NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.
2010-01-01
Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for antibody production in plants. PMID:20047189
Im, Eung Jun; Bais, Anthony J; Yang, Wen; Ma, Qiangzhong; Guo, Xiuyang; Sepe, Steven M; Junghans, Richard P
2014-01-01
Transduction and expression procedures in gene therapy protocols may optimally transfer more than a single gene to correct a defect and/or transmit new functions to recipient cells or organisms. This may be accomplished by transduction with two (or more) vectors, or, more efficiently, in a single vector. Occasionally, it may be useful to coexpress homologous genes or chimeric proteins with regions of shared homology. Retroviridae include the dominant vector systems for gene transfer (e.g., gamma-retro and lentiviruses) and are capable of such multigene expression. However, these same viruses are known for efficient recombination–deletion when domains are duplicated within the viral genome. This problem can be averted by resorting to two-vector strategies (two-chain two-vector), but at a penalty to cost, convenience, and efficiency. Employing a chimeric antigen receptor system as an example, we confirm that coexpression of two genes with homologous domains in a single gamma-retroviral vector (two-chain single-vector) leads to recombination–deletion between repeated sequences, excising the equivalent of one of the chimeric antigen receptors. Here, we show that a degenerate codon substitution strategy in the two-chain single-vector format efficiently suppressed intravector deletional loss with rescue of balanced gene coexpression by minimizing sequence homology between repeated domains and preserving the final protein sequence. PMID:25419532
Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J
1996-11-26
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.
Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.
1996-01-01
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064
Gschwind, Michael K [Chappaqua, NY
2011-03-01
Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.
2010-04-01
glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of
Han, Sung-Woong; Nakamura, Chikashi; Imai, Yosuke; Nakamura, Noriyuki; Miyake, Jun
2009-01-01
In this study, we have evaluated a sensor system for a hormonal drug effect in a single cell level using a novel low invasive single cell DNA delivery technology using a nanoneedle. An estrogen responsive GFP reporter vector (pEREGFP9) was constructed and its estrogenic response activity was confirmed in breast cancer cells (MCF-7) using lipofection as the means of transferring the vector to the cells. The pEREGFP9 vector was delivered to a single MCF-7 using a nanoneedle and the effect of ICI 182,780, which is an antagonist of estrogen, was observed using the GFP expression level. By ICI 182,780 treatment, the fluorescence intensity of the GFP was decreased by 30-50% within 24h. This technology is the very first trial of single cell diagnosis and we are looking forward to applying it to precious single cell diagnosis in medical fields.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Sena-Esteves, Miguel; Saeki, Yoshinaga; Camp, Sara M.; Chiocca, E. Antonio; Breakefield, Xandra O.
1999-01-01
We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV–Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 106 and 107 transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery. PMID:10559361
Wang, Tiantian; Sun, Hui; Zhang, Jie; Liu, Qing; Wang, Longjiang; Chen, Peipei; Wang, Fangkun; Li, Hongmei; Xiao, Yihong; Zhao, Xiaomin
2014-03-01
In the present study, an a-agglutinin-based Saccharomyces boulardii surface display system was successfully established using a single expression vector. Based on the two protein co-expression vector pSP-G1 built by Partow et al., a S. boulardii surface display vector-pSDSb containing all the display elements was constructed. The display results of heterologous proteins were confirmed by successfully displaying enhanced green fluorescent protein (EGFP) and chicken Eimeria tenella Microneme-2 proteins (EtMic2) on the S. boulardii cell surface. The DNA sequence of AGA1 gene from S. boulardii (SbAGA1) was determined and used as the cell wall anchor partner. This is the first time heterologous proteins have been displayed on the cell surface of S. boulardii. Because S. boulardii is probiotic and eukaryotic, its surface display system would be very valuable, particularly in the development of a live vaccine against various pathogenic organisms especially eukaryotic pathogens such as protistan parasites. Copyright © 2013 Elsevier Inc. All rights reserved.
Boost OCR accuracy using iVector based system combination approach
NASA Astrophysics Data System (ADS)
Peng, Xujun; Cao, Huaigu; Natarajan, Prem
2015-01-01
Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong
2015-12-02
For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
An Approach towards Ultrasound Kidney Cysts Detection using Vector Graphic Image Analysis
NASA Astrophysics Data System (ADS)
Mahmud, Wan Mahani Hafizah Wan; Supriyanto, Eko
2017-08-01
This study develops new approach towards detection of kidney ultrasound image for both with single cyst as well as multiple cysts. 50 single cyst images and 25 multiple cysts images were used to test the developed algorithm. Steps involved in developing this algorithm were vector graphic image formation and analysis, thresholding, binarization, filtering as well as roundness test. Performance evaluation to 50 single cyst images gave accuracy of 92%, while for multiple cysts images, the accuracy was about 86.89% when tested to 25 multiple cysts images. This developed algorithm may be used in developing a computerized system such as computer aided diagnosis system to help medical experts in diagnosis of kidney cysts.
Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems
Li, Zhining; Zhang, Yingtang; Yin, Gang
2018-01-01
The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544
Application of a VLSI vector quantization processor to real-time speech coding
NASA Technical Reports Server (NTRS)
Davidson, G.; Gersho, A.
1986-01-01
Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A
2002-02-01
Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-02-20
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.
Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems
2013-01-01
This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns. PMID:23286457
Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems.
Lobet, Guillaume; Draye, Xavier
2013-01-04
: This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns.
Compute Server Performance Results
NASA Technical Reports Server (NTRS)
Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)
1994-01-01
Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,
Fukuzawa, Noriho; Ishihara, Takeaki; Itchoda, Noriko; Tabayashi, Noriko; Kataoka, Chiwa; Masuta, Chikara; Matsumura, Takeshi
2011-01-01
A plant viral vector has the potential to efficiently produce recombinant proteins at a low cost in a short period. Although recombinant proteins can be also produced by transgenic plants, a plant viral vector, if available, may be more convenient when urgent scale-up in production is needed. However, it is difficult to use a viral vector in open fields because of the risk of escape to the environment. In this study, we constructed a novel viral vector system using a movement-defective Cucumber mosaic virus (CMV) vector, which is theoretically localized in the inoculated cells but infects systemically only with the aid of the transgenic helper plant that complements viral movement, diminishing the risk of viral proliferation. Interestingly, the helper plant systemically infected with the vector gave strong cross-protection against challenge inoculation with wild-type CMVs. Using CMV strains belonging to two discrete CMV groups (subgroups I and II), we also improved the system to prevent recombination between the vector and the transgene transcript in the helper plant. We here demonstrate the expression of an anti-dioxin single chain variable fragment (DxscFv) and interleukin-1 receptor antagonist (IL1-Ra) in Nicotiana benthamiana by this viral vector confinement system, which is applicable for many useful high-quality recombinant proteins. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1996-01-01
In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-01-01
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763
High-order rogue waves in vector nonlinear Schrödinger equations.
Ling, Liming; Guo, Boling; Zhao, Li-Chen
2014-04-01
We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.
Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter
2004-02-01
An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.
Palmer, Gene A.; Brogdon, Jennifer L.; Constant, Stephanie L.; Tattersall, Peter
2004-01-01
An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th1 immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4+ T cells. PMID:14722265
Geiling, Benjamin; Vandal, Guillaume; Posner, Ada R.; de Bruyns, Angeline; Dutchak, Kendall L.; Garnett, Samantha; Dankort, David
2013-01-01
The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems. PMID:24146852
Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.
1999-01-01
This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861
Thrust vectoring for lateral-directional stability
NASA Technical Reports Server (NTRS)
Peron, Lee R.; Carpenter, Thomas
1992-01-01
The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.
A Tupaia paramyxovirus vector system for targeting and transgene expression.
Engeland, Christine E; Bossow, Sascha; Hudacek, Andrew W; Hoyler, Birgit; Förster, Judith; Veinalde, Rūta; Jäger, Dirk; Cattaneo, Roberto; Ungerechts, Guy; Springfeld, Christoph
2017-09-01
Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.
Trial and error: how the unclonable human mitochondrial genome was cloned in yeast.
Bigger, Brian W; Liao, Ai-Yin; Sergijenko, Ana; Coutelle, Charles
2011-11-01
Development of a human mitochondrial gene delivery vector is a critical step in the ability to treat diseases arising from mutations in mitochondrial DNA. Although we have previously cloned the mouse mitochondrial genome in its entirety and developed it as a mitochondrial gene therapy vector, the human mitochondrial genome has been dubbed unclonable in E. coli, due to regions of instability in the D-loop and tRNA(Thr) gene. We tested multi- and single-copy vector systems for cloning human mitochondrial DNA in E. coli and Saccharomyces cerevisiae, including transformation-associated recombination. Human mitochondrial DNA is unclonable in E. coli and cannot be retained in multi- or single-copy vectors under any conditions. It was, however, possible to clone and stably maintain the entire human mitochondrial genome in yeast as long as a single-copy centromeric plasmid was used. D-loop and tRNA(Thr) were both stable and unmutated. This is the first report of cloning the entire human mitochondrial genome and the first step in developing a gene delivery vehicle for human mitochondrial gene therapy.
Virus Database and Online Inquiry System Based on Natural Vectors.
Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St
2017-01-01
We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.
Development of a S/w System for Relative Positioning Using GPS Carrier Phase
NASA Astrophysics Data System (ADS)
Ahn, Yong-Won; Kim, Chun-Hwey; Park, Pil-Ho; Park, Jong-Uk; Jo, Jeong-Ho
1997-12-01
We developed a GPS phase data processing S/W system which calculates baseline vectors and distances between two points located in the surface of the Earth. For this development a Double-Difference method and L1 carrier phase data from GPS(Global Positioning System) were used. This S/W system consists of four main parts : satellite position calculation, Single-Difference equation, Double-Difference equation, and correlation. To verify our S/W, we fixed KAO(N36.37, E127.37, H77.61m), one of the International GPS Services for Geodynamics, which is located at Tae-Jon, and we measured baseline vectors and relative distances with data from observations at approximate baseline distances of 2.7, 42.1, 81.1, 146.6km. Then we compared the vectors and distances with the data which we obtained from the GPSurvery S/W system, with the L1/L2 ION-Free method and broadcast ephemeris. From the comparison of the vectors and distances with the data from the GPSurvey S/W system, we found baseline vectors X, Y, Z and baseline distances matched well within the extent of 50cm and 10cm, respectively.
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
Direct discretization of planar div-curl problems
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1989-01-01
A control volume method is proposed for planar div-curl systems. The method is independent of potential and least squares formulations, and works directly with the div-curl system. The novelty of the technique lies in its use of a single local vector field component and two control volumes rather than the other way around. A discrete vector field theory comes quite naturally from this idea and is developed. Error estimates are proved for the method, and other ramifications investigated.
Evaluation of Potential JHSV Port and Alternative Offload Sites in Coastal North Carolina
2006-08-01
the underlying data for use in his own Geographic Information System (GIS) application. The quality of this data is variable. This author found... Information Systems (GIS). Unlike the raster charts previously described, these ENC files are vector elements, meaning they can be individually selected in...Single Mobility System . “The Single Mobility System (SMS) embodies the Mobility Access Portal concept, a Web- based interface or “doorway” to other
Calderone, G.J.; Butler, R.F.
1991-01-01
Random tilting of a single paleomagnetic vector produces a distribution of vectors which is not rotationally symmetric about the original vector and therefore not Fisherian. Monte Carlo simulations were performed on two types of vector distributions: 1) distributions of vectors formed by perturbing a single original vector with a Fisher distribution of bedding poles (each defining a tilt correction) and 2) standard Fisher distributions. These simulations demonstrate that inclinations of vectors drawn from both distributions are biased toward shallow inclinations. The Fisher mean direction of the distribution of vectors formed by perturbing a single vector with random undetected tilts is biased toward shallow inclinations, but this bias is insignificant for angular dispersions of bedding poles less than 20??. -from Authors
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.
2014-01-01
Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746
Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.
2014-01-01
While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061
Pure state consciousness and its local reduction to neuronal space
NASA Astrophysics Data System (ADS)
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza
2017-09-11
The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.
CMG-Augmented Control of a Hovering VTOL Platform
NASA Technical Reports Server (NTRS)
Lim, K. B.; Moerder, D. D.
2007-01-01
This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.
Vector Beam Polarization State Spectrum Analyzer.
Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M
2017-05-22
We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.
Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.
2017-01-01
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574
Vector assembly of colloids on monolayer substrates
NASA Astrophysics Data System (ADS)
Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve
2017-06-01
The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.
Equipment Development for Automatic Anthropometric Measurements
NASA Technical Reports Server (NTRS)
Cater, J. P.; Oakey, W. E.
1978-01-01
An automated procedure for measuring and recording the anthropometric active angles is presented. The small portable system consists of a microprocessor controlled video data acquisition system which measures single plane active angles using television video techniques and provides the measured data on sponsored-specified preformatted data sheets. This system, using only a single video camera, observes the end limits of the movement of a pair of separated lamps and calculates the vector angle between the extreme positions.
Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics
2016-09-15
Algorithm GPS Global Positioning System HOUF Higher Order Unscented Filter IC initial conditions IMM Interacting Multiple Model IMU Inertial Measurement Unit ...sources ranging from inertial measurement units to star sensors are used to construct observations for attitude estimation algorithms. The sensor...parameters. A single vector measurement will provide two independent parameters, as a unit vector constraint removes a DOF making the problem underdetermined
Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T
2012-02-01
Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.
Modal vector estimation for closely spaced frequency modes
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.; Blair, M.
1982-01-01
Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.
Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart.
Wang, Zhong; Zhu, Tong; Qiao, Chunping; Zhou, Liqiao; Wang, Bing; Zhang, Jian; Chen, Chunlian; Li, Juan; Xiao, Xiao
2005-03-01
Systemic gene delivery into muscle has been a major challenge for muscular dystrophy gene therapy, with capillary blood vessels posing the principle barrier and limiting vector dissemination. Previous efforts to deliver genes into multiple muscles have relied on isolated vessel perfusion or pharmacological interventions to enforce broad vector distribution. We compared the efficiency of multiple adeno-associated virus (AAV) vectors after a single injection via intraperitoneal or intravenous routes without additional intervention. We show that AAV8 is the most efficient vector for crossing the blood vessel barrier to attain systemic gene transfer in both skeletal and cardiac muscles of mice and hamsters. Serotypes such as AAV1 and AAV6, which demonstrate robust infection in skeletal muscle cells, were less effective in crossing the blood vessel barrier. Gene expression persisted in muscle and heart, but diminished in tissues undergoing rapid cell division, such as neonatal liver. This technology should prove useful for muscle-directed systemic gene therapy.
Testing of the Support Vector Machine for Binary-Class Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew
2011-01-01
The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results
A Parallel Vector Machine for the PM Programming Language
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2016-04-01
PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-01-01
This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.
Testing resonating vector strength: Auditory system, electric fish, and noise
NASA Astrophysics Data System (ADS)
Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.
2011-12-01
Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.
Understanding Beam Alignment in a Coherent Lidar System
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
Managing the resilience space of the German energy system - A vector analysis.
Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich
2018-07-15
The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.
Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja
2017-12-07
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2014-06-01
The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.
Pang, Jinhuan; Zhu, Yue; Li, Qing; Liu, Jinzhi; Tian, Yingchuan; Liu, Yule; Wu, Jiahe
2013-01-01
Gossypium barbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G . barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G . barbadense . In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G . barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G . barbadense . The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G . barbadense , and help to contribute desirable traits for breeding of G . barbadense and G. hirsutum. PMID:24023833
Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev
2015-05-01
In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.
VEST: Abstract Vector Calculus Simplification in Mathematica
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Squire, J. Burby and H. Qin
2013-03-12
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce scalar and vector expressions of a very general type using a systematic canonicalization procedure. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by canonicalization, subsequently applying these to simplify large expressions. In a companion paper [1], we employ VEST in the automation of the calculation of Lagrangians for the single particle guiding center system in plasma physics, amore » computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations. __________________________________________________« less
VEST: Abstract vector calculus simplification in Mathematica
NASA Astrophysics Data System (ADS)
Squire, J.; Burby, J.; Qin, H.
2014-01-01
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce three-dimensional scalar and vector expressions of a very general type to a well defined standard form. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by reduction, subsequently applying these to simplify large expressions. In a companion paper Burby et al. (2013) [12], we employ VEST in the automation of the calculation of high-order Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations.
The Fundamentals of Dislocation Transport of Hydrogen in BCC Iron.
1984-10-01
4.2.1. Single Crystal Material 24 4.2.2. Polycrystalline Material 25 4.3. Single Crystal Orientation Determination 25 4.4. Straining Permeation Test 27...Test 45 4.6. Supersaturation Study 47 S. RESULTS AND DISCUSSION 50 5.1. Single Crystal Orientation Determination 50 5.1.1. Slip System Determination 58...Orientation 162 Determination B.1. Dislocation Line Direction Determination 162 B.2. Burgers Vector Determination 164
De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E
2016-11-01
Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-01-01
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-07-24
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.
Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system
NASA Technical Reports Server (NTRS)
Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.
1993-01-01
The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Geminivirus vectors for high-level expression of foreign proteins in plant cells.
Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S
2003-02-20
Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.
Deng, Zhongyuan; Zhang, Shen; Gu, Shaohua; Ni, Xinzhi; Zeng, Wenxian; Li, Xianchun
2018-01-17
The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis -acting elements, trans -acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.
Mechanisms and ecological role of carbon transfer within coastal seascapes.
Hyndes, Glenn A; Nagelkerken, Ivan; McLeod, Rebecca J; Connolly, Rod M; Lavery, Paul S; Vanderklift, Mathew A
2014-02-01
Worldwide, coastal systems provide some of the most productive habitats, which potentially influence a range of marine and terrestrial ecosystems through the transfer of nutrients and energy. Several reviews have examined aspects of connectivity within coastal seascapes, but the scope of those reviews has been limited to single systems or single vectors. We use the transfer of carbon to examine the processes of connectivity through multiple vectors in multiple ecosystems using four coastal seascapes as case studies. We discuss and compare the main vectors of carbon connecting different ecosystems, and then the natural and human-induced factors that influence the magnitude of effect for those vectors on recipient systems. Vectors of carbon transfer can be grouped into two main categories: detrital particulate organic carbon (POC) and its associated dissolved organic and inorganic carbon (DOC/DIC) that are transported passively; and mobile consumers that transport carbon actively. High proportions of net primary production can be exported over meters to hundreds of kilometers from seagrass beds, algal reefs and mangroves as POC, with its export dependent on wind-generated currents in the first two of these systems and tidal currents for the last. By contrast, saltmarshes export large quantities of DOC through tidal movement, while land run-off plays a critical role in the transport of terrestrial POC and DOC into temperate fjords. Nekton actively transfers carbon across ecosystem boundaries through foraging movements, ontogenetic migrations, or 'trophic relays', into and out of seagrass beds, mangroves or saltmarshes. The magnitude of these vectors is influenced by: the hydrodynamics and geomorphology of the region; the characteristics of the carbon vector, such as their particle size and buoyancy; and for nekton, the extent and frequency of migrations between ecosystems. Through a risk-assessment process, we have identified the most significant human disturbances that affect the integrity of connectivity among ecosystems. Loss of habitat, net primary production (NPP) and overfishing pose the greatest risks to carbon transfer in temperate saltmarsh and tropical estuaries, particularly through their effects on nekton abundance and movement. In comparison, habitat/NPP loss and climate change are likely to be the major risks to carbon transfer in temperate fjords and temperate open coasts through alteration in the amount of POC and/or DOC/DIC being transported. While we have highlighted the importance of these vectors in coastal seascapes, there is limited quantitative data on the effects of these vectors on recipient systems. It is only through quantifying those subsidies that we can effectively incorporate complex interactions into the management of the marine environment and its resources. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Dickey, Alexia; Wang, Nan; Cooper, Edwin; Tull, Lauren; Breedlove, Drew; Mason, Hugh; Liu, Dehu; Wang, Kevin Yueju
2017-01-01
Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.
Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.
Isaac, Marney E; Kimaro, Anthony A
2011-01-01
Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M
2010-07-01
Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.
Static investigation of several yaw vectoring concepts on nonaxisymmetric nozzles
NASA Technical Reports Server (NTRS)
Mason, M. L.; Berrier, B. L.
