reliable calculation of dynamical properties. By contrast, recommended criteria based on the ratio of fluctuations of total vs. kinetic energy are not sensitive enough.« less
Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M
2003-10-01
Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Sarkar, Kalyan; Das, Debajyoti
2018-04-01
Arrays of silicon nanostructures have been produced by single step Metal Assisted Chemical Etching (MACE) of single crystal Si-wafers at room temp and normal atmospheric condition. By studying optical and structural properties of the silicon nanowire like structures synthesized by Ag catalyst assisted chemical etching, a significant change in the reflectance spectra has been obtained leading to a gross reduction in reflectance from ˜31% to less than 1%. In comparison with bulk c-Si, the surface areas of the nanostructured samples have been increased significantly with the etching time, leading to an efficient absorption of light, favorable for photovoltaic applications.
Mihiretu, Gezahegn T; Brodin, Malin; Chimphango, Annie F; Øyaas, Karin; Hoff, Bård H; Görgens, Johann F
2017-10-01
The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh
2010-08-01
A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.
Unifying Temporal and Structural Credit Assignment Problems
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2004-01-01
Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.
Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M
2016-01-01
The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.
GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling
NASA Astrophysics Data System (ADS)
Miki, Yohei; Umemura, Masayuki
2017-04-01
The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.
Vieira, J; Cunha, M C
2011-01-01
This article describes a solution method of solving large nonlinear problems in two steps. The two steps solution approach takes advantage of handling smaller and simpler models and having better starting points to improve solution efficiency. The set of nonlinear constraints (named as complicating constraints) which makes the solution of the model rather complex and time consuming is eliminated from step one. The complicating constraints are added only in the second step so that a solution of the complete model is then found. The solution method is applied to a large-scale problem of conjunctive use of surface water and groundwater resources. The results obtained are compared with solutions determined with the direct solve of the complete model in one single step. In all examples the two steps solution approach allowed a significant reduction of the computation time. This potential gain of efficiency of the two steps solution approach can be extremely important for work in progress and it can be particularly useful for cases where the computation time would be a critical factor for having an optimized solution in due time.
Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet
2015-10-16
The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.
Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin
2017-01-01
Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC) N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N-terminus actin binding. Overall, the approach is a unique bottom-up single molecule mechanical characterization of a hierarchically functional native muscle myosin. PMID:28423017
Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.
Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K
2017-07-01
Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.
Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.
Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B
2015-11-01
Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG.
QUICR-learning for Multi-Agent Coordination
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2006-01-01
Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.
Physiological responses to single versus double stepping pattern of ascending the stairs.
Aziz, Abdul Rashid; Teh, Kong Chuan
2005-07-01
The aim of this study was to compare the physiological responses and energy cost between two ascending patterns, the single-step (SS) and the double-step (DS), in climbing a public staircase. In the SS pattern, a person climbs one step at a time whilst in the double-step (DS) pattern, the individual traverses two steps in a single stride. Advocates of each stepping pattern claimed that their type of ascent is physically more taxing and expends more calories. Thirty subjects (10 males and 20 females) climbed a typical 11-storey flat (each step height of 0.15 m, a total of 180 steps and a vertical displacement of 27.0 m). The subjects climbed using either the SS pattern at a tempo of 100 steps x min(-1) or the DS pattern at 50 steps x min(-1). The prescribed stepping frequencies ensured that an equal amount of total work was performed between the SS and DS patterns. The climbing patterns were performed in random order. Physiological measures during the last 30 s of the climbs were used in the comparative analysis. The results showed that ventilation, oxygen uptake and heart rate values were significantly higher (all p < 0.01) in the SS as compared to the DS pattern. However, the caloric expenditure during the SS pattern was calculated to be only marginally higher than the DS pattern. In conclusion, ascending with the SS pattern led to significantly higher physiological responses compared to the DS pattern. The higher calorie expended with the SS compared to the DS pattern was deemed to be of little practical significance.
Hardarson, Thorir; Bungum, Mona; Conaghan, Joe; Meintjes, Marius; Chantilis, Samuel J; Molnar, Laszlo; Gunnarsson, Kristina; Wikland, Matts
2015-12-01
To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. Randomized, double-blinded sibling trial. Independent in vitro fertilization (IVF) clinics. One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. Percentage of good-quality blastocysts on day 5. Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. NCT01939626. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.
van den Tillaar, Roland; Gamble, Paul
2018-03-26
This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2 ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2 ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Yamada, Minoru; Aoyama, Tomoki; Nakamura, Masatoshi; Tanaka, Buichi; Nagai, Koutatsu; Tatematsu, Noriatsu; Uemura, Kazuki; Nakamura, Takashi; Tsuboyama, Tadao; Ichihashi, Noriaki
2011-01-01
The purpose of this study was to examine whether the Nintendo Wii Fit program could be used for fall risk assessment in healthy, community-dwelling older adults. Forty-five community-dwelling older women participated in this study. The "Basic Step" and "Ski Slalom" modules were selected from the Wii Fit game program. The following 5 physical performance tests were performed: the 10-m walk test under single- and dual-task conditions, the Timed Up and Go test under single- and dual-task conditions, and the Functional Reach test. Compared with the faller group, the nonfaller group showed a significant difference in the Basic Step (P < .001) and a nonsignificant difference in the Ski Slalom (P = .453). The discriminating criterion between the 2 groups was a score of 111 points on the Basic Step (P < .001). The Basic Step showed statistically significant, moderate correlations between the dual-task lag of walking (r = -.547) and the dual-task lag of the Timed Up and Go test (r = -.688). These results suggest that game-based fall risk assessment using the Basic Step has a high generality and is useful in community-dwelling older adults. Copyright © 2011 Mosby, Inc. All rights reserved.
Costa-Borges, Nuno; Bellés, Marta; Meseguer, Marcos; Galliano, Daniela; Ballesteros, Agustin; Calderón, Gloria
2016-03-01
To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). Prospective cohort study on sibling donor oocytes. University-affiliated in vitro fertilization (IVF) center. Embryos from 59 patients. Culture in a TLI in a single medium with or without renewal of the medium on day-3. Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Considering dominance in reduced single-step genomic evaluations.
Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U
2018-06-01
Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.
Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sojeong; Qu, Wenchao; Alexoff, David L.
2014-12-12
An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.
NASA Astrophysics Data System (ADS)
Kar, Soumen; Rao, V. V.
2018-07-01
In our first attempt to design a single phase R-SFCL in India, we have chosen the typical rating of a medium voltage level (3.3 kVrms, 200 Arms, 1Φ) R-SFCL. The step-by-step design procedure for the R-SFCL involves conductor selection, time dependent electro-thermal simulations and recovery time optimization after fault removal. In the numerical analysis, effective fault limitation for a fault current of 5 kA for the medium voltage level R-SFCL are simulated. Maximum normal state resistance and maximum temperature rise in the SFCL coil during current limitation are estimated using one-dimensional energy balance equation. Further, a cryogenic system is conceptually designed for aforesaid MV level R-SFCL by considering inner and outer vessel materials, wall-thickness and thermal insulation which can be used for R-SFCL system. Finally, the total thermal load is calculated for the designed R-SFCL cryostat to select a suitable cryo-refrigerator for LN2 re-condensation.
NASA Astrophysics Data System (ADS)
Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.
2017-01-01
The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.
NASA Astrophysics Data System (ADS)
Sham, Atiyah W. M.; Monsi, Mansor; Hassan, Nasruddin; Suleiman, Mohamed
2013-04-01
The aim of this paper is to present a new modified interval symmetric single-step procedure ISS-5D which is the extension from the previous procedure, ISS1. The ISS-5D method will produce successively smaller intervals that are guaranteed to still contain the zeros. The efficiency of this method is measured on the CPU times and the number of iteration. The procedure is run on five test polynomials and the results obtained are shown in this paper.
NASA Astrophysics Data System (ADS)
Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi
2016-07-01
We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free parameter is then given in such a way that the fluxes are limited towards the low-order solver until positivity is attained. Given the lack of additional degrees of freedom in the system, this positivity limiter lacks energy conservation where the limiter turns on. However, this ingredient can be dropped for problems where the pressure does not become negative. We present two and three dimensional numerical results for several standard test problems including a smooth Alfvén wave (to verify formal order of accuracy), shock tube problems (to test the shock-capturing ability of the scheme), Orszag-Tang, and cloud shock interactions. These results assert the robustness and verify the high-order of accuracy of the proposed scheme.
NASA Astrophysics Data System (ADS)
Hammann, Eva; Zappe, Andrea; Keis, Stefanie; Ernst, Stefan; Matthies, Doreen; Meier, Thomas; Cook, Gregory M.; Börsch, Michael
2012-02-01
Thermophilic enzymes operate at high temperatures but show reduced activities at room temperature. They are in general more stable during preparation and, accordingly, are considered to be more rigid in structure. Crystallization is often easier compared to proteins from bacteria growing at ambient temperatures, especially for membrane proteins. The ATP-producing enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We applied a single-molecule Förster resonance energy transfer (FRET) approach using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor the expected 13-stepped rotary Fo motor at work. New FRET transition histograms were developed to identify the smaller step sizes compared to the 10-stepped Fo motor of the Escherichia coli enzyme. Dwell time analysis revealed the temperature and the LDAO dependence of the Fo motor activity on the single molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating a high flexibility in the membrane part of this thermophilic enzyme.
Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep
2017-08-01
Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.
Leblond, Veronique; Ouzegdouh, Maya; Button, Paul
2017-01-01
Abstract Introduction The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos® CELLEX® fully integrated system in 2012. This report summarizes our single‐center experience of transitioning from the use of multi‐step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. Materials and Methods The total number of ECP procedures performed 2011–2015 was derived from department records. The time taken to complete a single ECP treatment using a multi‐step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time‐driven activity‐based costing methods were applied to provide a cost comparison. Results The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi‐step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per‐session cost of performing ECP using the multi‐step procedure was greater than with the CELLEX® system (€1,429.37 and €1,264.70 per treatment, respectively). Conclusions For hospitals considering a transition from multi‐step procedures to fully integrated methods for ECP where cost may be a barrier, time‐driven activity‐based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX® allow for more patient treatments per year. PMID:28419561
INPUFF: A SINGLE SOURCE GAUSSIAN PUFF DISPERSION ALGORITHM. USER'S GUIDE
INPUFF is a Gaussian INtegrated PUFF model. The Gaussian puff diffusion equation is used to compute the contribution to the concentration at each receptor from each puff every time step. Computations in INPUFF can be made for a single point source at up to 25 receptor locations. ...
The effect of cane use on the compensatory step following posterior perturbations.
Hall, Courtney D; Jensen, Jody L
2004-08-01
The compensatory step is a critical component of the balance response and is impaired in older fallers. The purpose of this research was to examine whether utilization of a cane modified the compensatory step response following external posterior perturbations. Single subject withdrawal design was employed. Single subject statistical analysis--the standard deviation bandwidth-method--supplemented visual analysis of the data. Four older adults (range: 73-83 years) with balance impairment who habitually use a cane completed this study. Subjects received a series of sudden backward pulls that were large enough to elicit compensatory stepping. We examined the following variables both with and without cane use: timing of cane loading relative to step initiation and center of mass acceleration, stability margin, center of mass excursion and velocity, step length and width. No participant loaded the cane prior to initiation of the first compensatory step. There was no effect of cane use on the stability margin, nor was there an effect of cane use on center of mass excursion or velocity, or step length or width. These data suggest that cane use does not necessarily improve balance recovery following an external posterior perturbation when the individual is forced to rely on compensatory stepping. Instead these data suggest that the strongest factor in modifying step characteristics is experience with the perturbation.
Transition...One Small Step for a Young Girl, a Giant Leap for an Educational Community
ERIC Educational Resources Information Center
Terry, Shanta
2017-01-01
Can single-gender education foster student success? Can it work in a public setting? These questions have been asked many times over the past few decades. The answers have been inconclusive, with some studies saying that single-gender education truly works and others saying that it does not. The basis of the success or failure of single-gender…
Asynchronous machine rotor speed estimation using a tabulated numerical approach
NASA Astrophysics Data System (ADS)
Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane
2017-12-01
This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.
Investigation of correlation classification techniques
NASA Technical Reports Server (NTRS)
Haskell, R. E.
1975-01-01
A two-step classification algorithm for processing multispectral scanner data was developed and tested. The first step is a single pass clustering algorithm that assigns each pixel, based on its spectral signature, to a particular cluster. The output of that step is a cluster tape in which a single integer is associated with each pixel. The cluster tape is used as the input to the second step, where ground truth information is used to classify each cluster using an iterative method of potentials. Once the clusters have been assigned to classes the cluster tape is read pixel-by-pixel and an output tape is produced in which each pixel is assigned to its proper class. In addition to the digital classification programs, a method of using correlation clustering to process multispectral scanner data in real time by means of an interactive color video display is also described.
Blumrich, Matthias A.; Salapura, Valentina
2010-11-02
An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.
Influence of different pre-etching times on fatigue strength of self-etch adhesives to dentin.
Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Suzuki, Takayuki; Scheidel, Donal D; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
2016-04-01
The purpose of this study was to use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence on dentin bonding of phosphoric acid pre-etching times before the application of self-etch adhesives. Two single-step self-etch universal adhesives [Prime & Bond Elect (EL) and Scotchbond Universal (SU)], a conventional single-step self-etch adhesive [G-aenial Bond (GB)], and a two-step self-etch adhesive [OptiBond XTR (OX)] were used. The SBS and SFS values were obtained with phosphoric acid pre-etching times of 3, 10, or 15 s before application of the adhesives, and for a control without pre-etching. For groups with 3 s of pre-etching, SU and EL showed higher SBS values than control groups. No significant difference was observed for GB among the 3 s, 10 s, and control groups, but the 15 s pre-etching group showed significantly lower SBS and SFS values than the control group. No significant difference was found for OX among the pre-etching groups. Reducing phosphoric acid pre-etching time can minimize the adverse effect on dentin bonding durability for the conventional self-etch adhesives. Furthermore, a short phosphoric acid pre-etching time enhances the dentin bonding performance of universal adhesives. © 2016 Eur J Oral Sci.
Rajapandian, Subbiah; Bhushan, Chittawadagi; Sabnis, Sandeep C.; Jain, Manish; Raj, Palanivelu Praveen; Parathasarthi, Ramakrishnan; Senthilnathan, Palanisamy; Palanivelu, Chinnusamy
2018-01-01
Background: The popularity of single-incision procedures is on the rise as wound cosmesis is increasingly being seen as an important body image-related outcome. In this study, we assess the potential benefits of single-incision multiport laparoscopic totally extra-peritoneal (S-TEP) without using specialised ports or instruments and compare the same with the conventional laparoscopic TEP (C-TEP) surgery in terms of operative time, post-operative pain, complications, cost and cosmesis. Materials and Methods: This is a prospective case-matched study of the patients undergoing S-TEP versus C-TEP from June 2014 to December 2015. Results: Each group had 36 patients. The two groups were comparable in the clinical characteristics. The mean duration of surgery for a unilateral hernia in C-TEP and S-TEP was 45.13 ± 10.58 min and 72.63 ± 15.23 min, respectively. The mean visual analogue scale (VAS) score for pain was significantly higher in S-TEP group at post-operative day (POD) 0 and 1. However, at POD 7, there was no significant difference between the groups. At 1st and 6-week post-surgery, the cosmetic results were significantly better in S-TEP group as compared to C-TEP, however, at 6 months, the scar was highly acceptable in both treatment groups. Conclusion: S-TEP, using conventional laparoscopic instruments, is safe and feasible even in resource challenged setting. However, there is a need to review the indications and advantages of single-incision laparoscopic surgery, as no difference in cosmetic outcome by VAS score in S-TEP versus conventional laparoscopic arm seen by the end of 1 month. PMID:28695883
Comparison study on mechanical properties single step and three step artificial aging on duralium
NASA Astrophysics Data System (ADS)
Tsamroh, Dewi Izzatus; Puspitasari, Poppy; Andoko, Sasongko, M. Ilman N.; Yazirin, Cepi
2017-09-01
Duralium is kind of non-ferro alloy that used widely in industrial. That caused its properties such as mild, high ductility, and resistance from corrosion. This study aimed to know mechanical properties of duralium on single step and three step articial aging process. Mechanical properties that discussed in this study focused on toughness value, tensile strength, and microstructure of duralium. Toughness value of single step artificial aging was 0.082 joule/mm2, and toughness value of three step artificial aging was 0,0721 joule/mm2. Duralium tensile strength of single step artificial aging was 32.36 kgf/mm^2, and duralium tensile strength of three step artificial aging was 32,70 kgf/mm^2. Based on microstructure photo of duralium of single step artificial aging showed that precipitate (θ) was not spreading evenly indicated by black spot which increasing the toughness of material. While microstructure photo of duralium that treated by three step artificial aging showed that it had more precipitate (θ) spread evenly compared with duralium that treated by single step artificial aging.
Time-Extended Policies in Mult-Agent Reinforcement Learning
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2004-01-01
Reinforcement learning methods perform well in many domains where a single agent needs to take a sequence of actions to perform a task. These methods use sequences of single-time-step rewards to create a policy that tries to maximize a time-extended utility, which is a (possibly discounted) sum of these rewards. In this paper we build on our previous work showing how these methods can be extended to a multi-agent environment where each agent creates its own policy that works towards maximizing a time-extended global utility over all agents actions. We show improved methods for creating time-extended utilities for the agents that are both "aligned" with the global utility and "learnable." We then show how to crate single-time-step rewards while avoiding the pi fall of having rewards aligned with the global reward leading to utilities not aligned with the global utility. Finally, we apply these reward functions to the multi-agent Gridworld problem. We explicitly quantify a utility's learnability and alignment, and show that reinforcement learning agents using the prescribed reward functions successfully tradeoff learnability and alignment. As a result they outperform both global (e.g., team games ) and local (e.g., "perfectly learnable" ) reinforcement learning solutions by as much as an order of magnitude.
Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N
2013-08-01
To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.
A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles.
Benelmekki, Maria; Bohra, Murtaza; Kim, Jeong-Hwan; Diaz, Rosa E; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Sowwan, Mukhles
2014-04-07
We report a facile single-step synthesis of ternary hybrid nanoparticles (NPs) composed of multiple dumbbell-like iron-silver (FeAg) cores encapsulated by a silicon (Si) shell using a versatile co-sputter gas-condensation technique. In comparison to previously reported binary magneto-plasmonic NPs, the advantage conferred by a Si shell is to bind the multiple magneto-plasmonic (FeAg) cores together and prevent them from aggregation at the same time. Further, we demonstrate that the size of the NPs and number of cores in each NP can be modulated over a wide range by tuning the experimental parameters.
Single-step methods for predicting orbital motion considering its periodic components
NASA Astrophysics Data System (ADS)
Lavrov, K. N.
1989-01-01
Modern numerical methods for integration of ordinary differential equations can provide accurate and universal solutions to celestial mechanics problems. The implicit single sequence algorithms of Everhart and multiple step computational schemes using a priori information on periodic components can be combined to construct implicit single sequence algorithms which combine their advantages. The construction and analysis of the properties of such algorithms are studied, utilizing trigonometric approximation of the solutions of differential equations containing periodic components. The algorithms require 10 percent more machine memory than the Everhart algorithms, but are twice as fast, and yield short term predictions valid for five to ten orbits with good accuracy and five to six times faster than algorithms using other methods.
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Bair, Woei-Nan; Prettyman, Michelle G; Beamer, Brock A; Rogers, Mark W
2016-07-01
Protective stepping evoked by externally applied lateral perturbations reveals balance deficits underlying falls. However, a lack of comprehensive information about the control of different stepping strategies in relation to the magnitude of perturbation limits understanding of balance control in relation to age and fall status. The aim of this study was to investigate different protective stepping strategies and their kinematic and behavioral control characteristics in response to different magnitudes of lateral waist-pulls between older fallers and non-fallers. Fifty-two community-dwelling older adults (16 fallers) reacted naturally to maintain balance in response to five magnitudes of lateral waist-pulls. The balance tolerance limit (BTL, waist-pull magnitude where protective steps transitioned from single to multiple steps), first step control characteristics (stepping frequency and counts, spatial-temporal kinematic, and trunk position at landing) of four naturally selected protective step types were compared between fallers and non-fallers at- and above-BTL. Fallers took medial-steps most frequently while non-fallers most often took crossover-back-steps. Only non-fallers varied their step count and first step control parameters by step type at the instants of step initiation (onset time) and termination (trunk position), while both groups modulated step execution parameters (single stance duration and step length) by step type. Group differences were generally better demonstrated above-BTL. Fallers primarily used a biomechanically less effective medial-stepping strategy that may be partially explained by reduced somato-sensation. Fallers did not modulate their step parameters by step type at first step initiation and termination, instances particularly vulnerable to instability, reflecting their limitations in balance control during protective stepping. Copyright © 2016. Published by Elsevier Ltd.
Improving arrival time identification in transient elastography
NASA Astrophysics Data System (ADS)
Klein, Jens; McLaughlin, Joyce; Renzi, Daniel
2012-04-01
In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Gait parameter control timing with dynamic manual contact or visual cues
Shi, Peter; Werner, William
2016-01-01
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms. PMID:26936979
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less
Zone clearance in an infinite TASEP with a step initial condition
NASA Astrophysics Data System (ADS)
Cividini, Julien; Appert-Rolland, Cécile
2017-06-01
The TASEP is a paradigmatic model of out-of-equilibrium statistical physics, for which many quantities have been computed, either exactly or by approximate methods. In this work we study two new kinds of observables that have some relevance in biological or traffic models. They represent the probability for a given clearance zone of the lattice to be empty (for the first time) at a given time, starting from a step density profile. Exact expressions are obtained for single-time quantities, while more involved history-dependent observables are studied by Monte Carlo simulation, and partially predicted by a phenomenological approach.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
Factors affecting GEBV accuracy with single-step Bayesian models.
Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng
2018-01-01
A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.
Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich
2016-09-01
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
NASA Technical Reports Server (NTRS)
Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James
2014-01-01
A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.
NASA Astrophysics Data System (ADS)
Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung
2017-11-01
Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havasy, C.K.; Quach, T.K.; Bozada, C.A.
1995-12-31
This work is the development of a single-layer integrated-metal field effect transistor (SLIMFET) process for a high performance 0.2 {mu}m AlGaAs/InGaAs pseudomorphic high electron mobility transistor (PHEMT). This process is compatible with MMIC fabrication and minimizes process variations, cycle time, and cost. This process uses non-alloyed ohmic contacts, a selective gate-recess etching process, and a single gate/source/drain metal deposition step to form both Schottky and ohmic contacts at the same time.
Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun
2015-01-01
Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.
Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio
2007-04-01
This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.
Model of multistep electron transfer in a single-mode polar medium
NASA Astrophysics Data System (ADS)
Feskov, S. V.; Yudanov, V. V.
2017-09-01
A mathematical model of multistep photoinduced electron transfer (PET) in a polar medium with a single relaxation time (Debye solvent) is developed. The model includes the polarization nonequilibrity formed in the vicinity of the donor-acceptor molecular system at the initial steps of photoreaction and its influence on the subsequent steps of PET. It is established that the results from numerical simulation of transient luminescence spectra of photoexcited donor-acceptor complexes (DAC) conform to calculated data obtained on the basis of the familiar experimental technique used to measure the relaxation function of solvent polarization in the vicinity of DAC in the picosecond and subpicosecond ranges.
Barclay, Katie
2011-01-01
Traditionally marriage has been treated as one step in the life cycle, between youth and old age, singleness and widowhood. Yet an approach to the life cycle that treats marriage as a single step in a person's life is overly simplistic. During the eighteenth century many marriages were of considerable longevity during which time couples aged together and power dynamics within the home were frequently renegotiated to reflect changing circumstances. This study explores how intimacy developed and changed over the life cycle of marriage and what this meant for power, through a study of the correspondence of two elite Scottish couples.
Shirasu, Naoto; Kuroki, Masahide
2014-01-01
We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.
Computer program for single input-output, single-loop feedback systems
NASA Technical Reports Server (NTRS)
1976-01-01
Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.
NASA Astrophysics Data System (ADS)
Sangwal, K.; Torrent-Burgues, J.; Sanz, F.; Gorostiza, P.
1997-02-01
The experimental results of the formation of step bunches and macrosteps on the {100} face of L-arginine phosphate monohydrate crystals grown from aqueous solutions at different supersaturations studied by using atomic force microscopy are described and discussed. It was observed that (1) the step height does not remain constant with increasing time but fluctuates within a particular range of heights, which depends on the region of step bunches, (2) the maximum height and the slope of bunched steps increases with growth time as well as supersaturation used for growth, and that (3) the slope of steps of relatively small heights is usually low with a value of about 8° and does not depend on the region of formation of step bunches, but the slope of steps of large heights is up to 21°. Analysis of the experimental results showed that (1) at a particular value of supersaturation the ratio of the average step height to the average step spacing is a constant, suggesting that growth of the {100} face of L-arginine phosphate monohydrate crystals occurs by direct integration of growth entities to growth steps, and that (2) the formation of step bunches and macrosteps follows the dynamic theory of faceting, advanced by Vlachos et al.