1985-01-01
A test has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the effects on nozzle internal performance of several yaw vectoring concepts. Nonaxisymmetric convergent-divergent nozzles with throat areas simulating dry and afterburning power settings and single expansion ramp nozzles with a throat area simulating a dry power setting were modified for yaw thrust vectoring. Forward-thrust and pitch-vectored nozzle configurations were tested with each yaw vectoring concept. Four basic yaw vectoring concepts were investigated on the nonaxisymmetric convergent-divergent nozzles: (1) translating sidewall; (2) downstream (of throat) flaps; (3) upstream (of throat) port/flap; and (4) powered rudder. Selected combinations of the rudder with downstream flaps or upstream port/flap were also tested. A single yaw vectoring concept, post-exit flaps, was investigated on the single expansion ramp nozzles. All testing was conducted at static (no external flow) conditions and nozzle pressure ratios varied from 2.0 up to 10.0.
A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging
NASA Technical Reports Server (NTRS)
Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.
2006-01-01
A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.
Vector disformal transformation of cosmological perturbations
NASA Astrophysics Data System (ADS)
Papadopoulos, Vassilis; Zarei, Moslem; Firouzjahi, Hassan; Mukohyama, Shinji
2018-03-01
We study disformal transformations of cosmological perturbations by vector fields in theories invariant under U (1 ) gauge transformations. Three types of vector disformal transformations are considered: (i) disformal transformations by a single timelike vector; (ii) disformal transformations by a single spacelike vector; and (iii) disformal transformations by three spacelike vectors. We show that transformations of type (i) do not change either curvature perturbation or gravitational waves; that those of type (ii) do not change curvature perturbation but change gravitational waves; and that those of type (iii) change both curvature perturbation and gravitational waves. Therefore, coupling matter fields to the metric after disformal transformations of type (ii) or (iii) in principle have observable consequences. While the recent multi-messenger observation of binary neutron stars has singled out a proper disformal frame at the present epoch with a high precision, the result of the present paper may thus help distinguishing disformal frames in the early universe.
Meira, L B; Henriques, J A; Magaña-Schwencke, N
1995-01-01
The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA. Images PMID:7784218
A Blind Segmentation Approach to Acoustic Event Detection Based on I Vector
2013-08-25
Hui Lee1 1 School of ECE, Georgia Institute of Technology , Atlanta, GA. 30332-0250, USA 2 School of Computing, University of Eastern Finland, Finland...recordings obtained at low signal-to-noise-ratio (SNR) enviroments with highly-mixed events in a single acous- tic segment. Research in AED [1] is...2532–2535. [28] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology
Computation of optimal output-feedback compensators for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Platzman, L. K.
1972-01-01
The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Huang, Zhi-Yong; Lv, Hai-Jiang
2018-05-01
We suggest an experimental scheme that a single nitrogen-vacancy (NV) center coupled to a nearest neighbor 13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance (ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave (CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an (NV–13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about 14N–Vacancy–13C (14N–V–13C) plane. Protect supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model.
Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Shi, Chao
2018-02-01
Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.
Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi
2016-05-01
Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC.
Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors
NASA Astrophysics Data System (ADS)
Yi, Hongsuk
2014-03-01
Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.
Proof of concept demonstration for coherent beam pattern measurements of KID detectors
NASA Astrophysics Data System (ADS)
Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.
2016-07-01
Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.
Salvaudon, Lucie; De Moraes, Consuelo M.; Mescher, Mark C.
2013-01-01
Recent studies have documented effects of plant viruses on host plants that appear to enhance transmission by insect vectors. But, almost no empirical work has explored the implications of such apparent manipulation for interactions among co-infecting pathogens. We examined single and mixed infections of two potyviruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV), that frequently co-occur in cucurbitaceae populations and share the same aphid vectors. We found that ZYMV isolates replicated at similar rates in single and mixed infections, whereas WMV strains accumulated to significantly lower levels in the presence of ZYMV. Furthermore, ZYMV induced changes in leaf colour and volatile emissions that enhanced aphid (Aphis gossypii) recruitment to infected plants. By contrast, WMV did not elicit strong effects on plant–aphid interactions. Nevertheless, WMV was still readily transmitted from mixed infections, despite fairing poorly in in-plant competition. These findings suggest that pathogen effects on host–vector interactions may well influence competition among co-infecting pathogens. For example, if non-manipulative pathogens benefit from the increased vector traffic elicited by manipulative competitors, their costs of competition may be mitigated to some extent. Conversely, the benefits of manipulation may be limited by free-rider effects in systems where there is strong competition among pathogens for host resources and/or access to vectors. PMID:23407835
Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R
2007-06-01
Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.
Mire, Chad E; Geisbert, Joan B; Versteeg, Krista M; Mamaeva, Natalia; Agans, Krystle N; Geisbert, Thomas W; Connor, John H
2015-10-01
The filoviruses, Marburg marburgvirus (MARV), Zaire ebolavirus (ZEBOV), and Sudan ebolavirus (SEBOV), cause severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Monovalent recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode a filovirus glycoprotein (GP) in place of the VSV glycoprotein, have shown 100% efficacy against homologous filovirus challenge in rodent and NHP studies. Here, we examined the utility of a single-vector, single-injection trivalent rVSV vector expressing MARV, ZEBOV, and SEBOV GPs to protect against MARV-, ZEBOV-, and SEBOV-induced disease in outbred Hartley guinea pigs where we observed protection from effects of all 3 filoviruses. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sazonov, S. V.; Ustinov, N. V.
2017-02-01
The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky-Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.
Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy.
Igarashi, Yuka; Uchiyama, Toru; Minegishi, Tomoko; Takahashi, Sirirat; Watanabe, Nobuyuki; Kawai, Toshinao; Yamada, Masafumi; Ariga, Tadashi; Onodera, Masafumi
2017-09-15
Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34 + cells exhibited vector integration in bone marrow, indicating that the transgene-positive cells in PB might have differentiated from a small population of stem cells or lineage-restricted precursor cells. sc-ddPCR is a simplified and powerful tool for the detailed assessment of transgene-positive cell distribution in patients treated with SCGT.
Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E
2016-01-01
There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.
A simple and robust vector-based shRNA expression system used for RNA interference.
Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi
2013-01-01
RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2010-12-01
Double- or two-wave-vector diffusion-weighting experiments with short mixing times in which two diffusion-weighting periods are applied in direct succession, are a promising tool to estimate cell sizes in the living tissue. However, the underlying effect, a signal difference between parallel and antiparallel wave vector orientations, is considerably reduced for the long gradient pulses required on whole-body MR systems. Recently, it has been shown that multiple concatenations of the two wave vectors in a single acquisition can double the modulation amplitude if short gradient pulses are used. In this study, numerical simulations of such experiments were performed with parameters achievable with whole-body MR systems. It is shown that the theoretical model yields a good approximation of the signal behavior if an additional term describing free diffusion is included. More importantly, it is demonstrated that the shorter gradient pulses sufficient to achieve the desired diffusion weighting for multiple concatenations, increase the signal modulation considerably, e.g. by a factor of about five for five concatenations. Even at identical echo times, achieved by a shortened diffusion time, a moderate number of concatenations significantly improves the signal modulation. Thus, experiments on whole-body MR systems may benefit from multiple concatenations.
Abbink, Peter; Lemckert, Angelique A C; Ewald, Bonnie A; Lynch, Diana M; Denholtz, Matthew; Smits, Shirley; Holterman, Lennart; Damen, Irma; Vogels, Ronald; Thorner, Anna R; O'Brien, Kara L; Carville, Angela; Mansfield, Keith G; Goudsmit, Jaap; Havenga, Menzo J E; Barouch, Dan H
2007-05-01
Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.
Adapter-directed display: a modular design for shuttling display on phage surfaces.
Wang, Kevin Caili; Wang, Xinwei; Zhong, Pingyu; Luo, Peter Peizhi
2010-02-05
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems. Copyright 2009 Elsevier Ltd. All rights reserved.
Bish, Lawrence T.; Sleeper, Meg M.; Brainard, Benjamin; Cole, Stephen; Russell, Nicholas; Withnall, Elanor; Arndt, Jason; Reynolds, Caryn; Davison, Ellen; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee
2011-01-01
Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Prior strategies have employed cardio-pulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus or plasmid DNA. While single stranded adeno-associated virus vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented by using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated virus vectors to the canine myocardium. Four vectors were evaluated—single stranded adeno-associated virus 9, self-complementary adeno-associated virus 9, self-complementary adeno-associated virus 8, self-complementary adeno-associated virus 6—so that comparison could be made between single stranded and self complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that self-complementary adeno-associated virus is superior to single stranded adeno-associated virus and that adeno-associated virus 6 is superior to other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15 to 4000 times more abundant in the heart than in any other organ for self-complementary adeno-associated virus 6. Percutaneous transendocardial injection of self-complementary adeno-associated virus 6 is a safe, effective method for achieving efficient cardiac gene transfer. PMID:18813281
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
A VLSI chip set for real time vector quantization of image sequences
NASA Technical Reports Server (NTRS)
Baker, Richard L.
1989-01-01
The architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time is described. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its VQ codebook may contain unlimited number of codevectors, N, having dimension up to K = 64. Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as O (log N) cycles. A full codebook search results in O(N) performance, compared to O(KN) for a Single-Instruction, Single-Data (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.
Practical applications of remote sensing technology
NASA Technical Reports Server (NTRS)
Whitmore, Roy A., Jr.
1990-01-01
Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.
Page segmentation using script identification vectors: A first look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, J.; Cannon, M.; Kelly, P.
1997-07-01
Document images in which different scripts, such as Chinese and Roman, appear on a single page pose a problem for optical character recognition (OCR) systems. This paper explores the use of script identification vectors in the analysis of multilingual document images. A script identification vector is calculated for each connected component in a document. The vector expresses the closest distance between the component and templates developed for each of thirteen scripts, including Arabic, Chinese, Cyrillic, and Roman. The authors calculate the first three principal components within the resulting thirteen-dimensional space for each image. By mapping these components to red, green,more » and blue, they can visualize the information contained in the script identification vectors. The visualization of several multilingual images suggests that the script identification vectors can be used to segment images into script-specific regions as large as several paragraphs or as small as a few characters. The visualized vectors also reveal distinctions within scripts, such as font in Roman documents, and kanji vs. kana in Japanese. Results are best for documents containing highly dissimilar scripts such as Roman and Japanese. Documents containing similar scripts, such as Roman and Cyrillic will require further investigation.« less
Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo
2018-01-09
Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.
Liu, Wencheng; Zhao, Lingzhi; Blackman, Brittany; Parmar, Mayur; Wong, Man Ying; Woo, Thomas; Yu, Fangmin; Chiuchiolo, Maria J; Sondhi, Dolan; Kaminsky, Stephen M; Crystal, Ronald G; Paul, Steven M
2016-12-07
Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease. Copyright © 2016 the authors 0270-6474/16/3612425-11$15.00/0.
Vectors for co-expression of an unrestricted number of proteins
Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad
2007-01-01
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810
Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H
2004-08-01
Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.
2015-11-01
Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Schirmer, Alberto W.
1993-01-01
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
Ma, Wenqin; Li, Baozheng; Ling, Chen; Jayandharan, Giridhara R.; Byrne, Barry J.
2011-01-01
Abstract We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors. PMID:21219084
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sazonov, S. V., E-mail: sazonov.sergey@gmail.com; Ustinov, N. V., E-mail: n-ustinov@mail.ru
The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutionsmore » of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.« less
Design and construction of 2A peptide-linked multicistronic vectors.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. This article describes the design and construction of 2A peptide-linked multicistronic vectors, which can be used to express multiple proteins from a single open reading frame (ORF). The small 2A peptide sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector.
Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.
2009-01-01
Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693
Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo
2011-01-01
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587
Gradia, Scott D; Ishida, Justin P; Tsai, Miaw-Sheue; Jeans, Chris; Tainer, John A; Fuss, Jill O
2017-01-01
Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done. © 2017 Elsevier Inc. All rights reserved.
Ellis, BL; Hirsch, ML; Porter, SN; Samulski, RJ; Porteus, MH
2016-01-01
An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy. PMID:22257934
A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN
Gil-Humanes, Javier; Čegan, Radim; Kono, Thomas J.Y.; Konečná, Eva; Belanto, Joseph J.; Starker, Colby G.
2017-01-01
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare). PMID:28522548
A multi-purpose toolkit to enable advanced genome engineering in plants
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier; ...
2017-05-18
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
A multi-purpose toolkit to enable advanced genome engineering in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, H.J.
1996-02-01
The second generation of the Digital Equipment Corp. (DEC) DECchip Alpha AXP microprocessor is referred to as the 21164. From the viewpoint of numerically-intensive computing, the primary difference between it and its predecessor, the 21064, is that the 21164 has twice the multiply/add throughput per clock period (CP), a maximum of two floating point operations (FLOPS) per CP vs. one for 21064. The AlphaServer 8400 is a shared-memory multiprocessor server system that can accommodate up to 12 CPUs and up to 14 GB of memory. In this report we will compare single processor performance of the 8400 system with thatmore » of the International Business Machines Corp. (IBM) RISC System/6000 POWER-2 microprocessor running at 66 MHz, the Silicon Graphics, Inc. (SGI) MIPS R8000 microprocessor running at 75 MHz, and the Cray Research, Inc. CRAY J90. The performance comparison is based on a set of Fortran benchmark codes that represent a portion of the Los Alamos National Laboratory supercomputer workload. The advantage of using these codes, is that the codes also span a wide range of computational characteristics, such as vectorizability, problem size, and memory access pattern. The primary disadvantage of using them is that detailed, quantitative analysis of performance behavior of all codes on all machines is difficult. One important addition to the benchmark set appears for the first time in this report. Whereas the older version was written for a vector processor, the newer version is more optimized for microprocessor architectures. Therefore, we have for the first time, an opportunity to measure performance on a single application using implementations that expose the respective strengths of vector and superscalar architecture. All results in this report are from single processors. A subsequent article will explore shared-memory multiprocessing performance of the 8400 system.« less
Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J
2010-10-01
Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.
Optimizing fusion PIC code performance at scale on Cori Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, T. S.; Deslippe, J.
In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less
Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus
2016-02-01
Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crosby, Catherine M; Barry, Michael A
2017-02-18
Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.
Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing
NASA Technical Reports Server (NTRS)
Re, R. J.; Berrier, B. L.
1982-01-01
The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.
Optical image security using Stokes polarimetry of spatially variant polarized beam
NASA Astrophysics Data System (ADS)
Fatima, Areeba; Nishchal, Naveen K.
2018-06-01
We propose a novel security scheme that uses vector beam characterized by the spatially variant polarization distribution. A vector beam is so generated that its helical components carry tailored phases corresponding to the image/images that is/are to be encrypted. The tailoring of phase has been done by employing the modified Gerchberg-Saxton algorithm for phase retrieval. Stokes parameters for the final vector beam is evaluated and is used to construct the ciphertext and one of the keys. The advantage of the proposed scheme is that it generates real ciphertext and keys which are easier to transmit and store than complex quantities. Moreover, the known plaintext attack is not applicable to this system. As a proof-of-concept, simulation results have been presented for securing single and double gray-scale images.
Hong, Yang; Hondalus, Mary K
2008-10-01
Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.
Wulff, Holger; Krieger, Thorsten; Krüger, Karen; Stahmer, Ingrid; Thaiss, Friedrich; Schäfer, Hansjörg; Block, Andreas
2007-01-01
Background Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. Results High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29) at a multiplicity of infection (m.o.i.) of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. Conclusion VP16 transactivator-mediated and doxycycline-regulated expression of the human interleukin-12 gene enables highly efficient and tightly controlled cytokine expression in human cancer. These data illustrate the potential of the described adenoviral vector system for the safe and superior expression of therapeutic genes in the treatment of colorectal cancer and other malignancies. PMID:17594499
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
Porous silicon advances in drug delivery and immunotherapy
Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE
2013-01-01
Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260
Gravity Research on Plants: Use of Single-Cell Experimental Models
Chebli, Youssef; Geitmann, Anja
2011-01-01
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598
A self-contained, automated methodology for optimal flow control validated for transition delay
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, R. A.; Erlebacher, Gordon; Hussaini, M. Yousuff
1995-01-01
This paper describes a self-contained, automated methodology for flow control along with a validation of the methodology for the problem of boundary layer instability suppression. The objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow, e.g., Blasius boundary layer. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The present approach couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields, and control, e.g., actuators, may be determined. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc.
A DNA replicon system for rapid high-level production of virus-like particles in plants.
Huang, Zhong; Chen, Qiang; Hjelm, Brooke; Arntzen, Charles; Mason, Hugh
2009-07-01
Recombinant virus-like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low-level antigen accumulation and long-time frame to produce transgenic plants are the two major roadblocks in the practical development of plant-based VLP production. In this article, we describe the optimization of geminivirus-derived DNA replicon vectors for rapid, high-yield plant-based production of VLPs. Co-delivery of bean yellow dwarf virus (BeYDV)-derived vector and Rep/RepA-supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co-expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built-in Rep/RepA cassette without P19 drove protein expression at similar levels as the three-component system. These results demonstrate the advantages of fast and high-level production of VLP-based vaccines using the BeYDV-derived DNA replicon system for transient expression in plants. (c) 2009 Wiley Periodicals, Inc.
A DNA replicon system for rapid high-level production of virus-like particles in plants
Huang, Zhong; Chen, Qiang; Hjelm, Brooke; Arntzen, Charles
2009-01-01
Recombinant virus-like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low level antigen accumulation and long time frame to produce transgenic plants are the two major roadblocks in the practical development of plant-based VLP production. In this paper, we describe the optimization of geminivirus-derived DNA replicon vectors for rapid, high-yield plant-based production of VLPs. Co-delivery of bean yellow dwarf virus (BeYDV)-derived vector and Rep/RepA-supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within five days. Co-expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built-in Rep/RepA cassette without p19 drove protein expression at similar levels as the three-component system. These results demonstrate the advantages of fast and high-level production of VLP-based vaccines using the BeYDV-derived DNA replicon system for transient expression in plants. PMID:19309755
Herzog, R W; Yang, E Y; Couto, L B; Hagstrom, J N; Elwell, D; Fields, P A; Burton, M; Bellinger, D A; Read, M S; Brinkhous, K M; Podsakoff, G M; Nichols, T C; Kurtzman, G J; High, K A
1999-01-01
Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5x10(12) vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.
Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer
2016-12-01
Proving Ground, MD 21005-5068 This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional space ( 3D ) and a Rotation...class for performing rotations of vectors in 3D . Each class is self-contained in a single header file (Vector.h and Rotation.h) so that a C...vector, rotation, 3D , quaternion, C++ tools, rotation sequence, Euler angles, yaw, pitch, roll, orientation 98 Richard Saucier 410-278-6721Unclassified
Howarth, Joanna L; Lee, Youn Bok; Uney, James B
2010-02-01
In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.
Generation of 2A-linked multicistronic cassettes by recombinant PCR.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.
Horstick, Olaf; Ranzinger, Silvia Runge
2015-01-01
This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.
Alamaniotis, Miltiadis; Agarwal, Vivek
2014-04-01
Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less
Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis
Chakraborty, Syandan; Ji, HaYeun; Chen, Jack; Gersbach, Charles A.; Leong, Kam W.
2014-01-01
Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells. PMID:25492703
Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.
2015-01-01
Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface. PMID:25984986
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer.
Tagalakis, Aristides D; McAnulty, Robin J; Devaney, James; Bottoms, Stephen E; Wong, John B; Elbs, Martin; Writer, Michele J; Hailes, Helen C; Tabor, Alethea B; O'Callaghan, Christopher; Jaffe, Adam; Hart, Stephen L
2008-05-01
Synthetic vectors for cystic fibrosis (CF) gene therapy are required that efficiently and safely transfect airway epithelial cells, rather than alveolar epithelial cells or macrophages, and that are nonimmunogenic, thus allowing for repeated delivery. We have compared several vector systems against these criteria including GL67, polyethylenimine (PEI) 22 and 25 kd and two new, synthetic vector formulations, comprising a cationic, receptor-targeting peptide K(16)GACSERSMNFCG (E), and the cationic liposomes (L) DHDTMA/DOPE or DOSEP3/DOPE. The lipid and peptide formulations self assemble into receptor-targeted nanocomplexes (RTNs) LED-1 and LED-2, respectively, on mixing with plasmid (D). LED-1 transfected airway epithelium efficiently, while LED-2 and GL67 preferentially transfected alveolar cells. PEI transfected airway epithelial cells with high efficiency, but was more toxic to the mice than the other formulations. On repeat dosing, LED-1 was equally as effective as the single dose, while GL67 was 30% less effective and PEI 22 kd displayed a 90% reduction of efficiency on repeated delivery. LED-1 thus was the only formulation that fulfilled the criteria for a CF gene therapy vector while GL67 and LED-2 may be appropriate for other respiratory diseases. Opportunities for PEI depend on a solution to its toxicity problems. LED-1 formulations were stable to nebulization, the most appropriate delivery method for CF.