Clark, Stephen J; Smallwood, Sébastien A; Lee, Heather J; Krueger, Felix; Reik, Wolf; Kelsey, Gavin
2017-03-01
DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.
Kawakubo, Kazumichi; Kawakami, Hiroshi; Kuwatani, Masaki; Kudo, Taiki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya
2015-02-01
Bilateral self-expandable metallic stent (SEMS) placement for the management of unresectable malignant hilar biliary obstruction (UMHBO) is technically challenging to perform using the existing metallic stents with thick delivery systems. The recently developed 6-Fr delivery systems could facilitate a single-step simultaneous side-by-side placement through the accessory channel of the duodenoscope. The aim of this study was to evaluate the feasibility of this procedure. Between May and September 2013, 13 consecutive patients with UMHBO underwent a single-step simultaneous side-by-side placement of SEMS with the 6-Fr delivery system. The technical success rate, stent patency, and rate of complications were evaluated from the prospectively collected database. Technical success was achieved in 11 (84.6%, 95% confidence interval [CI]: 57.8-95.8) patients. The median procedure time was 25 min. Early and late complications were observed in 23% (one segmental cholangitis and two liver abscesses) and 15% (one segmental cholangitis and one cholecystitis) patients, respectively. Median dysfunction free patency was 263 days (95% CI: 37-263). Five patients (38%) experienced stent occlusion that was successfully managed by endoscopic stent placement. A single-step simultaneous side-by-side placement of SEMS with a 6-Fr delivery system was feasible for the management of UMHBO. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Neural mechanisms of single corrective steps evoked in the standing rabbit
Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.
2017-01-01
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990
Single-particle stochastic heat engine.
Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M
2014-10-01
We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.
One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX
Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas
2007-01-01
Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378
Symplectic molecular dynamics simulations on specially designed parallel computers.
Borstnik, Urban; Janezic, Dusanka
2005-01-01
We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.
Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C
NASA Astrophysics Data System (ADS)
Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.
2013-01-01
For the past many years, 7075 aluminum alloys have been widely used especially in those applications for which high mechanical performances are required. It is well known that the alloy in the T6 condition is characterized by the highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC) resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced to produce T7X conditions, which are characterized by lower mechanical strength, but very good SCC behavior, when compared with the T6 condition. The aim of this study is to study the tensile properties and the SCC behavior of 7075 thick plates when submitted to a single-step aging by varying the aging times. The tests were carried out according to the standards and the data obtained from the SCC tests were analyzed quantitatively using an image analysis software. The results show that, when compared with the T7X conditions, the single-step aging performed in the laboratory can produce acceptable tensile and SCC properties.
NASA Technical Reports Server (NTRS)
Munoz, E. F.; Silverman, M. P.
1979-01-01
A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.
Research, Development and Fabrication of Lithium Solar Cells, Part 2
NASA Technical Reports Server (NTRS)
Iles, P. A.
1972-01-01
The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.
2012-01-01
Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods. Conclusions The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix. PMID:22455934
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N
2015-04-21
Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.
A Protocol for Real-time 3D Single Particle Tracking.
Hou, Shangguo; Welsher, Kevin
2018-01-03
Real-time three-dimensional single particle tracking (RT-3D-SPT) has the potential to shed light on fast, 3D processes in cellular systems. Although various RT-3D-SPT methods have been put forward in recent years, tracking high speed 3D diffusing particles at low photon count rates remains a challenge. Moreover, RT-3D-SPT setups are generally complex and difficult to implement, limiting their widespread application to biological problems. This protocol presents a RT-3D-SPT system named 3D Dynamic Photon Localization Tracking (3D-DyPLoT), which can track particles with high diffusive speed (up to 20 µm 2 /s) at low photon count rates (down to 10 kHz). 3D-DyPLoT employs a 2D electro-optic deflector (2D-EOD) and a tunable acoustic gradient (TAG) lens to drive a single focused laser spot dynamically in 3D. Combined with an optimized position estimation algorithm, 3D-DyPLoT can lock onto single particles with high tracking speed and high localization precision. Owing to the single excitation and single detection path layout, 3D-DyPLoT is robust and easy to set up. This protocol discusses how to build 3D-DyPLoT step by step. First, the optical layout is described. Next, the system is calibrated and optimized by raster scanning a 190 nm fluorescent bead with the piezoelectric nanopositioner. Finally, to demonstrate real-time 3D tracking ability, 110 nm fluorescent beads are tracked in water.
Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation
Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.
2014-01-01
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823
Wolff, Sebastian; Bucher, Christian
2013-01-01
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:23970806
Single-cell transcriptome conservation in cryopreserved cells and tissues.
Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger
2017-03-01
A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.
Song, Jooeun; Paul, Serene S; Caetano, Maria Joana D; Smith, Stuart; Dibble, Leland E; Love, Rachelle; Schoene, Daniel; Menant, Jasmine C; Sherrington, Cathie; Lord, Stephen R; Canning, Colleen G; Allen, Natalie E
2018-03-01
To determine whether 12-week home-based exergame step training can improve stepping performance, gait and complementary physical and neuropsychological measures associated with falls in Parkinson's disease. A single-blinded randomised controlled trial. Community (experimental intervention), university laboratory (outcome measures). Sixty community-dwelling people with Parkinson's disease. Home-based step training using videogame technology. The primary outcomes were the choice stepping reaction time test and Functional Gait Assessment. Secondary outcomes included physical and neuropsychological measures associated with falls in Parkinson's disease, number of falls over six months and self-reported mobility and balance. Post intervention, there were no differences between the intervention ( n = 28) and control ( n = 25) groups in the primary or secondary outcomes except for the Timed Up and Go test, where there was a significant difference in favour of the control group ( P = 0.02). Intervention participants reported mobility improvement, whereas control participants reported mobility deterioration-between-group difference on an 11-point scale = 0.9 (95% confidence interval: -1.8 to -0.1, P = 0.03). Interaction effects between intervention and disease severity on physical function measures were observed ( P = 0.01 to P = 0.08) with seemingly positive effects for the low-severity group and potentially negative effects for the high-severity group. Overall, home-based exergame step training was not effective in improving the outcomes assessed. However, the improved physical function in the lower disease severity intervention participants as well as the self-reported improved mobility in the intervention group suggest home-based exergame step training may have benefits for some people with Parkinson's disease.
One-step fabrication of porous GaN crystal membrane and its application in energy storage
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng
2017-03-01
Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.
Estimation of the transmissivity of thin leaky-confined aquifers from single-well pumping tests
NASA Astrophysics Data System (ADS)
Worthington, Paul F.
1981-01-01
Data from the quasi-equilibrium phases of a step-drawdown test are used to evaluate the coefficient of non-linear head losses subject to the assumption of a constant effective well radius. After applying a well-loss correction to the observed drawdowns of the first step, an approximation method is used to estimate a pseudo-transmissivity of the aquifer from a single value of time-variant drawdown. The pseudo-transmissivities computed for each of a sequence of values of time pass through a minimum when there is least manifestation of casing-storage and leakage effects, phenomena to which pumping-test data of this kind are particularly susceptible. This minimum pseudo-transmissivity, adjusted for partial penetration effects where appropriate, constitutes the best possible estimate of aquifer transmissivity. The ease of application of the overall procedure is illustrated by a practical example.
Single-pass incremental force updates for adaptively restrained molecular dynamics.
Singh, Krishna Kant; Redon, Stephane
2018-03-30
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Marks, Tobin J.
2015-05-20
Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less
Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.
Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro
2018-06-13
The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, M. N.; Wang, Q. X.; Alshareef, H. N.
2014-01-01
We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350°C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications. PMID:24728223
NASA Astrophysics Data System (ADS)
Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.
2018-02-01
The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.
Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G
2015-03-15
Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Azevedo, Anthony W; Doan, Thuy; Moaven, Hormoz; Sokal, Iza; Baameur, Faiza; Vishnivetskiy, Sergey A; Homan, Kristoff T; Tesmer, John JG; Gurevich, Vsevolod V; Chen, Jeannie; Rieke, Fred
2015-01-01
Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity. DOI: http://dx.doi.org/10.7554/eLife.05981.001 PMID:25910054
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...
2017-02-06
In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua
In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.
Vorstius, Christian; Radach, Ralph; Lang, Alan R
2012-02-01
Reflexive and voluntary levels of processing have been studied extensively with respect to possible impairments due to alcohol intoxication. This study examined alcohol effects at the 'automated' level of processing essential to many complex visual processing tasks (e.g., reading, visual search) that involve ongoing modifications or reprogramming of well-practiced routines. Data from 30 participants (16 male) were collected in two counterbalanced sessions (alcohol vs. no-alcohol control; mean breath alcohol concentration = 68 mg/dL vs. 0 mg/dL). Eye movements were recorded during a double-step task where 75% of trials involved two target stimuli in rapid succession (inter-stimulus interval [ISI]=40, 70, or 100 ms) so that they could elicit two distinct saccades or eye movements (double steps). On 25% of trials a single target appeared. Results indicated that saccade latencies were longer under alcohol. In addition, the proportion of single-step responses and the mean saccade amplitude (length) of primary saccades decreased significantly with increasing ISI. The key novel finding, however, was that the reprogramming time needed to cancel the first saccade and adjust saccade amplitude was extended significantly by alcohol. The additional time made available by prolonged latencies due to alcohol was not utilized by the saccade programming system to decrease the number of two-step responses. These results represent the first demonstration of specific alcohol-induced programming deficits at the automated level of oculomotor processing.
Fei Cheng; Lin Hou; Keith Woeste; Zhengchun Shang; Xiaobang Peng; Peng Zhao; Shuoxin Zhang
2016-01-01
Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high...
Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique
2011-05-01
In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.
Calculating Time-Integral Quantities in Depletion Calculations
Isotalo, Aarno
2016-06-02
A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less
Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R
2017-04-01
To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, p<0.0001, I 2 =0%) and the proportion of fallers (risk ratio=0.51, 95% CI 0.38 to 0.68, p<0.0001, I 2 =0%). Subgroup analyses stratified by reactive and volitional stepping interventions revealed a similar efficacy for rate of falls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (p<0.05), but not measures of strength. The findings indicate that both reactive and volitional stepping interventions reduce falls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Gait parameter control timing with dynamic manual contact or visual cues.
Rabin, Ely; Shi, Peter; Werner, William
2016-06-01
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms. Copyright © 2016 the American Physiological Society.
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.
Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...
2015-04-21
Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less
User's guide to four-body and three-body trajectory optimization programs
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A collection of computer programs and subroutines written in FORTRAN to calculate 4-body (sun-earth-moon-space) and 3-body (earth-moon-space) optimal trajectories is presented. The programs incorporate a variable step integration technique and a quadrature formula to correct single step errors. The programs provide capability to solve initial value problem, two point boundary value problem of a transfer from a given initial position to a given final position in fixed time, optimal 2-impulse transfer from an earth parking orbit of given inclination to a given final position and velocity in fixed time and optimal 3-impulse transfer from a given position to a given final position and velocity in fixed time.
A far-field non-reflecting boundary condition for two-dimensional wake flows
NASA Technical Reports Server (NTRS)
Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli
1995-01-01
Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.
A novel method to accurately locate and count large numbers of steps by photobleaching
Tsekouras, Konstantinos; Custer, Thomas C.; Jashnsaz, Hossein; Walter, Nils G.; Pressé, Steve
2016-01-01
Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. PMID:27654946
A framework for simultaneous aerodynamic design optimization in the presence of chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi
Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less
Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.
2014-01-01
Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient. PMID:25086523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg
2014-08-15
Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculatedmore » through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient.« less
Brouilette, Scott; Kuersten, Scott; Mein, Charles; Bozek, Monika; Terry, Anna; Dias, Kerith-Rae; Bhaw-Rosun, Leena; Shintani, Yasunori; Coppen, Steven; Ikebe, Chiho; Sawhney, Vinit; Campbell, Niall; Kaneko, Masahiro; Tano, Nobuko; Ishida, Hidekazu; Suzuki, Ken; Yashiro, Kenta
2012-10-01
Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs. Copyright © 2012 Wiley Periodicals, Inc.
Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M
2018-05-01
Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.
Experimental quasi-single-photon transmission from satellite to earth.
Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei
2013-08-26
Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.
Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.
Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R
1996-04-01
The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.
Carty, Christopher P; Cronin, Neil J; Lichtwark, Glen A; Mills, Peter M; Barrett, Rod S
2012-12-01
Studying recovery responses to loss of balance may help to explain why older adults are susceptible to falls. The purpose of the present study was to assess whether male and female older adults, that use a single or multiple step recovery strategy, differ in the proportion of lower limb strength used and power produced during the stepping phase of balance recovery. Eighty-four community-dwelling older adults (47 men, 37 women) participated in the study. Isometric strength of the ankle, knee and hip joint flexors and extensors was assessed using a dynamometer. Loss of balance was induced by releasing participants from a static forward lean (4 trials at each of 3 forward lean angles). Participants were instructed to recover with a single step and were subsequently classified as using a single or multiple step recovery strategy for each trial. (1) Females were weaker than males and the proportion of females that were able to recover with a single step were lower than for males at each lean magnitude. (2) Multiple compared to single steppers used a significantly higher proportion of their hip extension strength and produced less knee and ankle joint peak power during stepping, at the intermediate lean angle. Strength deficits in female compared to male participants may explain why a lower proportion of female participants were able to recover with a single step. The inability to generate sufficient power in the stepping limb appears to be a limiting factor in single step recovery from forward loss of balance. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Oisjöen, Fredrik; Schneiderman, Justin F; Astalan, Andrea Prieto; Kalabukhov, Alexey; Johansson, Christer; Winkler, Dag
2010-01-15
We demonstrate a one-step wash-free bioassay measurement system capable of tracking biochemical binding events. Our approach combines the high resolution of frequency- and high speed of time-domain measurements in a single device in combination with a fast one-step bioassay. The one-step nature of our magnetic nanoparticle (MNP) based assay reduces the time between sample extraction and quantitative results while mitigating the risks of contamination related to washing steps. Our method also enables tracking of binding events, providing the possibility of, for example, investigation of how chemical/biological environments affect the rate of a binding process or study of the action of certain drugs. We detect specific biological binding events occurring on the surfaces of fluid-suspended MNPs that modify their magnetic relaxation behavior. Herein, we extrapolate a modest sensitivity to analyte of 100 ng/ml with the present setup using our rapid one-step bioassay. More importantly, we determine the size-distributions of the MNP systems with theoretical fits to our data obtained from the two complementary measurement modalities and demonstrate quantitative agreement between them. Copyright 2009 Elsevier B.V. All rights reserved.
"Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step
NASA Astrophysics Data System (ADS)
Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon
2013-04-01
During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.
Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules
Panzeri, Francesco
2017-01-01
We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142
McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N
2018-03-30
A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2 nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
NASA Astrophysics Data System (ADS)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration
2018-03-01
A new method to tag the barium daughter in the double-beta decay of
PVT: An Efficient Computational Procedure to Speed up Next-generation Sequence Analysis
2014-01-01
Background High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat’s serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. Results We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during ‘spliced alignment’ and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. Conclusions PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system. PMID:24894600
PVT: an efficient computational procedure to speed up next-generation sequence analysis.
Maji, Ranjan Kumar; Sarkar, Arijita; Khatua, Sunirmal; Dasgupta, Subhasis; Ghosh, Zhumur
2014-06-04
High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during 'spliced alignment' and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system.
Parental Leave of Absence: Time for the Next Step
1998-03-01
personnel. This can affect both mission performance and retention rates.Ś Maintaining a force in which every soldier is available for worldwide...ability to perform during wartime.ൢ Although there are more male single parents in the Army, a larger percentage of women are single parents. Therefore...costs, workforce turbulence, and absenteeism down. While civilian programs are not always compatible with the military’s particular needs, one program
Single step high-speed printing of continuous silver lines by laser-induced forward transfer
NASA Astrophysics Data System (ADS)
Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.
2016-06-01
The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.
A Formula for Making Every Hour Count
ERIC Educational Resources Information Center
Warihay, Philomena
1978-01-01
Making people aware of how they use--and waste--time must be the first step in any program to increase office productivity. Available from Geyer-McAllister Publications, Inc., 51 Madison Avenue, New York, New York 10010; single issue $2.75. (Author)
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Hongxing; Li, Min
2018-04-01
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite-receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73-96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.
Reis, Andre F; Giannini, Marcelo; Pereira, Patricia N R
2007-09-01
The aim of this study was to evaluate the ability of etch-and-rinse and self-etching adhesive systems to prevent time- and water-induced nanoleakage in resin-dentin interfaces over a 6-month storage period. Five commercial adhesives were tested, which comprise three different strategies of bonding resins to tooth hard tissues: one single-step self-etching adhesive (One-up Bond F (OB), Tokuyama); two two-step self-etching primers (Clearfil SE Bond (SE) and an antibacterial fluoride-containing system, Clearfil Protect Bond (CP), Kuraray Inc.); two two-step etch-and-rinse adhesives (Single Bond (SB), 3M ESPE and Prime&Bond NT (PB), Dentsply). Restored teeth were sectioned into 0.9 mm thick slabs and stored in water or mineral oil for 24 h, 3 or 6 months. A silver tracer solution was used to reveal nanometer-sized water-filled spaces and changes that occurred over time within resin-dentin interfaces. Characterization of interfaces was performed with the TEM. The two two-step self-etching primers showed little silver uptake during the 6-month experiment. Etch-and-rinse adhesives exhibited silver deposits predominantly within the hybrid layer (HL), which significantly increased for SB after water-storage. The one-step self-etching adhesive OB presented massive silver accumulation within the HL and water-trees protruding into the adhesive layer, which increased in size and quantity after water-storage. After storage in oil, reduced silver deposition was observed at the interfaces for all groups. Different levels of water-induced nanoleakage were observed for the different bonding strategies. The two-step self-etching primers, especially the antibacterial fluoride-containing system CP, showed the least nanoleakage after 6 months of storage in water.
Single-step method for β-galactosidase assays in Escherichia coli using a 96-well microplate reader.
Schaefer, Jorrit; Jovanovic, Goran; Kotta-Loizou, Ioly; Buck, Martin
2016-06-15
Historically, the lacZ gene is one of the most universally used reporters of gene expression in molecular biology. Its activity can be quantified using an artificial substrate, o-nitrophenyl-ß-d-galactopyranoside (ONPG). However, the traditional method for measuring LacZ activity (first described by J. H. Miller in 1972) can be challenging for a large number of samples, is prone to variability, and involves hazardous compounds for lysis (e.g., chloroform, toluene). Here we describe a single-step assay using a 96-well microplate reader with a proven alternative cell permeabilization method. This modified protocol reduces handling time by 90%. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
... No single step can protect you from every single type of STI. Can women who have sex with women get PID? Yes. ... No single step can protect you from every single type of STI. Can women who have sex with women get PID? Yes. ...
Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy
NASA Technical Reports Server (NTRS)
Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.
2008-01-01
A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.
Karasawa, N; Mitsutake, A; Takano, H
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
Evaluation of atomic pressure in the multiple time-step integration algorithm.
Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu
2017-04-15
In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Karasawa, N.; Mitsutake, A.; Takano, H.
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
NASA Astrophysics Data System (ADS)
Wang, Zhan-zhi; Xiong, Ying
2013-04-01
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
Self-propelled motion of Au-Si droplets on Si(111) mediated by monoatomic step dissolution
NASA Astrophysics Data System (ADS)
Curiotto, S.; Leroy, F.; Cheynis, F.; Müller, P.
2015-02-01
By Low Energy Electron Microscopy, we show that the spontaneous motion of gold droplets on silicon (111) is chemically driven: the droplets tend to dissolve silicon monoatomic steps to reach the temperature-dependent Au-Si equilibrium stoichiometry. According to the droplet size, the motion details are different. In the first stages of Au deposition small droplets nucleate at steps and move continuously on single terraces. The droplets temporarily pin at each step they meet during their motion. During pinning, the growing droplets become supersaturated in Au. They depin from the steps when a notch nucleate on the upper step. Then the droplets climb up and locally dissolve the Si steps, leaving behind them deep tracks formed by notched steps. Measurements of the dissolution rate and the displacement lengths enable us to describe quantitatively the motion mechanism, also in terms of anisotropy of Si dissolution kinetics. Scaling laws for the droplet position as a function of time are proposed: x ∝ tn with 1/3 < n < 2/3.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
Lucius, Aaron L.; Maluf, Nasib K.; Fischer, Christopher J.; Lohman, Timothy M.
2003-01-01
Helicase-catalyzed DNA unwinding is often studied using “all or none” assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using “n-step” sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the “kinetic step size”, m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using “n-step” sequential mechanisms has previously been limited by an inability to float the number of “unwinding steps”, n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, fss(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain fss(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation. PMID:14507688
Xu, Dongsheng; Shao, Huikai; Luo, Rongying; Wang, Qiqin; Sánchez-López, Elena; Fanali, Salvatore; Marina, Maria Luisa; Jiang, Zhengjin
2018-07-06
A facile single-step preparation strategy for fabricating vancomycin functionalized organic polymer-based monolith within 100μm fused-silica capillary was developed. The synthetic chiral functional monomer, i.e 2-isocyanatoethyl methacrylate (ICNEML) derivative of vancomycin, was co-polymerized with the cross-linker ethylene dimethacrylate (EDMA) in the presence of methanol and dimethyl sulfoxide as the selected porogens. The co-polymerization conditions were systematically optimized in order to obtain satisfactory column performance. Adequate permeability, stability and column morphology were observed for the optimized poly(ICNEML-vancomycin-co-EDMA) monolith. A series of chiral drugs were evaluated on the monolith in either polar organic-phase or reversed-phase modes. After the optimization of separation conditions, baseline or partial enantioseparation were obtained for series of drugs including thalidomide, colchicine, carteolol, salbutamol, clenbuterol and several other β-blockers. The proposed single-step approach not only resulted in a vancomycin functionalized organic polymer-based monolith with acceptable performance, but also significantly simplified the preparation procedure by reducing time and labor. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamilton, Jason S.; Aguilar, Roberto; Petros, Robby A.; Verbeck, Guido F.
2017-05-01
The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids.
An on-chip coupled resonator optical waveguide single-photon buffer
Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya
2013-01-01
Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422
From cookbooks to single sentences: The evolution of my labs
NASA Astrophysics Data System (ADS)
Morrison, Andrew
2014-11-01
Like many physics teachers, I love to have my students spend time working in the laboratory. There is often no better way to test an idea about how the physical world works than to actually set up an experiment and see if the idea can be ruled out or not. This process is an authentic representation of the scientific method, which can take a winding and unpredictable path rather than a clean step-by-step recipe that students want to believe science follows.
2015-09-04
aluminum wire into an anodized aluminum oxide ( AAO ) shell (step 1, Fig. 1, A and B). The thickness of the resulting AAO shell can be...regulated by changing the anodizing time. Thus, a prepared wire with aluminum core and AAO shell ( AAO wire) was then used as a template for a single-step...showing the synthesis and microstructures of a 3D graphene-RACNT fiber. (A) Aluminum wire. (B) Surface anodized aluminum wire ( AAO wire). (C)
The SCUBA-2 Data Reduction Cookbook
NASA Astrophysics Data System (ADS)
Thomas, Holly S.; Currie, Malcolm J.
This cookbook provides a short introduction to Starlink facilities, especially SMURF, the Sub-Millimetre User Reduction Facility, for reducing, displaying, and calibrating SCUBA-2 data. It describes some of the data artefacts present in SCUBA-2 time-series and methods to mitigate them. In particular, this cookbook illustrates the various steps required to reduce the data; and gives an overview of the Dynamic Iterative Map-Maker, which carries out all of these steps using a single command controlled by a configuration file. Specialised configuration files are presented.
The SCUBA-2 SRO data reduction cookbook
NASA Astrophysics Data System (ADS)
Chapin, Edward; Dempsey, Jessica; Jenness, Tim; Scott, Douglas; Thomas, Holly; Tilanus, Remo P. J.
This cookbook provides a short introduction to starlink\\ facilities, especially smurf, the Sub-Millimetre User Reduction Facility, for reducing and displaying SCUBA-2 SRO data. We describe some of the data artefacts present in SCUBA-2 time series and methods we employ to mitigate them. In particular, we illustrate the various steps required to reduce the data, and the Dynamic Iterative Map-Maker, which carries out all of these steps using a single command. For information on SCUBA-2 data reduction since SRO, please SC/21.
Experimental Quantum-Walk Revival with a Time-Dependent Coin
NASA Astrophysics Data System (ADS)
Xue, P.; Zhang, R.; Qin, H.; Zhan, X.; Bian, Z. H.; Li, J.; Sanders, Barry C.
2015-04-01
We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.
Multi-step prediction for influenza outbreak by an adjusted long short-term memory.
Zhang, J; Nawata, K
2018-05-01
Influenza results in approximately 3-5 million annual cases of severe illness and 250 000-500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four different multi-step prediction algorithms in the long short-term memory (LSTM). The result showed that implementing multiple single-output prediction in a six-layer LSTM structure achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%. To the best of our knowledge, it is the first time that LSTM has been applied and refined to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.
Chan, Wing-Nga; Tsang, William Wai-Nam
2017-01-01
Turning-while-walking is one of the commonest causes of falls in stroke survivors. It involves cognitive processing and may be challenging when performed concurrently with a cognitive task. Previous studies of dual-tasking involving turning-while-walking in stroke survivors show that the performance of physical tasks is compromised. However, the design of those studies did not address the response of stroke survivors under dual-tasking condition without specifying the task-preference and its effect on the performance of the cognitive task. First, to compare the performance of single-tasking and dual-tasking in stroke survivors. Second, to compare the performance of stroke survivors with non-stroke controls. Fifty-nine stroke survivors and 45 controls were assessed with an auditory Stroop test, a turning-while-walking test, and a combination of the two single tasks. The outcome of the cognitive task was measured by the reaction time and accuracy of the task. The physical task was evaluated by measuring the turning duration, number of steps to turn, and time to complete the turning-while-walking test. Stroke survivors showed a significantly reduced accuracy in the auditory Stroop test when dual-tasking, but there was no change in the reaction time. Their performance in the turning-while-walking task was similar under both single-tasking and dual-tasking condition. Additionally, stroke survivors demonstrated a significantly longer reaction time and lower accuracy than the controls both when single-tasking and dual-tasking. They took longer to turn, with more steps, and needed more time to complete the turning-while-walking task in both tasking conditions. The results show that stroke survivors with high mobility function performed the auditory Stroop test less accurately while preserving simultaneous turning-while-walking performance. They also demonstrated poorer performance in both single-tasking and dual-tasking as compared with controls.
Taubenberger, Anna; Cisneros, David A.; Friedrichs, Jens; Puech, Pierre-Henri; Muller, Daniel J.
2007-01-01
We have characterized early steps of α2β1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of α2β1 as a collagen type I receptor, α2β1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas α2β1-negative CHO wild-type cells adhered poorly. Probing CHO-A2 cell detachment forces over a contact time range of 600 s revealed a nonlinear adhesion response. During the first 60 s, cell adhesion increased slowly, and forces associated with the smallest rupture events were consistent with the breakage of individual integrin–collagen bonds. Above 60 s, a fraction of cells rapidly switched into an activated adhesion state marked by up to 10-fold increased detachment forces. Elevated overall cell adhesion coincided with a rise of the smallest rupture forces above the value required to break a single-integrin–collagen bond, suggesting a change from single to cooperative receptor binding. Transition into the activated adhesion mode and the increase of the smallest rupture forces were both blocked by inhibitors of actomyosin contractility. We therefore propose a two-step mechanism for the establishment of α2β1-mediated adhesion as weak initial, single-integrin–mediated binding events are superseded by strong adhesive interactions involving receptor cooperativity and actomyosin contractility. PMID:17314408
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation
NASA Astrophysics Data System (ADS)
Qian, ZhanSen; Lee, Chun-Hian
2012-08-01
A large time step (LTS) TVD scheme originally proposed by Harten is modified and further developed in the present paper and applied to Euler equations in multidimensional problems. By firstly revealing the drawbacks of Harten's original LTS TVD scheme, and reasoning the occurrence of the spurious oscillations, a modified formulation of its characteristic transformation is proposed and a high resolution, strongly robust LTS TVD scheme is formulated. The modified scheme is proven to be capable of taking larger number of time steps than the original one. Following the modified strategy, the LTS TVD schemes for Yee's upwind TVD scheme and Yee-Roe-Davis's symmetric TVD scheme are constructed. The family of the LTS schemes is then extended to multidimensional by time splitting procedure, and the associated boundary condition treatment suitable for the LTS scheme is also imposed. The numerical experiments on Sod's shock tube problem, inviscid flows over NACA0012 airfoil and ONERA M6 wing are performed to validate the developed schemes. Computational efficiencies for the respective schemes under different CFL numbers are also evaluated and compared. The results reveal that the improvement is sizable as compared to the respective single time step schemes, especially for the CFL number ranging from 1.0 to 4.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel
2016-10-01
A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less
Real-time color image processing for forensic fiber investigations
NASA Astrophysics Data System (ADS)
Paulsson, Nils
1995-09-01
This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.
Morisse Pradier, H; Sénéchal, A; Philit, F; Tronc, F; Maury, J-M; Grima, R; Flamens, C; Paulus, S; Neidecker, J; Mornex, J-F
2016-02-01
Lung transplantation (LT) is now considered as an excellent treatment option for selected patients with end-stage pulmonary diseases, such as COPD, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension. The 2 goals of LT are to provide a survival benefit and to improve quality of life. The 3-step decision process leading to LT is discussed in this review. The first step is the selection of candidates, which requires a careful examination in order to check absolute and relative contraindications. The second step is the timing of listing for LT; it requires the knowledge of disease-specific prognostic factors available in international guidelines, and discussed in this paper. The third step is the choice of procedure: indications of heart-lung, single-lung, and bilateral-lung transplantation are described. In conclusion, this document provides guidelines to help pulmonologists in the referral and selection processes of candidates for transplantation in order to optimize the outcome of LT. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Helicase Stepping Investigated with One-Nucleotide Resolution Fluorescence Resonance Energy Transfer
NASA Astrophysics Data System (ADS)
Lin, Wenxia; Ma, Jianbing; Nong, Daguan; Xu, Chunhua; Zhang, Bo; Li, Jinghua; Jia, Qi; Dou, Shuoxing; Ye, Fangfu; Xi, Xuguang; Lu, Ying; Li, Ming
2017-09-01
Single-molecule Förster resonance energy transfer is widely applied to study helicases by detecting distance changes between a pair of dyes anchored to overhangs of a forked DNA. However, it has been lacking single-base pair (1-bp) resolution required for revealing stepping kinetics of helicases. We designed a nanotensioner in which a short DNA is bent to exert force on the overhangs, just as in optical or magnetic tweezers. The strategy improved the resolution of Förster resonance energy transfer to 0.5 bp, high enough to uncover differences in DNA unwinding by yeast Pif1 and E. coli RecQ whose unwinding behaviors cannot be differentiated by currently practiced methods. We found that Pif1 exhibits 1-bp-stepping kinetics, while RecQ breaks 1 bp at a time but sequesters the nascent nucleotides and releases them randomly. The high-resolution data allowed us to propose a three-parameter model to quantitatively interpret the apparently different unwinding behaviors of the two helicases which belong to two superfamilies.
Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria
Kim, Jinjoo; Kim, Hansol; Park, Ji Ho; Jon, Sangyong
2017-01-01
The polymerase chain reaction (PCR) has been an essential tool for diagnosis of infectious diseases, but conventional PCR still has some limitations with respect to applications to point-of-care (POC) diagnostic systems that require rapid detection and miniaturization. Here we report a light-based PCR method, termed as photo-PCR, which enables rapid detection of bacteria in a single step. In the photo-PCR system, poly(enthylene glycol)-modified gold nanorods (PEG-GNRs), used as a heat generator, are added into the PCR mixture, which is subsequently periodically irradiated with a 808-nm laser to create thermal cycling. Photo-PCR was able to significantly reduce overall thermal cycling time by integrating bacterial cell lysis and DNA amplification into a single step. Furthermore, when combined with KAPA2G fast polymerase and cooling system, the entire process of bacterial genomic DNA extraction and amplification was further shortened, highlighting the potential of photo-PCR for use in a portable, POC diagnostic system. PMID:29071186
Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An
2018-01-01
For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Dong; Liu, Dan; Harris, Joshua B.
The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of the high performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for sulfur cathode can be explained. A two-step oxidation mechanism for the Li 2S and Li 2S 2 with a single chemical equilibrium among soluble polysulfide ions was proposed. In conclusion, the chemicalmore » equilibrium among S 5 2-, S 6 2-, S 7 2- and S 8 2- throughout the entire oxidation process resulted for the single flat recharge curve in Li-S batteries.« less
Huettig, Fabian; Chekhani, Usama; Klink, Andrea; Said, Fadi; Rupp, Frank
2018-06-08
The shark-fin test was modified to convey the clinical application of a single-step/double-mix technique assessing the behavior of two viscosities applied at one point in time. A medium and light body polyether (PE), a medium and light body polyvinylsiloxane (PVS), and a medium as well as heavy and light body vinyl polyether silicone (PVXE) impression material were analyzed solely, and in a layered mixture of 1:1 and 3:1 at working times of 50, 80, and 120 s. The fin heights were measured with a digital ruler. The wettability was measured 50 and 80 s after mixing by drop shape analysis. The results showed a synergistic effect of the medium and light body PE. This was not observed in PVXE and PVS. Interestingly, PVXE showed an antagonistic flow behavior in 3:1 mixture with medium body. PVXE was more hydrophilic than PE and PVS. Future rheological studies should clarify the detected flow effects.
Zheng, Dong; Liu, Dan; Harris, Joshua B.; ...
2016-09-09
The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of the high performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for sulfur cathode can be explained. A two-step oxidation mechanism for the Li 2S and Li 2S 2 with a single chemical equilibrium among soluble polysulfide ions was proposed. In conclusion, the chemicalmore » equilibrium among S 5 2-, S 6 2-, S 7 2- and S 8 2- throughout the entire oxidation process resulted for the single flat recharge curve in Li-S batteries.« less
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...
2018-03-26
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
Basu, Amar S
2013-05-21
Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.
Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping
2015-12-15
Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Jin, Hong; Heller, Daniel A; Strano, Michael S
2008-06-01
Over 10000 individual trajectories of nonphotobleaching single-walled carbon nanotubes (SWNT) were tracked as they are incorporated into and expelled from NIH-3T3 cells in real time on a perfusion microscope stage. An analysis of mean square displacement allows the complete construction of the mechanistic steps involved from single duration experiments. We observe the first conclusive evidence of SWNT exocytosis and show that the rate closely matches the endocytosis rate with negligible temporal offset. We identify and study the endocytosis and exocytosis pathway that leads to the previously observed aggregation and accumulation of SWNT within the cells.
Analysis of aggregated tick returns: Evidence for anomalous diffusion
NASA Astrophysics Data System (ADS)
Weber, Philipp
2007-01-01
In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate return in a certain time interval is important, it cannot alone explain the heavy-tailed distribution of stock price changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that in tick time the price follows a discrete diffusion process with a variable step width while the difference between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value can well characterize an interval of many trades and turns out to be an important determinant for large aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of the step widths in different directions together with cross correlations between these asymmetries and the mean step width as well as the signs of the steps.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.
Separation of Be and Al for AMS using single-step column chromatography
NASA Astrophysics Data System (ADS)
Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred
2015-10-01
With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.
The current role of on-line extraction approaches in clinical and forensic toxicology.
Mueller, Daniel M
2014-08-01
In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.
Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.
Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T
2018-04-04
Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.
Carty, Christopher P; Cronin, Neil J; Nicholson, Deanne; Lichtwark, Glen A; Mills, Peter M; Kerr, Graham; Cresswell, Andrew G; Barrett, Rod S
2015-01-01
a fall occurs when an individual experiences a loss of balance from which they are unable to recover. Assessment of balance recovery ability in older adults may therefore help to identify individuals at risk of falls. The purpose of this 12-month prospective study was to assess whether the ability to recover from a forward loss of balance with a single step across a range of lean magnitudes was predictive of falls. two hundred and one community-dwelling older adults, aged 65-90 years, underwent baseline testing of sensori-motor function and balance recovery ability followed by 12-month prospective falls evaluation. Balance recovery ability was defined by whether participants required either single or multiple steps to recover from forward loss of balance from three lean magnitudes, as well as the maximum lean magnitude participants could recover from with a single step. forty-four (22%) participants experienced one or more falls during the follow-up period. Maximal recoverable lean magnitude and use of multiple steps to recover at the 15% body weight (BW) and 25%BW lean magnitudes significantly predicted a future fall (odds ratios 1.08-1.26). The Physiological Profile Assessment, an established tool that assesses variety of sensori-motor aspects of falls risk, was also predictive of falls (Odds ratios 1.22 and 1.27, respectively), whereas age, sex, postural sway and timed up and go were not predictive. reactive stepping behaviour in response to forward loss of balance and physiological profile assessment are independent predictors of a future fall in community-dwelling older adults. Exercise interventions designed to improve reactive stepping behaviour may protect against future falls. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
Dynamic and functional balance tasks in subjects with persistent whiplash: a pilot trial.
Stokell, Raina; Yu, Annie; Williams, Katrina; Treleaven, Julia
2011-08-01
Disturbances in static balance have been demonstrated in subjects with persistent whiplash. Some also report loss of balance and falls. These disturbances may contribute to difficulties in dynamic tasks. The aim of this study was to determine whether subjects with whiplash had deficits in dynamic and functional balance tasks when compared to a healthy control group. Twenty subjects with persistent pain following a whiplash injury and twenty healthy controls were assessed in single leg stance with eyes open and closed, the step test, Fukuda stepping test, tandem walk on a firm and soft surface, Singleton test with eyes open and closed, a stair walking test and the timed 10 m walk with and without head movement. Subjects with whiplash demonstrated significant deficits (p < 0.01) in single leg stance with eyes closed, the step test, tandem walk on a firm and soft surface, stair walking and the timed 10 m walk with and without head movement when compared to the control subjects. Specific assessment and rehabilitation directed towards improving these deficits may need to be considered in the management of patients with persistent whiplash if these results are confirmed in a larger cohort. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Random walks of colloidal probes in viscoelastic materials
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2014-04-01
To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.
ERIC Educational Resources Information Center
Mazerik, Matthew B.
2006-01-01
The mean scores of English Language Learners (ELL) and English Only (EO) students in 4th and 5th grade (N = 110), across the teacher-administered Grammar Skills Test, were examined for differences in participants' scores on assessments containing single-step directions and assessments containing multiple-step directions. The results indicated no…
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands
Vasconcelos, Helena
2018-01-01
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108
Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment
NASA Astrophysics Data System (ADS)
Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei
2018-01-01
Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.
de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis
2018-04-20
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
Accelerated x-ray scatter projection imaging using multiple continuously moving pencil beams
NASA Astrophysics Data System (ADS)
Dydula, Christopher; Belev, George; Johns, Paul C.
2017-03-01
Coherent x-ray scatter varies with angle and photon energy in a manner dependent on the chemical composition of the scattering material, even for amorphous materials. Therefore, images generated from scattered photons can have much higher contrast than conventional projection radiographs. We are developing a scatter projection imaging prototype at the BioMedical Imaging and Therapy (BMIT) facility of the Canadian Light Source (CLS) synchrotron in Saskatoon, Canada. The best images are obtained using step-and-shoot scanning with a single pencil beam and area detector to capture sequentially the scatter pattern for each primary beam location on the sample. Primary x-ray transmission is recorded simultaneously using photodiodes. The technological challenge is to acquire the scatter data in a reasonable time. Using multiple pencil beams producing partially-overlapping scatter patterns reduces acquisition time but increases complexity due to the need for a disentangling algorithm to extract the data. Continuous sample motion, rather than step-and-shoot, also reduces acquisition time at the expense of introducing motion blur. With a five-beam (33.2 keV, 3.5 mm2 beam area) continuous sample motion configuration, a rectangular array of 12 x 100 pixels with 1 mm sampling width has been acquired in 0.4 minutes (3000 pixels per minute). The acquisition speed is 38 times the speed for single beam step-and-shoot. A system model has been developed to calculate detected scatter patterns given the material composition of the object to be imaged. Our prototype development, image acquisition of a plastic phantom and modelling are described.
Muscle Activation Patterns in Infants with Myelomeningocele Stepping on a Treadmill
Sansom, Jennifer K.; Teulier, Caroline; Smith, Beth A.; Moerchen, Victoria; Muraszko, Karin; Ulrich, Beverly D.
2013-01-01
Purpose To characterize how infants with myelomeningocele (MMC) activate lower limb muscles over the first year of life, without practice, while stepping on a motorized treadmill. Methods Twelve infants with MMC were tested longitudinally at 1, 6, 12 months. Electromyography (EMG) was used to collect data from the tibialis anterior (TA), lateral gastrocnemius (LG), rectus femoris (RF), biceps femoris (BF). Results Across the first year, infants showed no EMG activity for ~50% of the stride cycle w/poor rhythmicity and timing of muscles, when activated. Single muscle activation predominated; agonist-antagonist co-activation was low. Probability of individual muscle activity across the stride decreased w/age. Conclusions Infants with MMC show high variability in timing and duration of muscle activity, few complex combinations, and very little change over time. PMID:23685739
Effect of reaction-step-size noise on the switching dynamics of stochastic populations
NASA Astrophysics Data System (ADS)
Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael
2016-05-01
In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.
Texas two-step: a framework for optimal multi-input single-output deconvolution.
Neelamani, Ramesh; Deffenbaugh, Max; Baraniuk, Richard G
2007-11-01
Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework--Texas Two-Step--to solve MISO-D problems with known blurs. Texas Two-Step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas Two-Step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
Pamukoff, Derek N; Haakonssen, Eric C; Zaccaria, Joseph A; Madigan, Michael L; Miller, Michael E; Marsh, Anthony P
2014-01-01
Improving muscle strength and power may mitigate the effects of sarcopenia, but it is unknown if this improves an older adult's ability to recover from a large postural perturbation. Forward tripping is prevalent in older adults and lateral falls are important due to risk of hip fracture. We used a forward and a lateral single-step balance recovery task to examine the effects of strength training (ST) or power (PT) training on single-step balance recovery in older adults. Twenty older adults (70.8±4.4 years, eleven male) were randomly assigned to either a 6-week (three times/week) lower extremity ST or PT intervention. Maximum forward (FLean(max)) and lateral (LLean(max)) lean angle and strength and power in knee extension and leg press were assessed at baseline and follow-up. Fifteen participants completed the study (ST =7, PT =8). Least squares means (95% CI) for ΔFLean(max) (ST: +4.1° [0.7, 7.5]; PT: +0.6° [-2.5, 3.8]) and ΔLLean(max) (ST: +2.2° [0.4, 4.1]; PT: +2.6° [0.9, 4.4]) indicated no differences between groups following training. In exploratory post hoc analyses collapsed by group, ΔFLean(max) was +2.4° (0.1, 4.7) and ΔLLean(max) was +2.4° (1.2, 3.6). These improvements on the balance recovery tasks ranged from ~15%-30%. The results of this preliminary study suggest that resistance training may improve balance recovery performance, and that, in this small sample, PT did not lead to larger improvements in single-step balance recovery compared to ST.
A novel method to accurately locate and count large numbers of steps by photobleaching.
Tsekouras, Konstantinos; Custer, Thomas C; Jashnsaz, Hossein; Walter, Nils G; Pressé, Steve
2016-11-07
Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20-30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. © 2016 Tsekouras et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
2013-01-01
Carbon nanotube (CNT) membranes allow the mimicking of natural ion channels for applications in drug delivery and chemical separation. Double-walled carbon nanotube membranes were simply functionalized with dye in a single step instead of the previous two-step functionalization. Non-faradic electrochemical impedance spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic the protein channel under bias. This functional chemistry was proven by a highly efficient ion rectification, wherein the highest experimental rectification factor of ferricyanide was up to 14.4. One-step functionalization by electrooxidation of amine provides a simple and promising functionalization chemistry for the application of CNT membranes. PMID:23758999
Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas
2011-01-01
To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.
Pliske, Gerald; Emmermacher, Peter; Weinbeer, Veronika; Witte, Kerstin
2016-12-01
Demographic changes resulting in an aging population are major factors for an increase of fall-related injuries. Especially in situations where dual tasks such as walking whilst talking have to be performed simultaneously the risk of a fall-related injury increases. It is well known that some types of martial art (e.g. Tai Chi) can reduce the risk of a fall. It is unknown if the same is true for karate. In this randomized, controlled study 68 people with a mean age of 69 years underwent 5-month karate training, 5-month fitness training or were part of a control group. Before and after the time of intervention a gait analysis with normal walk, a cognitive dual task and a motor dual task were performed. The gait parameter step frequency, walking speed, single-step time and single-step length were investigated. It could be seen that all groups improved their gait parameters after a 5-month period, even the control group. A sporty intervention seems to affect mainly the temporal gait parameters positively. This effect was especially demonstrated for normal walk and cognitive dual task. An improvement of the human walk seems to be possible through karate and fitness training, even under dual-task conditions. A prolonged intervention time with multiple repetitions of gait analysis could give better evidence if karate is a useful tool to increase fall prevention.
Gimonet, Johan; Portmann, Anne-Catherine; Fournier, Coralie; Baert, Leen
2018-06-16
This work shows that an incubation time reduced to 4-5 h to prepare a culture for DNA extraction followed by an automated DNA extraction can shorten the hands-on time, the turnaround time by 30% and increase the throughput while maintaining the WGS quality assessed by high quality Single Nucleotide Polymorphism analysis. Copyright © 2018. Published by Elsevier B.V.
General linear methods and friends: Toward efficient solutions of multiphysics problems
NASA Astrophysics Data System (ADS)
Sandu, Adrian
2017-07-01
Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..
Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.
2005-01-01
Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.
Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing
2014-03-01
Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.
Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium
NASA Astrophysics Data System (ADS)
González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César
2018-01-01
This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.
Characteristics of camel-gate structures with active doping channel profiles
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau
1996-03-01
In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.
Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki
2015-02-15
Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Cryo-EM image alignment based on nonuniform fast Fourier transform.
Yang, Zhengfan; Penczek, Pawel A
2008-08-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.
In vivo myosin step-size from zebrafish skeletal muscle
Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua
2016-01-01
Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818
Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform
Yang, Zhengfan; Penczek, Pawel A.
2008-01-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Therapeutic advances: Single incision laparoscopic hepatopancreatobiliary surgery
Chang, Stephen Kin Yong; Lee, Kai Yin
2014-01-01
Single-port laparoscopic surgery (SPLS) is proposed to be a step towards minimizing the invasiveness of surgery, and has since gained popularity in several surgical sub-specialties including hepatopancreatobiliary surgery. SPLS has since been applied to cholecystectomy, liver resection as well as pancreatectomy for a multitude of pathologies. Benefits of SPLS over conventional multi-incision laparoscopic surgery include improved cosmesis and potentially post-operative pain at specific time periods and extra-umbilical sites. However, it is also associated with longer operating time, increased rate of complications, and increased rate of port-site hernia. There is no significant difference between length of hospital stay. SPLS has a significant learning curve that affects operating time, rate of conversion and rate of complications. In this article, we review the literature on SPLS in hepatobiliary surgery - cholecystectomy, hepatectomy and pancreatectomy, and offer tips on overcoming potential technical obstacles and minimizing the complications when performing SPLS - surgeon position, position of port and instruments, instrument crossing position, standard hand grip vs reverse hand grip, snooker cue guide position, prevention of incisional hernia. SPLS is a promising direction in laparoscopic surgery, and we recommend step-wise progression of applications of SPLS to various hepatopancreatobiliary surgeries to ensure safe adoption of the surgical technique. PMID:25339820
Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui
2017-02-28
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soares, Marcelo Bento; Bonaldo, Maria de Fatima
1998-01-01
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.
Soares, M.B.; Fatima Bonaldo, M. de
1998-12-08
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.
Using the time shift in single pushbroom datatakes to detect ships and their heading
NASA Astrophysics Data System (ADS)
Willburger, Katharina A. M.; Schwenk, Kurt
2017-10-01
The detection of ships from remote sensing data has become an essential task for maritime security. The variety of application scenarios includes piracy, illegal fishery, ocean dumping and ships carrying refugees. While techniques using data from SAR sensors for ship detection are widely common, there is only few literature discussing algorithms based on imagery of optical camera systems. A ship detection algorithm for optical pushbroom data has been developed. It takes advantage of the special detector assembly of most of those scanners, which allows apart from the detection of a ship also the calculation of its heading out of a single acquisition. The proposed algorithm for the detection of moving ships was developed with RapidEye imagery. It algorithm consists mainly of three steps: the creation of a land-watermask, the object extraction and the deeper examination of each single object. The latter step is built up by several spectral and geometric filters, making heavy use of the inter-channel displacement typical for pushbroom sensors with multiple CCD lines, finally yielding a set of ships and their direction of movement. The working principle of time-shifted pushbroom sensors and the developed algorithm is explained in detail. Furthermore, we present our first results and give an outlook to future improvements.
Pedometer determined physical activity tracks in African American adults: the Jackson Heart Study.