NASA Technical Reports Server (NTRS)
Klauder, John R.
1993-01-01
For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.
Large-scale Clinical-grade Retroviral Vector Production in a Fixed-Bed Bioreactor
Wang, Xiuyan; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; Bartido, Shirley; Hermetet, Gregory; Sadelain, Michel
2015-01-01
The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase. PMID:25751502
Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidari, E., E-mail: ehphys75@iaubushehr.ac.ir; Aslaninejad, M.; Eshraghi, H.
2014-03-15
Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric andmore » anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.« less
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2012-02-01
In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
NASA Technical Reports Server (NTRS)
Folta, David C.; Carpenter, J. Russell
1999-01-01
A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and by appropriate choice of coordinates and simplified measurement modeling is formulated as a linear time-invariant system. Results for improvements to the GSFC algorithm and a multiple satellite formation will be addressed. The goal of this investigation is to progressively relax the assumptions that result in linear time-invariance, ultimately to the point of linearization of the non-linear dynamics about the current state estimate as in the extended Kalman filter. An assessment will then be made about the feasibility of the decentralized approach to the realistic formation flying application of the EO-1/Landsat 7 formation flying experiment.
Chang, Chia-Wei; Lai, Yi-Shin; Pawlik, Kevin M; Liu, Kaimao; Sun, Chiao-Wang; Li, Chao; Schoeb, Trenton R; Townes, Tim M
2009-05-01
We report the derivation of induced pluripotent stem (iPS) cells from adult skin fibroblasts using a single, polycistronic lentiviral vector encoding the reprogramming factors Oct4, Sox2, and Klf4. Porcine teschovirus-1 2A sequences that trigger ribosome skipping were inserted between human cDNAs for these factors, and the polycistron was subcloned downstream of the elongation factor 1 alpha promoter in a self-inactivating (SIN) lentiviral vector containing a loxP site in the truncated 3' long terminal repeat (LTR). Adult skin fibroblasts from a humanized mouse model of sickle cell disease were transduced with this single lentiviral vector, and iPS cell colonies were picked within 30 days. These cells expressed endogenous Oct4, Sox2, Nanog, alkaline phosphatase, stage-specific embryonic antigen-1, and other markers of pluripotency. The iPS cells produced teratomas containing tissue derived from all three germ layers after injection into immunocompromised mice and formed high-level chimeras after injection into murine blastocysts. iPS cell lines with as few as three lentiviral insertions were obtained. Expression of Cre recombinase in these iPS cells resulted in deletion of the lentiviral vector, and sequencing of insertion sites demonstrated that remnant 291-bp SIN LTRs containing a single loxP site did not interrupt coding sequences, promoters, or known regulatory elements. These results suggest that a single, polycistronic "hit and run" vector can safely and effectively reprogram adult dermal fibroblasts into iPS cells.
Sun, Xun; Lu, You; Bish, Lawrence T; Calcedo, Roberto; Wilson, James M; Gao, Guangping
2010-06-01
Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage phi29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations.
Sun, Xun; Lu, You; Bish, Lawrence T.; Calcedo, Roberto; Wilson, James M.
2010-01-01
Abstract Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage ϕ29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations. PMID:20113166
NASA Astrophysics Data System (ADS)
Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.
2017-09-01
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X
2017-09-21
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
pPCV, a versatile vector for cloning PCR products.
Janner, Christiane R; Brito, Ana Lívia P; Moraes, Lidia Maria P; Reis, Viviane Cb; Torres, Fernando Ag
2013-01-01
The efficiency of PCR product cloning depends on the nature of the DNA polymerase employed because amplicons may have blunt-ends or 3' adenosines overhangs. Therefore, for amplicon cloning, available commercial vectors are either blunt-ended or have a single 3' overhanging thymidine. The aim of this work was to offer in a single vector the ability to clone both types of PCR products. For that purpose, a minimal polylinker was designed to include restriction sites for EcoRV and XcmI which enable direct cloning of amplicons bearing blunt-ends or A-overhangs, respectively, still offering blue/white selection. When tested, the resulting vector, pPCV, presented high efficiency cloning of both types of amplicons.
A universal expression/silencing vector in plants.
Peretz, Yuval; Mozes-Koch, Rita; Akad, Fuad; Tanne, Edna; Czosnek, Henryk; Sela, Ilan
2007-12-01
A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper "virus," transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.
Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.
Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A
2017-01-15
Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors. Copyright © 2017 Crosby et al.
A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia
NASA Astrophysics Data System (ADS)
Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.
2017-08-01
In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.
Porous silicon advances in drug delivery and immunotherapy.
Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E
2013-10-01
Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimization of Support Vector Machine (SVM) for Object Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin
2012-01-01
The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.
Virus diseases of peppers (Capsicum spp.) and their control.
Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A
2014-01-01
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
An efficient transgenic system by TA cloning vectors and RNAi for C. elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gengyo-Ando, Keiko; CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012; Yoshina, Sawako
2006-11-03
In the nematode, transgenic analyses have been performed by microinjection of DNA from various sources into the syncytium gonad. To expedite these transgenic analyses, we solved two potential problems in this work. First, we constructed an efficient TA-cloning vector system which is useful for any promoter. By amplifying the genomic DNA fragments which contain regulatory sequences with or without the coding region, we could easily construct plasmids expressing fluorescent protein fusion without considering restriction sites. We could dissect motor neurons with three colors in a single animal. Second, we used feeding RNAi to isolate transgenic strains which express lag-2::venus fusionmore » gene. We found that the fusion protein is toxic when ectopically expressed in embryos but is functional to rescue a loss of function mutant in the lag-2 gene. Thus, the transgenic system described here should be useful to examine the protein function in the nematode.« less
NASA Technical Reports Server (NTRS)
Norikane, L.; Freeman, A.; Way, J.; Okonek, S.; Casey, R.
1992-01-01
Recent updates to a geographical information system (GIS) called VICAR (Video Image Communication and Retrieval)/IBIS are described. The system is designed to handle data from many different formats (vector, raster, tabular) and many different sources (models, radar images, ground truth surveys, optical images). All the data are referenced to a single georeference plane, and average or typical values for parameters defined within a polygonal region are stored in a tabular file, called an info file. The info file format allows tracking of data in time, maintenance of links between component data sets and the georeference image, conversion of pixel values to `actual' values (e.g., radar cross-section, luminance, temperature), graph plotting, data manipulation, generation of training vectors for classification algorithms, and comparison between actual measurements and model predictions (with ground truth data as input).
Han, Zongchao; Zhong, Li; Maina, Njeri; Hu, Zhongbo; Li, Xiaomiao; Chouthai, Nitin S; Bischof, Daniela; Weigel-Van Aken, Kirsten A; Slayton, William B; Yoder, Mervin C; Srivastava, Arun
2008-03-01
We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.
Zhou, Wen; Li, Xinying; Yu, Jianjun
2017-10-30
We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10 -3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.
Currency crisis indication by using ensembles of support vector machine classifiers
NASA Astrophysics Data System (ADS)
Ramli, Nor Azuana; Ismail, Mohd Tahir; Wooi, Hooy Chee
2014-07-01
There are many methods that had been experimented in the analysis of currency crisis. However, not all methods could provide accurate indications. This paper introduces an ensemble of classifiers by using Support Vector Machine that's never been applied in analyses involving currency crisis before with the aim of increasing the indication accuracy. The proposed ensemble classifiers' performances are measured using percentage of accuracy, root mean squared error (RMSE), area under the Receiver Operating Characteristics (ROC) curve and Type II error. The performances of an ensemble of Support Vector Machine classifiers are compared with the single Support Vector Machine classifier and both of classifiers are tested on the data set from 27 countries with 12 macroeconomic indicators for each country. From our analyses, the results show that the ensemble of Support Vector Machine classifiers outperforms single Support Vector Machine classifier on the problem involving indicating a currency crisis in terms of a range of standard measures for comparing the performance of classifiers.
Polarized fluorescence for skin cancer diagnostic with a multi-aperture camera
NASA Astrophysics Data System (ADS)
Kandimalla, Haripriya; Ramella-Roman, Jessica C.
2008-02-01
Polarized fluorescence has shown some promising results in assessment of skin cancer margins. Researchers have used tetracycline and cross polarization imaging for nonmelanoma skin cancer demarcation as well as investigating endogenous skin polarized fluorescence. In this paper we present a new instrument for polarized fluorescence imaging, able to calculate the full fluorescence Stokes vector in one snapshot. The core of our system is a multi-aperture camera constructed with a two by two lenslet array. Three of the lenses have polarizing elements in front of them, oriented at 0°, + 45°and 90° with respect to light source polarization. A flash lamp combined with a polarizer parallel to the source-camera-sample plane and a UV filter is used as an excitation source. A blue filter in front of the camera system is used to collect only the fluorescent emission of interest and filter out the incident light. In-vitro tests of endogenous and exogenous polarized fluorescence on collagen rich material like bovine tendon were performed and Stokes vector of polarized fluorescence calculated. The system has the advantage of eliminating moving artifacts with the collection of different polarization states and stoke vector in a single snap shot.
Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice
Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.
2005-01-01
Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817
The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft
NASA Technical Reports Server (NTRS)
1983-01-01
A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.
2014-01-01
Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352
Self-Contained Automated Methodology for Optimal Flow Control
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, Roy A.; Erlebacherl, Gordon; Hussaini, M. Yousuff
1997-01-01
This paper describes a self-contained, automated methodology for active flow control which couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields and controls (e.g., actuators), may be determined. The problem of boundary layer instability suppression through wave cancellation is used as the initial validation case to test the methodology. Here, the objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc. The present methodology has been extended to three dimensions and may potentially be applied to separation control, re-laminarization, and turbulence control applications using one to many sensors and actuators.
Vector sensor for scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.
High-quality animation of 2D steady vector fields.
Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire
2004-01-01
Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.
Sparse matrix-vector multiplication on network-on-chip
NASA Astrophysics Data System (ADS)
Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.
2010-12-01
In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.
Matrix-vector multiplication using digital partitioning for more accurate optical computing
NASA Technical Reports Server (NTRS)
Gary, C. K.
1992-01-01
Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.
Recombining overlapping BACs into a single larger BAC.
Kotzamanis, George; Huxley, Clare
2004-01-06
BAC clones containing entire mammalian genes including all the transcribed region and long range controlling elements are very useful for functional analysis. Sequenced BACs are available for most of the human and mouse genomes and in many cases these contain intact genes. However, large genes often span more than one BAC, and single BACs covering the entire region of interest are not available. Here we describe a system for linking two or more overlapping BACs into a single clone by homologous recombination. The method was used to link a 61-kb insert carrying the final 5 exons of the human CFTR gene onto a 160-kb BAC carrying the first 22 exons. Two rounds of homologous recombination were carried out in the EL350 strain of bacteria which can be induced for the Red genes. In the first round, the inserts of the two overlapping BACs were subcloned into modified BAC vectors using homologous recombination. In the second round, the BAC to be added was linearised with the very rare-cutting enzyme I-PpoI and electroporated into recombination efficient EL350 bacteria carrying the other BAC. Recombined BACs were identified by antibiotic selection and PCR screening and 10% of clones contained the correctly recombined 220-kb BAC. The system can be used to link the inserts from any overlapping BAC or PAC clones. The original orientation of the inserts is not important and desired regions of the inserts can be selected. The size limit for the fragments recombined may be larger than the 61 kb used here and multiple BACs in a contig could be combined by alternating use of the two pBACLink vectors. This system should be of use to many investigators wishing to carry out functional analysis on large mammalian genes which are not available in single BAC clones.
[A research on real-time ventricular QRS classification methods for single-chip-microcomputers].
Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J
1997-05-01
Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.
Clinical Applications Involving CNS Gene Transfer
Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.
2015-01-01
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921
The new MSFC Solar vector magnetograph. Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; West, E. A.; Cumings, N. P.
1984-01-01
The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view with spatial resolution determined by a 2.7 x 2.7 arc second pixel size. This system underwent extensive modifications to improve its sensitivity and temporal response. The modifications included replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. The system is described and results of calibrations and tests are presented. Initial observations of solar magnetic fields with the new magnetograph are presented.
Nest ecology of blood parasites in the European roller and its ectoparasitic carnid fly.
Václav, Radovan; Betáková, Tatiana; Švančarová, Petra; Pérez-Serrano, Jorge; Criado-Fornelio, Ángel; Škorvanová, Lucia; Valera, Francisco
2016-06-01
Haemosporidian parasites are considered the most important vector-borne parasites. However, vector identity and ecology is unknown for most such host-vector-parasite systems. In this study, we employ microscopic and molecular analyses to examine haemosporidian prevalence in a migratory, cavity-nesting bird, European roller Coracias garrulus, and its nidicolous blood-feeding ectoparasite Carnus hemapterus. This system is unique in that the ectoparasite is confined to a near-closed environment, in contrast to the free-wandering system of haematophagous dipterans such as mosquitoes. Blood film analysis confirms previous works in that Haemoproteus parasites are widely prevalent in adult rollers and belong to a single species, Haemoproteus coraciae. Leucocytozoon sp. and Trypanosoma sp. also are detected in adult rollers at low intensities with this technique. By means of molecular analysis, we report for the first time Plasmodium sp. presence in C. garrulus. Based on PCR results, Plasmodium parasites are relatively less prevalent than Haemoproteus parasites (20% vs. 31%) in rollers. In contrast, haemosporidian prevalences show the opposite trend for Carnus flies: Plasmodium sp. occurrence (62%) clearly predominates over that of Haemoproteus sp. (5%). A comparison between roller and Carnus samples reveals a significantly higher prevalence of Plasmodium sp. in Carnus samples. Insect survey and phylogenetic analysis suggest Culicoides flies as Haemoproteus sp. vectors, which appear to readily transmit the parasite in southern Spain. This study does not find support for Carnus flies to serve as biological or mechanical vectors of haemosporidians. In spite of this, nidicolous blood-feeding ectoparasites, such as carnid flies, appear as a suitable model for studies on the occurrence and temporal dynamics of avian haemosporidians such as Plasmodium sp. present at low intensities. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)
2008-01-01
A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.
Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.
Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A
2015-01-01
Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not elicit comparable levels of anti-GFP antibodies in permissive hamsters. When tested in the larger rhesus macaque model, SC-Ad6 induces higher transgene-specific antibody and T cell responses. Together, these data suggest that SC-Ad6 could be a more effective platform for developing vaccines against more relevant antigens. This could be especially beneficial for developing vaccines for pathogens for which traditional replication-defective adenovirus vectors have not been effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Development of a GFP expression vector for Cucurbit chlorotic yellows virus.
Wei, Ying; Han, Xiaoyu; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Chen, Linlin; Sun, Bingjian; Shi, Yan
2018-05-24
Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFP SGC , pCCYVGFP CGC , and pCCYVGFP CGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFP CGC -infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFP SGC and pCCYVGFP CGS were mainly found in single cells. Further observation of pCCYVGFP CGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.
Wang, Dai; Phan, Shannon; DiStefano, Daniel J; Citron, Michael P; Callahan, Cheryl L; Indrawati, Lani; Dubey, Sheri A; Heidecker, Gwendolyn J; Govindarajan, Dhanasekaran; Liang, Xiaoping; He, Biao; Espeseth, Amy S
2017-06-01
Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 10 3 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 10 6 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate. IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys that had been infected previously. Our data suggest that PIV5-vectored vaccines could potentially protect both the pediatric and elderly populations and support continued development of the vector platform. Copyright © 2017 American Society for Microbiology.
Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle
NASA Technical Reports Server (NTRS)
Schirmer, Alberto W.; Capone, Francis J.
1989-01-01
In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.
Verification of 2A peptide cleavage.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. The easiest and most effective way to assess 2A cleavage is to perform transient transfection of 293T cells (human embryonic kidney cells) followed by western blot analysis, as described in this protocol. 293T cells are easy to grow and can be efficiently transfected with a variety of vectors. Cleavage can be assessed by detection with antibodies against the target proteins or anti-2A serum.
NASA Technical Reports Server (NTRS)
Dar, M. E.; Jorgensen, T. J.
1995-01-01
Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.
Three axis vector atomic magnetometer utilizing polarimetric technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com
2016-09-15
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less
NASA Technical Reports Server (NTRS)
Schlundt, D. W.
1976-01-01
The installed performance degradation of a swivel nozzle thrust deflector system obtained during increased vectoring angles of a large-scale test program was investigated and improved. Small-scale models were used to generate performance data for analyzing selected swivel nozzle configurations. A single-swivel nozzle design model with five different nozzle configurations and a twin-swivel nozzle design model, scaled to 0.15 size of the large-scale test hardware, were statically tested at low exhaust pressure ratios of 1.4, 1.3, 1.2, and 1.1 and vectored at four nozzle positions from 0 deg cruise through 90 deg vertical used for the VTOL mode.
Single-Vector Calibration of Wind-Tunnel Force Balances
NASA Technical Reports Server (NTRS)
Parker, P. A.; DeLoach, R.
2003-01-01
An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.
Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae
Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro
2011-01-01
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137
Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae.
Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro
2011-01-01
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3(+) clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.
A comparison of two multi-variable integrator windup protection schemes
NASA Technical Reports Server (NTRS)
Mattern, Duane
1993-01-01
Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
Testing of lift/cruise fan exhaust deflector. [for a tip turbine lift fan in short takeoff aircraft
NASA Technical Reports Server (NTRS)
Schlundt, D. W.
1975-01-01
A lift/cruise exhaust deflector system for the LF336/A tip turbine lift fan was designed, built, and tested to determine the design and performance characteristics of a large-scale, single swivel nozzle thrust vectoring system. The exhaust deflector static testing was performed at the Ames Research Center outside static test stand facilities. The test hardware was installed on a hydraulic lift platform to permit both in and out of ground effect testing. The exhaust flow of the LF336/A lift fan was vectored from 0 degrees through 130 degrees during selected fan speeds to obtain performance at different operating conditions. The system was operated with and without flow vanes installed in the small radius bends to evaluate the system performance based on a proposed method of improving the internal flow losses. The program also included testing at different ground heights, to the nozzle exhaust plane, to obtain ground effect data, and the testing of two methods of thrust spoiling using a duct bypass door system and nozzle flap system.
Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.
Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro
2014-08-01
The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wing, David J.; Leavitt, Laurence D.; Re, Richard J.
1993-01-01
An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a single expansion-ramp nozzle with thrust-vectoring capability to 105 degrees. Thrust vectoring was accomplished by the downward rotation of an upper flap with adaptive capability for internal contouring and a corresponding rotation of a center-pivoted lower flap. The static internal performance of configurations with pitch thrust-vector angles of 0 degrees, 60 degrees, and 105 degrees each with two throat areas, was investigated. The nozzle pressure ratio was varied from 1.5 to approximately 8.0 (5.0 for the maximum throat area configurations). Results of this study indicated that the nozzle configuration of the present investigation, when vectored, provided excellent flow-turning capability with relatively high levels of internal performance. In all cases, the thrust vector angle was a function of the nozzle pressure ratio. This result is expected because the flow is bounded by a single expansion surface on both vectored- and unvectored-nozzle geometries.
Evaluation of the SPAR thermal analyzer on the CYBER-203 computer
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Riley, K. M.; Haftka, R. T.
1982-01-01
The use of the CYBER 203 vector computer for thermal analysis is investigated. Strengths of the CYBER 203 include the ability to perform, in vector mode using a 64 bit word, 50 million floating point operations per second (MFLOPS) for addition and subtraction, 25 MFLOPS for multiplication and 12.5 MFLOPS for division. The speed of scalar operation is comparable to that of a CDC 7600 and is some 2 to 3 times faster than Langley's CYBER 175s. The CYBER 203 has 1,048,576 64-bit words of real memory with an 80 nanosecond (nsec) access time. Memory is bit addressable and provides single error correction, double error detection (SECDED) capability. The virtual memory capability handles data in either 512 or 65,536 word pages. The machine has 256 registers with a 40 nsec access time. The weaknesses of the CYBER 203 include the amount of vector operation overhead and some data storage limitations. In vector operations there is a considerable amount of time before a single result is produced so that vector calculation speed is slower than scalar operation for short vectors.