Newton, Robert L; M, Hongmei Han; Dubbert, Patricia M; Johnson, William D; Hickson, DeMarc A; Ainsworth, Barbara; Carithers, Teresa; Taylor, Herman; Wyatt, Sharon; Tudor-Locke, Catrine
2012-04-18
This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults. African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time. Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time. The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 - 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults.
NASA Astrophysics Data System (ADS)
Oruganti, Pradeep Sharma; Krak, Michael D.; Singh, Rajendra
2018-01-01
Recently Krak and Singh (2017) proposed a scientific experiment that examined vibro-impacts in a torsional system under a step down excitation and provided preliminary measurements and limited non-linear model studies. A major goal of this article is to extend the prior work with a focus on the examination of vibro-impact phenomena observed under step responses in a torsional system with one, two or three controlled clearances. First, new measurements are made at several locations with a higher sampling frequency. Measured angular accelerations are examined in both time and time-frequency domains. Minimal order non-linear models of the experiment are successfully constructed, using piecewise linear stiffness and Coulomb friction elements; eight cases of the generic system are examined though only three are experimentally studied. Measured and predicted responses for single and dual clearance configurations exhibit double sided impacts and time varying periods suggest softening trends under the step down torque. Non-linear models are experimentally validated by comparing results with new measurements and with those previously reported. Several metrics are utilized to quantify and compare the measured and predicted responses (including peak to peak accelerations). Eigensolutions and step responses of the corresponding linearized models are utilized to better understand the nature of the non-linear dynamic system. Finally, the effect of step amplitude on the non-linear responses is examined for several configurations, and hardening trends are observed in the torsional system with three clearances.
Kimura, Yuka; Ishibashi, Yasuyuki; Tsuda, Eiichi; Yamamoto, Yuji; Hayashi, Yoshimitsu; Sato, Shuichi
2012-03-01
In badminton, knees opposite to the racket-hand side received anterior cruciate ligament (ACL) injuries during single-leg landing after overhead stroke. Most of them occurred in the backhand-side of the rear court. Comparing lower limb biomechanics during single-leg landing after overhead stroke between the forehand-side and backhand-side court may help explain the different injury rates depending on court position. The knee kinematics and kinetics during single-leg landing after overhead stroke following back-stepping were different between the forehand-side and backhand-side court. Controlled laboratory study. Hip, knee and ankle joint kinematic and knee kinetic data were collected for 17 right-handed female college badminton players using a 3-dimensional motion analysis system. Subjects performed single-left-legged landing after an overhead stroke following left and right back-stepping. The kinematic and kinetic data of the left lower extremities during landing were measured and compared between left and right back-steps. Hip flexion and abduction and knee valgus at the initial contact, hip and knee flexion and knee valgus at the maximum knee flexion and the maximum knee valgus moment were significantly larger for the left back-step than the right back-step (p<0.05). Significant differences in joint kinematics and kinetics of the lower extremity during single-leg landing after overhead stroke were observed between different back-step directions. Increased knee valgus angle and moment following back-stepping to the backhand-side might be related to the higher incidence of ACL injury during single-leg landing after overhead stroke.
Redo Laparoscopic Gastric Bypass: One-Step or Two-Step Procedure?
Theunissen, Caroline M J; Guelinckx, Nele; Maring, John K; Langenhoff, Barbara S
2016-11-01
The adjustable gastric band (AGB) is a bariatric procedure that used to be widely performed. However, AGB failure-signifying band-related complications or unsatisfactory weight loss, resulting in revision surgery (redo operations)-frequently occurs. Often this entails a conversion to a laparoscopic Roux-en-Y gastric bypass (LRYGB). This can be performed as a one-step or two-step (separate band removal) procedure. Data were collected from patients operated from 2012 to 2014 in a single bariatric centre. We compared 107 redo LRYGB after AGB failure with 1020 primary LRYGB. An analysis was performed of the one-step vs. two-step redo procedures. All redo procedures were performed by experienced bariatric surgeons. No difference in major complication rate was seen (2.8 vs. 2.3 %, p = 0.73) between redo and primary LRYGB, and overall complication severity for redos was low (mainly Clavien-Dindo 1 or 2). Weight loss results were comparable for primary and redo procedures. The one-step and two-step redos were comparable regarding complication rates and readmissions. The operating time for the one-step redo LRYGB was 136 vs. 107.5 min for the two-step (median, p < 0.001), excluding the operating time of separate AGB removal (mean 61 min, range 36-110). Removal of a failed AGB and LRYGB in a one-step procedure is safe when performed by experienced bariatric surgeons. However, when erosion or perforation of the AGB occurs, we advise caution and would perform the redo LRYGB as a two-step procedure. Equal weights can be achieved at 1 year post redo LRYGB as after primary LRYGB procedures.
A collaborative approach to lean laboratory workstation design reduces wasted technologist travel.
Yerian, Lisa M; Seestadt, Joseph A; Gomez, Erron R; Marchant, Kandice K
2012-08-01
Lean methodologies have been applied in many industries to reduce waste. We applied Lean techniques to redesign laboratory workstations with the aim of reducing the number of times employees must leave their workstations to complete their tasks. At baseline in 68 workflows (aggregates or sequence of process steps) studied, 251 (38%) of 664 tasks required workers to walk away from their workstations. After analysis and redesign, only 59 (9%) of the 664 tasks required technologists to leave their workstations to complete these tasks. On average, 3.4 travel events were removed for each workstation. Time studies in a single laboratory section demonstrated that workers spend 8 to 70 seconds in travel each time they step away from the workstation. The redesigned workstations will allow employees to spend less time travelling around the laboratory. Additional benefits include employee training in waste identification, improved overall laboratory layout, and identification of other process improvement opportunities in our laboratory.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
Prevalence of gestational diabetes mellitus according to the different criterias
Akgöl, Evren; Abuşoğlu, Sedat; Gün, Faik Deniz; Ünlü, Ali
2017-01-01
Objective: The two-step approach recommended by the National Diabetes Data Group (NDDG), Carpenter and Coustan (C&C), and O’Sullivan, and the single-step approach recommended by the International Association of Diabetes and Pregnancy Study Group (IADPSG) are used to diagnose gestational diabetes mellitus (GDM). We aimed to determine GDM prevalence and to compare the two-step and single-step approaches used in the southeastern region of Turkey. Materials and Methods: In total, 3048 records of pregnant women screened for GDM between 2008 and 2014 were retrospectively extracted from our laboratory information system. GDM was defined according to the criteria of NDDG, C&C, and O’Sullivan between in 2008 and 2011, and according to those of the IADPSG between 2012 and 2014. Demographic variables were compared using student’s t-test. The linear trends in GDM prevalence with age were calculated using logistic regression. Results: GDM prevalence was found as 4.8%, 8%, and 13.4% using the NDDG, C&C, and O’Sullivan two-step approach, respectively, and 22.3% with the IADPSG single-step approach. GDM prevalence increased with increasing age in both approaches. Conclusion: GDM prevalence was higher using the single-step approach than with the two-step approach. There was a significant increase in GDM prevalence using the IADPSG criteria. PMID:28913130
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2005-01-01
A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.
NASA Technical Reports Server (NTRS)
Marek, C. John; Molnar, Melissa
2005-01-01
A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.
Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...
2014-08-04
Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less
Dawidowicz, Andrzej L; Wianowska, Dorota
2005-04-29
Pressurised liquid extraction (PLE) is recognised as one of the most effective sample preparation methods. Despite the enhanced extraction power of PLE, the full recovery of an analyte from plant material may require multiple extractions of the same sample. The presented investigations show the possibility of estimating the true concentration value of an analyte in plant material employing one-cycle PLE in which plant samples of different weight are used. The performed experiments show a linear dependence between the reciprocal value of the analyte amount (E*), extracted in single-step PLE from a plant matrix, and the ratio of plant material mass to extrahent volume (m(p)/V(s)). Hence, time-consuming multi-step PLE can be replaced by a few single-step PLEs performed at different (m(p)/V(s)) ratios. The concentrations of rutin in Sambucus nigra L. and caffeine in tea and coffee estimated by means of the tested procedure are almost the same as their concentrations estimated by multiple PLE.
Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.
1998-01-01
The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.
Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean
2014-01-01
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.
Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.
Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia
2013-08-27
This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.
2002-06-01
time, the monkey would eventually produce the collected works of Shakespeare . Unfortunately for the analogist, systems, even live ones, do not work...limited his simulated computer monkey to producing, in a single random step, the sentence uttered by Polonius in the play Hamlet : “Methinks it is
Frankel, Mitchell A; Dowden, Brett R; Mathews, V John; Normann, Richard A; Clark, Gregory A; Meek, Sanford G
2011-06-01
Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each). Isometric forces were evoked in plantar-flexor muscles, and target forces consisted of up to 7 min of step, sinusoidal, and more complex time-varying trajectories. The controller was successful in evoking steps in force with time-to-peak of less than 0.45 s, steady-state ripple of less than 7% of the mean steady-state force, and near-zero steady-state error even in the presence of muscle fatigue, but with transient overshoot of near 20%. The controller was also successful in evoking target sinusoidal and complex time-varying force trajectories with amplitude error of less than 0.5 N and time delay of approximately 300 ms. This MISO control strategy can potentially be used to develop closed-loop asynchronous IFMS controllers for a wide variety of multi-electrode stimulation applications to restore lost motor function.
Effect of resource constraints on intersimilar coupled networks.
Shai, S; Dobson, S
2012-12-01
Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.
Effect of resource constraints on intersimilar coupled networks
NASA Astrophysics Data System (ADS)
Shai, S.; Dobson, S.
2012-12-01
Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
NASA Astrophysics Data System (ADS)
Goyal, Gagan K.; Dasgupta, T.
2018-03-01
Mg2+ δ Si0.3Sn0.7 compositions with nominal Mg content of δ = 0, 0.2 are synthesized using a single-step quartz tube reaction method with different heating rates and holding times. The resulting powders are sintered using a uniaxial induction hot press under similar conditions to produce near-dense compacts. The effect of Mg content and processing conditions on the phase formation and its stability are studied using x-ray diffraction measurements, scanning electron microscopy (SEM) with elemental mapping and compositional analysis using energy dispersive spectroscopy (EDS). Results indicate that with sufficient Mg content and shorter synthesis time, the powder remains single phasic; however, prolonged heat treatment during synthesis results in Mg loss and causes the system to become biphasic. Compaction results in single-phase formation in all the specimens. This is attributed to the removal of the low-melting secondary Sn-rich phases present in the system. The decomposition of the specimens depends on the Mg content after the compaction step with a δ around - 0.15 necessary to preserve the single phase. The decomposition also results in Mg enrichment of the matrix (due to formation of elemental Sn), thereby acting as a self-healing mechanism. Annealing the dense products at 773 K for 24 h in static vacuum is carried out. Progressive Mg loss is observed resulting in degradation of the specimen.
Xie, Zheng; Srividya, Narayanan; Sosnick, Tobin R.; Pan, Tao; Scherer, Norbert F.
2004-01-01
The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-Ieq-to-N, and focused on the Ieq-to-N transition. The present study focuses on the U-to-Ieq transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5′ end and Cy3 at the 3′ end show that modifications required for labeling do not interfere with folding and help to define the Mg2+ concentration range for the U-to-Ieq transition. Histogram analysis of the Mg2+-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg2+ concentrations on the time scale of seconds. The trajectories at intermediate Mg2+ concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of “nonsudden jump” FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many “local” conformational switches. A free energy contour is constructed to illustrate the complex folding surface. PMID:14704266
Zhou, Weibin; Moguche, Albanus O; Chiu, David; Murali-Krishna, Kaja; Baneyx, François
2014-04-01
Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hopf, CH.
1991-01-01
Electric field derivative signals from single and multiple lightning strokes are presented. For about 25 pct. of all acquired waveforms, produced by return strokes, stepped leaders or intracloud discharges, type and distance of the signal source are known from the observations by an all sky video camera system. The analysis of the electric field derivative waveforms in the time domain shows a significant difference in the impulse width between return stroke signals and those of stepped leaders and intracloud discharges. In addition, the computed amplitude density spectrum of return stroke waveforms lies by a factor of 10 above that of stepped leaders and intracloud discharges in the frequency range from 50 to 500 kHz.
Aparna, Deshpande; Kumar, Sunil; Kamalkumar, Shukla
2017-10-27
To determine percentage of patients of necrotizing pancreatitis (NP) requiring intervention and the types of interventions performed. Outcomes of patients of step up necrosectomy to those of direct necrosectomy were compared. Operative mortality, overall mortality, morbidity and overall length of stay were determined. After institutional ethics committee clearance and waiver of consent, records of patients of pancreatitis were reviewed. After excluding patients as per criteria, epidemiologic and clinical data of patients of NP was noted. Treatment protocol was reviewed. Data of patients in whom step-up approach was used was compared to those in whom it was not used. A total of 41 interventions were required in 39% patients. About 60% interventions targeted the pancreatic necrosis while the rest were required to deal with the complications of the necrosis. Image guided percutaneous catheter drainage was done in 9 patients for infected necrosis all of whom required further necrosectomy and in 3 patients with sterile necrosis. Direct retroperitoneal or anterior necrosectomy was performed in 15 patients. The average time to first intervention was 19.6 d in the non step-up group (range 11-36) vs 18.22 d in the Step-up group (range 13-25). The average hospital stay in non step-up group was 33.3 d vs 38 d in step up group. The mortality in the step-up group was 0% (0/9) vs 13% (2/15) in the non step up group. Overall mortality was 10.3% while post-operative mortality was 8.3%. Average hospital stay was 22.25 d. Early conservative management plays an important role in management of NP. In patients who require intervention, the approach used and the timing of intervention should be based upon the clinical condition and local expertise available. Delaying intervention and use of minimal invasive means when intervention is necessary is desirable. The step-up approach should be used whenever possible. Even when the classical retroperitoneal catheter drainage is not feasible, there should be an attempt to follow principles of step-up technique to buy time. The outcome of patients in the step-up group compared to the non step-up group is comparable in our series. Interventions for bowel diversion, bypass and hemorrhage control should be done at the appropriate times.
Influence of Pre-etching Times on Fatigue Strength of Self-etch Adhesives to Enamel.
Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Endo, Hajime; Tsuchiya, Kenji; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence of phosphoric acid pre-etching times prior to application of self-etch adhesives on enamel bonding. Two single-step self-etch universal adhesives (Prime&Bond Elect and Scotchbond Universal), a conventional single-step self-etch adhesive (G-ӕnial Bond), and a conventional two-step self-etch adhesive (OptiBond XTR) were used. The SBS and SFS were obtained with phosphoric acid pre-etching for 3, 10, or 15 s prior to application of the adhesives, and without pre-etching (0 s) as a control. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred. The mean demineralization depth for each treated enamel surface was also measured using a profilometer. For all the adhesives, the groups with pre-etching showed significantly higher SBS and SFS than groups without pre-etching. However, there was no significant difference in SBS and SFS among groups with > 3 s of preetching. In addition, although the groups with pre-etching showed significantly deeper demineralization depths than groups without pre-etching, there was no significant difference in depth among groups with > 3 s of pre-etching. Three seconds of phosphoric acid pre-etching prior to application of self-etch adhesive can enhance enamel bonding effectiveness.
The Crank Nicolson Time Integrator for EMPHASIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack
2018-03-01
We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.
Influence of temperature on the spreading velocity of simplified-step adhesive systems.
Pazinatto, Flávia Bittencourt; Marquezini, Luiz; Atta, Maria Teresa
2006-01-01
Flowability and viscosity vary for different adhesive systems owing to differences in their composition. These characteristics can be modified by environmental temperature. The purpose of this study was to determine the influence of temperature on the spreading (flow capacity) of simplified-step adhesive systems. Spreading velocities of adhesive systems (Adper Single Bond and Single Bond Plus [3M ESPE, St. Paul, MN, USA]; Prime & Bond 2.1 and Prime & Bond NT [Dentsply Indústria e Comércio Ltda, Petrópolis, RJ, Brazil]; Adper Prompt [3M ESPE]; and One Up Bond F [Tokuyama Corp, Tokyo, Japan]) were analyzed at intervals of 10, 15, 20, and 30 seconds at both 25 degrees C and 37 degrees C by placing 10 microL drops on a glass slide surface with an inclination of 45 degrees. The spreading of each adhesive system was measured in millimeters per second. Data were analyzed by two-way analysis of variance and Student-Newman-Keuls tests. Regression analysis was used to determine a correlation between spreading velocity and time. Statistical significance was considered at a confidence level of 95%. Temperature influenced the spreading velocity, increasing it for Single Bond and Prime & Bond 2.1 and decreasing it for Adper Prompt (p < .05). No differences on spreading were observed for the other adhesives studied (p >.05). Regression analysis of each adhesive system demonstrated an inverse correlation between mean spreading velocity and time (R2 = .999) on both temperatures. Temperature increases yielded an increase of spreading for Single Bond and Prime & Bond 2.1. The influence of temperature on the spreading velocity was material dependent. Environmental temperature can influence the rate of spreading of the adhesive system in clinically relevant times and may influence adhesive thickness on cavity walls.
Wiring up pre-characterized single-photon emitters by laser lithography
NASA Astrophysics Data System (ADS)
Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.
2016-08-01
Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.
One step screening of retroviral producer clones by real time quantitative PCR.
Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C
1999-01-01
Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.
Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun
2016-11-01
Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.
Bouzat, Sebastián
2016-01-01
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
elPrep: High-Performance Preparation of Sequence Alignment/Map Files for Variant Calling
Decap, Dries; Fostier, Jan; Reumers, Joke
2015-01-01
elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878), we reduce the execution time from about 1:40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878), elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost. PMID:26182406
LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite
NASA Astrophysics Data System (ADS)
Crowley, Kevin D.
1993-05-01
The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.
Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.
Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry
2016-11-01
Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.
Spin-wave utilization in a quantum computer
NASA Astrophysics Data System (ADS)
Khitun, A.; Ostroumov, R.; Wang, K. L.
2001-12-01
We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.
1973-01-01
Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
Two pilot studies of the effect of bicycling on balance and leg strength among older adults.
Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna
2013-01-01
Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Study 1: a cross-sectional survey of 43 adults aged 44-79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49-72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Cycling by healthy older adults appears promising for improving risk factors for falls.
Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults
Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna
2013-01-01
Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls. PMID:23690805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Kamesh
Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less
Graham, David F; Carty, Christopher P; Lloyd, David G; Barrett, Rod S
2017-01-01
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.
Graham, David F.; Carty, Christopher P.; Lloyd, David G.
2017-01-01
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance. PMID:29069097
Lubin, Arnaud; Sheng, Sheng; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-11-17
Lack of knowledge on the expected concentration range or insufficient linear dynamic range of the analytical method applied are common challenges for the analytical scientist. Samples that are above the upper limit of quantification are typically diluted and reanalyzed. The analysis of undiluted highly concentrated samples can cause contamination of the system, while the dilution step is time consuming and as the case for any sample preparation step, also potentially leads to precipitation, adsorption or degradation of the analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
H(2)- and H(infinity)-design tools for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi
1989-01-01
Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.
Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.
2012-01-01
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186
Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G
2012-07-03
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
Liedtke, Theresa; Spannring, Peter; Riccardi, Ludovico; Gansäuer, Andreas
2018-04-23
A cyclic-voltammetry-based screening method for Cp 2 TiX-catalyzed reactions is introduced. Our mechanism-based approach enables the study of the influence of various additives on the electrochemically generated active catalyst Cp 2 TiX, which is in equilibrium with catalytically inactive [Cp 2 TiX 2 ] - . Thioureas and ureas are most efficient in the generation of Cp 2 TiX in THF. Knowing the precise position of the equilibrium between Cp 2 TiX and [Cp 2 TiX 2 ] - allowed us to identify reaction conditions for the bulk electrolysis of Cp 2 TiX 2 complexes and for Cp 2 TiX-catayzed radical arylations without having to carry out the reactions. Our time- and resource-efficient approach is of general interest for the design of catalytic reactions that proceed in single-electron steps. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yun; Liu, Fang; Nie, Jinfang; Jiang, Fuyang; Zhou, Caibin; Yang, Jiani; Fan, Jinlong; Li, Jianping
2014-05-07
In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).
Baker, Eddie G.; Elliott, Douglas C.
1993-01-01
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Baker, E.G.; Elliott, D.C.
1993-01-19
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Single molecule thermodynamics in biological motors.
Taniguchi, Yuichi; Karagiannis, Peter; Nishiyama, Masayoshi; Ishii, Yoshiharu; Yanagida, Toshio
2007-04-01
Biological molecular machines use thermal activation energy to carry out various functions. The process of thermal activation has the stochastic nature of output events that can be described according to the laws of thermodynamics. Recently developed single molecule detection techniques have allowed each distinct enzymatic event of single biological machines to be characterized providing clues to the underlying thermodynamics. In this study, the thermodynamic properties in the stepping movement of a biological molecular motor have been examined. A single molecule detection technique was used to measure the stepping movements at various loads and temperatures and a range of thermodynamic parameters associated with the production of each forward and backward step including free energy, enthalpy, entropy and characteristic distance were obtained. The results show that an asymmetry in entropy is a primary factor that controls the direction in which the motor will step. The investigation on single molecule thermodynamics has the potential to reveal dynamic properties underlying the mechanisms of how biological molecular machines work.
Genomic prediction in a nuclear population of layers using single-step models.
Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning
2018-02-01
Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao
2006-01-01
In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.
Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System
Yang, Che-Chang; Hsu, Yeh-Liang; Shih, Kao-Shang; Lu, Jun-Ming
2011-01-01
This paper presents the development of a wearable accelerometry system for real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable motion detector is a single waist-mounted device to measure trunk accelerations during walking. Several gait cycle parameters, including cadence, step regularity, stride regularity and step symmetry can be estimated in real-time by using autocorrelation procedure. For validation purposes, five Parkinson’s disease (PD) patients and five young healthy adults were recruited in an experiment. The gait cycle parameters among the two subject groups of different mobility can be quantified and distinguished by the system. Practical considerations and limitations for implementing the autocorrelation procedure in such a real-time system are also discussed. This study can be extended to the future attempts in real-time detection of disabling gaits, such as festinating or freezing of gait in PD patients. Ambulatory rehabilitation, gait assessment and personal telecare for people with gait disorders are also possible applications. PMID:22164019
Can a quantum state over time resemble a quantum state at a single time?
NASA Astrophysics Data System (ADS)
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
Minimal Power Latch for Single-Slope ADCs
NASA Technical Reports Server (NTRS)
Hancock, Bruce R. (Inventor)
2015-01-01
A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh
2016-01-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173
Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh
2017-02-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.
Pedometer determined physical activity tracks in African American adults: The Jackson Heart Study
2012-01-01
Background This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults. Methods African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time. Results Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time. Conclusion The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 – 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults. PMID:22512833
Developing Symbolic Capacity One Step at a Time
ERIC Educational Resources Information Center
Huttenlocher, Janellen; Vasilyeva, Marina; Newcombe, Nora; Duffy, Sean
2008-01-01
The present research examines the ability of children as young as 4 years to use models in tasks that require scaling of distance along a single dimension. In Experiment 1, we found that tasks involving models are similar in difficulty to those involving maps that we studied earlier (Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial…
Procedure for normalization of cDNA libraries
Bonaldo, Maria DeFatima; Soares, Marcelo Bento
1997-01-01
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isotalo, Aarno
A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, William L; Gunderson, Jake A; Dickson, Peter M
There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problemmore » of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the kinetics and thermodynamics of the phase transition, providing Dickson, et al. with the information necessary to develop a four-step model that included a two-step nucleation and growth mechanism for the {beta}-{delta} phase transition. Initially, an irreversible scheme was proposed. That model accurately predicted the spatial and temporal cook off behavior of the small-scale radial experiment under slow heating conditions, but did not accurately capture the endothermic phase transition at a faster heating rate. The current version of the four-step model includes reversibility and accurately describes the small-scale radial experiment over a wide range of heating rates. We have observed impact-induced friction ignition of PBX 9501 with grit embedded between the explosive and the lower anvil surface. Observation was done using an infrared camera looking through the sapphire bottom anvil. Time to ignition and temperature-time behavior were recorded. The time to ignition was approximately 500 microseconds and the temperature was approximately 1000 K. The four step reversible kinetic scheme was previously validated for slow cook off scenarios. Our intention was to test the validity for significantly faster hot-spot processes, such as the impact-induced grit friction process studied here. We found the model predicted the ignition time within experimental error. There are caveats to consider when evaluating the agreement. The primary input to the model was friction work over an area computed by a stress analysis. The work rate itself, and the relative velocity of the grit and substrate both have a strong dependence on the initial position of the grit. Any errors in the analysis or the initial grit position would affect the model results. At this time, we do not know the sensitivity to these issues. However, the good agreement does suggest the four step kinetic scheme may have universal applicability for HMX systems.« less
Single Molecule Stepping and Structural Dynamics of Myosin X
Sun, Yujie; Sato, Osamu; Ruhnow, Felix; Arsenault, Mark E.; Ikebe, Mitsuo; Goldman, Yale E.