The Unified Floating Point Vector Coprocessor for Reconfigurable Hardware
NASA Astrophysics Data System (ADS)
Kathiara, Jainik
There has been an increased interest recently in using embedded cores on FPGAs. Many of the applications that make use of these cores have floating point operations. Due to the complexity and expense of floating point hardware, these algorithms are usually converted to fixed point operations or implemented using floating-point emulation in software. As the technology advances, more and more homogeneous computational resources and fixed function embedded blocks are added to FPGAs and hence implementation of floating point hardware becomes a feasible option. In this research we have implemented a high performance, autonomous floating point vector Coprocessor (FPVC) that works independently within an embedded processor system. We have presented a unified approach to vector and scalar computation, using a single register file for both scalar operands and vector elements. The Hybrid vector/SIMD computational model of FPVC results in greater overall performance for most applications along with improved peak performance compared to other approaches. By parameterizing vector length and the number of vector lanes, we can design an application specific FPVC and take optimal advantage of the FPGA fabric. For this research we have also initiated designing a software library for various computational kernels, each of which adapts FPVC's configuration and provide maximal performance. The kernels implemented are from the area of linear algebra and include matrix multiplication and QR and Cholesky decomposition. We have demonstrated the operation of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.
Design of single-polarization wavelength splitter based on photonic crystal fiber.
Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan
2011-12-20
A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.
Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu
2013-11-15
A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.
Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph
2017-07-01
Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.
Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.
Lakshmi, Priya G G; Domnic, S
2014-12-01
Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.
Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors
Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian
2014-01-01
In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639
Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids
Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas
2016-01-01
Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration—at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then—through a variety of mechanisms—result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051
Vector-beam solutions of Maxwell's wave equation.
Hall, D G
1996-01-01
The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.
Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.
2013-01-01
This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257
Kim, Ghangho; Kim, Chongwon; Kee, Changdon
2015-04-01
A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite's state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.
Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements
Kim, Ghangho; Kim, Chongwon; Kee, Changdon
2015-01-01
A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299
Blackie, Caroline A; Carlson, Alan N; Korb, Donald R
2015-07-01
Meibomian gland dysfunction (MGD) is understood to be a highly prevalent, chronic progressive disease and the leading cause of dry eye. All available published peer-reviewed results of the novel vectored thermal pulsation therapy for patients with MGD are investigated. The PubMed and meeting abstract search revealed a total of 31 peer-reviewed reports on vectored thermal pulsation therapy at the time of the search (eight manuscripts and 23 meeting abstracts). All manuscripts evidence a significant increase in meibomian gland function (∼3×) and symptom improvement post a single 12-min treatment. Additional reported objective measures such as osmolarity, tear break-up time, or lipid layer thickness also increased as a result of the therapy; however, not all findings were statistically significant. The randomized controlled studies evidence sustained gland function and symptom relief lasting out to 12 months. The uncontrolled case series evidence significantly longer duration of effect. A single 12 minute vectored thermal pulsation treatment allows for reducing dry eye symptoms, improving meibomian gland function and other correlates of the ocular surface health.
Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene
NASA Astrophysics Data System (ADS)
Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.
2012-07-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.
Umei, Tomohiko C; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2017-08-19
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.
Umei, Tomohiko C.; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2017-01-01
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. PMID:28825623
Hamorsky, Krystal Teasley; Grooms-Williams, Tiffany W.; Husk, Adam S.; Bennett, Lauren J.; Palmer, Kenneth E.
2013-01-01
Broadly neutralizing monoclonal antibodies (bnMAbs) may offer powerful tools for HIV-1 preexposure prophylaxis, such as topical microbicides. However, this option is hampered due to expensive MAb biomanufacturing based on mammalian cell culture. To address this issue, we developed a new production system for bnMAb VRC01 in Nicotiana benthamiana plants using a tobamovirus replicon vector. Unlike conventional two-vector-based expression, this system was designed to overexpress full-length IgG1 from a single polypeptide by means of kex2p-like enzyme recognition sites introduced between the heavy and light chains. An enzyme-linked immunosorbent assay (ELISA) revealed that gp120-binding VRC01 IgG1 was maximally accumulated on 5 to 7 days following vector inoculation, yielding ∼150 mg of the bnMAb per kg of fresh leaf material. The plant-made VRC01 (VRC01p) was efficiently purified by protein A affinity followed by hydrophobic-interaction chromatography. ELISA, surface plasmon resonance, and an HIV-1 neutralization assay demonstrated that VRC01p has gp120-binding affinity and HIV-1-neutralization capacity virtually identical to the human-cell-produced counterpart. To advance VRC01p's use in topical microbicides, we analyzed combinations of the bnMAb with other microbicide candidates holding distinct antiviral mechanisms in an HIV-1 neutralization assay. VRC01p exhibited clear synergy with the antiviral lectin griffithsin, the CCR5 antagonist maraviroc, and the reverse transcriptase inhibitor tenofovir in multiple CCR5-tropic HIV-1 strains from clades A, B, and C. In summary, VRC01p is amenable to robust, rapid, and large-scale production and may be developed as an active component in combination microbicides with other anti-HIV agents such as antiviral lectins, CCR5 antagonists, and reverse transcriptase inhibitors. PMID:23403432
1990-09-01
simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of
An OpenACC-Based Unified Programming Model for Multi-accelerator Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S
2015-01-01
This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.
1992-03-01
Elementary Linear Algebra with Applications, pp. 301- 323, John Wiley and Sons Inc., 1987. Atlas, D., and Ulbrich, C. E. W., "The Physical Basis for...vector drd In this case, the linear system is said to be inconsistent ( Anton and Rorres, 1987). In contrast, for an underdetermined system (where the...ocean acoustical tomography and seismology. In simplest terms, the general linear inverse problem consists of fimding the desired solution to a set of m
Hypercluster Parallel Processor
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela
1992-01-01
Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.
Single-cycle adenovirus vectors in the current vaccine landscape.
Barry, Michael
2018-02-01
Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Vector method for strain estimation in phase-sensitive optical coherence elastography
NASA Astrophysics Data System (ADS)
Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.
2018-06-01
A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.
Adjustable permanent magnet assembly for NMR and MRI
Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard
2013-10-29
System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.
A novel bicistronic sensor vector for detecting caspase-3 activation.
Vagner, Tatyana; Mouravlev, Alexandre; Young, Deborah
2015-01-01
Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification. Copyright © 2015 Elsevier Inc. All rights reserved.
Spampanato, Carmine; De Leonibus, Elvira; Dama, Paola; Gargiulo, Annagiusi; Fraldi, Alessandro; Sorrentino, Nicolina Cristina; Russo, Fabio; Nusco, Edoardo; Auricchio, Alberto; Surace, Enrico M; Ballabio, Andrea
2011-01-01
Multiple sulfatase deficiency (MSD), a severe autosomal recessive disease is caused by mutations in the sulfatase modifying factor 1 gene (Sumf1). We have previously shown that in the Sumf1 knockout mouse model (Sumf1−/−) sulfatase activities are completely absent and, similarly to MSD patients, this mouse model displays growth retardation and early mortality. The severity of the phenotype makes MSD unsuitable to be treated by enzyme replacement or bone marrow transplantation, hence the importance of testing the efficacy of novel treatment strategies. Here we show that recombinant adeno-associated virus serotype 9 (rAAV9) vector injected into the cerebral ventricles of neonatal mice resulted in efficient and widespread transduction of the brain parenchyma. In addition, we compared a combined, intracerebral ventricles and systemic, administration of an rAAV9 vector encoding SUMF1 gene to the single administrations—either directly in brain, or systemic alone —in MSD mice. The combined treatment resulted in the global activation of sulfatases, near-complete clearance of glycosaminoglycans (GAGs) and decrease of inflammation in both the central nervous system (CNS) and visceral organs. Furthermore, behavioral abilities were improved by the combined treatment. These results underscore that the “combined” mode of rAAV9 vector administration is an efficient option for the treatment of severe whole-body disorders. PMID:21326216
NASA Astrophysics Data System (ADS)
Assi, Kondo Claude; Gay, Etienne; Chnafa, Christophe; Mendez, Simon; Nicoud, Franck; Abascal, Juan F. P. J.; Lantelme, Pierre; Tournoux, François; Garcia, Damien
2017-09-01
We propose a regularized least-squares method for reconstructing 2D velocity vector fields within the left ventricular cavity from single-view color Doppler echocardiographic images. Vector flow mapping is formulated as a quadratic optimization problem based on an {{\\ell }2} -norm minimization of a cost function composed of a Doppler data-fidelity term and a regularizer. The latter contains three physically interpretable expressions related to 2D mass conservation, Dirichlet boundary conditions, and smoothness. A finite difference discretization of the continuous problem was adopted in a polar coordinate system, leading to a sparse symmetric positive-definite system. The three regularization parameters were determined automatically by analyzing the L-hypersurface, a generalization of the L-curve. The performance of the proposed method was numerically evaluated using (1) a synthetic flow composed of a mixture of divergence-free and curl-free flow fields and (2) simulated flow data from a patient-specific CFD (computational fluid dynamics) model of a human left heart. The numerical evaluations showed that the vector flow fields reconstructed from the Doppler components were in good agreement with the original velocities, with a relative error less than 20%. It was also demonstrated that a perturbation of the domain contour has little effect on the rebuilt velocity fields. The capability of our intraventricular vector flow mapping (iVFM) algorithm was finally illustrated on in vivo echocardiographic color Doppler data acquired in patients. The vortex that forms during the rapid filling was clearly deciphered. This improved iVFM algorithm is expected to have a significant clinical impact in the assessment of diastolic function.
Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie
2016-06-01
The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.
Milinovich, Gabriel J; Avril, Simon M R; Clements, Archie C A; Brownstein, John S; Tong, Shilu; Hu, Wenbiao
2014-12-31
Internet-based surveillance systems provide a novel approach to monitoring infectious diseases. Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have shown significant promise. The potential for these systems has increased with increased internet availability and shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however, only been applied to single or small groups of select diseases. This study aims to systematically investigate the potential for developing surveillance and early warning systems using internet search data, for a wide range of infectious diseases. Official notifications for 64 infectious diseases in Australia were downloaded and correlated with frequencies for 164 internet search terms for the period 2009-13 using Spearman's rank correlations. Time series cross correlations were performed to assess the potential for search terms to be used in construction of early warning systems. Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%) of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible; cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for development of early warning systems. The findings of this study suggest that internet-based surveillance systems have broader applicability to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable and vector-borne diseases.
NASA Astrophysics Data System (ADS)
Mitri, Farid G.
2018-01-01
Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-moa; Kwak, Dochan (Technical Monitor)
2002-01-01
In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.
Back to basics: pBR322 and protein expression systems in E. coli.
Balbás, Paulina; Bolívar, Francisco
2004-01-01
The extensive variety of plasmid-based expression systems in E. coli resulted from the fact that there is no single strategy for achieving maximal expression of every cloned gene. Although a number of strategies have been implemented to deal with problems associated to gene transcription and translation, protein folding, secretion, location, posttranslational modifications, particularities of different strains, and the like and more integrated processes have been developed, the basic plasmid-borne elements and their interaction with the particular host strain will influence the overall expression system and final productivity. Plasmid vector pBR322 is a well-established multipurpose cloning vector in laboratories worldwide, and a large number of derivatives have been created for specific applications and research purposes, including gene expression in its natural host, E. coli, and few other bacteria. The early characterization of the molecule, including its nucleotide sequence, replication and maintenance mechanisms, and determination of its coding regions, accounted for its success, not only as a universal cloning vector, but also as a provider of genes and an origin of replication for other intraspecies vectors. Since the publication of the aforementioned reviews, novel discoveries pertaining to these issues have appeared in the literature that deepen the understanding of the plasmid's features, behavior, and impact in gene expression systems, as well as some important strain characteristics that affect plasmid replication and stability. The objectives of this review include updating and discussing the new information about (1) the replication and maintenance of pBR322; (2) the host-related modulation mechanisms of plasmid replication; (3) the effects of growth rate on replication control, stability, and recombinant gene expression; (4) ways for plasmid amplification and elimination. Finally, (5) a summary of novel ancillary studies about pBR322 is presented.
Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP
NASA Technical Reports Server (NTRS)
Gupta, V. K.; Zillmer, S. D.; Allison, R. E.
1986-01-01
The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix.
Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.
2014-01-01
Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961
Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R
2014-04-01
Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. © 2014 The Royal Entomological Society.
Principal components colour display of ERTS imagery
NASA Technical Reports Server (NTRS)
Taylor, M. M.
1974-01-01
In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.
Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z
2016-07-01
Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.
A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.
Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris
2008-04-01
Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.
Search for single production of vector-like top partner decaying to Wb at eγ collision
NASA Astrophysics Data System (ADS)
Yang, Bingfang; Shao, Hongbo; Han, Jinzhong
2018-03-01
In a simplified model including an SU(2) singlet T quark with charge 2/3, we investigate the single vector-like T production at the high energy eγ collision. We study the observability of the vector-like T focusing on the T→ Wb decay channel with W→ l\\bar{ν } at √{s}=2.0 TeV. In this analysis, only two free parameters are involved, namely the T quark coupling strength for single production g^{*} and the mass mT. We scan the parameter space and find that the correlation region of g^{*}\\in [0.24, 0.5] and mT\\in [800, 1360] GeV can be excluded with integrated luminosity L=100 fb^{-1} and the correlation region of g^{*}\\in [0.13, 0.5] and mT\\in [800, 1620] GeV can be excluded with integrated luminosity L=1000 fb^{-1} at 2σ level.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
MIDAS: A Modular DNA Assembly System for Synthetic Biology.
van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J
2018-04-20
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
Herzog, Roland W; Fields, Paul A; Arruda, Valder R; Brubaker, Jeff O; Armstrong, Elina; McClintock, Darryl; Bellinger, Dwight A; Couto, Linda B; Nichols, Timothy C; High, Katherine A
2002-07-20
Intramuscular injection of an adeno-associated virus (AAV) vector has resulted in vector dose-dependent, stable expression of canine factor IX (cF.IX) in hemophilia B dogs with an F.IX missense mutation (Herzog et al., Nat. Med. 1999;5:56-63). The use of a species-specific transgene allowed us to study risks and characteristics of antibody formation against the therapeutic transgene product. We analyzed seven dogs that had been injected at a single time point at multiple intramuscular sites with varying vector doses (dose per kilogram, dose per animal, dose per site). Comparison of individual animals suggests an increased likelihood of inhibitory anti-cF.IX (inhibitor) development with increased vector doses, with dose per site showing the strongest correlation with the risk of inhibitor formation. In six of seven animals, such immune responses were either absent or transient, and therefore did not prevent sustained systemic expression of cF.IX. Transient inhibitory/neutralizing anti-cF.IX responses occurred at vector doses of 2 x 10(12)/site, whereas a 6-fold higher dose resulted in a longer lasting, higher titer inhibitor. Anti-cF.IX was efficiently blocked in an eighth animal that was injected with a high vector dose per site, but in addition received transient immune suppression. Inhibitor formation was characterized by synthesis of two IgG subclasses and in vitro proliferation of lymphocytes to cF.IX antigen, indicating a helper T cell-dependent mechanism. Anti-cF.IX formation is likely influenced by the extent of local antigen presentation and may be avoided by limited vector doses or by transient immune modulation.
2000-05-01
a vector , ρ "# represents the set of voxel densities sorted into a vector , and ( )A ρ $# "# represents a 8 mapping of the voxel densities to...density vector in equation (4) suggests that solving for ρ "# by direct inversion is not possible, calling for an iterative technique beginning with...the vector of measured spectra, and D is the diagonal matrix of the inverse of the variances. The diagonal matrix provides weighting terms, which
COMMUNITY LEVEL ANALYSIS OF VECTOR-BORNE DISEASE
Ecological community structure is particularly important in vector-borne zoonotic diseases with complex life cycles. Single population models, such as the so-called Ross-Macdonald model (Baily, 1982), have been important in developing and characterizing our current understanding...
A Single-Channel EOG-Based Speller.
He, Shenghong; Li, Yuanqing
2017-11-01
Electrooculography (EOG) signals, which can be used to infer the intentions of a user based on eye movements, are widely used in human-computer interface (HCI) systems. Most existing EOG-based HCI systems incorporate a limited number of commands because they generally associate different commands with a few different types of eye movements, such as looking up, down, left, or right. This paper presents a novel single-channel EOG-based HCI that allows users to spell asynchronously by only blinking. Forty buttons corresponding to 40 characters displayed to the user via a graphical user interface are intensified in a random order. To select a button, the user must blink his/her eyes in synchrony as the target button is flashed. Two data processing procedures, specifically support vector machine (SVM) classification and waveform detection, are combined to detect eye blinks. During detection, we simultaneously feed the feature vectors extracted from the ongoing EOG signal into the SVM classification and waveform detection modules. Decisions are made based on the results of the SVM classification and waveform detection. Three online experiments were conducted with eight healthy subjects. We achieved an average accuracy of 94.4% and a response time of 4.14 s for selecting a character in synchronous mode, as well as an average accuracy of 93.43% and a false positive rate of 0.03/min in the idle state in asynchronous mode. The experimental results, therefore, demonstrated the effectiveness of this single-channel EOG-based speller.
2014-01-01
Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome modifications. New USER-Bricks with additional functionality can easily be added to the system by future users. The optimized protocol for ATMT of F. avenaceum represents the first reported targeted genome modification by double homologous recombination of this plant pathogen and will allow for future characterization of this fungus. Functional linkage of FaPKS6 to the production of the mycotoxin fusaristatin A serves as a first testimony to this. PMID:25048842
All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi
2017-01-01
CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.
Savage, Emilia Elizabeth; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick Michael; Furness, Sebastian George Barton
2013-04-01
Transient protein-protein interactions form the basis of signal transduction pathways in addition to many other biological processes. One tool for studying these interactions is bioluminescence resonance energy transfer (BRET). This technique has been widely applied to study signaling pathways, in particular those initiated by G protein-coupled receptors (GPCRs). These assays are routinely performed using transient transfection, a technique that has limitations in terms of assay cost and variability, overexpression of interacting proteins, vector uptake limited to cycling cells, and non-homogenous expression across cells within the assay. To address these issues, we developed bicistronic vectors for use with Life Technology's Gateway and flpIN systems. These vectors provide a means to generate isogenic cell lines for comparison of interacting proteins. They have the advantage of stable, single copy, isogenic, homogeneous expression with low inter-assay variation. We demonstrate their utility by assessing ligand-induced interactions between GPCRs and arrestin proteins.
NASA Astrophysics Data System (ADS)
Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.
2017-09-01
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G
2017-09-07
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Assessing Shape Characteristics of Jupiter Trojans in the Kepler Campaign 6 Field
NASA Astrophysics Data System (ADS)
Sharkey, Benjamin; Ryan, Erin L.; Woodward, Charles E.
2017-10-01
We report estimates of spin pole orientations and body-centric axis ratios of nine Jupiter Trojan asteroids through convex shape models derived from Kepler K2 photometry. Our sample contains single-component as well as candidate binary systems (identified through lightcurve features). Photometric baselines on the targets covered 7 to 93 full rotation periods. By incorporating a bias against highly elongated physical shapes, spin vector orientations of single-component systems were constrained to several discrete regions. Single-component convex models failed to converge on two binary candidates while two others demonstrated pronounced tapering that may be consistent with concavities of contact binaries. Further work to create two-component models is likely necessary to constrain the candidate binary targets. We find that Kepler K2 photometry provides robust datasets capable of providing detailed information on physical shape parameters of Jupiter Trojans.
Artificial bee colony algorithm for single-trial electroencephalogram analysis.
Hsu, Wei-Yen; Hu, Ya-Ping
2015-04-01
In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.
On multi-site damage identification using single-site training data
NASA Astrophysics Data System (ADS)
Barthorpe, R. J.; Manson, G.; Worden, K.
2017-11-01
This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.
Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S
2012-02-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.
Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.
2012-01-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659
Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M
2014-04-01
Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution analysis in inhibitory tissues.
2006-06-01
21. Geisbert TW, Hensley LE , Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT
NASA Astrophysics Data System (ADS)
Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.
2017-02-01
A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.
NASA Astrophysics Data System (ADS)
Ryzhikov, I. S.; Semenkin, E. S.
2017-02-01
This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.
The Control System for the X-33 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey
1998-01-01
The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2011-01-01
Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)
2002-01-01
This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.
A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Peng, Zhengyu; Li, Changzhi
2017-05-01
A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)
Cloning-independent plasmid construction for genetic studies in streptococci
Xie, Zhoujie; Qi, Fengxia; Merritt, Justin
2013-01-01
Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in E. coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5×103 – 2×105 CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli – Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. PMID:23673081
Cloning-independent plasmid construction for genetic studies in streptococci.
Xie, Zhoujie; Qi, Fengxia; Merritt, Justin
2013-08-01
Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in Escherichia coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5 × 10³ to 2 × 10⁵ CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli-Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.
2013-01-01
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462
Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F
2013-01-01
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C
1997-01-01
We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus. PMID:9097439
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C
1997-04-01
We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; ...
2017-10-13
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.
2017-10-01
Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.
2010-01-01
Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.
Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout
NASA Astrophysics Data System (ADS)
Klenov, N. V.; Kuznetsov, A. V.; Soloviev, I. I.; Bakurskiy, S. V.; Denisenko, M. V.; Satanin, A. M.
2017-07-01
We present the results of an analytical study and numerical simulation of the dynamics of a superconducting three-Josephson-junction (3JJ) flux qubit magnetically coupled with rapid single-flux quantum (RSFQ) logic circuit, which demonstrate the fundamental possibility of implementing the simplest logic operations at picosecond times, as well as rapid non-destructive readout. It is shown that when solving optimization problems, the qubit dynamics can be conveniently interpreted as a precession of the magnetic moment vector around the direction of the magnetic field. In this case, the role of magnetic field components is played by combinations of the Hamiltonian matrix elements, and the role of the magnetic moment is played by the Bloch vector. Features of the 3JJ qubit model are discussed during the analysis of how the qubit is affected by exposure to a short control pulse, as are the similarities between the Bloch and Landau-Lifshitz-Gilbert equations. An analysis of solutions to the Bloch equations made it possible to develop recommendations for the use of readout RSFQ circuits in implementing an optimal interface between the classical and quantum parts of the computer system, as well as to justify the use of single-quantum logic in order to control superconducting quantum circuits on a chip.
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.
Chromosome-based genetic complementation system for Xylella fastidiosa.
Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M
2009-03-01
Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.
The Lenz Vector and Orbital Analog Computers
ERIC Educational Resources Information Center
Harter, W. G.
1976-01-01
Describes a single geometrical diagram based on the Lenz vector which shows the qualitative and quantitative features of all three types of Coulomb orbits. Explains the use of a simple analog computer with an overhead projector to demonstrate many of these effects. (Author/CP)
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
Many-body delocalization with random vector potentials
NASA Astrophysics Data System (ADS)
Cheng, Chen; Mondaini, Rubem
2016-11-01
We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.
Kwon, Min-Seok; Nam, Seungyoon; Lee, Sungyoung; Ahn, Young Zoo; Chang, Hae Ryung; Kim, Yon Hui; Park, Taesung
2017-01-01
The recent creation of enormous, cancer-related “Big Data” public depositories represents a powerful means for understanding tumorigenesis. However, a consistently accurate system for clinically evaluating single/multi-biomarkers remains lacking, and it has been asserted that oft-failed clinical advancement of biomarkers occurs within the very early stages of biomarker assessment. To address these challenges, we developed a clinically testable, web-based tool, CANcer-specific single/multi-biomarker Evaluation System (CANES), to evaluate biomarker effectiveness, across 2,134 whole transcriptome datasets, from 94,147 biological samples (from 18 tumor types). For user-provided single/multi-biomarkers, CANES evaluates the performance of single/multi-biomarker candidates, based on four classification methods, support vector machine, random forest, neural networks, and classification and regression trees. In addition, CANES offers several advantages over earlier analysis tools, including: 1) survival analysis; 2) evaluation of mature miRNAs as markers for user-defined diagnostic or prognostic purposes; and 3) provision of a “pan-cancer” summary view, based on each single marker. We believe that such “landscape” evaluation of single/multi-biomarkers, for diagnostic therapeutic/prognostic decision-making, will be highly valuable for the discovery and “repurposing” of existing biomarkers (and their specific targeted therapies), leading to improved patient therapeutic stratification, a key component of targeted therapy success for the avoidance of therapy resistance. PMID:29050243
NASA Astrophysics Data System (ADS)
Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi
2017-03-01
Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.
Single-World Theory of the Extended Wigner's Friend Experiment
NASA Astrophysics Data System (ADS)
Sudbery, Anthony
2017-05-01
Frauchiger and Renner have recently claimed to prove that "Single-world interpretations of quantum theory cannot be self-consistent". This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one "world" at any time, but the predictions of quantum theory are reproduced. This Bell-Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is concluded that it is their version of "standard quantum theory", incorporating state vector collapse upon measurement, that is not self-consistent.
Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A
2017-02-01
Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.
Establishment of a reliable dual-vector system for the phage display of antibody fragments.
Joo, Hyun-yoo; Hur, Byung-ung; Lee, Kyung-woo; Song, Suk-yoon; Cha, Sang-hoon
2008-04-20
To resolve some of the technical limitations in a phage-displayed Fab library, we have designed two dual-vector systems, DVS-I and DVS-II, composed of a set of replicon-compatible plasmid (pLA-1 or pLT-2) for producing soluble L chain fragments and phagemid (pHf1g3T-1 or pHf1g3A-2) for expressing Fd (V(H)+C(H1))-DeltapIII fusion molecules as well as a genotype-phenotype linkage. Compared to the DVS-I (pLA-1 and pHf1g3T-1), the DVS-II (pLT-2 and pHf1g3A-2) showed stable transformation efficiency regardless of the order of the vectors introduced into the host cells. In addition, expression of soluble Fab molecules with antigen-binding reactivity, recombinant phage titer and display level of functional Fab-DeltapIII on the phage progenies of the DVS-II were comparable with a conventional phage display system using a single phagemid vector. More importantly, the phage displaying target-specific Fab-DeltapIII molecules was successfully enriched by panning, which allows isolation of the pHf1g3A-2 phagemid encoding antigen-specific Fd molecules. We believe that the DVS-II may provide a valuable tool in the construction of a combinatorial phage-displayed Fab library with large diversity. Furthermore, it can be readily applied to isolation of desired antibody clones if L chain promiscuity of antibodies in determining antigen-binding specificity is considered, or in guided-selection or chain shuffling of mAbs of non-human origin.
Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob
2009-01-01
Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915
The impact of Doppler lidar wind observations on a single-level meteorological analysis
NASA Technical Reports Server (NTRS)
Riishojgaard, L. P.; Atlas, R.; Emmitt, G. D.
2001-01-01
Through the use of observation operators, modern data assimilation systems have the capability to ingest observations of quantities that are not themselves model variables, but are mathematically related to those variables. An example of this are the so-called LOS (line of sight) winds that a Doppler wind Lidar can provide. The model - or data assimilation system - needs information about both components of the horizontal wind vectors, whereas the observations in this case only provide the projection of the wind vector onto a given direction. The analyzed value is then calculated essentially based on a comparison between the observation itself and the model-simulated value of the observed quantity. However, in order to assess the expected impact of such an observing system, it is important to examine the extent to which a meteorological analysis can be constrained by the LOS winds. The answer to this question depends on the fundamental character of the atmospheric flow fields that are analyzed, but more importantly it also depends on the real and assumed error covariance characteristics of these fields. A single-level wind analysis system designed to explore these issues has been built at the NASA Data Assimilation Office. In this system, simulated wind observations can be evaluated in terms of their impact on the analysis quality under various assumptions about their spatial distribution and error characteristics and about the error covariance of the background fields. The basic design of the system will be presented along with experimental results obtained with it. In particular, the value of simultaneously measuring LOS winds along two different directions for a given location will be discussed.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Increasing the Efficacy of Oncolytic Adenovirus Vectors
Toth, Karoly; Wold, William S. M.
2010-01-01
Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review. PMID:21994711
Oral vaccination with an adenovirus-vectored vaccine protects against botulism
Chen, Shan; Xu, Qingfu; Zeng, Mingtao
2013-01-01
We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065
Non-destructive Faraday imaging of dynamically controlled ultracold atoms
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob
2013-05-01
We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.
NASA Astrophysics Data System (ADS)
Kachach, Redouane; Cañas, José María
2016-05-01
Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.
Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language
NASA Technical Reports Server (NTRS)
Brian, Geoffrey J.; Jackson, E. Bruce
2011-01-01
The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.
Development of Defective and Persistent Sendai Virus Vector
Nishimura, Ken; Sano, Masayuki; Ohtaka, Manami; Furuta, Birei; Umemura, Yoko; Nakajima, Yoshiro; Ikehara, Yuzuru; Kobayashi, Toshihiro; Segawa, Hiroaki; Takayasu, Satoko; Sato, Hideyuki; Motomura, Kaori; Uchida, Eriko; Kanayasu-Toyoda, Toshie; Asashima, Makoto; Nakauchi, Hiromitsu; Yamaguchi, Teruhide; Nakanishi, Mahito
2011-01-01
The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research. PMID:21138846
Different evolution dynamics of vector solitons depending on their polarization states
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chen, Guo-Jie
2014-03-01
There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.
Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J
2004-08-17
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.
Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.
2004-01-01
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury. PMID:15302924
NASA Astrophysics Data System (ADS)
Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.
2004-08-01
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.
Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.
2016-01-01
Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175
Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi
2015-01-01
Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins. PMID:26473830
Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi
2015-10-09
Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.
Molas, M; Bartrons, R; Perales, J C
2002-08-15
Nonviral gene transfer vectors have been actively studied in the past years in order to obtain structural entities with minimum size and defined shape. The final size of a gene transfer vector, which is compacted into unimolecular complexes, is directly proportional to the mass of the nucleic acid to be compacted. Thus, the purpose of this study was to assess the possibility of producing ssDNA vectors and their biophysical and biological characterization. We have obtained ssDNA/poly-L-lysine complexes that are significantly smaller than their double-stranded counterparts. We have also identified a lesser aggregative behavior of compacted single-stranded vs. double-stranded DNA vectors in the presence of physiological NaCl concentrations. Expression of compacted ssDNA is observed in hepatoma cell lines. Moreover, we have successfully delivered galactosylated ssDNA complexes into cells that express the asialoglycoprotein receptor via receptor-mediated endocytosis. The reduced size and biophysical behavior of ssDNA vectors may provide an advantage for transfection of eukaryotic cells.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin
2018-01-01
Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.
Keegan, Lindsay; Dushoff, Jonathan
2014-05-01
The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.
Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa
2010-03-01
Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.
Jaén, Maria Luisa; Vilà, Laia; Elias, Ivet; Jimenez, Veronica; Rodó, Jordi; Maggioni, Luca; Ruiz-de Gopegui, Rafael; Garcia, Miguel; Muñoz, Sergio; Callejas, David; Ayuso, Eduard; Ferré, Tura; Grifoll, Iris; Andaluz, Anna; Ruberte, Jesus; Haurigot, Virginia; Bosch, Fatima
2017-09-15
Diabetes is a complex metabolic disease that exposes patients to the deleterious effects of hyperglycemia on various organs. Achievement of normoglycemia with exogenous insulin treatment requires the use of high doses of hormone, which increases the risk of life-threatening hypoglycemic episodes. We developed a gene therapy approach to control diabetic hyperglycemia based on co-expression of the insulin and glucokinase genes in skeletal muscle. Previous studies proved the feasibility of gene delivery to large diabetic animals with adeno-associated viral (AAV) vectors. Here, we report the long-term (∼8 years) follow-up after a single administration of therapeutic vectors to diabetic dogs. Successful, multi-year control of glycemia was achieved without the need of supplementation with exogenous insulin. Metabolic correction was demonstrated through normalization of serum levels of fructosamine, triglycerides, and cholesterol and remarkable improvement in the response to an oral glucose challenge. The persistence of vector genomes and therapeutic transgene expression years after vector delivery was documented in multiple samples from treated muscles, which showed normal morphology. Thus, this study demonstrates the long-term efficacy and safety of insulin and glucokinase gene transfer in large animals and especially the ability of the system to respond to the changes in metabolic needs as animals grow older.
Romanienko, Peter J; Giacalone, Joseph; Ingenito, Joanne; Wang, Yijie; Isaka, Mayumi; Johnson, Thomas; You, Yun; Mark, Willie H
2016-01-01
The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA) and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allowed to develop to term. As a rule, gRNAs are tested first in tissue culture cells and the one with the highest locus-specific cleavage activity is chosen for microinjection. For cell transfections, gRNAs are typically expressed using the human U6 promoter (hU6). However, gRNAs for microinjection into zygotes are obtained by in vitro transcription from a T7 bacteriophage promoter in a separate plasmid vector. Here, we describe the design and construction of a combined U6T7 hybrid promoter from which the same gRNA sequence can be expressed. An expression vector containing such a hybrid promoter can now be used to generate gRNA for testing in mammalian cells as well as for microinjection purposes. The gRNAs expressed and transcribed from this vector are found to be functional in cells as well as in mice.
The polarization compass dominates over idiothetic cues in path integration of desert ants.
Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard
2012-02-01
Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.
The LAM-PCR Method to Sequence LV Integration Sites.
Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred
2016-01-01
Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.
Mu, Dongdong; Wang, Guofeng; Fan, Yunsheng; Sun, Xiaojie; Qiu, Bingbing
2018-06-08
This paper presents a complete scheme for research on the three degrees of freedom model and response model of the vector propulsion of an unmanned surface vehicle. The object of this paper is “Lanxin”, an unmanned surface vehicle (7.02 m × 2.6 m), which is equipped with a single vector propulsion device. First, the “Lanxin” unmanned surface vehicle and the related field experiments (turning test and zig-zag test) are introduced and experimental data are collected through various sensors. Then, the thrust of the vector thruster is estimated by the empirical formula method. Third, using the hypothesis and simplification, the three degrees of freedom model and the response model of USV are deduced and established, respectively. Fourth, the parameters of the models (three degrees of freedom model, response model and thruster servo model) are obtained by system identification, and we compare the simulated turning test and zig-zag test with the actual data to verify the accuracy of the identification results. Finally, the biggest advantage of this paper is that it combines theory with practice. Based on identified response model, simulation and practical course keeping experiments are carried out to further verify feasibility and correctness of modeling and identification.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
NASA Astrophysics Data System (ADS)
Zhamkov, A. S.; Zharov, V. E.
2017-05-01
This paper is concerned with improvement of the state vector of the Spektr-R spacecraft of the RadioAstron mission. The state vector includes three coordinates of the position of the spacecraft and three components of its velocity in the Geocentric Celestial Reference System. Improvement of the orbit of the spacecraft is understood as improvement of the state vector. The results are compared with the original orbits determined at the Keldysh Institute of Applied Mathematics (IAM). The paper considers both using the Kalman filter based on a single set of radio-range and Doppler data from ground-based stations and the analysis of conditions that will lead to improvement of the orbit. It has been shown that using three ground-based stations that perform simultaneous measurements the problem is solved completely, even when a poor initial approximation is used. Based on the results, a list of requirements is obtained that will provide more accurate information on the orbit of the Spektr-R spacecraft.
Rosenberg, Jonathan B; Hicks, Martin J; De, Bishnu P; Pagovich, Odelya; Frenk, Esther; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G; Crystal, Ronald G
2012-05-01
Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity.
Exact recovery of sparse multiple measurement vectors by [Formula: see text]-minimization.
Wang, Changlong; Peng, Jigen
2018-01-01
The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile [Formula: see text]-minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., [Formula: see text]-minimization [Formula: see text] Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant [Formula: see text] such that the original unique sparse solution also can be recovered from a minimization in [Formula: see text] quasi-norm subject to matrixes whenever [Formula: see text]. The other one is showing an analytic expression of such [Formula: see text]. Finally, we display the results of one example to confirm the validity of our conclusions, and we use some numerical experiments to show that we increase the efficiency of these algorithms designed for [Formula: see text]-minimization by using our results.
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system. PMID:27835638
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.
NASA Astrophysics Data System (ADS)
Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.
2017-11-01
Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.
Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A
2018-05-03
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard
2013-01-01
Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.
Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin
2017-03-06
Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.
An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.
Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J
2018-05-01
A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.
Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor
Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard
2015-01-01
Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065
Engineering Molecular Immunity Against Plant Viruses.
Zaidi, Syed Shan-E-Ali; Tashkandi, Manal; Mahfouz, Magdy M
2017-01-01
Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections. © 2017 Elsevier Inc. All rights reserved.
Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets
Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; ...
2017-02-08
The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept bymore » computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.« less
Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.
Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea
2013-01-01
Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.
[New strategy for RNA vectorization in mammalian cells. Use of a peptide vector].
Vidal, P; Morris, M C; Chaloin, L; Heitz, F; Divita, G
1997-04-01
A major barrier for gene delivery is the low permeability of nucleic acids to cellular membranes. The development of antisenses and gene therapy has focused mainly on improving methods of oligonucleotide or gene delivery to the cell. In this report we described a new strategy for RNA cell delivery, based on a short single peptide. This peptide vector is derived from both the fusion domain of the gp41 protein of HIV and the nuclear localization sequence of the SV40 large T antigen. This peptide vector localizes rapidly to the cytoplasm then to the nucleus of human fibroblasts (HS-68) within a few minutes and exhibits a high affinity for a single-stranded mRNA encoding the p66 subunit of the HIV-1 reverse transcriptase (in a 100 nM range). The peptide/RNA complex formation involves mainly electrostatic interactions between the basic residues of the peptide and the charges on the phosphate group of the RNA. In the presence of the peptide-vector fluorescently-labelled mRNA is delivered into the cytoplasm of mammalian cells (HS68 human fibroblasts) in less than 1 h with a relatively high efficiency (80%). This new concept based on a peptide-derived vector offers several advantages compared to other compounds commonly used in gene delivery. This vector is highly soluble and exhibits no cytotoxicity at the concentrations used for optimal gene delivery. This result clearly supports the fact that this peptide vector is a powerful tool and that it can be used widely, as much for laboratory research as for new applications and development in gene and/or antisense therapy.
Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.
2001-01-01
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Kenneth H.; Peak, Bob
2010-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general aviation airplane. We evaluated the effects and interactions of two levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required navigation performance (RNP) based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness and subjective preference. The results revealed that an elevation based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures.
Dynamic belief state representations.
Lee, Daniel D; Ortega, Pedro A; Stocker, Alan A
2014-04-01
Perceptual and control systems are tasked with the challenge of accurately and efficiently estimating the dynamic states of objects in the environment. To properly account for uncertainty, it is necessary to maintain a dynamical belief state representation rather than a single state vector. In this review, canonical algorithms for computing and updating belief states in robotic applications are delineated, and connections to biological systems are highlighted. A navigation example is used to illustrate the importance of properly accounting for correlations between belief state components, and to motivate the need for further investigations in psychophysics and neurobiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.
He, Zhi-Yao; Men, Ke; Qin, Zhou; Yang, Yang; Xu, Ting; Wei, Yu-Quan
2017-05-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
Vector-averaged gravity does not alter acetylcholine receptor single channel properties
NASA Technical Reports Server (NTRS)
Reitstetter, R.; Gruener, R.
1994-01-01
To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
Imaging chemical reactions - 3D velocity mapping
NASA Astrophysics Data System (ADS)
Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.
Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Raster and vector processing for scanned linework
Greenlee, David D.
1987-01-01
An investigation of raster editing techniques, including thinning, filling, and node detecting, was performed by using specialized software. The techniques were based on encoding the state of the 3-by-3 neighborhood surrounding each pixel into a single byte. A prototypical method for converting the edited raster linkwork into vectors was also developed. Once vector representations of the lines were formed, they were formatted as a Digital Line Graph, and further refined by deletion of nonessential vertices and by smoothing with a curve-fitting technique.