2010-01-01
Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using single molecule fluorescence techniques – polTIRF, FIONA, and Parallax to measure rotation angles and 3-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single α-helical domain mechanically extends the 3-IQ motif lever arm and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane and microtubule binding domains, enable myosin X to perform multiple functions on varied actin structures in cells. PMID:20364131
Ladoux, Benoit; Quivy, Jean-Pierre; Doyle, Patrick; Roure, Olivia du; Almouzni, Geneviève; Viovy, Jean-Louis
2000-01-01
Fluorescence videomicroscopy and scanning force microscopy were used to follow, in real time, chromatin assembly on individual DNA molecules immersed in cell-free systems competent for physiological chromatin assembly. Within a few seconds, molecules are already compacted into a form exhibiting strong similarities to native chromatin fibers. In these extracts, the compaction rate is more than 100 times faster than expected from standard biochemical assays. Our data provide definite information on the forces involved (a few piconewtons) and on the reaction path. DNA compaction as a function of time revealed unique features of the assembly reaction in these extracts. They imply a sequential process with at least three steps, involving DNA wrapping as the final event. An absolute and quantitative measure of the kinetic parameters of the early steps in chromatin assembly under physiological conditions could thus be obtained. PMID:11114182
Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.
Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike
2010-01-01
An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.
Impurity transport in fractal media in the presence of a degrading diffusion barrier
NASA Astrophysics Data System (ADS)
Kondratenko, P. S.; Leonov, K. V.
2017-08-01
We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time t 0 of emergence of impurity from the barrier and time t * corresponding to the beginning of degradation. For t 0 < t *, degradation processes are immaterial. In the opposite situation, when t 0 > t *, the results on time intervals t < t * can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with t * < t < t 0 depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval t * < t < t 0 is very narrow, and the transport regime occurring over time intervals t < t * passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval t * < t < t 0 occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals t < t 0 has two steps, while for t > t 0, it has only one step. The more remote step for t < t 0 and the single step for t > t 0 coincide with the asymptotic form in the problem without a barrier.
Knob, Radim; Hanson, Robert L; Tateoka, Olivia B; Wood, Ryan L; Guerrero-Arguero, Israel; Robison, Richard A; Pitt, William G; Woolley, Adam T
2018-05-21
Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Joda, Tim; Brägger, Urs
2015-01-01
To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
GWAS with longitudinal phenotypes: performance of approximate procedures
Sikorska, Karolina; Montazeri, Nahid Mostafavi; Uitterlinden, André; Rivadeneira, Fernando; Eilers, Paul HC; Lesaffre, Emmanuel
2015-01-01
Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model (LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly. In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs. The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate the type I error rate and implies only a minimal loss of power. PMID:25712081
Kelly, Elizabeth W; Kelly, Jonathan D; Hiestand, Brian; Wells-Kiser, Kathy; Starling, Stephanie; Hoekstra, James W
2010-01-01
Rapid reperfusion in patients with ST-elevation myocardial infarction (STEMI) is associated with lower mortality. Reduction in door-to-balloon (D2B) time for percutaneous coronary intervention requires multidisciplinary cooperation, process analysis, and quality improvement methodology. Six Sigma methodology was used to reduce D2B times in STEMI patients presenting to a tertiary care center. Specific steps in STEMI care were determined, time goals were established, and processes were changed to reduce each step's duration. Outcomes were tracked, and timely feedback was given to providers. After process analysis and implementation of improvements, mean D2B times decreased from 128 to 90 minutes. Improvement has been sustained; as of June 2010, the mean D2B was 56 minutes, with 100% of patients meeting the 90-minute window for the year. Six Sigma methodology and immediate provider feedback result in significant reductions in D2B times. The lessons learned may be extrapolated to other primary percutaneous coronary intervention centers. Copyright © 2010 Elsevier Inc. All rights reserved.
Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio
2016-04-01
A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.
Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging
Yu, Ping; Repp, Jascha; Huber, Rupert
2017-01-01
Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788
Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.
Guan, Xiaoming; Ma, Yingchun; Gisseman, Jordan; Kleithermes, Christopher; Liu, Juan
2017-01-01
To demonstrate the tips and tricks of a simpler technique for single-site sacrocolpopexy using barbed suture anchoring and retroperitoneal tunneling to make the procedure more efficient and reproducible. Step-by-step description of surgical tutorial using a narrated video (Canadian Task Force classification III). Academic tertiary care hospital. Patient with Stage III uterine prolapse. Sacrocolpopexy is increasing utilized since the FDA warning about complications of vaginal mesh surgery. It is the gold standard for repair of apical prolapse. However, there is great variation in the sacrocolpopexy procedure techniques and they have not been standardized. Traditional single-site laparoscopic sacrocolpopexy is very challenging as the procedure time is long and suturing is difficult. The advantages of suturing with wristed needle drivers in robotic single-site surgery simplify this complex procedure. Furthermore, using barbed suture anchoring and peritoneal tunneling technique potentially decreases the surgeon's learning curve and makes the procedure reproducible. In this video, we demonstrate a supracervial hysterectomy with a stepwise explanation of the correct technique for performing a robotic single incision sacrocolpopexy. Sacrocolpopexy is increasing used since the US Food and Drug Administration warning about complications of vaginal mesh surgery. It is the gold standard for repair of apical prolapse. However, a great variation exists in the sacrocolpopexy procedure techniques that need to be standardized. Traditional single-site laparoscopic sacrocolpopexy is very challenging because the procedure time is long and suturing is difficult. The advantages of suturing with wristed needle drivers in robotic single-site surgery simplify this complex procedure. Furthermore, using the barbed suture anchoring and peritoneal tunneling technique potentially decreases the surgeon's learning curve and makes the procedure reproducible. In this video, we demonstrate a supracervical hysterectomy with a stepwise explaation of the correct technique for performing a robotic single-incision sacrocolpopexy. The possibility of using the barbed suture and peritoneal tunneling technique with wristed needle drivers in robotic single-site sacrocolpopexy offers the possibility of an effective, safe, reproducible, and cosmetic surgical option. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sizhuo; Pattengale, Brian; Lee, Sungsik
In this work, we report a new single-site photocatalyst (Co-Ru-UIO- 67(bpy)) based on a metal-organic framework platform with incorporated molecular photosensitizer and catalyst. We show that this catalyst not only demonstrates exceptional activity for light-driven H2 production but also can be recycled without loss of activity. Using the combination of optical transient absorption spectroscopy and in situ X-ray absorption spectroscopy, we not only captured the key CoI intermediate species formed after ultrafast charge transfer from the incorporated photosensitizer but also identified the rate-limiting step in the catalytic cycle, providing insight into the catalysis mechanism of these single-site metal-organic framework photocatalysts.
Balling, Horst
2018-05-01
Prospective single-center cohort study to record additional time requirements and radiation dose in navigation-assisted O-arm-controlled pedicle screw (PS) instrumentations. The aim of this study was to evaluate amount of extra-time and radiation dose for navigation-assisted PS instrumentations of the thoracolumbosacral spine using O-arm 3D-real-time-navigation (O3DN) compared to non-navigated spinal procedures (NNSPs) with a single C-arm and postoperative computed tomography (CT) scan for controlling PS positions. 3D-navigation is reported to enhance PS insertion accuracy. But time-consuming navigational steps and considerable additional radiation doses seem to limit this modern technique's attraction. A detailed analysis of additional time demand and extra-radiation dose in 3D-navigated spine surgery is not provided in literature, yet. From February 2011 through July 2015, 306 consecutive posterior instrumentations were performed in vertebral levels T10-S1 using O3DN for PS insertion. The duration of procedure-specific navigational steps of the overall collective (I) and the last cohort of 50 consecutive O3DN-surgeries (II) was compared to the average duration of analogous surgical steps in 100 consecutive NNSP using a single C-arm. 3D-radiation dose (dose-length-product, DLP) of navigational and postinstrumentation O-arm scans in group I and II was compared to the average DLP of 100 diagnostic lumbar CT scans. The average presurgical time from patient positioning on the operating table to skin incision was 46.2 ± 10.1 minutes (O3DN, I) and 40.6 ± 9.8 minutes (O3DN, II) versus 30.6 ± 8.3 minutes (NNSP) (P < 0.001, each). Intraoperative interruptions for scanning and data processing took 3.0 ± 0.6 minutes. DLPs averaged 865.1 ± 360.8 mGycm (O3DN, I) and 562.1 ± 352.6 mGycm (O3DN, II) compared to 575.5 ± 316.5 mGycm in diagnostic lumbar CT scans (P < 0.001 (I), P ≈ 0.81 [II]). After procedural experience, navigated surgeries can be performed with an additional time demand of 13.0 minutes compared to NNSP, and with a total DLP below that of a diagnostic lumbar CT scan (P ≈ 0.81). 4.
A little trouble getting started: Initial slowness in Parkinson's disease step negotiation.
Stone, Amanda E; Skinner, Jared W; Lee, Hyo Keun; Hass, Chris J
2017-09-01
Bradykinesia is a prominent problem for persons with Parkinson's disease (PD) and has been studied extensively with upper extremity tasks; however there is a lack of research examining bradykinesia in targeted lower extremity tasks related to mobility. Navigating steps and curbs are challenging tasks for older adults and neurologically impaired and thus utilizing these behaviors provides ecological validity to the study of bradykinesia. Herein we assess differences in step negotiation performance between individuals with PD and aged matched older adults. Three-dimensional kinematics and ground reaction forces were collected while 12 participants with PD and 12 older adults performed a single step up onto a platform. Persons with PD spent a significantly greater amount of time in the heel lift phase (P=0.0003, d=1.80). Peak vertical foot velocity of the lead foot was also significantly less in PD (P=0.02, d=1.05). Lastly, persons with PD displayed reduced sagittal hip and knee range of motion during the trail step (P=0.01, d=1.20 and P=0.02, d=1.05, respectively). Parkinson's participants exhibited slight decrement in step negotiation execution. Increased step time and decreased foot velocity and range of motion were attributes associated with Parkinson's step negotiation performance. Contrary to our hypothesis, in many comparisons, persons with PD during their best medicated state performed comparable to older adults, indicative of successful pharmacotherapy. Rehabilitation efforts can seek to improve performance in motor control tasks such as step negotiation, by restoring the relationship between perceived and actual motor output and enhancing muscle coordination and output as well as ranges of motion. Copyright © 2017. Published by Elsevier B.V.
Kimoto, Minoru; Okada, Kyoji; Sakamoto, Hitoshi; Kondou, Takanori
2017-05-01
[Purpose] To improve walking efficiency could be useful for reducing fatigue and extending possible period of walking in children with cerebral palsy (CP). For this purpose, current study compared conventional parameters of gross motor performance, step length, and cadence in the evaluation of walking efficiency in children with CP. [Subjects and Methods] Thirty-one children with CP (21 boys, 10 girls; mean age, 12.3 ± 2.7 years) participated. Parameters of gross motor performance, including the maximum step length (MSL), maximum side step length, step number, lateral step up number, and single leg standing time, were measured in both dominant and non-dominant sides. Spatio-temporal parameters of walking, including speed, step length, and cadence, were calculated. Total heart beat index (THBI), a parameter of walking efficiency, was also calculated from heartbeats and walking distance in 10 minutes of walking. To analyze the relationships between these parameters and the THBI, the coefficients of determination were calculated using stepwise analysis. [Results] The MSL of the dominant side best accounted for the THBI (R 2 =0.759). [Conclusion] The MSL of the dominant side was the best explanatory parameter for walking efficiency in children with CP.
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
NASA Astrophysics Data System (ADS)
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.
NASA Astrophysics Data System (ADS)
Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie
2013-08-01
We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.
Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions.
Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali
2017-06-01
Stepped-wedge design (SWD) cluster-randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in an SWD trial. We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster-randomized trial: concurrent, replacement, supplementation, and factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. In the concurrent SWD, each cluster receives only one intervention, unlike the other variants. The replacement SWD supports two interventions that will not or cannot be used at the same time. The supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.
Easter, Quinn T; Blum, Suzanne A
2018-02-05
Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang
2012-07-16
In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.
Effective image differencing with convolutional neural networks for real-time transient hunting
NASA Astrophysics Data System (ADS)
Sedaghat, Nima; Mahabal, Ashish
2018-06-01
Large sky surveys are increasingly relying on image subtraction pipelines for real-time (and archival) transient detection. In this process one has to contend with varying point-spread function (PSF) and small brightness variations in many sources, as well as artefacts resulting from saturated stars and, in general, matching errors. Very often the differencing is done with a reference image that is deeper than individual images and the attendant difference in noise characteristics can also lead to artefacts. We present here a deep-learning approach to transient detection that encapsulates all the steps of a traditional image-subtraction pipeline - image registration, background subtraction, noise removal, PSF matching and subtraction - in a single real-time convolutional network. Once trained, the method works lightening-fast and, given that it performs multiple steps in one go, the time saved and false positives eliminated for multi-CCD surveys like Zwicky Transient Facility and Large Synoptic Survey Telescope will be immense, as millions of subtractions will be needed per night.
Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions.
Yoo, Byung-Kuk; Kwon, Oh-Hoon; Liu, Haihua; Tang, Jau; Zewail, Ahmed H
2015-10-19
The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.
Live-Cell Imaging of Early Steps of Single HIV-1 Infection.
Francis, Ashwanth C; Melikyan, Gregory B
2018-05-19
Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.
Procedure for normalization of cDNA libraries
Bonaldo, M.D.; Soares, M.B.
1997-12-30
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.
Spectroscopic study of shock-induced decomposition in ammonium perchlorate single crystals.
Gruzdkov, Y A; Winey, J M; Gupta, Y M
2008-05-01
Time-resolved Raman scattering measurements were performed on ammonium perchlorate (AP) single crystals under stepwise shock loading. For particular temperature and pressure conditions, the intensity of the Raman spectra in shocked AP decayed exponentially with time. This decay is attributed to shock-induced chemical decomposition in AP. A series of shock experiments, reaching peak stresses from 10-18 GPa, demonstrated that higher stresses inhibit decomposition while higher temperatures promote it. No orientation dependence was found when AP crystals were shocked normal to the (210) and (001) crystallographic planes. VISAR (velocity interferometer system for any reflector) particle velocity measurements and time-resolved optical extinction measurements carried out to verify these observations are consistent with the Raman data. The combined kinetic and spectroscopic results are consistent with a proton-transfer reaction as the first decomposition step in shocked AP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, S. G.; Zhang, S. F.; Gao, M. C.
2013-08-22
For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less
Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun
2015-07-08
We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.
Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A
2014-11-01
The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.
Twisting and subunit rotation in single FOF1-ATP synthase
Sielaff, Hendrik; Börsch, Michael
2013-01-01
FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178
Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V
2015-01-01
Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2012-01-01
Background and Aims The involvement of two steps in the physical dormancy (PY)-breaking process previously has been demonstrated in seeds of Fabaceae and Convolvulaceae. Even though there is a claim for a moisture-controlled stepwise PY-breaking in some species of Geraniaceae, no study has evaluated the role of temperature in the PY-breaking process in this family. The aim of this study was to determine whether a temperature-controlled stepwise PY-breaking process occurs in seeds of the winter annuals Geranium carolinianum and G. dissectum. Methods Seeds of G. carolinianum and G. dissectum were stored under different temperature regimes to test the effect of storage temperature on PY-break. The role of temperature and moisture regimes in regulating PY-break was investigated by treatments simulating natural conditions. Greenhouse (non-heated) experiments on seed germination and burial experiments (outdoors) were carried out to determine the PY-breaking behaviour in the natural habitat. Key Results Irrespective of moisture conditions, sensitivity to the PY-breaking step in seeds of G. carolinianum was induced at temperatures ≥20 °C, and exposure to temperatures ≤20 °C made the sensitive seeds permeable. Sensitivity of seeds increased with time. In G. dissectum, PY-break occurred at temperatures ≥20 °C in a single step under constant wet or dry conditions and in two steps under alternate wet–dry conditions if seeds were initially kept wet. Conclusions Timing of seed germination with the onset of autumn can be explained by PY-breaking processes involving (a) two temperature-dependent steps in G. carolinianum and (b) one or two moisture-dependent step(s) along with the inability to germinate under high temperatures in G. dissectum. Geraniaceae is the third of 18 families with PY in which a two-step PY-breaking process has been demonstrated. PMID:22684684
Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko
2015-07-08
We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.
One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features
Tsapstsis, Michael; Zhang, Xueyi
2015-11-17
A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.
Coherent cavity-enhanced dual-comb spectroscopy
Fleisher, Adam J.; Long, David A.; Reed, Zachary D.; Hodges, Joseph T.; Plusquellic, David F.
2016-01-01
Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors. PMID:27409866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-15
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.« less
NASA Astrophysics Data System (ADS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
2006-11-30
except in the simplest of circumstances. This belief has driven the com- putational research community to devise clever kinetic Monte Carlo ( KMC ... KMC rou- tine is very slow; cutting the error in half requires four times the number of simulations. Since a single simulation may contain huge numbers...subintervals [9–14]. Both approximation types, system partitioning and τ leaping, have been very successful in increasing the scope of problems to which KMC
Effects of Cerebellar Disease on Sequences of Rapid Eye Movements
King, Susan; Chen, Athena L.; Joshi, Anand; Serra, Alessandro; Leigh, R. John
2011-01-01
Summary Studying saccades can illuminate the more complex decision-making processes required for everyday movements. The double-step task, in which a target jumps to two successive locations before the subject has time to react, has proven a powerful research tool to investigate the brain’s ability to program sequential responses. We asked how patients with a range of cerebellar disorders responded to the double-step task, specifically, whether the initial saccadic response made to a target is affected by the appearance of a second target jump. We also sought to determine whether cerebellar patients were able to make corrective saccades towards the remembered second target location, if it were turned off soon after presentation. We tested saccades to randomly interleaved single- and double-step target jumps to eight locations on a circle. Patient’s initial responses to double-step stimuli showed 50% more error than saccades to single target jumps, and often, they failed to make a saccade to the first target jump. The presence of a second target jump had similar, but smaller effects in control subjects (error increased by 18%). During memory-guided double-step trials, both patients and controls made corrective saccades in darkness to the remembered location of the second jump. We conclude that in cerebellar patients, the second target jump interferes with programming of the saccade to the first target jump of a double-step stimulus; this defect highlights patients’ impaired ability to respond appropriately to sudden, conflicting changes in their environment. Conversely, since cerebellar patients can make corrective memory-guided saccades in darkness, they retain the ability to remember spatial locations, possibly due to non-retinal neural signals (corollary discharge) from cerebral hemispheric areas concerned with spatial localization. PMID:21385592
Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances
NASA Astrophysics Data System (ADS)
Moerner, William E.
The initial steps toward optical detection and spectroscopy of single molecules arose out of the study of spectral hole-burning in inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989. In the early 1990s, many fascinating physical effects were observed for individual molecules such as spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. Since the mid-1990s when experiments moved to room temperature, a wide variety of biophysical effects may be explored, and a number of physical phenomena from the low temperature studies have analogs at high temperature. Recent advances worldwide cover a huge range, from in vitro studies of enzymes, proteins, and oligonucleotides, to observations in real time of a single protein performing a specific function inside a living cell. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation of individual fluorophores leads naturally to localization beyond the optical diffraction limit. Combining this with active optical control of the number of emitting molecules leads to superresolution imaging, a new frontier for optical microscopy beyond the optical diffraction limit and for chemical design of photoswitchable fluorescent labels. Finally, to study one molecule in aqueous solution without surface perturbations, a new electrokinetic trap is described (the ABEL trap) which can trap single small biomolecules without the need for large dielectric beads.
Heitbrink, Dirk; Sigurdson, Håkan; Bolwien, Carsten; Brzezinski, Peter; Heberle, Joachim
2002-01-01
The redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution. The data demonstrate a dynamic link between the transient binding of CO to Cu(B) and changes in hydrogen bonding at the functionally important residue E(I-286). Variation of the pH revealed that the pK(a) of E(I-286) is >9.3 in the fully reduced CO-bound oxidase. Difference spectra of cytochrome c oxidase from beef heart are compared with those of the oxidase isolated from Rhodobacter sphaeroides. The bacterial enzyme does not show the environmental change in the vicinity of E(I-286) upon CO dissociation. The characteristic band shape appears, however, in redox-induced difference spectra of the bacterial enzyme but is absent in redox-induced difference spectra of mammalian enzyme. In conclusion, it is demonstrated that the dynamics of a large protein complex such as cytochrome c oxidase can be resolved on the single vibrational level with microsecond Fourier transform infrared spectroscopy. The applied methodology provides the basis for future investigations of the physiological reaction steps of this important enzyme. PMID:11751290
Assawamakin, Anunchai; Prueksaaroon, Supakit; Kulawonganunchai, Supasak; Shaw, Philip James; Varavithya, Vara; Ruangrajitpakorn, Taneth; Tongsima, Sissades
2013-01-01
Identification of suitable biomarkers for accurate prediction of phenotypic outcomes is a goal for personalized medicine. However, current machine learning approaches are either too complex or perform poorly. Here, a novel two-step machine-learning framework is presented to address this need. First, a Naïve Bayes estimator is used to rank features from which the top-ranked will most likely contain the most informative features for prediction of the underlying biological classes. The top-ranked features are then used in a Hidden Naïve Bayes classifier to construct a classification prediction model from these filtered attributes. In order to obtain the minimum set of the most informative biomarkers, the bottom-ranked features are successively removed from the Naïve Bayes-filtered feature list one at a time, and the classification accuracy of the Hidden Naïve Bayes classifier is checked for each pruned feature set. The performance of the proposed two-step Bayes classification framework was tested on different types of -omics datasets including gene expression microarray, single nucleotide polymorphism microarray (SNParray), and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) proteomic data. The proposed two-step Bayes classification framework was equal to and, in some cases, outperformed other classification methods in terms of prediction accuracy, minimum number of classification markers, and computational time.
Step Care Treatment for Smoking Cessation
ERIC Educational Resources Information Center
Ebbert, Jon O.; Little, Melissa A.; Klesges, Robert C.; Bursac, Zoran; Johnson, Karen C.; Thomas, Fridtjof; Vander Weg, Mark W.
2017-01-01
We compared the effectiveness of a "stepped care" approach with increasing treatment intensity ("Step Care") to one with repeated treatments ("Recycle") among cigarette smokers interested in quitting smoking. Step 1 of the Step Care intervention consisted of a single counseling session, nicotine patch for six weeks…
Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D
2014-11-07
Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single-Molecule Spectroscopy and Imaging Studies of Protein Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter
2012-04-01
Enzymatic reactions and protein-protein interactions are traditionally studied at the ensemble level, despite significant static and dynamic inhomogeneities. Subtle conformational changes play a crucial role in protein functions, and these protein conformations are highly dynamic rather than being static. We applied AFM-enhanced single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of T4 lysozyme and HPPK enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation. Our new approach is applicable to a wide range of single-molecule FRET measurements for protein conformational changes under enzymatic reactions.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, Donald W.
1988-01-01
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, D.W.
1988-06-21
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.
Fully Burdened Cost of Fuel Using Input-Output Analysis
2011-12-01
Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single step, allowing for less complex and...wide extension of the Bulk Fuels Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single...ABBREVIATIONS AEM Atlantic, Europe, and the Mediterranean AOAs Analysis of Alternatives DAG Defense Acquisition Guidebook DAU Defense Acquisition University
Upconversion single-microbelt photodetector via two-photon absorption simultaneous
NASA Astrophysics Data System (ADS)
Lou, Guanlin; Wu, Yanyan; Zhu, Hai; Li, Jinyu; Chen, Anqi; Chen, Zhiyang; Liang, Yunfeng; Ren, Yuhao; Gui, Xuchun; Zhong, Dingyong; Qiu, Zhiren; Tang, Zikang; Su, Shi C.
2018-05-01
Single microbelt (MB) photodetectors with metal–semiconductor-metal structure have been demonstrated and characterized comprehensively. For single-photon absorption, the maximum responsivity of ZnO-MB photodetector can reach as high as 1.4 × 105 A W‑1 at 20 V bias. The results about photoresponse of MB-detector reveals that two relaxation mechanisms contribute to the carrier decay time. Moreover, the two-photon absorption upconversion photoresponsivity in the single-MB detector has also been realized, which is the first report about the two-photon absorption detector to the best of our knowledge. The excellent two-photon absorption photoresponsivity characteristic of the MB device can be available not only for detector but also for solar cell and biomedical imaging. The above results present a significant step towards future fabrication of single micro/nano-structure based multiphoton excitation optoelectronic devices.
DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riot, V; Coffee, K; Gard, E
2006-04-21
The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.