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange
Hmelo, Laura R.; Borlee, Bradley R.; Almblad, Henrik; Love, Michelle E.; Randall, Trevor E.; Tseng, Boo Shan; Lin, Chuyang; Irie, Yasuhiko; Storek, Kelly M.; Yang, Jaeun Jane; Siehnel, Richard J.; Howell, P. Lynne; Singh, Pradeep K.; Tolker-Nielsen, Tim; Parsek, Matthew R.; Schweizer, Herbert P.; Harrison, Joe J.
2016-01-01
Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knockins, as well as single nucleotide insertions, deletions and substitutions in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selection are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ~2 weeks. PMID:26492139
Analysis of identification of digital images from a map of cosmic microwaves
NASA Astrophysics Data System (ADS)
Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.
2018-04-01
This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.
Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron.
Gäken, J; Jiang, J; Daniel, K; van Berkel, E; Hughes, C; Kuiper, M; Darling, D; Tavassoli, M; Galea-Lauri, J; Ford, K; Kemeny, M; Russell, S; Farzaneh, F
2000-12-01
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
The generalized formula for angular velocity vector of the moving coordinate system
NASA Astrophysics Data System (ADS)
Ermolin, Vladislav S.; Vlasova, Tatyana V.
2018-05-01
There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.
NASA Astrophysics Data System (ADS)
Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing
2016-06-01
Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.
Analyzing neural responses with vector fields.
Buneo, Christopher A
2011-04-15
Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames. Copyright © 2011 Elsevier B.V. All rights reserved.
Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma
2009-03-01
Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
Miller, Ezer; Huppert, Amit
2013-01-01
Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R 0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species.
Beyene, Getu; Buenrostro-Nava, Marco T; Damaj, Mona B; Gao, San-Ji; Molina, Joe; Mirkov, T Erik
2011-01-01
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O
2011-07-01
Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-03-06
Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-01-01
Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics. PMID:16519801
Robust stability of second-order systems
NASA Technical Reports Server (NTRS)
Chuang, C.-H.
1993-01-01
A feedback linearization technique is used in conjunction with passivity concepts to design robust controllers for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space robots. Closed-loop simulation results are illustrated for a simple case of a single link planar manipulator with freely floating base.
Wang, Hongyan; Yang, Bin; Qiu, Linghua; Yang, Chunxing; Kramer, Joshua; Su, Qin; Guo, Yansu; Brown, Robert H; Gao, Guangping; Xu, Zuoshang
2014-02-01
Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration and paralysis. No treatment can significantly slow or arrest the disease progression. Mutations in the SOD1 gene cause a subset of familial ALS by a gain of toxicity. In principle, these cases could be treated with RNAi that destroys the mutant mRNA, thereby abolishing the toxic protein. However, no system is available to efficiently deliver the RNAi therapy. Recombinant adenoassociated virus (rAAV) is a promising vehicle due to its long-lasting gene expression and low toxicity. However, ALS afflicts broad areas of the central nervous system (CNS). A lack of practical means to spread rAAV broadly has hindered its application in treatment of ALS. To overcome this barrier, we injected several rAAV serotypes into the cerebrospinal fluid. We found that some rAAV serotypes such as rAAVrh10 and rAAV9 transduced cells throughout the length of the spinal cord following a single intrathecal injection and in the broad forebrain following a single injection into the third ventricle. Furthermore, a single intrathecal injection of rAAVrh10 robustly transduced motor neurons throughout the spinal cord in a non-human primate. These results suggested a therapeutic potential of this vector for ALS. To test this, we injected a rAAVrh10 vector that expressed an artificial miRNA targeting SOD1 into the SOD1G93A mice. This treatment knocked down the mutant SOD1 expression and slowed the disease progression. Our results demonstrate the potential of rAAVs for delivering gene therapy to treat ALS and other diseases that afflict broad areas of the CNS.
Vectors a Fortran 90 module for 3-dimensional vector and dyadic arithmetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, B.C.
1998-02-01
A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are alsomore » included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.« less
Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.
Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He
2009-05-01
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.
Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.
2011-04-01
Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.
Lorentz symmetric n-particle systems without ``multiple times''
NASA Astrophysics Data System (ADS)
Smith, Felix
2013-05-01
The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.
Oh, Jeong Seok; Cho, Daechul; Park, Tai Hyun
2005-11-01
A two-stage continuous culture of Escherichia coli in combination with a bacteriophage lambda system was performed in order to overcome the intrinsic plasmid instability that is frequently observed in recombinant fermentation. A phage lambda vector with a Q(-) mutation was used to enhance the expression of the lambda system. The optimal values of the important operational variables such as the substrate concentration, the dilution rate, and the mean residence time on the expression of the cloned gene were determined in both batch and continuous cultures. For all culturing modes, the full induction of the cloned gene was observed 4 h after the temperature shift. In the two stage continuous culture, the overproduction reached their maxima at D=0.25 h(-1) with 1.5 S(0) of the medium supply. The maximum productivity of the total beta-galactosidase was 16.3x10(6) U l(-1) h(-1), which was approximately seven times higher than that in the single-copy lysogenic stage. The recombinant cells were stable in the lysogenic state for more than 260 h, while they were stable for 40 h in the lytic state. The instability that developed rapidly in the second tank is believed to be due to the accumulation of lysis proteins as a result of vector leakage during the operation.
The Vector-Ballot Approach for Online Voting Procedures
NASA Astrophysics Data System (ADS)
Kiayias, Aggelos; Yung, Moti
Looking at current cryptographic-based e-voting protocols, one can distinguish three basic design paradigms (or approaches): (a) Mix-Networks based, (b) Homomorphic Encryption based, and (c) Blind Signatures based. Each of the three possesses different advantages and disadvantages w.r.t. the basic properties of (i) efficient tallying, (ii) universal verifiability, and (iii) allowing write-in ballot capability (in addition to predetermined candidates). In fact, none of the approaches results in a scheme that simultaneously achieves all three. This is unfortunate, since the three basic properties are crucial for efficiency, integrity and versatility (flexibility), respectively. Further, one can argue that a serious business offering of voting technology should offer a flexible technology that achieves various election goals with a single user interface. This motivates our goal, which is to suggest a new "vector-ballot" based approach for secret-ballot e-voting that is based on three new notions: Provably Consistent Vector Ballot Encodings, Shrink-and-Mix Networks and Punch-Hole-Vector-Ballots. At the heart of our approach is the combination of mix networks and homomorphic encryption under a single user interface; given this, it is rather surprising that it achieves much more than any of the previous approaches for e-voting achieved in terms of the basic properties. Our approach is presented in two generic designs called "homomorphic vector-ballots with write-in votes" and "multi-candidate punch-hole vector-ballots"; both of our designs can be instantiated over any homomorphic encryption function.
Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.
2001-05-01
The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
NASA Technical Reports Server (NTRS)
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.
Method and system for operating an electric motor
Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun
2013-01-22
Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Minimal supergravity models of inflation
NASA Astrophysics Data System (ADS)
Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo
2013-10-01
We present a superconformal master action for a class of supergravity models with one arbitrary function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet, which upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a linear multiplet and a massive tensor field. In both cases the models have one real scalar, the inflaton, naturally suited for single-field inflation. Vectors and tensors required by supersymmetry to complement a single real scalar do not acquire vacuum expectation values during inflation, so there is no need to stabilize the extra scalars that are always present in the theories with chiral matter multiplets. The new class of models can describe any inflaton potential that vanishes at its minimum and grows monotonically away from the minimum. In this class of supergravity models, one can fit any desirable choice of inflationary parameters ns and r.
Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S; Baillie, Leslie W; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C
2013-01-01
Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.
Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R.; Tang, De-chu C.
2013-01-01
Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine. PMID:23100479
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang
2018-05-01
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam
2017-03-28
Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
Nanophotonic projection system.
Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali
2015-08-10
Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.
The geo-control system for station keeping and colocation of geostationary satellites
NASA Technical Reports Server (NTRS)
Montenbruck, O.; Eckstein, M. C.; Gonner, J.
1993-01-01
GeoControl is a compact but powerful and accurate software system for station keeping of single and colocated satellites, which has been developed at the German Space Operations Center. It includes four core modules for orbit determination (including maneuver estimation), maneuver planning, monitoring of proximities between colocated satellites, and interference and event prediction. A simple database containing state vector and maneuver information at selected epochs is maintained as a central interface between the modules. A menu driven shell utilizing form screens for data input serves as the central user interface. The software is written in Ada and FORTRAN and may be used on VAX workstations or mainframes under the VMS operating system.
An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology.
Goñi-Moreno, Angel; Carcajona, Marta; Kim, Juhyun; Martínez-García, Esteban; Amos, Martyn; de Lorenzo, Víctor
2016-10-21
As synthetic biology moves away from trial and error and embraces more formal processes, workflows have emerged that cover the roadmap from conceptualization of a genetic device to its construction and measurement. This latter aspect (i.e., characterization and measurement of synthetic genetic constructs) has received relatively little attention to date, but it is crucial for their outcome. An end-to-end use case for engineering a simple synthetic device is presented, which is supported by information standards and computational methods and focuses on such characterization/measurement. This workflow captures the main stages of genetic device design and description and offers standardized tools for both population-based measurement and single-cell analysis. To this end, three separate aspects are addressed. First, the specific vector features are discussed. Although device/circuit design has been successfully automated, important structural information is usually overlooked, as in the case of plasmid vectors. The use of the Standard European Vector Architecture (SEVA) is advocated for selecting the optimal carrier of a design and its thorough description in order to unequivocally correlate digital definitions and molecular devices. A digital version of this plasmid format was developed with the Synthetic Biology Open Language (SBOL) along with a software tool that allows users to embed genetic parts in vector cargoes. This enables annotation of a mathematical model of the device's kinetic reactions formatted with the Systems Biology Markup Language (SBML). From that point onward, the experimental results and their in silico counterparts proceed alongside, with constant feedback to preserve consistency between them. A second aspect involves a framework for the calibration of fluorescence-based measurements. One of the most challenging endeavors in standardization, metrology, is tackled by reinterpreting the experimental output in light of simulation results, allowing us to turn arbitrary fluorescence units into relative measurements. Finally, integration of single-cell methods into a framework for multicellular simulation and measurement is addressed, allowing standardized inspection of the interplay between the carrier chassis and the culture conditions.
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems. PMID:26732416
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
NASA Astrophysics Data System (ADS)
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.
Couvillon, Margaret J; Riddell Pearce, Fiona C; Harris-Jones, Elisabeth L; Kuepfer, Amanda M; Mackenzie-Smith, Samantha J; Rozario, Laura A; Schürch, Roger; Ratnieks, Francis L W
2012-05-15
Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.
Couvillon, Margaret J.; Riddell Pearce, Fiona C.; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Laura A.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances. PMID:23213438
Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip
NASA Astrophysics Data System (ADS)
Alam, Manjurul; Golozar, Matin; Darabi, Jeff
2018-04-01
A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.
Evaluation of Particle Image Velocimetry Measurement Using Multi-wavelength Illumination
NASA Astrophysics Data System (ADS)
Lai, HC; Chew, TF; Razak, NA
2018-05-01
In past decades, particle image velocimetry (PIV) has been widely used in measuring fluid flow and a lot of researches have been done to improve the PIV technique. Many researches are conducted on high power light emitting diode (HPLED) to replace the traditional laser illumination system in PIV. As an extended work to the research in PIV illumination system, two high power light emitting diodes (HPLED) with different wavelength are introduced as PIV illumination system. The objective of this research is using dual colours LED to directly replace laser as illumination system in order for a single frame to be captured by a normal camera instead of a high speed camera. Dual colours HPLEDs PIV are capable with single frame double pulses mode which able to plot the velocity vector of the particles after correlation. An illumination system is designed and fabricated and evaluated by measuring water flow in a small tank. The results indicates that HPLEDs promises a few advantages in terms of cost, safety and performance. It has a high potential to be develop into an alternative for PIV in the near future.
Automated Creation of Labeled Pointcloud Datasets in Support of Machine-Learning Based Perception
2017-12-01
computationally intensive 3D vector math and took more than ten seconds to segment a single LIDAR frame from the HDL-32e with the Dell XPS15 9650’s Intel...Core i7 CPU. Depth Clustering avoids the computationally intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead
Oral, Slow-Release Ivermectin: Biting Back at Malaria Vectors.
Chaccour, Carlos J; Rabinovich, N Regina
2017-03-01
Bellinger and colleagues offer an elegant twist for a promising new tool against malaria. This formulation is designed to release ivermectin, a mosquito-killing drug for 10 days after a single oral dose. This could reduce the vector population and serve as a complementary tool for malaria elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.
Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina
2016-11-23
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.
Biomorphic networks: approach to invariant feature extraction and segmentation for ATR
NASA Astrophysics Data System (ADS)
Baek, Andrew; Farhat, Nabil H.
1998-10-01
Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.
Graph-state formalism for mutually unbiased bases
NASA Astrophysics Data System (ADS)
Spengler, Christoph; Kraus, Barbara
2013-11-01
A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis and an arbitrary element of the other basis coincide. In case the dimension, d, of the considered Hilbert space is a power of a prime number, complete sets of d+1 mutually unbiased bases (MUBs) exist. Here we present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level systems, with p being prime, one particular graph suffices to easily construct a set of pn+1 MUBs. In fact, we show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Ken; Peak, Bob
2006-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.
NASA Astrophysics Data System (ADS)
Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie
2015-08-01
The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.
NASA Technical Reports Server (NTRS)
Estes, J. E.; Tinney, L. R. (Principal Investigator); Streich, T.
1981-01-01
The use of digital LANDSAT techniques for monitoring agricultural land use conversions was studied. Two study areas were investigated: one in Ventura County and the other in Fresno County (California). Ventura test site investigations included the use of three dates of LANDSAT data to improve classification performance beyond that previously obtained using single data techniques. The 9% improvement is considered highly significant. Also developed and demonstrated using Ventura County data is an automated cluster labeling procedure, considered a useful example of vertical data integration. Fresno County results for a single data LANDSAT classification paralleled those found in Ventura, demonstrating that the urban/rural fringe zone of most interest is a difficult environment to classify using LANDSAT data. A general raster to vector conversion program was developed to allow LANDSAT classification products to be transferred to an operational county level geographic information system in Fresno.
Combinatorial Libraries of Arrayable Single-Chain Antibodies
NASA Astrophysics Data System (ADS)
Benhar, Itai
Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.
NASA Astrophysics Data System (ADS)
Keçeli, Murat; Hirata, So
2010-09-01
The mod- n scheme is introduced to the coupled-cluster singles and doubles (CCSD) and third-order Møller-Plesset perturbation (MP3) methods for extended systems of one-dimensional periodicity. By downsampling uniformly the wave vectors in Brillouin-zone integrations, this scheme accelerates these accurate but expensive correlation-energy calculations by two to three orders of magnitude while incurring negligible errors in their total and relative energies. To maintain this accuracy, the number of the nearest-neighbor unit cells included in the lattice sums must also be reduced by the same downsampling rate (n) . The mod- n CCSD and MP3 methods are applied to the potential-energy surface of polyethylene in anharmonic frequency calculations of its infrared- and Raman-active vibrations. The calculated frequencies are found to be within 46cm-1 (CCSD) and 78cm-1 (MP3) of the observed.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2013-07-01
In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.
Dormiani, Kianoush; Mir Mohammad Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Forouzanfar, Mahboobeh; Baharvand, Hossein; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein
2017-01-01
Induced pluripotent stem cells are generated from somatic cells by direct reprogramming. These reprogrammed pluripotent cells have different applications in biomedical fields such as regenerative medicine. Although viral vectors are widely used for efficient reprogramming, they have limited applications in the clinic due to the risk for immunogenicity and insertional mutagenesis. Accordingly, we designed and developed a small, non-integrating plasmid named pLENSO/Zeo as a 2A-mediated polycistronic expression vector. In this experimental study, we developed a single plasmid which includes a single expression cassette containing open reading frames of human LIN28, NANOG, SOX2 and OCT4 along with an EGFP reporter gene. Each reprogramming factor is separated by an intervening sequence that encodes a 2A self-processing peptide. The reprogramming cassette is located downstream of a CMV promoter. The vector is easily propagated in the E. coli GT115 strain through a CpG-depleted vector backbone. We evaluated the stability of the constructed vector bioinformatically, and its ability to stoichiometric expression of the reprogramming factors using quantitative molecular methods analysis after transient transfection into HEK293 cells. In the present study, we developed a nonviral episomal vector named pLENSO/ Zeo. Our results demonstrated the general structural stability of the plasmid DNA. This relatively small vector showed concomitant, high-level expression of the four reprogramming factors with similar titers, which are considered as the critical parameters for efficient and consistent reprogramming. According to our experimental results, this stable extrachromosomal plasmid expresses reliable amounts of four reprogramming factors simultaneously. Consequently, these promising results encouraged us to evaluate the capability of pLENSO/Zeo as a simple and feasible tool for generation of induced pluripotent stem cells from primary cells in the future.
Santillan, Alejandro; Sondhi, Dolan; Dyke, Jonathan P.; Crystal, Ronald G.; Gobin, Y. Pierre; Ballon, Douglas J.
2014-01-01
The delivery of therapeutics to neural tissue is greatly hindered by the blood brain barrier (BBB). Direct local delivery via diffusive release from degradable implants or direct intra-cerebral injection can bypass the BBB and obtain high concentrations of the therapeutic in the targeted tissue, however the total volume of tissue that can be treated using these techniques is limited. One treatment modality that can potentially access large volumes of neural tissue in a single treatment is intra-arterial (IA) injection after osmotic blood brain barrier disruption. In this technique, the therapeutic of interest is injected directly into the arteries that feed the target tissue after the blood brain barrier has been disrupted by exposure to a hyperosmolar mannitol solution, permitting the transluminal transport of the therapy. In this work we used contrast enhanced magnetic resonance imaging (MRI) studies of IA injections in mice to establish parameters that allow for extensive and reproducible BBB disruption. We found that the volume but not the flow rate of the mannitol injection has a significant effect on the degree of disruption. To determine whether the degree of disruption we observed with this method was sufficient for delivery of nanoscale therapeutics, we performed IA injections of an adeno-associated viral vector containing the CLN2 gene (AAVrh.10CLN2), which is mutated in the lysosomal storage disorder Late Infantile Neuronal Ceroid Lipofuscinosis (LINCL). We demonstrated that IA injection of AAVrh.10CLN2 after BBB disruption can achieve widespread transgene production in the mouse brain after a single administration. Further, we showed that there exists a minimum threshold of BBB disruption necessary to permit the AAV.rh10 vector to pass into the brain parenchyma from the vascular system. These results suggest that IA administration may be used to obtain widespread delivery of nanoscale therapeutics throughout the murine brain after a single administration. PMID:25270115
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
2001-01-01
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Li, Chengwen; Xiao, Pingjie; Gray, Steven James; Weinberg, Marc Scott; Samulski, R Jude
2011-08-23
Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.
Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry
2013-01-01
Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498
Path planning for assembly of strut-based structures. Thesis
NASA Technical Reports Server (NTRS)
Muenger, Rolf
1991-01-01
A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.
NASA Astrophysics Data System (ADS)
Zhu, Ran; Hui, Ming; Shen, Dongya; Zhang, Xiupu
2017-02-01
In this paper, dual wavelength linearization (DWL) technique is studied to suppress odd and even order nonlinearities simultaneously in a Mach-Zehnder modulator (MZM) modulated radio-over-fiber (RoF) transmission system. A theoretical model is given to analyze the DWL employed for MZM. In a single-tone test, the suppressions of the second order harmonic distortion (HD2) and third order harmonic distortion (HD3) at the same time are experimentally verified at different bias voltages of the MZM. The measured spurious-free dynamic ranges (SFDRs) with respect to the HD2 and HD3 are improved simultaneously compared to using a single laser. The output P1 dB is also improved by the DWL technique. Moreover, a WiFi signal is transmitted in the RoF system to test the linearization for broadband signal. The result shows that more than 1 dB improvement of the error vector magnitude (EVM) is obtained by the DWL technique.
Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto
2006-01-01
We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.
Damage detection of structures identified with deterministic-stochastic models using seismic data.
Huang, Ming-Chih; Wang, Yen-Po; Chang, Ming-Lian
2014-01-01
A deterministic-stochastic subspace identification method is adopted and experimentally verified in this study to identify the equivalent single-input-multiple-output system parameters of the discrete-time state equation. The method of damage locating vector (DLV) is then considered for damage detection. A series of shaking table tests using a five-storey steel frame has been conducted. Both single and multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged counterpart has also been studied. This study gives further insights into the scheme in terms of effectiveness, robustness, and limitation for damage localization of frame systems.