2009-09-15
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio,more » single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.« less
Riaz, Qaiser; Vögele, Anna; Krüger, Björn; Weber, Andreas
2015-01-01
A number of previous works have shown that information about a subject is encoded in sparse kinematic information, such as the one revealed by so-called point light walkers. With the work at hand, we extend these results to classifications of soft biometrics from inertial sensor recordings at a single body location from a single step. We recorded accelerations and angular velocities of 26 subjects using integrated measurement units (IMUs) attached at four locations (chest, lower back, right wrist and left ankle) when performing standardized gait tasks. The collected data were segmented into individual walking steps. We trained random forest classifiers in order to estimate soft biometrics (gender, age and height). We applied two different validation methods to the process, 10-fold cross-validation and subject-wise cross-validation. For all three classification tasks, we achieve high accuracy values for all four sensor locations. From these results, we can conclude that the data of a single walking step (6D: accelerations and angular velocities) allow for a robust estimation of the gender, height and age of a person. PMID:26703601
Yiou, E; Do, M C
2010-05-01
During voluntary stepping initiation, postural stability along the mediolateral direction is controlled via "anticipatory postural adjustment" (APA). This study tested the hypothesis that, in young healthy subjects, the biomechanical features of mediolateral APA depend on the leg that initiates stepping. Subjects (N=10) initiated a rapid single step with the preferred (P condition) and the non-preferred leg (NP condition) on a force-plate. Results showed that mediolateral APA duration (P=0.020) and amplitude were higher (as attested by the increase in maximal center-of-gravity velocity (P=0.003) and displacement (P<0.001) during APA), and that mediolateral stability was better (as attested by the attenuation in center-of-gravity velocity at time of swing-foot contact (P=0.007)) in P than in NP. These results support the view that stepping initiation in healthy subjects involves postural asymmetry. This statement may have relevant implications in clinical evaluation where postural asymmetry is generally considered as reflecting postural impairment. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowland, David J.; Biteen, Julie S.
2017-04-01
Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.
Methods to approximate reliabilities in single-step genomic evaluation
USDA-ARS?s Scientific Manuscript database
Reliability of predictions from single-step genomic BLUP (ssGBLUP) can be calculated by inversion, but that is not feasible for large data sets. Two methods of approximating reliability were developed based on decomposition of a function of reliability into contributions from records, pedigrees, and...
Single-step affinity purification for fungal proteomics.
Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A
2010-05-01
A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
NASA Astrophysics Data System (ADS)
Ernst, Stefan; Düser, Monika G.; Zarrabi, Nawid; Börsch, Michael
2012-03-01
The enzyme FoF1-ATP synthase provides the 'chemical energy currency' adenosine triphosphate (ATP) for living cells. Catalysis is driven by mechanochemical coupling of subunit rotation within the enzyme with conformational changes in the three ATP binding sites. Proton translocation through the membrane-bound Fo part of ATP synthase powers a 10-step rotary motion of the ring of c subunits. This rotation is transmitted to the γ and ɛ subunits of the F1 part. Because γ and ɛ subunits rotate in 120° steps, we aim to unravel this symmetry mismatch by real time monitoring subunit rotation using single-molecule Förster resonance energy transfer (FRET). One fluorophore is attached specifically to the F1 motor, another one to the Fo motor of the liposome-reconstituted enzyme. Photophysical artifacts due to spectral fluctuations of the single fluorophores are minimized by a previously developed duty cycle-optimized alternating laser excitation scheme (DCO-ALEX). We report the detection of reversible elastic deformations between the rotor parts of Fo and F1 and estimate the maximum angular displacement during the load-free rotation using Monte Carlo simulations.
Applying the multivariate time-rescaling theorem to neural population models
Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon
2011-01-01
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436
Re-Organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher
2017-01-01
The Earth Observing System Data and Information System archives many datasets that are critical to understanding long-term variations in Earth science properties. Thus, some of these are large, multi-decadal datasets. Yet the challenge in long time series analysis comes less from the sheer volume than the data organization, which is typically one (or a small number of) time steps per file. The overhead of opening and inventorying complex, API-driven data formats such as Hierarchical Data Format introduces a small latency at each time step, which nonetheless adds up for datasets with O(10^6) single-timestep files. Several approaches to reorganizing the data can mitigate this overhead by an order of magnitude: pre-aggregating data along the time axis (time-chunking); storing the data in a highly distributed file system; or storing data in distributed columnar databases. Storing a second copy of the data incurs extra costs, so some selection criteria must be employed, which would be driven by expected or actual usage by the end user community, balanced against the extra cost.
Re-organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data
NASA Astrophysics Data System (ADS)
Lynnes, C.
2017-12-01
The Earth Observing System Data and Information System archives many datasets that are critical to understanding long-term variations in Earth science properties. Thus, some of these are large, multi-decadal datasets. Yet the challenge in long time series analysis comes less from the sheer volume than the data organization, which is typically one (or a small number of) time steps per file. The overhead of opening and inventorying complex, API-driven data formats such as Hierarchical Data Format introduces a small latency at each time step, which nonetheless adds up for datasets with O(10^6) single-timestep files. Several approaches to reorganizing the data can mitigate this overhead by an order of magnitude: pre-aggregating data along the time axis (time-chunking); storing the data in a highly distributed file system; or storing data in distributed columnar databases. Storing a second copy of the data incurs extra costs, so some selection criteria must be employed, which would be driven by expected or actual usage by the end user community, balanced against the extra cost.
Stretching single atom contacts at multiple subatomic step-length.
Wei, Yi-Min; Liang, Jing-Hong; Chen, Zhao-Bin; Zhou, Xiao-Shun; Mao, Bing-Wei; Oviedo, Oscar A; Leiva, Ezequiel P M
2013-08-14
This work describes jump-to-contact STM-break junction experiments leading to novel statistical distribution of last-step length associated with conductance of a single atom contact. Last-step length histograms are observed with up to five for Fe and three for Cu peaks at integral multiples close to 0.075 nm, a subatomic distance. A model is proposed in terms of gliding from a fcc hollow-site to a hcp hollow-site of adjacent atomic planes at 1/3 regular layer spacing along with tip stretching to account for the multiple subatomic step-length behavior.
Stolzenburg, Jens-Uwe; Kallidonis, Panagiotis; Oh, Min-A; Ghulam, Nabi; Do, Minh; Haefner, Tim; Dietel, Anja; Till, Holger; Sakellaropoulos, George; Liatsikos, Evangelos N
2010-02-01
Laparoendoscopic single-site surgery (LESS) represents the latest innovation in laparoscopic surgery. We compare in dry and animal laboratory the efficacy of recently introduced pre-bent instruments with conventional laparoscopic and flexible instruments in terms of time requirement, maneuverability, and ease of handling. Participants of varying laparoscopic experience were included in the study and divided in groups according to their experience. The participants performed predetermined tasks in dry laboratory using all sets of instruments. An experienced laparoscopic surgeon performed 24 nephrectomies in 12 pigs using all sets of instruments. Single port was used for all instrument sets except for the conventional instruments, which were inserted through three ports. The time required for the performance of dry laboratory tasks and the porcine nephrectomies was recorded. Errors in the performance of dry laboratory tasks of each instrument type were also recorded. Pre-bent instruments had a significant advantage over flexible instruments in terms of time requirement to accomplish tasks and procedures as well as maneuverability. Flexible instruments were more time consuming in comparison to the conventional laparoscopic instruments during the performance of the tasks. There were no significant differences in the time required for the accomplishment of dry laboratory tasks or steps of nephrectomy using conventional instruments through appropriate number of ports in comparison to pre-bent instruments through single port. Pre-bent instruments were less time consuming and with better maneuverability in comparison to flexible instruments in experimental single-port access surgery. Further clinical investigations would elucidate the efficacy of pre-bent instruments.
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597
NASA Astrophysics Data System (ADS)
Jang, Inae; Lee, Sun Young; Hwangbo, Song; Kang, Dukjin; Lee, Hookeun; Kim, Hugh I.; Moon, Bongjin; Oh, Han Bin
2017-01-01
The present study demonstrates that one-step peptide backbone fragmentations can be achieved using the TEMPO [2-(2,2,6,6-tetramethyl piperidine-1-oxyl)]-assisted free radical-initiated peptide sequencing (FRIPS) mass spectrometry in a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer and a Q-Exactive Orbitrap instrument in positive ion mode, in contrast to two-step peptide fragmentation in an ion-trap mass spectrometer (reference Anal. Chem. 85, 7044-7051 (30)). In the hybrid Q-TOF and Q-Exactive instruments, higher collisional energies can be applied to the target peptides, compared with the low collisional energies applied by the ion-trap instrument. The higher energy deposition and the additional multiple collisions in the collision cell in both instruments appear to result in one-step peptide backbone dissociations in positive ion mode. This new finding clearly demonstrates that the TEMPO-assisted FRIPS approach is a very useful tool in peptide mass spectrometry research.
NASA Astrophysics Data System (ADS)
Andas, Jeyashelly; Midon, Muhammad Dzulfiqar
2017-08-01
Highly porous activated carbon was successfully fabricated from the stalk of Nymphaea odorata via single step chemical activation. ZnCl2 was used as the chemical activating agent in the activation process. The raw material was preliminary characterized using Fourier Transform Infrared (FTIR), ultimate analysis (CHNS/O Analyzer) and Scanning Electron Microscope (SEM). The percentage yield, iodine number (IN) and the textural properties of the activated carbon were optimized under the influence of several synthesizing parameters such as impregnation ratio, activation temperature and activation time using ZnCl2. High IN (750.11 mg/g - 967.16 mg/g) was obtained from Sodium thiosulphate volumetric method and represents the porosity of the synthesized materials. Reduction in several functional groups was observed in the FTIR spectrum of the synthesized activated carbon. SEM analysis of the activated carbon verified the formation of highly porous surface compared to the raw Nymphaea odorata. This study provides a facile synthesis of activated carbon from waste natural resources at benign condition.
Stereodivergent Synthesis of Chromanones and Flavanones via Intramolecular Benzoin Reaction.
Wen, Genfa; Su, Yingpeng; Zhang, Guoxiang; Lin, Qiqiao; Zhu, Yujin; Zhang, Qianqian; Fang, Xinqiang
2016-08-19
The strategy of stereodivergent reactions on racemic mixtures (stereodivergent RRM) was employed for the first time in intramolecular benzoin reactions and led to the rapid access of chromanones/flavanones with two consecutive stereocenters. The easily separable stereoisomers of the products were obtained with moderate to excellent enantioselectivities in a single step. Catechol type additives proved crucial in achieving the desired diastereo- and enantioselectivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno; Hunter, Alan
Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focusmore » point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.« less
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2011-01-01
Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.
High-quality single crystal growth and magnetic property of Mn4Ta2O9
NASA Astrophysics Data System (ADS)
Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun
2018-06-01
A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.
Use of causative variants and SNP weighting in a single-step GBLUP context
USDA-ARS?s Scientific Manuscript database
Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, aiming genomic prediction. Among the genomic methods available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and potentially higher accuracy. When QTN are ...
Wohlfahrt, S; Fischer, M; Saraji-Bozorgzad, M; Matuschek, G; Streibel, T; Post, E; Denner, T; Zimmermann, R
2013-09-01
Comprehensive multi-dimensional hyphenation of a thermogravimetry device (i.e. a thermobalance) to gas chromatography and single photon ionization-time-of-flight mass spectrometry (TG-GC×SPI-MS) has been used to investigate two crude oil samples of different geographical origin. The source of the applied vacuum ultraviolet radiation is an electron beam pumped rare gas excimer lamp (EBEL). The soft photoionization favors the formation of molecular ions. Introduction of a fast, rapidly modulated gas chromatographic separation step in comparison with solely TG-SPI-MS enables strongly enhanced detection especially with such highly complex organic matrices as crude oil. In contrast with former TG-SPI-MS measurements, separation and identification of overlying substances is possible because of different GC retention times. The specific contribution of isobaric compounds to one mass signal is determined for alkanes, naphthalenes, alkylated benzenes, and other compounds.
Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots
NASA Astrophysics Data System (ADS)
Hinz, C.; Gumbsheimer, P.; Traum, C.; Holtkemper, M.; Bauer, B.; Haase, J.; Mahapatra, S.; Frey, A.; Brunner, K.; Reiter, D. E.; Kuhn, T.; Seletskiy, D. V.; Leitenstorfer, A.
2018-01-01
We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D -to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p -shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p -shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wakelee, Heather A.; Lee, Ju-Whei; Hanna, Nasser H.; Traynor, Anne M.; Carbone, David P.; Schiller, Joan H.
2012-01-01
Introduction Sorafenib is a raf kinase and angiogenesis inhibitor with activity in multiple cancers. This phase II study in heavily pretreated non-small cell lung cancer (NSCLC) patients (≥ two prior therapies) utilized a randomized discontinuation design. Methods Patients received 400 mg of sorafenib orally twice daily for two cycles (two months) (Step 1). Responding patients on Step 1 continued on sorafenib; progressing patients went off study, and patients with stable disease were randomized to placebo or sorafenib (Step 2), with crossover from placebo allowed upon progression. The primary endpoint of this study was the proportion of patients having stable or responding disease two months after randomization. Results : There were 299 patients evaluated for Step 1 with 81 eligible patients randomized on Step 2 who received sorafenib (n=50) or placebo (n=31). The two-month disease control rates following randomization were 54% and 23% for patients initially receiving sorafenib and placebo respectively, p=0.005. The hazard ratio for progression on Step 2 was 0.51 (95% CI 0.30, 0.87, p=0.014) favoring sorafenib. A trend in favor of overall survival with sorafenib was also observed (13.7 versus 9.0 months from time of randomization), HR 0.67 (95% CI 0.40-1.11), p=0.117. A dispensing error occurred which resulted in unblinding of some patients, but not before completion of the 8 week initial step 2 therapy. Toxicities were manageable and as expected. Conclusions : The results of this randomized discontinuation trial suggest that sorafenib has single agent activity in a heavily pretreated, enriched patient population with advanced NSCLC. These results support further investigation with sorafenib as a single agent in larger, randomized studies in NSCLC. PMID:22982658
Soliton microcomb range measurement
NASA Astrophysics Data System (ADS)
Suh, Myoung-Gyun; Vahala, Kerry J.
2018-02-01
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.
Faria, Eliney F; Caputo, Peter A; Wood, Christopher G; Karam, Jose A; Nogueras-González, Graciela M; Matin, Surena F
2014-02-01
Laparoscopic and robotic partial nephrectomy (LPN and RPN) are strongly related to influence of tumor complexity and learning curve. We analyzed a consecutive experience between RPN and LPN to discern if warm ischemia time (WIT) is in fact improved while accounting for these two confounding variables and if so by which particular aspect of WIT. This is a retrospective analysis of consecutive procedures performed by a single surgeon between 2002-2008 (LPN) and 2008-2012 (RPN). Specifically, individual steps, including tumor excision, suturing of intrarenal defect, and parenchyma, were recorded at the time of surgery. Multivariate and univariate analyzes were used to evaluate influence of learning curve, tumor complexity, and time kinetics of individual steps during WIT, to determine their influence in WIT. Additionally, we considered the effect of RPN on the learning curve. A total of 146 LPNs and 137 RPNs were included. Considering renal function, WIT, suturing time, renorrhaphy time were found statistically significant differences in favor of RPN (p < 0.05). In the univariate analysis, surgical procedure, learning curve, clinical tumor size, and RENAL nephrometry score were statistically significant predictors for WIT (p < 0.05). RPN decreased the WIT on average by approximately 7 min compared to LPN even when adjusting for learning curve, tumor complexity, and both together (p < 0.001). We found RPN was associated with a shorter WIT when controlling for influence of the learning curve and tumor complexity. The time required for tumor excision was not shortened but the time required for suturing steps was significantly shortened.
Budzyńska, Agnieszka; Nowakowska-Duława, Ewa; Marek, Tomasz; Hartleb, Marek
2016-10-01
Most patients with malignant biliary obstruction are suited only for palliation by endoscopic drainage with plastic stents (PS) or self-expandable metal stents (SEMS). To compare the clinical outcome and costs of biliary stenting with SEMS and PS in patients with malignant biliary strictures. A total of 114 patients with malignant jaundice who underwent 376 endoscopic retrograde biliary drainage (ERBD) were studied. ERBD with the placement of PS was performed in 80 patients, with one-step SEMS in 20 patients and two-step SEMS in 14 patients. Significantly fewer ERBD interventions were performed in patients with one-step SEMS than PS or the two-step SEMS technique (2.0±1.12 vs. 3.1±1.7 or 5.7±2.1, respectively, P<0.0001). The median hospitalization duration per procedure was similar for the three groups of patients. The patients' survival time was the longest in the two-step SEMS group in comparison with the one-step SEMS and PS groups (596±270 vs. 276±141 or 208±219 days, P<0.001). Overall median time to recurrent biliary obstruction was 89.3±159 days for PS and 120.6±101 days for SEMS (P=0.01). The total cost of hospitalization with ERBD was higher for two-step SEMS than for one-step SEMS or PS (1448±312, 1152±135 and 977±156&OV0556;, P<0.0001). However, the estimated annual cost of medical care for one-step SEMS was higher than that for the two-step SEMS or PS groups (4618, 4079, and 3995&OV0556;, respectively). Biliary decompression by SEMS is associated with longer patency and reduced number of auxiliary procedures; however, repeated PS insertions still remain the most cost-effective strategy.
NASA Astrophysics Data System (ADS)
Gallego, C.; Costa, A.; Cuerva, A.
2010-09-01
Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.
Shackelford, Stacy; Garofalo, Evan; Shalin, Valerie; Pugh, Kristy; Chen, Hegang; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin F
2015-07-01
Maintaining trauma-specific surgical skills is an ongoing challenge for surgical training programs. An objective assessment of surgical skills is needed. We hypothesized that a validated surgical performance assessment tool could detect differences following a training intervention. We developed surgical performance assessment metrics based on discussion with expert trauma surgeons, video review of 10 experts and 10 novice surgeons performing three vascular exposure procedures and lower extremity fasciotomy on cadavers, and validated the metrics with interrater reliability testing by five reviewers blinded to level of expertise and a consensus conference. We tested these performance metrics in 12 surgical residents (Year 3-7) before and 2 weeks after vascular exposure skills training in the Advanced Surgical Skills for Exposure in Trauma (ASSET) course. Performance was assessed in three areas as follows: knowledge (anatomic, management), procedure steps, and technical skills. Time to completion of procedures was recorded, and these metrics were combined into a single performance score, the Trauma Readiness Index (TRI). Wilcoxon matched-pairs signed-ranks test compared pretraining/posttraining effects. Mean time to complete procedures decreased by 4.3 minutes (from 13.4 minutes to 9.1 minutes). The performance component most improved by the 1-day skills training was procedure steps, completion of which increased by 21%. Technical skill scores improved by 12%. Overall knowledge improved by 3%, with 18% improvement in anatomic knowledge. TRI increased significantly from 50% to 64% with ASSET training. Interrater reliability of the surgical performance assessment metrics was validated with single intraclass correlation coefficient of 0.7 to 0.98. A trauma-relevant surgical performance assessment detected improvements in specific procedure steps and anatomic knowledge taught during a 1-day course, quantified by the TRI. ASSET training reduced time to complete vascular control by one third. Future applications include assessing specific skills in a larger surgeon cohort, assessing military surgical readiness, and quantifying skill degradation with time since training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, A; Jiang, S; Timmerman, R
Purpose: To demonstrate the feasibility of using CBCT in a real-time image guided radiation therapy (IGRT) for single fraction heterotopic ossification (HO) in patients after hip replacement. In this real-time procedure, all steps, from simulation, imaging, planning to treatment delivery, are performed at the treatment unit in one appointment time slot. This work promotes real-time treatment to create a paradigm shift in the single fraction radiation therapy. Methods: An integrated real-time IGRT for HO was developed and tested for radiation treatment of heterotopic ossification for patient after hip replacement. After CBCT images are acquired at the linac, and sent tomore » the treatment planning system, the physician determines the field and/or draws a block. Subsequently, a simple 2D AP/PA plan with prescription of 700 cGy is created on-the-fly for physician to review. Once the physician approves the plan, the patient is treated on the same simulation position. This real-time treatment requires the team of attending physician, physicist, therapists, and dosimetrist to work in harmony to achieve all the steps in a timely manner. Results: Ten patients have been treated with this real-time treatment, having the same beams arrangement treatment plan and prescription as our clinically regular CT-based 2D plans. The average time for these procedures are 52.9 ±10.7 minutes from the time patient entered the treatment room until s/he exited, and 37.7 ±8.6 minutes from starting CBCT until last beam delivered. Conclusion: The real-time IGRT for HO treatment has been tested and implemented to be a clinically accepted procedure. This one-time appointment greatly enhances the waiting time, especially when patients in high level of pain, and provides a convenient approach for the whole clinical staff. Other disease sites will be also tested with this new technology.« less
Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling
NASA Astrophysics Data System (ADS)
Li, Qian; Huth, Steven; Adam, Dieter; Selhuber-Unkel, Christine
2016-07-01
Integrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment. Using single-cell force spectroscopy, we show here that stimulating Jurkat cells with TNF significantly reinforces their adhesion to fibronectin in a biomimetic in vitro assay for cell-surface contact times of about 1.5 seconds, whereas for larger contact times the effect disappears. Analysis of single-molecule ruptures further demonstrates that TNF strengthens sub-cellular single rupture events at short cell-surface contact times. Hence, our results provide quantitative evidence for the significant impact of TNF-induced inside-out signaling in the T-lymphocyte initial adhesion machinery.
Fearon, Angela; Neeman, Teresa; Smith, Paul; Scarvell, Jennie; Cook, Jill
2017-02-01
What are the functional differences between people with greater trochanteric pain syndrome (GT), hip osteoarthritis (OA) or an asymptomatic population as measured by walking, Time Up and Go, single leg standing and strength? Cross sectional study with blinded measurers. 38 participants with GT, 20 with end stage hip OA and 21 asymptomatic healthy control (AS) participants. All participants were women. Pain (numeric rating scale), Walking speed (m/s), cadence (steps/min) and step length (m) measured via the 10m walk test and the Timed Up and Go; balance via single leg stance (s) duration; and hip abduction, adduction, medial and lateral rotation strength, standardized to body mass (BM) via the body mass average index (BMavg), measured via a wall mounted dynamometer. The two symptomatic groups reported similar pain levels (p=0.226), more pain then the AS group (p<0.000). Compared to the AS participants, participants with GT or hip OA demonstrated lower walking speed (10mwt and TUG, p<0.001), lower cadence and shorter duration single leg stance on the affected leg (p<0.05). Participants with GT or hip OA also demonstrated bilaterally weaker hip abduction than the AS group (p≤0.005). Compared to AS and GT participants, participants with hip OA demonstrated adduction weakness on the affected side (p=0.008 and p=0.002 respectively). There is a significant level of dysfunction and impairments associated with GT and hip OA. As activity limitations do not appear to be differentiated by structural impairments, we suggest that pain, rather than the underlying pathology may be the driving impairment that leads to walking and single leg standing dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.
Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian
2014-01-01
Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049
Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian
2014-10-01
In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.
Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1
Schauf, Charles L.; Wilson, Kathryn J.
1987-01-01
Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712
Overduin, Christiaan G; Heidkamp, Jan; Rothgang, Eva; Barentsz, Jelle O; de Lange, Frank; Fütterer, Jurgen J
2018-05-22
To assess the feasibility of adding a tablet device inside the scanner room to assist needle-guide alignment during magnetic resonance (MR)-guided transrectal prostate biopsy. Twenty patients with one cancer-suspicious region (CSR) with PI-RADS score ≥ 4 on diagnostic multiparametric MRI were prospectively enrolled. Two orthogonal scan planes of an MR fluoroscopy sequence (~3 images/s) were aligned to the CSR and needle-guide pivoting point. Targeting was achieved by manipulating the needle-guide under MR fluoroscopy feedback on the in-room tablet device. Technical feasibility and targeting success were assessed. Complications and biopsy procedure times were also recorded. Needle-guide alignment with the in-room tablet device was technically successful in all patients and allowed sampling after a single alignment step in 19/20 (95%) CSRs (median size 14 mm, range: 4-45). Biopsy cores contained cancer in 18/20 patients. There were no per-procedural or post-biopsy complications. Using the tablet device, the mean time to first biopsy was 5.8 ± 1.0 min and the mean total procedure time was 23.7 ± 4.1 min. Use of an in-room tablet device to assist needle-guide alignment was feasible and safe during MR-guided transrectal prostate biopsy. Initial experience indicates potential for procedure time reduction. • Performing MR-guided prostate biopsy using an in-room tablet device is feasible. • CSRs could be sampled after a single alignment step in 19/20 patients. • The mean procedure time for biopsy with the tablet device was 23.7 min.