Accumulation of the Cyclobutane Thymine Dimer in Defined Sequences of Free and Nucleosomal DNA
2013-08-01
cyclobutane dimer in a single-stranded vector , Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 8141–8145. 11 C. A. Smith, M. Wang, N. Jiang, L. Che, X. Zhao and...J.-S. Taylor, Mutation spectra of M13 vectors containing site-specific cis–syn, trans–syn-I, (6-4), and Dewar pyrimi- done photoproducts of thymidylyl...Bypass of a site-specific cis–syn thymine dimer in a SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry, 1998
A versatile and efficient high-throughput cloning tool for structural biology.
Geertsma, Eric R; Dutzler, Raimund
2011-04-19
Methods for the cloning of large numbers of open reading frames into expression vectors are of critical importance for challenging structural biology projects. Here we describe a system termed fragment exchange (FX) cloning that facilitates the high-throughput generation of expression constructs. The method is based on a class IIS restriction enzyme and negative selection markers. FX cloning combines attractive features of established recombination- and ligation-independent cloning methods: It allows the straightforward transfer of an open reading frame into a variety of expression vectors and is highly efficient and very economic in its use. In addition, FX cloning avoids the common but undesirable feature of significantly extending target open reading frames with cloning related sequences, as it leaves a minimal seam of only a single extra amino acid to either side of the protein. The method has proven to be very robust and suitable for all common pro- and eukaryotic expression systems. It considerably speeds up the generation of expression constructs compared to traditional methods and thus facilitates a broader expression screening.
Adams, C N; Kattawar, G W
1993-08-20
We have developed a Monte Carlo program that is capable of calculating both the scalar and the Stokes vector radiances in an atmosphere-ocean system in a single computer run. The correlated sampling technique is used to compute radiance distributions for both the scalar and the Stokes vector formulations simultaneously, thus permitting a direct comparison of the errors induced. We show the effect of the volume-scattering phase function on the errors in radiance calculations when one neglects polarization effects. The model used in this study assumes a conservative Rayleigh-scattering atmosphere above a flat ocean. Within the ocean, the volume-scattering function (the first element in the Mueller matrix) is varied according to both a Henyey-Greenstein phase function, with asymmetry factors G = 0.0, 0.5, and 0.9, and also to a Rayleigh-scattering phase function. The remainder of the reduced Mueller matrix for the ocean is taken to be that for Rayleigh scattering, which is consistent with ocean water measurement.
Spacecraft attitude and velocity control system
NASA Technical Reports Server (NTRS)
Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)
1992-01-01
A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.
Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.
Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann
2016-10-01
Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10 6 PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
A Discriminant Distance Based Composite Vector Selection Method for Odor Classification
Choi, Sang-Il; Jeong, Gu-Min
2014-01-01
We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735
Hajitou, Amin
2010-01-01
Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
A Unified Air-Sea Visualization System: Survey on Gridding Structures
NASA Technical Reports Server (NTRS)
Anand, Harsh; Moorhead, Robert
1995-01-01
The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803
NASA Astrophysics Data System (ADS)
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
NASA Astrophysics Data System (ADS)
Sarac, Abdulhamit; Kysar, Jeffrey W.
2018-02-01
We present a new methodology for experimental validation of single crystal plasticity constitutive relationships based upon spatially resolved measurements of the direction of the Net Burgers Density Vector, which we refer to as the β-field. The β-variable contains information about the active slip systems as well as the ratios of the Geometrically Necessary Dislocation (GND) densities on the active slip systems. We demonstrate the methodology by comparing single crystal plasticity finite element simulations of plane strain wedge indentations into face-centered cubic nickel to detailed experimental measurements of the β-field. We employ the classical Peirce-Asaro-Needleman (PAN) hardening model in this study due to the straightforward physical interpretation of its constitutive parameters that include latent hardening ratio, initial hardening modulus and the saturation stress. The saturation stress and the initial hardening modulus have relatively large influence on the β-variable compared to the latent hardening ratio. A change in the initial hardening modulus leads to a shift in the boundaries of plastic slip sectors with the plastically deforming region. As the saturation strength varies, both the magnitude of the β-variable and the boundaries of the plastic slip sectors change. We thus demonstrate that the β-variable is sensitive to changes in the constitutive parameters making the variable suitable for validation purposes. We identify a set of constitutive parameters that are consistent with the β-field obtained from the experiment.
Novel approaches to models of Alzheimer's disease pathology for drug screening and development.
Shaughnessy, Laura; Chamblin, Beth; McMahon, Lori; Nair, Ayyappan; Thomas, Mary Beth; Wakefield, John; Koentgen, Frank; Ramabhadran, Ram
2004-01-01
Development of therapeutics for Alzheimer's disease (AD) requires appropriate cell culture models that reflect the errant biochemical pathways and animal models that reflect the pathological hallmarks of the disease as well as the clinical manifestations. In the past two decades AD research has benefited significantly from the use of genetically engineered cell lines expressing components of the amyloid-generating pathway, as well as from the study of transgenic mice that develop the pathological hallmarks of the disease, mainly neuritic plaques. The choice of certain cell types and the choice of mouse as the model organism have been mandated by the feasibility of introduction and expression of foreign genes into these model systems. We describe a universal and efficient gene-delivery system, using lentiviral vectors, that permits the development of relevant cell biological systems using neuronal cells, including primary neurons and animal models in mammalian species best suited for the study of AD. In addition, lentiviral gene delivery provides avenues for creation of novel models by direct and prolonged expression of genes in the brain in any vertebrate animal. TranzVector is a lentiviral vector optimized for efficiency and safety that delivers genes to cells in culture, in tissue explants, and in live animals regardless of the dividing or differentiated status of the cells. Genes can also be delivered efficiently to fertilized single-cell-stage embryos of a wide range of mammalian species, broadening the range of the model organism (from rats to nonhuman primates) for the study of disease mechanism as well as for development of therapeutics. Copyright 2004 Humana Press Inc.
Rosenberg, Jonathan B.; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Janda, Kim D.; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; Kaminsky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G.
2012-01-01
Abstract Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity. PMID:22486244
NASA Astrophysics Data System (ADS)
Allen, P.; Grässler, H.; Schulte, R.; Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Gebel, W.; Hofmann, E.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Aachen-Birmingham-Bonn-CERN-London IC-Munich (MPI)-Oxford Collaboration
1986-01-01
We present results on exclusive single-charged pion and kaon production in neutrino and antineutrino interactions on protons in the energy range from 5 to 120 GeV. The data were obtained from exposures of BEBC to wide band beams at the CERN SPS. For invariant masses of the (pπ) system below 2 GeV, the pions originate predominantly from decays of baryon resonances excited by the weak charged current. Similarly, we observe the production of Λ(1520) decaying into p and K -. For invariant masses above 2 GeV pion production becomes peripheral by interaction of the weak current with a virtual π0. We establish a contribution of longitudinally polarised intermediate vector bosons to this process.
Current Source Based on H-Bridge Inverter with Output LCL Filter
NASA Astrophysics Data System (ADS)
Blahnik, Vojtech; Talla, Jakub; Peroutka, Zdenek
2015-09-01
The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.
Soliman, George; Yevick, David; Jessop, Paul
2014-09-01
This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.
Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.
Morille, Marie; Passirani, Catherine; Vonarbourg, Arnaud; Clavreul, Anne; Benoit, Jean-Pierre
2008-01-01
Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection and for multi-located tumor sites, i.e. metastases. Non-viral vectors based on the use of cationic lipids or polymers appear to have promising potential, given the problems of safety encountered with viral vectors. Using these non-viral vectors, the current challenge is to obtain a similarly effective transfection to viral ones. Based on the advantages and disadvantages of existing vectors and on the hurdles encountered with these carriers, the aim of this review is to describe the "perfect vector" for systemic gene therapy against cancer.
NASA Astrophysics Data System (ADS)
Ferhat, Ipar
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy
Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-01-01
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research. PMID:27348247
Models for discrete-time self-similar vector processes with application to network traffic
NASA Astrophysics Data System (ADS)
Lee, Seungsin; Rao, Raghuveer M.; Narasimha, Rajesh
2003-07-01
The paper defines self-similarity for vector processes by employing the discrete-time continuous-dilation operation which has successfully been used previously by the authors to define 1-D discrete-time stochastic self-similar processes. To define self-similarity of vector processes, it is required to consider the cross-correlation functions between different 1-D processes as well as the autocorrelation function of each constituent 1-D process in it. System models to synthesize self-similar vector processes are constructed based on the definition. With these systems, it is possible to generate self-similar vector processes from white noise inputs. An important aspect of the proposed models is that they can be used to synthesize various types of self-similar vector processes by choosing proper parameters. Additionally, the paper presents evidence of vector self-similarity in two-channel wireless LAN data and applies the aforementioned systems to simulate the corresponding network traffic traces.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang
2018-06-01
Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.
ERIC Educational Resources Information Center
Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen
2012-01-01
Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…
A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.
Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya
2014-03-01
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin; Zhong, ShiSheng
2018-02-01
In this research, we propose a preference-guided optimisation algorithm for multi-criteria decision-making (MCDM) problems with interval-valued fuzzy preferences. The interval-valued fuzzy preferences are decomposed into a series of precise and evenly distributed preference-vectors (reference directions) regarding the objectives to be optimised on the basis of uniform design strategy firstly. Then the preference information is further incorporated into the preference-vectors based on the boundary intersection approach, meanwhile, the MCDM problem with interval-valued fuzzy preferences is reformulated into a series of single-objective optimisation sub-problems (each sub-problem corresponds to a decomposed preference-vector). Finally, a preference-guided optimisation algorithm based on MOEA/D (multi-objective evolutionary algorithm based on decomposition) is proposed to solve the sub-problems in a single run. The proposed algorithm incorporates the preference-vectors within the optimisation process for guiding the search procedure towards a more promising subset of the efficient solutions matching the interval-valued fuzzy preferences. In particular, lots of test instances and an engineering application are employed to validate the performance of the proposed algorithm, and the results demonstrate the effectiveness and feasibility of the algorithm.
Lu, Hengyu; Wilson, Bree A. L.; Ash, Gavin J.; Woruba, Sharon B.; Fletcher, Murray J.; You, Minsheng; Yang, Guang; Gurr, Geoff M.
2016-01-01
Phytoplasmas are insect vectored mollicutes responsible for disease in many economically important crops. Determining which insect species are vectors of a given phytoplasma is important for managing disease but is methodologically challenging because disease-free plants need to be exposed to large numbers of insects, often over many months. A relatively new method to detect likely transmission involves molecular testing for phytoplasma DNA in sucrose solution that insects have fed upon. In this study we combined this feeding medium method with a loop-mediated isothermal amplification (LAMP) assay to study 627 insect specimens of 11 Hemiptera taxa sampled from sites in Papua New Guinea affected by Bogia coconut syndrome (BCS). The LAMP assay detected phytoplasma DNA from the feeding solution and head tissue of insects from six taxa belonging to four families: Derbidae, Lophopidae, Flatidae and Ricaniidae. Two other taxa yielded positives only from the heads and the remainder tested negative. These results demonstrate the utility of combining single-insect feeding medium tests with LAMP assays to identify putative vectors that can be the subject of transmission tests and to better understand phytoplasma pathosystems. PMID:27786249
Equations of motion of slung load systems with results for dual lift
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Kanning, Gerd
1990-01-01
General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.
Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars
NASA Astrophysics Data System (ADS)
Suhonen, J.; Civitarese, O.
2014-04-01
In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
Farias, Margaret E.M.; Atkinson, Carter T.; LaPointe, Dennis A.; Jarvi, Susan I.
2012-01-01
Background: The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. Methods: In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Results: Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. Conclusions: The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition.
2012-01-01
Background The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. Methods In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Results Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. Conclusions The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition. PMID:22943788
Farias, Margaret E M; Atkinson, Carter T; LaPointe, Dennis A; Jarvi, Susan I
2012-09-03
The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition.
NASA Astrophysics Data System (ADS)
Morant, Maria; Llorente, Roberto
2017-01-01
In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).
Word-level recognition of multifont Arabic text using a feature vector matching approach
NASA Astrophysics Data System (ADS)
Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III
1996-03-01
Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.
Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu
The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less
Single-shot quantum state estimation via a continuous measurement in the strong backaction regime
NASA Astrophysics Data System (ADS)
Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.
2014-09-01
We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.
Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.
1997-01-01
The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128
A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.
Merenda, Alessandra; Andersson-Rolf, Amanda; Mustata, Roxana C; Li, Taibo; Kim, Hyunki; Koo, Bon-Kyoung
2017-07-12
CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.
Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.
Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas
2013-02-01
Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.
Polyploidization Without Mitosis Improves In Vivo Liver Transduction With Lentiviral Vectors
Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas
2013-01-01
Abstract Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy. PMID:23249390
Adaptive track scheduling to optimize concurrency and vectorization in GeantV
Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...
2015-05-22
The GeantV project is focused on the R&D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The modelmore » has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. Lastly, this work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results.« less
NASA Astrophysics Data System (ADS)
Avanesov, G. A.; Bessonov, R. V.; Kurkina, A. N.; Nikitin, A. V.; Sazonov, V. V.
2018-01-01
The BOKZ-M60 star sensor (Unit for Measuring Star Coordinates) is intended for determining the parameters of the orientation of the axes of the intrinsic coordinate system relative to the axes of the inertial system by observations of the regions of the stellar sky. It is convenient to characterize an error of the single determination of the orientation of the intrinsic coordinate system of the sensor by the vector of an infinitesimal turn of this system relative to its found position. Full-scale ground-based tests have shown that, for a resting sensor the root-mean-square values of the components of this vector along the axes of the intrinsic coordinate system lying in the plane of the sensor CCD matrix are less than 2″ and the component along the axis perpendicular to the matrix plane is characterized by the root-mean-square value of 15″. The joint processing of one-stage readings of several sensors installed on the same platform allows us to improve the indicated accuracy characteristics. In this paper, estimates of the accuracy of systems from BOKZ-M60 with two and four sensors performed from measurements carried out during the normal operation of these sensors on the Resurs-P satellite are given. Processing the measurements of the sensor system allowed us to increase the accuracy of determining the each of their orientations and to study random and systematic errors in these measurements.
Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.
Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C
2016-04-01
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.
Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology
Sizemore, Rachel J.; Seeger-Armbruster, Sonja; Hughes, Stephanie M.
2016-01-01
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. PMID:26888111
Zhu, S N; Wu, Z C; Fu, S N; Zhao, L M
2018-03-20
Details of various composites of the projections originated from a fundamental group-velocity-locked vector dissipative soliton (GVLVDS) are both experimentally and numerically explored. By combining the projections from the orthogonal polarization components of the GVLVDS, a high-order vector soliton structure with a double-humped pulse profile along one polarization and a single-humped pulse profile along the orthogonal polarization can be observed. Moreover, by de-chirping the composite double-humped pulse, the time separation between the two humps is reduced from 15.36 ps to 1.28 ps, indicating that the frequency chirp of the GVLVDS contributes significantly to the shaping of the double-humped pulse profile.
Reversible vector ratchets for skyrmion systems
NASA Astrophysics Data System (ADS)
Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.
2017-03-01
We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Capone, Francis J.
1995-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.
Are Bred Vectors The Same As Lyapunov Vectors?
NASA Astrophysics Data System (ADS)
Kalnay, E.; Corazza, M.; Cai, M.
Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the perturbations remain approximately linear (for example, for atmospheric models the interval for rescaling could be varied between a single time step and 1 day without affecting qualitatively the characteristics of the bred vectors. However, the finite-amplitude, finite-time, and lack of orthogonalization of the BVs introduces important differences with LVs: 1) In regions that undergo strong instabilities, the bred vectors tend to be locally domi- 1 nated by simple, low-dimensional structures. Patil et al (2001) showed that the BV-dim (appendix) gives a good estimate of the number of dominant directions (shapes) of the local k bred vectors. For example, if half of them are aligned in one direction, and half in a different direction, the BV-dim is about two. If the majority of the bred vectors are aligned predominantly in one direction and only a few are aligned in a second direction, then the BV-dim is between 1 and 2. Patil et al., (2001) showed that the regions with low dimensionality cover about 20% of the atmosphere. They also found that these low-dimensionality regions have a very well defined vertical structure, and a typical lifetime of 3-7 days. The low dimensionality identifies regions where the in- stability of the basic flow has manifested itself in a low number of preferred directions of perturbation growth. 2) Using a Quasi-Geostrophic simulation system of data assimilation developed by Morss (1999), Corazza et al (2001a, b) found that bred vectors have structures that closely resemble the background (short forecasts used as first guess) errors, which in turn dominate the local analysis errors. This is especially true in regions of low dimensionality, which is not surprising if these are unstable regions where errors grow in preferred shapes. 3) The number of bred vectors needed to represent the unstable subspace in the QG system is small (about 6-10). This was shown by computing the local BV-dim as a function of the number of independent bred vectors. Convergence in the local dimen- sion starts to occur at about 6 BVs, and is essentially complete when the number of vectors is about 10-15 (Corazza et al, 2001a). This should be contrasted with the re- sults of Snyder and Joly (1998) and Palmer et al (1998) who showed that hundreds of Lyapunov vectors with positive Lyapunov exponents are needed to represent the attractor of the system in quasi-geostrophic models. 4) Since only a few bred vectors are needed, and background errors project strongly in the subspace of bred vectors, Corazza et al (2001b) were able to develop cost-efficient methods to improve the 3D-Var data assimilation by adding to the background error covariance terms proportional to the outer product of the bred vectors, thus represent- ing the "errors of the day". This approach led to a reduction of analysis error variance of about 40% at very low cost. 5) The fact that BVs have finite amplitude provides a natural way to filter out instabil- ities present in the system that have fast growth, but saturate nonlinearly at such small amplitudes that they are irrelevant for ensemble perturbations. As shown by Lorenz (1996) Lyapunov vectors (and singular vectors) of models including these physical phenomena would be dominated by the fast but small amplitude instabilities, unless they are explicitly excluded from the linearized models. Bred vectors, on the other 2 hand, through the choice of an appropriate size for the perturbation, provide a natural filter based on nonlinear saturation of fast but irrelevant instabilities. 6) Every bred vector is qualitatively similar to the *leading* LV. LVs beyond the leading LV are obtained by orthogonalization after each time step with respect to the previous LVs subspace. The orthogonalization requires the introduction of a norm. With an enstrophy norm, the successive LVs have larger and larger horizontal scales, and a choice of a stream function norm would lead to successively smaller scales in the LVs. Beyond the first few LVs, there is little qualitative similarity between the background errors and the LVs. In summary, in a system like the atmosphere with enough physical space for several independent local instabilities, BVs and LVs share some properties but they also have significant differences. BV are finite-amplitude, finite-time, and because they are not globally orthogonalized, they have local properties in space. Bred vectors are akin to the leading LV, but bred vectors derived from different arbitrary initial perturba- tions remain distinct from each other, instead of collapsing into a single leading vec- tor, presumably because the nonlinear terms and physical parameterizations introduce sufficient stochastic forcing to avoid such convergence. As a result, there is no need for global orthogonalization, and the number of bred vectors required to describe the natural instabilities in an atmospheric system (from a local point of view) is much smaller than the number of Lyapunov vectors with positive Lyapunov exponents. The BVs are independent of the norm, whereas the LVs beyond the first one do depend on the choice of norm: for example, they become larger in scale with a vorticity norm, and smaller with a stream function norm. These properties of BVs result in significant advantages for data assimilation and en- semble forecasting for the atmosphere. Errors in the analysis have structures very similar to bred vectors, and it is found that they project very strongly on the subspace of a few bred vectors. This is not true for either Lyapunov vectors beyond the lead- ing LVs, or for singular vectors unless they are constructed with a norm based on the analysis error covariance matrix (or a bred vector covariance). The similarity between bred vectors and analysis errors leads to the ability to include "errors of the day" in the background error covariance and a significant improvement of the analysis beyond 3D-Var at a very low cost (Corazza, 2001b). References Alligood K. T., T. D. Sauer and J. A. Yorke, 1996: Chaos: an introduction to dynamical systems. Springer-Verlag, New York. Buizza R., J. Tribbia, F. Molteni and T. Palmer, 1993: Computation of optimal unstable 3 structures for numerical weather prediction models. Tellus, 45A, 388-407. Cai, M., E. Kalnay and Z. Toth, 2001: Potential impact of bred vectors on ensemble forecasting and data assimilation in the Zebiak-Cane model. Submitted to J of Climate. Corazza, M., E. Kalnay, D. J. Patil, R. Morss, M. Cai, I. Szunyogh, B. R. Hunt, E. Ott and J. Yorke, 2001: Use of the breeding technique to determine the structure of the "errors of the day". Submitted to Nonlinear Processes in Geophysics. Corazza, M., E. Kalnay, DJ Patil, E. Ott, J. Yorke, I Szunyogh and M. Cai, 2001: Use of the breeding technique in the estimation of the background error covariance matrix for a quasigeostrophic model. AMS Symposium on Observations, Data Assimilation and Predictability, Preprints volume, Orlando, FA, 14-17 January 2002. Farrell, B., 1988: Small error dynamics and the predictability of atmospheric flow, J. Atmos. Sciences, 45, 163-172. Kalnay, E 2002: Atmospheric modeling, data assimilation and predictability. Chapter 6. Cambridge University Press, UK. In press. Kalnay E and Z Toth 1994: Removing growing errors in the analysis. Preprints, Tenth Conference on Numerical Weather Prediction, pp 212-215. Amer. Meteor. Soc., July 18-22, 1994. Lorenz, E.N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 21, 289-307. Lorenz, E.N., 1996: Predictability- A problem partly solved. Proceedings of the ECMWF Seminar on Predictability, Reading, England, Vol. 1 1-18. Molteni F. and TN Palmer, 1993: Predictability and finite-time instability of the north- ern winter circulation. Q. J. Roy. Meteorol. Soc. 119, 269-298. Morss, R.E.: 1999: Adaptive observations: Idealized sampling strategies for improving numerical weather prediction. Ph.D. Thesis, Massachussetts Institute of Technology, 225pp. Ott, E., 1993: Chaos in Dynamical Systems. Cambridge University Press. New York. Palmer, TN, R. Gelaro, J. Barkmeijer and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos Sciences, 55, 633-653. Patil, DJ, BR Hunt, E Kalnay, J. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878. Patil, DJ, I. Szunyogh, BR Hunt, E Kalnay, E Ott, and J. Yorke, 2001: Using large 4 member ensembles to isolate local low dimensionality of atmospheric dynamics. AMS Symposium on Observations, Data Assimilation and Predictability, Preprints volume, Orlando, FA, 14-17 January 2002. Snyder, C. and A. Joly, 1998: Development of perturbations within growing baroclinic waves. Q. J. Roy. Meteor. Soc., 124, pp 1961. Szunyogh, I, E. Kalnay and Z. Toth, 1997: A comparison of Lyapunov and Singular vectors in a low resolution GCM. Tellus, 49A, 200-227. Toth, Z and E Kalnay 1993: Ensemble forecasting at NMC - the generation of pertur- bations. Bull. Amer. Meteorol. Soc., 74, 2317-2330. Toth, Z and E Kalnay 1997: Ensemble forecasting at NCEP and the breeding method. Mon Wea Rev, 125, 3297-3319. * Corresponding author address: Eugenia Kalnay, Meteorology Depart- ment, University of Maryland, College Park, MD 20742-2425, USA; email: ekalnay@atmos.umd.edu Appendix: BV-dimension Patil et al., (2001) defined local bred vectors around a point in the 3-dimensional grid of the model by taking the 24 closest horizontal neighbors. If there are k bred vectors available, and N model variables for each grid point, the k local bred vectors form the columns of a 25Nxk matrix B. The kxk covariance matrix is C=B^T B. Its eigen- values are positive, and its eigenvectors v(i) are the singular vectors of the local bred vector subspace. The Bred Vector dimension (BV-dim) measures the local effective dimension: BV-dim[s,s,...,s(k)]={SUM[s(i)]}^2/SUM[s(i)]^2 where s(i) are the square roots of the eigenvalues of the covariance matrix. 5
Kemppainen, Minna J.; Pardo, Alejandro G.