NASA Technical Reports Server (NTRS)
Kasahara, Hironori; Honda, Hiroki; Narita, Seinosuke
1989-01-01
Parallel processing of real-time dynamic systems simulation on a multiprocessor system named OSCAR is presented. In the simulation of dynamic systems, generally, the same calculation are repeated every time step. However, we cannot apply to Do-all or the Do-across techniques for parallel processing of the simulation since there exist data dependencies from the end of an iteration to the beginning of the next iteration and furthermore data-input and data-output are required every sampling time period. Therefore, parallelism inside the calculation required for a single time step, or a large basic block which consists of arithmetic assignment statements, must be used. In the proposed method, near fine grain tasks, each of which consists of one or more floating point operations, are generated to extract the parallelism from the calculation and assigned to processors by using optimal static scheduling at compile time in order to reduce large run time overhead caused by the use of near fine grain tasks. The practicality of the scheme is demonstrated on OSCAR (Optimally SCheduled Advanced multiprocessoR) which has been developed to extract advantageous features of static scheduling algorithms to the maximum extent.
Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study
2016-08-30
Reconstructing cell lineages from single- cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell -state dynamics from single- cell gene expression data. Our...proposed method contains two steps. The first step is to reconstruct the temporal order of the cells from gene expression data, whereas the second
Volotskova, O; Levchenko, I; Shashurin, A; Raitses, Y; Ostrikov, K; Keidar, M
2010-10-01
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871
Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.
Kinetic Characterization of Nonmuscle Myosin IIB at the Single Molecule Level*
Nagy, Attila; Takagi, Yasuharu; Billington, Neil; Sun, Sara A.; Hong, Davin K. T.; Homsher, Earl; Wang, Aibing; Sellers, James R.
2013-01-01
Nonmuscle myosin IIB (NMIIB) is a cytoplasmic myosin, which plays an important role in cell motility by maintaining cortical tension. It forms bipolar thick filaments with ∼14 myosin molecule dimers on each side of the bare zone. Our previous studies showed that the NMIIB is a moderately high duty ratio (∼20–25%) motor. The ADP release step (∼0.35 s−1) of NMIIB is only ∼3 times faster than the rate-limiting phosphate release (0.13 ± 0.01 s−1). The aim of this study was to relate the known in vitro kinetic parameters to the results of single molecule experiments and to compare the kinetic and mechanical properties of single- and double-headed myosin fragments and nonmuscle IIB thick filaments. Examination of the kinetics of NMIIB interaction with actin at the single molecule level was accomplished using total internal reflection fluorescence (TIRF) with fluorescence imaging with 1-nm accuracy (FIONA) and dual-beam optical trapping. At a physiological ATP concentration (1 mm), the rate of detachment of the single-headed and double-headed molecules was similar (∼0.4 s−1). Using optical tweezers we found that the power stroke sizes of single- and double-headed heavy meromyosin (HMM) were each ∼6 nm. No signs of processive stepping at the single molecule level were observed in the case of NMIIB-HMM in optical tweezers or TIRF/in vitro motility experiments. In contrast, robust motility of individual fluorescently labeled thick filaments of full-length NMIIB was observed on actin filaments. Our results are in good agreement with the previous steady-state and transient kinetic studies and show that the individual nonprocessive nonmuscle myosin IIB molecules form a highly processive unit when polymerized into filaments. PMID:23148220
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-01-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients. PMID:29545679
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-02-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.
Brito, Maíra M; Lúcio, Cristina F; Angrimani, Daniel S R; Losano, João Diego A; Dalmazzo, Andressa; Nichi, Marcílio; Vannucchi, Camila I
2017-01-02
In addition to the existence of several cryopreservation protocols, no systematic research has been carried out in order to confirm the suitable protocol for canine sperm. This study aims to assess the effect of adding 5% glycerol during cryopreservation at 37°C (one-step) and 5°C (two-steps), in addition of testing two thawing protocols (37°C for 30 seconds, and 70°C for 8 seconds). We used 12 sperm samples divided into four experimental groups: Single-Step - Slow Thawing Group; Two-Step - Slow Thawing Group; Single-Step - Fast Thawing Group; and Two-Step - Fast Thawing Group. Frozen-thawed samples were submitted to automated analysis of sperm motility, evaluation of plasmatic membrane integrity, acrosomal integrity, mitochondrial activity, sperm morphology, sperm susceptibility to oxidative stress, and sperm binding assay to perivitellinic membrane of chicken egg yolk. Considering the comparison between freezing protocols, no statistical differences were verified for any of the response variables. When comparison between thawing protocols was performed, slow thawing protocol presented higher sperm count bound to perivitelline membrane of chicken egg yolk, compared to fast thawing protocol. Regardless of the freezing process, the slow thawing protocol can be recommended for the large scale cryopreservation of canine semen, since it shows a consistent better functional result.
NASA Technical Reports Server (NTRS)
Chen, D. Y.; Owen, H. A., Jr.; Wilson, T. G.
1980-01-01
This paper presents an algorithm and equations for designing the energy-storage reactor for dc-to-dc converters which are constrained to operate in the discontinuous-reactor-current mode. This design procedure applied to the three widely used single-winding configurations: the voltage step-up, the current step-up, and the voltage-or-current step-up converters. A numerical design example is given to illustrate the use of the design algorithm and design equations.
Poetzsch, Michael; Steuer, Andrea E; Roemmelt, Andreas T; Baumgartner, Markus R; Kraemer, Thomas
2014-12-02
Single hair analysis normally requires extensive sample preparation microscale protocols including time-consuming steps like segmentation and extraction. Matrix assisted laser desorption and ionization mass spectrometric imaging (MALDI-MSI) was shown to be an alternative tool in single hair analysis, but still, questions remain. Therefore, an investigation of MALDI-MSI in single hair analysis concerning the extraction process, usage of internal standard (IS), and influences on the ionization processes were systematically investigated to enable the reliable application to hair analysis. Furthermore, single dose detection, quantitative correlation to a single hair, and hair strand LC-MS/MS results were performed, and the performance was compared to LC-MS/MS single hair monitoring. The MALDI process was shown to be independent from natural hair color and not influenced by the presence of melanin. Ionization was shown to be reproducible along and in between different hair samples. MALDI image intensities in single hair and hair snippets showed good semiquantitative correlation to zolpidem hair concentrations obtained from validated routine LC-MS/MS methods. MALDI-MSI is superior to LC-MS/MS analysis when a fast, easy, and cheap sample preparation is necessary, whereas LC-MS/MS showed higher sensitivity with the ability of single dose detection for zolpidem. MALDI-MSI and LC-MS/MS segmental single hair analysis showed good correlation, and both are suitable for consumption monitoring of drugs of abuse with a high time resolution.
One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave.
Montanari, Elita; De Rugeriis, Maria Cristina; Di Meo, Chiara; Censi, Roberta; Coviello, Tommasina; Alhaique, Franco; Matricardi, Pietro
2015-01-01
The sterilization of nanoparticles for biomedical applications is one of the challenges that must be faced in the development of nanoparticulate systems. Usually, autoclave sterilization cannot be applied because of stability concerns when polymeric nanoparticles are involved. This paper describes an innovative method which allows to obtain, using a single step autoclave procedure, the preparation and, at the same time, the sterilization of self-assembling nanohydrogels (NHs) obtained with cholesterol-derivatized gellan and hyaluronic acid. Moreover, by using this approach, NHs, while formed in the autoclave, can be easily loaded with drugs. The obtained NHs dispersion can be lyophilized in the presence of a cryoprotectant, leading to the original NHs after re-dispersion in water.
Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng
2011-01-01
In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999
NASA Astrophysics Data System (ADS)
Huang, Haifeng; Long, Jingjing; Yi, Wu; Yi, Qinglin; Zhang, Guodong; Lei, Bangjun
2017-11-01
In recent years, unmanned aerial vehicles (UAVs) have become widely used in emergency investigations of major natural hazards over large areas; however, UAVs are less commonly employed to investigate single geo-hazards. Based on a number of successful investigations in the Three Gorges Reservoir area, China, a complete UAV-based method for performing emergency investigations of single geo-hazards is described. First, a customized UAV system that consists of a multi-rotor UAV subsystem, an aerial photography subsystem, a ground control subsystem and a ground surveillance subsystem is described in detail. The implementation process, which includes four steps, i.e., indoor preparation, site investigation, on-site fast processing and application, and indoor comprehensive processing and application, is then elaborated, and two investigation schemes, automatic and manual, that are used in the site investigation step are put forward. Moreover, some key techniques and methods - e.g., the layout and measurement of ground control points (GCPs), route planning, flight control and image collection, and the Structure from Motion (SfM) photogrammetry processing - are explained. Finally, three applications are given. Experience has shown that using UAVs for emergency investigation of single geo-hazards greatly reduces the time, intensity and risks associated with on-site work and provides valuable, high-accuracy, high-resolution information that supports emergency responses.
Detection of Listeria spp. using ACTERO listeria enrichment media.
Claveau, David; Olishevskyy, Sergiy; Giuffre, Michael; Martinez, Gabriela
2014-01-01
ACTERO Listeria Enrichment Media (ACTERO Listeria) is a selective medium developed for a single-step recovery and enrichment of Listeria spp. from environmental samples. Robustness testing of the ACTERO Listeria medium demonstrated good performance when minor changes were introduced to the incubation temperature and time. All 54 Listeria strains tested, representing the most frequently isolated Listeria species from food (L. monocytogenes, L. ivanovii, L. seeligeri, L. welshimeri, and L. grayi), were successfully enriched in ACTERO Listeria. None of the 30 nontarget strains tested in the exclusivity study was recovered after incubation in ACTERO Listeria. Recovery of Listeria was consistent across three independently produced lots of the ACTERO Listeria, and the prepared medium was stable for 45 days when stored at 4 degrees C in the dark. Matrix studies performed with environmental sponge samples from plastic and stainless steel surfaces demonstrated similar recovery of Listeria spp. in a single-step enrichment using ACTERO Listeria from plastic, and significantly better recovery from stainless steel surfaces when compared to the U.S. Department of Agriculture-Food Safety and Inspection Service reference method. The results of this study prove that ACTERO Listeria Enrichment Media can be effectively used in replacement of the two-step enrichment suggested by the reference method without affecting the recovery of Listeria spp. from environmental samples.
Detection of ricin in food using electrochemiluminescence-based technology.
Garber, Eric A E; O'Brien, Thomas W
2008-01-01
Ricin is a toxic ribosome inactivating protein (RIP-II) present in beans of the castor plant, Ricinus communis. Its potential as a biodefense threat has made the rapid, sensitive detection of ricin in food important to the U.S. Food and Drug Administration. Samples of juice, dairy products, soda, vegetables, bakery products, chocolate, and condiments were spiked with varying concentrations of ricin and analyzed using a 96-well format, electrochemiluminescence (ECL) immunoassay. Assay configurations included the use of a monoclonal capture antibody coupled with either a polyclonal or monoclonal detector antibody. The samples and detector antibodies were either added sequentially or in combination during the capture step. Using the polyclonal antibody, 0.04 ng/mL ricin was detected in analytical samples prepared from several beverages. By simultaneously incubating the sample with detector antibody, it was possible to decrease the assay time to a single 20 min incubation step with a limit of detection <10 ng/mL. Assays run according to this single incubation step exhibited a hook effect (decrease in signal at high concentrations of ricin), but because of the large signal-to-noise ratio associated with the ECL assay, the response remained above background and detectable. Thus, the ECL assay was uniquely suited for the screening of samples for ricin.
A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.
Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu
2014-07-04
In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB.
Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions
Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali
2018-01-01
Objective Stepped wedge design (SWD) cluster randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in a SWD trial. Study Design and Setting We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster randomized trial: Concurrent, Replacement, Supplementation and Factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. Results In the Concurrent SWD, each cluster receives only one intervention, unlike the other variants. The Replacement SWD supports two interventions that will not or cannot be employed at the same time. The Supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the Factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Conclusion Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. PMID:28412466
Atkinson, C; Emery, V C; Griffiths, P D
2014-02-01
Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.
Genomic predictability of single-step GBLUP for production traits in US Holstein
USDA-ARS?s Scientific Manuscript database
The objective of this study was to validate genomic predictability of single-step genomic BLUP for 305-day protein yield for US Holsteins. The genomic relationship matrix was created with the Algorithm of Proven and Young (APY) with 18,359 core animals. The full data set consisted of phenotypes coll...
Building Multilevel Secure Web Services-Based Components for the Global Information Grid
2006-05-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Transforming: Business , Security ,Warfighting 16 CROSSTALK The Journal of Defense...A Single Step of the BAC Table 1: A Single Step of the Block Access Controller Transforming: Business , Security ,Warfighting 18 CROSSTALK The Journal
Solo Parenting: Raising Strong & Happy Families.
ERIC Educational Resources Information Center
Chambers, Diane
One quarter of all American children will live in a single-parent family for at least some portion of their childhood. This guide, organized as a step-by-step process, encourages single parents to reach for excellence in their parenting and to build confidence in their ability to raise healthy, responsible children. The chapters are intended to…
NASA Astrophysics Data System (ADS)
Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2003-11-01
CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (
Two-Step Incision for Periarterial Sympathectomy of the Hand.
Jeon, Seung Bae; Ahn, Hee Chang; Ahn, Yong Su; Choi, Matthew Seung Suk
2015-11-01
Surgical scars on the palmar surface of the hand may lead to functional and also aesthetic and psychological consequences. The objective of this study was to introduce a new incision technique for periarterial sympathectomy of the hand and to compare the results of the new two-step incision technique with those of a Koman incision by using an objective questionnaire. A total of 40 patients (17 men and 23 women) with intractable Raynaud's disease or syndrome underwent surgery in our hospital, conducted by a single surgeon, between January 2008 and January 2013. Patients who had undergone extended sympathectomy or vessel graft were excluded. Clinical evaluation of postoperative scars was performed in both groups one year after surgery using the patient and observer scar assessment scale (POSAS) and the Wake Forest University rating scale. The total patient score was 8.59 (range, 6-15) in the two-step incision group and 9.62 (range, 7-18) in the Koman incision group. A significant difference was found between the groups in the total PS score (P-value=0.034) but not in the total observer score. Our analysis found no significant difference in preoperative and postoperative Wake Forest University rating scale scores between the two-step and Koman incision groups. The time required for recovery prior to returning to work after surgery was shorter in the two-step incision group, with a mean of 29.48 days in the two-step incision group and 34.15 days in the Koman incision group (P=0.03). Compared to the Koman incision, the new two-step incision technique provides better aesthetic results, similar symptom improvement, and a reduction in the recovery time required before returning to work. Furthermore, this incision allows the surgeon to access a wide surgical field and a sufficient exposure of anatomical structures.
Smejkal, Benjamin; Agrawal, Neeraj J; Helk, Bernhard; Schulz, Henk; Giffard, Marion; Mechelke, Matthias; Ortner, Franziska; Heckmeier, Philipp; Trout, Bernhardt L; Hekmat, Dariusch
2013-09-01
The potential of process crystallization for purification of a therapeutic monoclonal IgG1 antibody was studied. The purified antibody was crystallized in non-agitated micro-batch experiments for the first time. A direct crystallization from clarified CHO cell culture harvest was inhibited by high salt concentrations. The salt concentration of the harvest was reduced by a simple pretreatment step. The crystallization process from pretreated harvest was successfully transferred to stirred tanks and scaled-up from the mL-scale to the 1 L-scale for the first time. The crystallization yield after 24 h was 88-90%. A high purity of 98.5% was reached after a single recrystallization step. A 17-fold host cell protein reduction was achieved and DNA content was reduced below the detection limit. High biological activity of the therapeutic antibody was maintained during the crystallization, dissolving, and recrystallization steps. Crystallization was also performed with impure solutions from intermediate steps of a standard monoclonal antibody purification process. It was shown that process crystallization has a strong potential to replace Protein A chromatography. Fast dissolution of the crystals was possible. Furthermore, it was shown that crystallization can be used as a concentrating step and can replace several ultra-/diafiltration steps. Molecular modeling suggested that a negative electrostatic region with interspersed exposed hydrophobic residues on the Fv domain of this antibody is responsible for the high crystallization propensity. As a result, process crystallization, following the identification of highly crystallizable antibodies using molecular modeling tools, can be recognized as an efficient, scalable, fast, and inexpensive alternative to key steps of a standard purification process for therapeutic antibodies. Copyright © 2013 Wiley Periodicals, Inc.
Out-of-equilibrium dynamics of photoexcited spin-state concentration waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.
2015-01-28
The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation
NASA Technical Reports Server (NTRS)
Campbell, Joel
2007-01-01
A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
NASA Astrophysics Data System (ADS)
Gassara, H.; El Hajjaji, A.; Chaabane, M.
2017-07-01
This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.
The SMM model as a boundary value problem using the discrete diffusion equation.
Campbell, Joel
2007-12-01
A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
Algorithm-enabled partial-angular-scan configurations for dual-energy CT.
Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan
2018-05-01
We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.
Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays
Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan
2012-01-01
In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953
Interference with a quantum dot single-photon source and a laser at telecom wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felle, M.; Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA; Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.
Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection
NASA Astrophysics Data System (ADS)
Panigrahi, Shrabani; Basak, Durga
2011-05-01
Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.
System 2020 - Strategic Initiative
2010-08-26
needs fast, flexible and adaptable capabilities (and tools that enable the development of these...S2020 (and enabling acquisition improvements) System Design and Development Speed Sequential single-‐step... development time as a function of SLOC up to 1250 KSLOC.
Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier
2015-07-11
The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.
Porting plasma physics simulation codes to modern computing architectures using the
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Abbott, Stephen
2015-11-01
Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source
Coherent cavity-enhanced dual-comb spectroscopy.
Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F
2016-05-16
Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.
Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G
2017-10-01
The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.
Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias
2010-01-01
Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084
A Data Parallel Multizone Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)
1995-01-01
We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.
Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process
NASA Astrophysics Data System (ADS)
Bayat, N.; Ebrahimi, G. R.; Momeni, A.; Ezatpour, H. R.
2018-02-01
Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.
Gentilini, Fabio; Turba, Maria E
2014-01-01
A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.
Sci-Thur PM - Colourful Interactions: Highlights 08: ARC TBI using Single-Step Optimized VMAT Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, Alana; Gordon, Deborah; Moore, Roseanne
Purpose: This work outlines a new TBI delivery technique to replace a lateral POP full bolus technique. The new technique is done with VMAT arc delivery, without bolus, treating the patient prone and supine. The benefits of the arc technique include: increased patient experience and safety, better dose conformity, better organ at risk sparing, decreased therapist time and reduction of therapist injuries. Methods: In this work we build on a technique developed by Jahnke et al. We use standard arc fields with gantry speeds corrected for varying distance to the patient followed by a single step VMAT optimization on amore » patient CT to increase dose inhomogeneity and to reduce dose to the lungs (vs. blocks). To compare the arc TBI technique to our full bolus technique, we produced plans on patient CTs for both techniques and evaluated several dosimetric parameters using an ANOVA test. Results and Conclusions: The arc technique is able reduce both the hot areas to the body (D2% reduced from 122.2% to 111.8% p<0.01) and the lungs (mean lung dose reduced from 107.5% to 99.1%, p<0.01), both statistically significant, while maintaining coverage (D98% = 97.8% vs. 94.6%, p=0.313, not statistically significant). We developed a more patient and therapist-friendly TBI treatment technique that utilizes single-step optimized VMAT plans. It was found that this technique was dosimetrically equivalent to our previous lateral technique in terms of coverage and statistically superior in terms of reduced lung dose.« less
NASA Technical Reports Server (NTRS)
Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.
2013-01-01
Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.
Biological nanopore MspA for DNA sequencing
NASA Astrophysics Data System (ADS)
Manrao, Elizabeth A.
Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.
Live single cell functional phenotyping in droplet nano-liter reactors
NASA Astrophysics Data System (ADS)
Konry, Tania; Golberg, Alexander; Yarmush, Martin
2013-11-01
While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.
Advanced synchronous luminescence imaging for chemical and medical diagnostics
Vo-Dinh, Tuan
2006-09-05
A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander
2017-10-23
Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.
Karamanidis, Kiros; Arampatzis, Adamantios
2007-01-01
The goals of this study were to investigate whether the lower muscle-tendon units (MTUs) capacities in older affect their ability to recover balance with a single-step after a fall, and to examine whether running experience enhances and protects this motor skill in young and old adults. The investigation was conducted on 30 older and 19 younger divided into two subgroups: runners versus non-active. In previous studies we documented that the older had lower leg extensor muscle strength and tendon stiffness while running had no effect on MTUs capacities. The current study examined recovery mechanics of the same individuals after an induced forward fall. Younger were better able to recover balance with a single-step compared to older (P < 0.001); this ability was associated with a more effective body configuration at touchdown (more posterior COM position relative to the recovery foot, P <0.001). MTUs capacities classified 88.6% of the subjects into single- or multiple-steppers. Runners showed a superior ability to recover balance with a single-step (P < 0.001) compared to non-active subjects due to a more effective mechanical response during the stance phase (greater knee joint flexion, P <0.05). We concluded that the age-related degeneration of the MTUs significantly diminished the older adults' ability to restore balance with a single-step. Running seems to enhance and protect this motor skill. We suggested that runners, due to their running experience, could update the internal representation of mechanisms responsible for the control of dynamic stability during a forward fall and, thus, were able to restore balance more often with a single-step compared to the non-active subjects.
Regression Analysis of a Disease Onset Distribution Using Diagnosis Data
Young, Jessica G.; Jewell, Nicholas P.; Samuels, Steven J.
2008-01-01
Summary We consider methods for estimating the effect of a covariate on a disease onset distribution when the observed data structure consists of right-censored data on diagnosis times and current status data on onset times amongst individuals who have not yet been diagnosed. Dunson and Baird (2001, Biometrics 57, 306–403) approached this problem using maximum likelihood, under the assumption that the ratio of the diagnosis and onset distributions is monotonic nondecreasing. As an alternative, we propose a two-step estimator, an extension of the approach of van der Laan, Jewell, and Petersen (1997, Biometrika 84, 539–554) in the single sample setting, which is computationally much simpler and requires no assumptions on this ratio. A simulation study is performed comparing estimates obtained from these two approaches, as well as that from a standard current status analysis that ignores diagnosis data. Results indicate that the Dunson and Baird estimator outperforms the two-step estimator when the monotonicity assumption holds, but the reverse is true when the assumption fails. The simple current status estimator loses only a small amount of precision in comparison to the two-step procedure but requires monitoring time information for all individuals. In the data that motivated this work, a study of uterine fibroids and chemical exposure to dioxin, the monotonicity assumption is seen to fail. Here, the two-step and current status estimators both show no significant association between the level of dioxin exposure and the hazard for onset of uterine fibroids; the two-step estimator of the relative hazard associated with increasing levels of exposure has the least estimated variance amongst the three estimators considered. PMID:17680832
Quantum robots and environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-08-01
Quantum robots and their interactions with environments of quantum systems are described, and their study justified. A quantum robot is a mobile quantum system that includes an on-board quantum computer and needed ancillary systems. Quantum robots carry out tasks whose goals include specified changes in the state of the environment, or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activites include determination of the action to be carried out in the next phase, and recording of information on neighborhood environmental system states. Action phase activities include motion of themore » quantum robot and changes in the neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. A unitary step operator T that gives the single time step dynamics is associated with each task. T=T{sub a}+T{sub c} is a sum of action phase and computation phase step operators. Conditions that T{sub a} and T{sub c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task{emdash}carrying out a measurement on a very simple environment{emdash}is analyzed in detail. A decision tree for the task is presented and discussed in terms of the sums over phase paths. It is seen that no definite times or durations are associated with the phase steps in the tree, and that the tree describes the successive phase steps in each path in the sum over phase paths. {copyright} {ital 1998} {ital The American Physical Society}« less
Observation of entanglement of a single photon with a trapped atom.
Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald
2006-01-27
We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.
A Minimal Optical Trapping and Imaging Microscopy System
Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio
2013-01-01
We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216
Pagan, Darren C.; Miller, Matthew P.
2016-09-01
A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
NASA Astrophysics Data System (ADS)
Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh
2017-09-01
We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.
Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens
2014-07-07
The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from mammalian cell homogenate.
Latent trajectory studies: the basics, how to interpret the results, and what to report.
van de Schoot, Rens
2015-01-01
In statistics, tools have been developed to estimate individual change over time. Also, the existence of latent trajectories, where individuals are captured by trajectories that are unobserved (latent), can be evaluated (Muthén & Muthén, 2000). The method used to evaluate such trajectories is called Latent Growth Mixture Modeling (LGMM) or Latent Class Growth Modeling (LCGA). The difference between the two models is whether variance within latent classes is allowed for (Jung & Wickrama, 2008). The default approach most often used when estimating such models begins with estimating a single cluster model, where only a single underlying group is presumed. Next, several additional models are estimated with an increasing number of clusters (latent groups or classes). For each of these models, the software is allowed to estimate all parameters without any restrictions. A final model is chosen based on model comparison tools, for example, using the BIC, the bootstrapped chi-square test, or the Lo-Mendell-Rubin test. To ease the use of LGMM/LCGA step by step in this symposium (Van de Schoot, 2015) guidelines are presented which can be used for researchers applying the methods to longitudinal data, for example, the development of posttraumatic stress disorder (PTSD) after trauma (Depaoli, van de Schoot, van Loey, & Sijbrandij, 2015; Galatzer-Levy, 2015). The guidelines include how to use the software Mplus (Muthén & Muthén, 1998-2012) to run the set of models needed to answer the research question: how many latent classes exist in the data? The next step described in the guidelines is how to add covariates/predictors to predict class membership using the three-step approach (Vermunt, 2010). Lastly, it described what essentials to report in the paper. When applying LGMM/LCGA models for the first time, the guidelines presented can be used to guide what models to run and what to report.