2010-01-01
Summary pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing. PMID:21255319
Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.
Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R
2017-01-01
Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.
Nonlinear analogue of the May−Wigner instability transition
Fyodorov, Yan V.; Khoruzhenko, Boris A.
2016-01-01
We study a system of N≫1 degrees of freedom coupled via a smooth homogeneous Gaussian vector field with both gradient and divergence-free components. In the absence of coupling, the system is exponentially relaxing to an equilibrium with rate μ. We show that, while increasing the ratio of the coupling strength to the relaxation rate, the system experiences an abrupt transition from a topologically trivial phase portrait with a single equilibrium into a topologically nontrivial regime characterized by an exponential number of equilibria, the vast majority of which are expected to be unstable. It is suggested that this picture provides a global view on the nature of the May−Wigner instability transition originally discovered by local linear stability analysis. PMID:27274077
NASA Technical Reports Server (NTRS)
2003-01-01
With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L; Wetsel, Rick A; Wang, Dachun
2014-02-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. © 2013 AlphaMed Press.
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L.; Wetsel, Rick A.; Wang, Dachun
2013-01-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector-integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types, are still major obstacles. Here we report a novel strategy using a single non-viral site-specific-targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific NeomycinR trangene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of beta-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random-integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random-integration-free and exogenous reprogramming-factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultra-structural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. PMID:24123810
The bee's map of the e-vector pattern in the sky.
Rossel, S; Wehner, R
1982-07-01
It has long been known that bees can use the pattern of polarized light in the sky as a compass cue even if they can see only a small part of the whole pattern. How they solve this problem has remained enigmatic. Here we show that the bees rely on a generalized celestial map that is used invariably throughout the day. We reconstruct this map by analyzing the navigation errors made by bees to which single e-vectors are displayed. In addition, we demonstrate how the bee's celestial map can be derived from the e-vector patterns in the sky.
Discrete-Event Simulation Models of Plasmodium falciparum Malaria
McKenzie, F. Ellis; Wong, Roger C.; Bossert, William H.
2008-01-01
We develop discrete-event simulation models using a single “timeline” variable to represent the Plasmodium falciparum lifecycle in individual hosts and vectors within interacting host and vector populations. Where they are comparable our conclusions regarding the relative importance of vector mortality and the durations of host immunity and parasite development are congruent with those of classic differential-equation models of malaria, epidemiology. However, our results also imply that in regions with intense perennial transmission, the influence of mosquito mortality on malaria prevalence in humans may be rivaled by that of the duration of host infectivity. PMID:18668185
Hypercluster - Parallel processing for computational mechanics
NASA Technical Reports Server (NTRS)
Blech, Richard A.
1988-01-01
An account is given of the development status, performance capabilities and implications for further development of NASA-Lewis' testbed 'hypercluster' parallel computer network, in which multiple processors communicate through a shared memory. Processors have local as well as shared memory; the hypercluster is expanded in the same manner as the hypercube, with processor clusters replacing the normal single processor node. The NASA-Lewis machine has three nodes with a vector personality and one node with a scalar personality. Each of the vector nodes uses four board-level vector processors, while the scalar node uses four general-purpose microcomputer boards.
New perspectives in tracing vector-borne interaction networks.
Gómez-Díaz, Elena; Figuerola, Jordi
2010-10-01
Disentangling trophic interaction networks in vector-borne systems has important implications in epidemiological and evolutionary studies. Molecular methods based on bloodmeal typing in vectors have been increasingly used to identify hosts. Although most molecular approaches benefit from good specificity and sensitivity, their temporal resolution is limited by the often rapid digestion of blood, and mixed bloodmeals still remain a challenge for bloodmeal identification in multi-host vector systems. Stable isotope analyses represent a novel complementary tool that can overcome some of these problems. The utility of these methods using examples from different vector-borne systems are discussed and the extents to which they are complementary and versatile are highlighted. There are excellent opportunities for progress in the study of vector-borne transmission networks resulting from the integration of both molecular and stable isotope approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
Protein Degradation in a TX-TL Cell-free Expression System Using ClpXP Protease
2014-07-14
function in TX-TL, as well as bacteriophage assembly [2, 6]. Circuits can also be prototyped from basic parts within 8 hours, avoiding cloning and...mRFP, and Venus and variants eGFP-ssrA, mRFP-ssrA, and Venus-ssrA, coding sequences were cloned into a T7-lacO inducible vector containing a N...12672L12677.! 6.! Shin,!J.,!P.!Jardine,!and!V.!Noireaux,!Genome(Replication,(Synthesis,(and( Assembly(of(the( Bacteriophage (T7(in(a(Single(Cell9Free
Luke, Garry A; Ryan, Martin D
2018-01-01
To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.
Yan, Lijie; Jackson, Andrew O.; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei
2011-01-01
Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies. PMID:22031834
pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana
2017-01-01
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) system is widely used as a tool for genome engineering in various organisms. A complex consisting of Cas9 and single guide RNA (sgRNA) induces a DNA double-strand break in a sequence-specific manner, resulting in knockout. Some binary vectors for CRISPR/Cas9 in plants have been reported, but there is a problem with low efficiency. Here, we present a newly developed, highly efficient CRISPR/Cas9 vector for Arabidopsis thaliana, pKAMA-ITACHI Red (pKIR), harboring the RIBOSOMAL PROTEIN S5 A (RPS5A) promoter to drive Cas9. The RPS5A promoter maintains high constitutive expression at all developmental stages starting from the egg cell and including meristematic cells. Even in the T1 generation, pKIR induced null phenotypes in some genes: PHYTOENE DESATURASE 3 (PDS3), AGAMOUS (AG) and DUO POLLEN 1 (DUO1). Mutations induced by pKIR were carried in the germ cell line of the T1 generation. Surprisingly, in some lines, 100% of the T2 plants had the adh1 (ALCOHOL DEHYDROGENASE 1) null phenotype, indicating that pKIR strongly induced heritable mutations. Cas9-free T2 mutant plants were obtained by removing T2 seeds expressing a fluorescent marker in pKIR. Our results suggest that the pKIR system is a powerful molecular tool for genome engineering in Arabidopsis. PMID:27856772
Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.
Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo
2015-09-11
We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
2015-08-27
ABSTRACT The PI and his group opened up new directions of research: the generation of vector beams with metasurfaces that control amplitude, phase...and polarization of wavefronts, the detection of wavefronts using metasurfaces , new metasurfaces for controlling surface plasmon wavefronts and high...performance device applications of metasurfaces on graphene. In the vector beam area they generated radially polarized light with a single
USDA-ARS?s Scientific Manuscript database
Plasmids that contain a disrupted genome of the Junonia coenia densovirus (JcDNV) integrate into the chromosomes of the somatic cells of insects. When subcloned individually, both the P9 inverted terminal repeat (P9-ITR) and the P93-ITR promote the chromosomal integration of vector plasmids in insec...
USDA-ARS?s Scientific Manuscript database
The effect of feeding programs on the time of clearance of Escherichia coli in broiler breeder pullets was investigated. Broiler breeder pullets from a single grandparent flock were in ovo-vaccinated at 19 d of incubation with a vector HVT (vHVT) vector HVT + Infectious bursal disease (IBD) vaccine....
Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam
2007-02-15
Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines.
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
Method for producing labeled single-stranded nucleic acid probes
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-10-19
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
New neural-networks-based 3D object recognition system
NASA Astrophysics Data System (ADS)
Abolmaesumi, Purang; Jahed, M.
1997-09-01
Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Remote sensing of surface currents with single shipborne high-frequency surface wave radar
NASA Astrophysics Data System (ADS)
Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan
2016-01-01
High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.
SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES
Zhu, Liping; Huang, Mian; Li, Runze
2012-01-01
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mild conditions, we show that the simple linear quantile regression offers a consistent estimate of the index parameter vector. This is a surprising and interesting result because the single-index model is possibly misspecified under the linear quantile regression. With a root-n consistent estimate of the index vector, one may employ a local polynomial regression technique to estimate the conditional quantile function. This procedure is computationally efficient, which is very appealing in high-dimensional data analysis. We show that the resulting estimator of the quantile function performs asymptotically as efficiently as if the true value of the index vector were known. The methodologies are demonstrated through comprehensive simulation studies and an application to a real dataset. PMID:24501536
Tian, J; Andreadis, S T
2009-07-01
Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.
Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii.
Tonetti, Nicolas; Voordouw, Maarten J; Durand, Jonas; Monnier, Séverine; Gern, Lise
2015-04-01
The vector-to-host and host-to-vector transmission steps are the two critical events that define the life cycle of any vector-borne pathogen. We expect negative genetic correlations between these two transmission phenotypes, if parasite genotypes specialized at invading the vector are less effective at infecting the vertebrate host and vice versa. We used the tick-borne bacterium Borrelia afzelii, a causative agent of Lyme borreliosis in Europe, to test whether genetic trade-offs exist between tick-to-host, systemic (host-to-tick), and a third mode of co-feeding (tick-to-tick) transmission. We worked with six strains of B. afzelii that were differentiated according to their ospC gene. We compared the three components of transmission among the B. afzelii strains using laboratory rodents as the vertebrate host and a laboratory colony of Ixodes ricinus as the tick vector. We used next generation matrix models to combine these transmission components into a single estimate of the reproductive number (R0) for each B. afzelii strain. We also tested whether these strain-specific estimates of R0 were correlated with the strain-specific frequencies in the field. We found significant genetic variation in the three transmission components among the B. afzelii strains. This is the first study to document genetic variation in co-feeding transmission for any tick-borne pathogen. We found no evidence of trade-offs as the three pairwise correlations of the transmission rates were all positive. The R0 values from our laboratory study explained 45% of the variation in the frequencies of the B. afzelii ospC strains in the field. Our study suggests that laboratory estimates of pathogen fitness can predict the distribution of pathogen strains in nature. Copyright © 2015 Elsevier GmbH. All rights reserved.
Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.
Mohiaddin, R H; Yang, G Z; Kilner, P J
1994-01-01
We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.
Design of an ion thruster movable grid thrust vectoring system
NASA Astrophysics Data System (ADS)
Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr
2004-08-01
Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.
Structural arrest in an ideal gas.
van Ketel, Willem; Das, Chinmay; Frenkel, Daan
2005-04-08
We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.
Effective Vectorization with OpenMP 4.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Joseph N.; Hernandez, Oscar R.; Lopez, Matthew Graham
This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in OpenMP work, and how these are implemented in different compilers. Modern processors are highly parallel computational machines which often include multiple processors capable of executing several instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to achieve higher performance without increasing the power required to run it. SIMD instructions can significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD model is so integral to the processor s potential performance that, if SIMDmore » is not utilized, less than half of the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level languages because most programming languages do not have a way to describe them. Most compilers are capable of vectorizing code by using the SIMD instructions, but there are many code features important for SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by extending the C++/C and Fortran programming languages with compiler directives that express SIMD parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a key resource for making optimized code, but it does not change whether or not the code can use SIMD operations. However, in many cases critical functions are limited by a poor understanding of how SIMD instructions are actually implemented, as SIMD can be implemented through vector instructions or simultaneous multi-threading (SMT). We have found that it is often the case that code cannot be vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how SIMD instructions work.« less
A Single Camera Motion Capture System for Human-Computer Interaction
NASA Astrophysics Data System (ADS)
Okada, Ryuzo; Stenger, Björn
This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140
Valença-Barbosa, Carolina; Lima, Marli M.; Sarquis, Otília; Bezerra, Claudia M.; Abad-Franch, Fernando
2014-01-01
Background Understanding the drivers of habitat selection by insect disease vectors is instrumental to the design and operation of rational control-surveillance systems. One pervasive yet often overlooked drawback of vector studies is that detection failures result in some sites being misclassified as uninfested; naïve infestation indices are therefore biased, and this can confound our view of vector habitat preferences. Here, we present an initial attempt at applying methods that explicitly account for imperfect detection to investigate the ecology of Chagas disease vectors in man-made environments. Methodology We combined triplicate-sampling of individual ecotopes (n = 203) and site-occupancy models (SOMs) to test a suite of pre-specified hypotheses about habitat selection by Triatoma brasiliensis. SOM results were compared with those of standard generalized linear models (GLMs) that assume perfect detection even with single bug-searches. Principal Findings Triatoma brasiliensis was strongly associated with key hosts (native rodents, goats/sheep and, to a lesser extent, fowl) in peridomestic environments; ecotope structure had, in comparison, small to negligible effects, although wooden ecotopes were slightly preferred. We found evidence of dwelling-level aggregation of infestation foci; when there was one such focus, same-dwelling ecotopes, whether houses or peridomestic structures, were more likely to become infested too. GLMs yielded negatively-biased covariate effect estimates and standard errors; both were, on average, about four times smaller than those derived from SOMs. Conclusions/Significance Our results confirm substantial population-level ecological heterogeneity in T. brasiliensis. They also suggest that, at least in some sites, control of this species may benefit from peridomestic rodent control and changes in goat/sheep husbandry practices. Finally, our comparative analyses highlight the importance of accounting for the various sources of uncertainty inherent to vector studies, including imperfect detection. We anticipate that future research on infectious disease ecology will increasingly rely on approaches akin to those described here. PMID:24811125
DOT National Transportation Integrated Search
1979-09-01
Volume 1 of Theoretical Studies of Microstrip Antennas deals with general techniques and analyses of single and coupled radiating elements. Specifically, we review and then employ an important equivalence theorem that allows a pair of vector potentia...
Direct expression and validation of phage-selected peptide variants in mammalian cells.
Quinlan, Brian D; Gardner, Matthew R; Joshi, Vinita R; Chiang, Jessica J; Farzan, Michael
2013-06-28
Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
NASA Astrophysics Data System (ADS)
Nutku, Yavuz
2003-07-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
Singular value description of a digital radiographic detector: Theory and measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.
The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less
Approaches for Language Identification in Mismatched Environments
2016-09-08
different i-vector systems are considered, which differ in their feature extraction mechanism. The first, which we refer to as the standard i-vector, or...both conversational telephone speech and narrowband broadcast speech. Multiple experiments are conducted to assess the performance of the system in...bottleneck features using i-vectors. The proposed system results in a 30% improvement over the baseline result. Index Terms: language identification
Reversible vector ratchets for skyrmion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles
In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less
Reversible vector ratchets for skyrmion systems
Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles
2017-03-03
In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less
Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin
2015-06-01
Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Method for introducing unidirectional nested deletions
Dunn, J.J.; Quesada, M.A.; Randesi, M.
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: High-Accuracy, High-Dynamic-Range Phase-Measurement System; Simple, Compact, Safe Impact Tester; Multi-Antenna Radar Systems for Doppler Rain Measurements; 600-GHz Electronically Tunable Vector Measurement System; Modular Architecture for the Measurement of Space Radiation; VLSI Design of a Turbo Decoder; Architecture of an Autonomous Radio Receiver; Improved On-Chip Measurement of Delay in an FPGA or ASIC; Resource Selection and Ranking; Accident/Mishap Investigation System; Simplified Identification of mRNA or DNA in Whole Cells; Printed Multi-Turn Loop Antennas for RF Biotelemetry; Making Ternary Quantum Dots From Single-Source Precursors; Improved Single-Source Precursors for Solar-Cell Absorbers; Spray CVD for Making Solar-Cell Absorber Layers; Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells; A Method of Assembling Compact Coherent Fiber-Optic Bundles; Manufacturing Diamond Under Very High Pressure; Ring-Resonator/Sol-Gel Interferometric Immunosensor; Compact Fuel-Cell System Would Consume Neat Methanol; Algorithm Would Enable Robots to Solve Problems Creatively; Hypothetical Scenario Generator for Fault-Tolerant Diagnosis; Smart Data Node in the Sky; Pseudo-Waypoint Guidance for Proximity Spacecraft Maneuvers; Update on Controlling Herds of Cooperative Robots; and Simulation and Testing of Maneuvering of a Planetary Rover.
Symbolic computer vector analysis
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.
Cunningham, Sharon C; Siew, Susan M; Hallwirth, Claus V; Bolitho, Christine; Sasaki, Natsuki; Garg, Gagan; Michael, Iacovos P; Hetherington, Nicola A; Carpenter, Kevin; de Alencastro, Gustavo; Nagy, Andras; Alexander, Ian E
2015-08-01
Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration. © 2015 by the American Association for the Study of Liver Diseases.