Joda, Tim; Brägger, Urs
2016-11-01
The aim of the randomized controlled trial was to analyze time-efficiency of a treatment with implant crowns made of monolithic lithium disilicate (LS2) plus titanium base vs. porcelain fuse to zirconium dioxide (ZrO 2 ) in a digital workflow. Twenty study participants were included for single-tooth replacement in premolar and molar sites. Baseline was the start of the prosthetic treatment. All patients received transocclusal screw-retained implant reconstructions on a soft tissue level-type implant. The 3D implant position was captured with intraoral optical scanning (IOS). After randomization, ten patients were restored with CAD-/CAM-produced monolithic LS2-crowns bonded to prefabricated titanium abutments without any physical models (test), and ten patients with CAD-/CAM-fabricated ZrO 2 -suprastructures and hand-layered ceramic veneering with milled master models (control). Every single clinical and laboratory work step was timed in minutes and then analyzed for time-efficiency with Wilcoxon Rank Sum Tests. Direct costs were assessed for laboratory fees for first line production in Swiss Francs (CHF). Two clinical appointments were necessary for IOS and seating of all implant crowns. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different, resulting in 75.3 min (SD ± 2.1) for test and 156.6 min (SD ± 4.6) for control [P = 0.0001]. Analysis for clinical treatment sessions showed a significantly shorter mean chair time for the complete digital workflow of 20.8 min (SD ± 0.3) compared to 24.1 min (SD ± 1.1) [P = 0.001]. Even more obvious were the results for the mean laboratory work time with a significant reduction of 54.5 min (SD ± 4.9) vs. 132.5 min (SD ± 8.7), respectively [P = 0.0001]. The test workflow was more time-efficient than the controls for implant-supported crowns; notably, laboratory fabrication steps could be effectively shortened with the digital process of monolithic LS2 plus titanium base resulting in more than 30% reduced overall treatment costs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Single Sheet Agricultural Mechanics Plans.
ERIC Educational Resources Information Center
Schumacher, Leon, Ed.
This packet contains 25 single-page plans for agricultural mechanics projects. Each plan consists of a one-page set of drawings of the object to be made with a list of needed materials, a cut list, and step-by-step construction procedures on the back of the page. Plans for the following wood projects are included: bluebird house, lawn seat, dog…
Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions
Giese, Roger W.; Wang, Poguang
1996-01-01
Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##
Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Is Single-Port Laparoscopy More Precise and Faster with the Robot?
Fransen, Sofie A F; van den Bos, Jacqueline; Stassen, Laurents P S; Bouvy, Nicole D
2016-11-01
Single-port laparoscopy is a step forward toward nearly scar less surgery. Concern has been raised that single-incision laparoscopic surgery (SILS) is technically more challenging because of the lack of triangulation and the clashing of instruments. Robotic single-incision laparoscopic surgery (RSILS) in chopstick setting might overcome these problems. This study evaluated the outcome in time and errors of two tasks of the Fundamentals of Laparoscopic Surgery on a dry platform, in two settings: SILS versus RSILS. Nine experienced laparoscopic surgeons performed two tasks: peg transfer and a suturing task, on a standard box trainer. All participants practiced each task three times in both settings: SILS and a RSILS setting. The assessment scores (time and errors) were recorded. For the first task of peg transfer, RSILS was significantly better in time (124 versus 230 seconds, P = .0004) and errors (0.80 errors versus 2.60 errors, P = .024) at the first run, compared to the SILS setting. At the third and final run, RSILS still proved to be significantly better in errors (0.10 errors versus 0.80 errors, P = .025) compared to the SILS group. RSILS was faster in the third run, but not significant (116 versus 157 seconds, P = .08). For the second task, a suturing task, only 3 participants of the SILS group were able to perform this task within the set time frame of 600 seconds. There was no significant difference in time in the three runs between SILS and RSILS for the 3 participants that fulfilled both tasks within the 600 seconds. This study shows that robotic single-port surgery seems easier, faster, and more precise to perform basis tasks of the Fundamentals of laparoscopic surgery. For the more complex task of suturing, only the single-port robotic setting enabled all participants to fulfill this task, within the set time frame.
Time-gated real-time pump-probe imaging spectroscopy
NASA Astrophysics Data System (ADS)
Ferrari, Raffaele; D'Andrea, Cosimo; Bassi, Andrea; Valentini, Gianluca; Cubeddu, Rinaldo
2007-07-01
An experimental technique which allows one to perform pump-probe transient absorption spectroscopy in real-time is an important tool to study irreversible processes. This is particularly interesting in the case of biological samples which easily deteriorate upon exposure to light pulses, with the formation of permanent photoproducts and structural changes. In particular pump-probe spectroscopy can provide fundamental information for the design of optical chromophores. In this work a real-time pump-probe imaging spectroscopy system has been realized and we have explored the possibility to further reduce the number of laser pulses by using a time-gated camera. We believe that the use of a time-gated camera can provide an important step towards the final goal of pump-probe single shot spectroscopy.
Evaluation of a single-scan protocol for radiochromic film dosimetry.
Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai
2015-03-08
The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.
Toward a Global Bundle Adjustment of SPOT 5 - HRS Images
NASA Astrophysics Data System (ADS)
Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.
2012-07-01
The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the global block is unique it becomes easier to manage the historic and the different evolutions of the computations (new images, new GCPs or tie points). The location is now unique and consequently coherent all around the world, avoiding steps and artifacts on the borders of DSMs (Digital Surface Models) and OrthoImages historically calculated from different blocks. No extrapolation far from GCPs in the limits of images is done anymore. Using the global block as a reference will allow new images from other sources to be easily located on this reference.
Two-step fabrication of single-layer rectangular SnSe flakes
NASA Astrophysics Data System (ADS)
Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew
2017-06-01
Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm × 50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.
A Front-End electronics board for single photo-electron timing and charge from MaPMT
NASA Astrophysics Data System (ADS)
Giordano, F.; Breton, D.; Beigbeder, C.; De Robertis, G.; Fusco, P.; Gargano, F.; Liuzzi, R.; Loparco, F.; Mazziotta, M. N.; Rizzi, V.; Tocut, V.
2013-08-01
A Front-End (FE) design based on commercial operational amplifiers has been developed to read-out signals from a Multianode PhotoMultiplier Tube (MaPMT). The overall design has been optimised for single photo-electron signal from the Hamamatsu H8500. The signal is collected by a current sensitive preamplifier and then it is fed into both a ECL fast discriminator and a shaper for analog output readout in differential mode. The analog signal and the digital gates are then registered on VME ADC and TDC modules respectively. Performances in terms of linearity, gain and timing resolution will be discussed, presenting results obtained on a test bench with differentiated step voltage inputs and also with a prototype electronic board plugged into the H8500 PMT illuminated by a picosecond laser.
Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.
Rangan, Aaditya V; Cai, David
2007-02-01
We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as strongly fluctuating, high-conductance states, our methods are designed to achieve statistical accuracy when very large time-steps are used. Moreover, our methods can also achieve trajectory-wise accuracy when small time-steps are used.
High throughput nanoimprint lithography for semiconductor memory applications
NASA Astrophysics Data System (ADS)
Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun
2017-03-01
Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non-fill defectivity is well under 1.0 defects/cm2 for both field types. Next, by further reducing drop volume and optimizing drop patterns, a fill time of 1.1 seconds was demonstrated.
Multisensor Arrays for Greater Reliability and Accuracy
NASA Technical Reports Server (NTRS)
Immer, Christopher; Eckhoff, Anthony; Lane, John; Perotti, Jose; Randazzo, John; Blalock, Norman; Ree, Jeff
2004-01-01
Arrays of multiple, nominally identical sensors with sensor-output-processing electronic hardware and software are being developed in order to obtain accuracy, reliability, and lifetime greater than those of single sensors. The conceptual basis of this development lies in the statistical behavior of multiple sensors and a multisensor-array (MSA) algorithm that exploits that behavior. In addition, advances in microelectromechanical systems (MEMS) and integrated circuits are exploited. A typical sensor unit according to this concept includes multiple MEMS sensors and sensor-readout circuitry fabricated together on a single chip and packaged compactly with a microprocessor that performs several functions, including execution of the MSA algorithm. In the MSA algorithm, the readings from all the sensors in an array at a given instant of time are compared and the reliability of each sensor is quantified. This comparison of readings and quantification of reliabilities involves the calculation of the ratio between every sensor reading and every other sensor reading, plus calculation of the sum of all such ratios. Then one output reading for the given instant of time is computed as a weighted average of the readings of all the sensors. In this computation, the weight for each sensor is the aforementioned value used to quantify its reliability. In an optional variant of the MSA algorithm that can be implemented easily, a running sum of the reliability value for each sensor at previous time steps as well as at the present time step is used as the weight of the sensor in calculating the weighted average at the present time step. In this variant, the weight of a sensor that continually fails gradually decreases, so that eventually, its influence over the output reading becomes minimal: In effect, the sensor system "learns" which sensors to trust and which not to trust. The MSA algorithm incorporates a criterion for deciding whether there remain enough sensor readings that approximate each other sufficiently closely to constitute a majority for the purpose of quantifying reliability. This criterion is, simply, that if there do not exist at least three sensors having weights greater than a prescribed minimum acceptable value, then the array as a whole is deemed to have failed.
Hatton, Anna L; Hug, François; Chen, Sarah H; Reid, Christine; Sorensen, Nicole A; Tucker, Kylie
2016-10-01
Middle-aged adults with painful hip conditions show balance impairments that are consistent with an increased risk of falls. Pathological changes at the hip, accompanied by pain, may accelerate pre-existing age-related balance deficits present in midlife. To consider the influence of pain alone, we investigated the effects of acute experimental hip muscle pain on dynamic single-limb balance in middle-aged adults. Thirty-four healthy adults aged 40-60 years formed two groups (Group-1: n=16; Group-2: n=18). Participants performed four tasks: Reactive Sideways Stepping (ReactSide); Star Excursion Balance Test (SEBT); Step Test; Single-Limb Squat; before and after an injection of hypertonic saline into the right gluteus medius muscle (Group-1) or ∼5min rest (Group-2). Balance measures included the range and standard deviation of centre of pressure (CoP) movement in mediolateral and anterior-posterior directions, and CoP total path velocity (ReactSide, Squat); reach distance (SEBT); and number of completed steps (Step Test). Data were assessed using three-way analysis of variance. Motor outcomes were altered during the second repetition of tasks irrespective of exposure to experimental hip muscle pain or rest, with reduced SEBT anterior reach (-1.2±4.1cm, P=0.027); greater step number during Step Test (1.5±1.7 steps, P<0.001); and slower CoP velocity during Single-Limb Squat (-4.9±9.4mms -1 , P=0.024). Factors other than the presence of pain may play a greater role in balance impairments in middle-aged adults with hip pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansen, Rebecca L.; Lee, Young Jin
2017-09-01
Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.
Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods
Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah
2016-01-01
The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height −0.36 to −0.97%, while diameter was increased by 0.40–0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were −0.73 to −1.21%, −1.34%, and −1.46% for the height and 0.50–0.80%, 1.20%, and −1.30% for the width, respectively. PMID:28096815
Barry, Dwight; McDonald, Shea
2013-01-01
Climate change could significantly influence seasonal streamflow and water availability in the snowpack-fed watersheds of Washington, USA. Descriptions of snowpack decline often use linear ordinary least squares (OLS) models to quantify this change. However, the region's precipitation is known to be related to climate cycles. If snowpack decline is more closely related to these cycles, an OLS model cannot account for this effect, and thus both descriptions of trends and estimates of decline could be inaccurate. We used intervention analysis to determine whether snow water equivalent (SWE) in 25 long-term snow courses within the Olympic and Cascade Mountains are more accurately described by OLS (to represent gradual change), stationary (to represent no change), or step-stationary (to represent climate cycling) models. We used Bayesian information-theoretic methods to determine these models' relative likelihood, and we found 90 models that could plausibly describe the statistical structure of the 25 snow courses' time series. Posterior model probabilities of the 29 "most plausible" models ranged from 0.33 to 0.91 (mean = 0.58, s = 0.15). The majority of these time series (55%) were best represented as step-stationary models with a single breakpoint at 1976/77, coinciding with a major shift in the Pacific Decadal Oscillation. However, estimates of SWE decline differed by as much as 35% between statistically plausible models of a single time series. This ambiguity is a critical problem for water management policy. Approaches such as intervention analysis should become part of the basic analytical toolkit for snowpack or other climatic time series data.
CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.
Meroney, Robert N; Colorado, P E
2009-03-01
Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations.
NASA Astrophysics Data System (ADS)
Das, Anusheela; Chaudhury, Srabanti
2015-11-01
Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.
In Vitro and In Vivo Single Myosin Step-Sizes in Striated Muscle a
Burghardt, Thomas P.; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin
2016-01-01
Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a “second characterization” is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover “bottom-up” and “top-down” assaying of myosin characteristics. PMID:26728749
Halim, Amanatuzzakiah Abdul; Szita, Nicolas; Baganz, Frank
2013-12-01
The concept of de novo metabolic engineering through novel synthetic pathways offers new directions for multi-step enzymatic synthesis of complex molecules. This has been complemented by recent progress in performing enzymatic reactions using immobilized enzyme microreactors (IEMR). This work is concerned with the construction of de novo designed enzyme pathways in a microreactor synthesizing chiral molecules. An interesting compound, commonly used as the building block in several pharmaceutical syntheses, is a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT). This chiral amino alcohol can be synthesized from simple achiral substrates using two enzymes, transketolase (TK) and transaminase (TAm). Here we describe the development of an IEMR using His6-tagged TK and TAm immobilized onto Ni-NTA agarose beads and packed into tubes to enable multi-step enzyme reactions. The kinetic parameters of both enzymes were first determined using single IEMRs evaluated by a kinetic model developed for packed bed reactors. The Km(app) for both enzymes appeared to be flow rate dependent, while the turnover number kcat was reduced 3 fold compared to solution-phase TK and TAm reactions. For the multi-step enzyme reaction, single IEMRs were cascaded in series, whereby the first enzyme, TK, catalyzed a model reaction of lithium-hydroxypyruvate (HPA) and glycolaldehyde (GA) to L-erythrulose (ERY), and the second unit of the IEMR with immobilized TAm converted ERY into ABT using (S)-α-methylbenzylamine (MBA) as amine donor. With initial 60mM (HPA and GA each) and 6mM (MBA) substrate concentration mixture, the coupled reaction reached approximately 83% conversion in 20 min at the lowest flow rate. The ability to synthesize a chiral pharmaceutical intermediate, ABT in relatively short time proves this IEMR system as a powerful tool for construction and evaluation of de novo pathways as well as for determination of enzyme kinetics. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Percutaneous Dual-valve Intervention in a High-risk Patient with Severe Aortic and Mitral Stenosis
Mrevlje, Blaz; Aboukura, Mohamad; Nienaber, Christoph A.
2016-01-01
Aortic stenosis is the most frequent and mitral stenosis is the least frequent native single-sided valve disease in Europe. Patients with the combination of severe symptomatic degenerative aortic and mitral stenosis are very rare. Guidelines for the treatment of heart valve diseases are clear for single-valve situations. However, there is no common agreement or recommendation for the best treatment strategy in patients with multiple valve disease and severe concomitant comorbidities. A 76-year-old female patient with the combination of severe degenerative symptomatic aortic and mitral stenosis and several comorbidities including severe obesity, who was found unsuitable surgical candidate by the heart team and unsuitable for two-time general anesthesia in the case of two-step single-valve percutaneous approach by anesthesiologists, underwent successful percutaneous dual-valve single-intervention (transcatheter aortic valve implantation and percutaneous mitral balloon commissurotomy). Percutaneous dual-valve single-intervention is feasible in selected symptomatic high-risk patients. PMID:27867460
Atomic Source of Single Photons in the Telecom Band
NASA Astrophysics Data System (ADS)
Dibos, A. M.; Raha, M.; Phenicie, C. M.; Thompson, J. D.
2018-06-01
Single atoms and atomlike defects in solids are ideal quantum light sources and memories for quantum networks. However, most atomic transitions are in the ultraviolet-visible portion of the electromagnetic spectrum, where propagation losses in optical fibers are prohibitively large. Here, we observe for the first time the emission of single photons from a single Er3 + ion in a solid-state host, whose optical transition at 1.5 μ m is in the telecom band, allowing for low-loss propagation in optical fiber. This is enabled by integrating Er3 + ions with silicon nanophotonic structures, which results in an enhancement of the photon emission rate by a factor of more than 650. Dozens of distinct ions can be addressed in a single device, and the splitting of the lines in a magnetic field confirms that the optical transitions are coupled to the electronic spin of the Er3 + ions. These results are a significant step towards long-distance quantum networks and deterministic quantum logic for photons based on a scalable silicon nanophotonics architecture.
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Two-Step Integrated Theory of Everything (TOE)
NASA Astrophysics Data System (ADS)
Colella, Antonio
2017-01-01
Two opposing TOE visions are my Two-Step (physics/math) and Hawking's single math step. My Two-Step should replace the single step because of the latter's near zero results after a century of attempts. My physics step had 3 goals. First ``Everything'' was defined as 20 interrelated amplified theories (e.g. string, Higgs forces, spontaneous symmetry breaking, particle decays, dark matter, dark energy, stellar black holes) and their intimate physical interrelationships. Amplifications of Higgs forces theory (e.g. matter particles and their associated Higgs forces were one and inseparable, spontaneous symmetry breaking was bidirectional and caused by high temperatures not Higgs forces, and sum of 8 Higgs forces of 8 permanent matter particles was dark energy) were key to my Two-Step TOE. The second goal answered all outstanding physics questions: what were Higgs forces, dark energy, dark matter, stellar black holes, our universe's creation, etc.? The third goal provided correct inputs for the two part second math step, an E8 Lie algebra for particles and an N-body cosmology simulation (work in progress). Scientific advancement occurs only if the two opposing TOEs are openly discussed/debated.
He, B L; Shen, J S; Tian, Z X
2016-09-21
An Fe-embedded C2N monolayer as a promising single-atom catalyst for CO oxidation by O2 has been investigated based on first-principles calculations. It is found that the single Fe atom can be strongly trapped in the cavity of the C2N monolayer with a large adsorption energy of 4.55 eV and a high diffusion barrier of at least 3.00 eV to leave the cavity, indicating that Fe should exist in the isolated single-atom form. Due to the localized metal 3d orbitals near the Fermi level, the embedded Fe single-atom catalyst has a high chemical activity for the adsorption of CO and O2 molecules. CO oxidation by O2 on the catalyst would proceed via a two-step mechanism. The first step of the CO oxidation reaction has been studied via the Langmuir-Hinshelwood and Eley-Rideal mechanisms with energy barriers of 0.46 and 0.65 eV, respectively. The second step of the CO oxidation reaction follows the Eley-Rideal mechanism with a much smaller energy barrier of 0.24 eV. For both the steps, the CO2 molecules produced are weakly adsorbed on the substrates, suggesting that the proposed catalyst will not be poisoned by the generated CO2. Our results indicate that the Fe-embedded C2N monolayer is a promising single-atom catalyst for CO oxidation by O2 at low temperatures.
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
White mica 40Ar/39Ar dating is a proven powerful tool for constraining the timing and rate of metamorphism, deformation and exhumation. However, for high-pressure metamorphic rocks dating often results in wide age ranges, which are not in agreement with constraints from other isotopic systems, indicating that geological and chemical processes complicate straightforward 40Ar/39Ar dating. Despite hosting one of the largest geochronological datasets in the world, the Cycladic Blueschist Unit in Greece is presently one of the focal areas in the discussion on the interpretation of metamorphic 40Ar/39Ar ages. Previous phengite multi grain step heating experiments commonly yielded undulating age spectra ranging between 20 - 60 Ma. While some studies attempt to assign geological significance to these ages, others argue the ages are geologically meaningless and the result of the interplay between partial diffusive resetting and continued crystallization. By taking an alternative approach of multiple single grain fusion experiments, this study investigates age heterogeneity between samples of contrasting metamorphic facies, rheology and strain from the Cycladic islands of Syros and Sifnos. Comparing the size and shape of single grain fusion age distributions at the grain, rock, outcrop and island scale allows determination of the scale at which different age-forming processes operate. Resulting ages show a previously unreported consistent variation between different outcrops, moving from the eclogite-blueschist facies (55-45 Ma) to greenschist overprinting (40-30 Ma). This indicates that outcrop scale homogeneous resetting is the dominant processes for age formation in the CBU. Single grain age variation at the sample and outcrop scale is only limited to 10 Ma, indicating a smaller but observable role for local age perturbing processes of incomplete resetting, continued (re)crystallization or infiltration of excess argon. Some of the partially overprinted samples show homogeneous single grain age populations, indicating at least a partial role for efficient resetting by thermally activated diffusion at the outcrop scale. Traditional multi grain step heating experiments on the same samples yield flat plateaus for various single grain age distributions, indicating that age heterogeneities resolved by single grain fusion dating are mixed to a meaningless average in step heating experiments. In contrast, our approach leads to a better understanding of the processes responsible for age formation during high pressure metamorphism.
NASA Astrophysics Data System (ADS)
Harkrider, Curtis Jason
2000-08-01
The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon, imaging lens, and curved radial lens, all with different index profile requirements, are designed out of a single glass composition.
Martian stepped-delta formation by rapid water release.
Kraal, Erin R; van Dijk, Maurits; Postma, George; Kleinhans, Maarten G
2008-02-21
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations
Casulli, V.; Cheng, R.T.
1990-01-01
In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; Nichols III, A L
The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as wellmore » with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.« less
What Works Clearinghouse Study Review Guide Instructions for Reviewing Single-Case Designs Studies
ERIC Educational Resources Information Center
What Works Clearinghouse, 2016
2016-01-01
This document provides step-by-step instructions on how to complete the Study Review Guide (SRG, Version S3, V2) for single-case designs (SCDs). Reviewers will complete an SRG for every What Works Clearinghouse (WWC) review. A completed SRG should be a reviewer's independent assessment of the study, relative to the criteria specified in the review…
2012-09-01
make end of life ( EOL ) and remaining useful life (RUL) estimations. Model-based prognostics approaches perform these tasks with the help of first...in parameters Degradation Modeling Parameter estimation Prediction Thermal / Electrical Stress Experimental Data State Space model RUL EOL ...distribution at given single time point kP , and use this for multi-step predictions to EOL . There are several methods which exits for selecting the sigma
Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.
Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de
2017-01-01
This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.
Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand
DeLuca, Samuel; Khar, Karen; Meiler, Jens
2015-01-01
RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Caruccio, Nicholas
2011-01-01
DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.
Electromagnetic ray tracing model for line structures.
Tan, C B; Khoh, A; Yeo, S H
2008-03-17
In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.
Modeling snail breeding in a bioregenerative life support system
NASA Astrophysics Data System (ADS)
Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Kolmakova, A. A.
2015-07-01
The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.
Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.
Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong
2011-02-01
In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.
Polymeric PLC-type thermo-optic optical attenuator fabricated by UV imprint technique
NASA Astrophysics Data System (ADS)
Kim, Jin Tae; Choi, Choon-Gi
2006-01-01
A planar lightwave circuit-type polymer thermo-optic optical attenuator was fabricated via a UV imprint technique. In order to reduce the step for filling of cores and minimize the detrimental residual slab waveguide, convex ridge-type micro cores for guidance of light were defined with an accuracy of ±0.5 μm on the under-clad by a single step of imprinting. The voltage-controlled polymer optical attenuator showed 30-dB attenuation with 80-mW electrical input power at a wavelength of 1.55 μm. The rise and fall times are less than 5 ms. It displays about 0.2- and 1-dB polarization dependence at 0- and 10-dB attenuations, respectively.
NASA Technical Reports Server (NTRS)
Parkinson, J B; HOUSE R O
1938-01-01
Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.
Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
Yeang, Chen-Hsiang; Beckman, Robert A
2016-10-22
Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that "think ahead" can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel.
Two-step single slope/SAR ADC with error correction for CMOS image sensor.
Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin
2014-01-01
Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μ m(2) · cycles/sample.
Yang, Weidong; Musser, Siegfried M.
2008-01-01
The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and ∼15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. PMID:16879979
NASA Astrophysics Data System (ADS)
Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun
2018-02-01
A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.