Sample records for single ventricular cells

  1. Characteristics of single Ca(2+) channel kinetics in feline hypertrophied ventricular myocytes.

    PubMed

    Yang, Xiangjun; Hui, Jie; Jiang, Tingbo; Song, Jianping; Liu, Zhihua; Jiang, Wenping

    2002-04-01

    To explore the mechanism underlying the prolongation of action potential and delayed inactivation of the L-type Ca(2+) (I(Ca, L)) current in a feline model of left ventricular system hypertension and concomitant hypertrophy. Single Ca(2+) channel properties in myocytes isolated from normal and pressure overloaded cat left ventricles were studied, using patch-clamp techniques. Left ventricular pressure overload was induced by partial ligation of the ascending aorta for 4 - 6 weeks. The amplitude of single Ca(2+) channel current evoked by depolarizing pulses from -40 mV to 0 mV was 1.02 +/- 0.03 pA in normal cells and 1.05 +/- 0.03 pA in hypertrophied cells, and there was no difference in single channel current-voltage relationships between the groups since slope conductance was 26.2 +/- 1.0 pS in normal and hypertrophied cells, respectively. Peak amplitudes of the ensemble-averaged single Ca(2+) channel currents were not different between the two groups of cells. However, the amplitude of this averaged current at the end of the clamp pulse was significantly larger in hypertrophied cells than in normal cells. Open-time histograms revealed that open-time distribution was fitted by a single exponential function in channels of normal cells and by a two exponential function in channels of hypertrophied cells. The number of long-lasting openings was increased in channels of hypertrophied cells, and therefore the calculated mean open time of the channel was significantly longer compared to normal controls. Kinetic changes in the Ca(2+) channel may underlie both hypertrophy-associated delayed inactivation of the Ca(2+) current and, in part, the pressure overload-induced action potential lengthening in this cat model of ventricular left systolic hypertension and hypertrophy.

  2. Differential Expression Levels of Integrin α6 Enable the Selective Identification and Isolation of Atrial and Ventricular Cardiomyocytes.

    PubMed

    Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K; Eckardt, Dominik

    2015-01-01

    Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.

  3. Differential Expression Levels of Integrin α6 Enable the Selective Identification and Isolation of Atrial and Ventricular Cardiomyocytes

    PubMed Central

    Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K.; Eckardt, Dominik

    2015-01-01

    Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications. PMID:26618511

  4. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    PubMed

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  5. Fibrosis-Related Gene Expression in Single Ventricle Heart Disease.

    PubMed

    Nakano, Stephanie J; Siomos, Austine K; Garcia, Anastacia M; Nguyen, Hieu; SooHoo, Megan; Galambos, Csaba; Nunley, Karin; Stauffer, Brian L; Sucharov, Carmen C; Miyamoto, Shelley D

    2017-12-01

    To evaluate fibrosis and fibrosis-related gene expression in the myocardium of pediatric subjects with single ventricle with right ventricular failure. Real-time quantitative polymerase chain reaction was performed on explanted right ventricular myocardium of pediatric subjects with single ventricle disease and controls with nonfailing heart disease. Subjects were divided into 3 groups: single ventricle failing (right ventricular failure before or after stage I palliation), single ventricle nonfailing (infants listed for primary transplantation with normal right ventricular function), and stage III (Fontan or right ventricular failure after stage III). To evaluate subjects of similar age and right ventricular volume loading, single ventricle disease with failure was compared with single ventricle without failure and stage III was compared with nonfailing right ventricular disease. Histologic fibrosis was assessed in all hearts. Mann-Whitney tests were performed to identify differences in gene expression. Collagen (Col1α, Col3) expression is decreased in single ventricle congenital heart disease with failure compared with nonfailing single ventricle congenital heart disease (P = .019 and P = .035, respectively), and is equivalent in stage III compared with nonfailing right ventricular heart disease. Tissue inhibitors of metalloproteinase (TIMP-1, TIMP-3, and TIMP-4) are downregulated in stage III compared with nonfailing right ventricular heart disease (P = .0047, P = .013 and P = .013, respectively). Matrix metalloproteinases (MMP-2, MMP-9) are similar between nonfailing single ventricular heart disease and failing single ventricular heart disease, and between stage III heart disease and nonfailing right ventricular heart disease. There is no difference in the prevalence of right ventricular fibrosis by histology in subjects with single ventricular failure heart disease with right ventricular failure (18%) compared with those with normal right ventricular function (38%). Fibrosis is not a primary contributor to right ventricular failure in infants and young children with single ventricular heart disease. Additional studies are required to understand whether antifibrotic therapies are beneficial in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function.

    PubMed

    Shah, Prajay T; Stratton, Jo A; Stykel, Morgan Gail; Abbasi, Sepideh; Sharma, Sandeep; Mayr, Kyle A; Koblinger, Kathrin; Whelan, Patrick J; Biernaskie, Jeff

    2018-05-03

    Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone.

    PubMed

    Rushing, Gabrielle; Ihrie, Rebecca A

    2016-08-01

    The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.

  8. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

    PubMed

    Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei

    2018-06-21

    Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.

  9. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia.

    PubMed

    Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi

    2018-05-30

    A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.

  10. Developmental-stage-dependent radiosensitivity of neural cells in the ventricular zone of telencephalon in mouse and rat fetuses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, K.; Kameyama, Y.

    1988-03-01

    Pregnant ICR mice were treated with single whole-body X-radiation at a dose of 0.24 Gy on day 10, 13, or 15 of gestation. Fetuses were obtained from mothers during 1 and 24 hours after irradiation. Pyknotic cells in the ventricular zone of telencephalon were counted in serial histological sections. Incidence of pyknotic cells peaked during 6 and 9 hours after irradiation in each gestation day group. Then, dose-response curves were obtained 6 hours after 0-0.48 Gy of irradiation. All three dose-response curves showed clear linearity in the dose range lower than 0.24 Gy. Ratios of radiosensitivity estimated from the slopesmore » of dose-response curves in day 10, 13, and 15 groups were 1, 1.4, and 0.4, respectively. These demonstrated that ventricular cells in the day 13 fetal telencephalon were the most radiosensitive among the three different age groups. In order to confirm the presence of the highly radiosensitive stage common to mammalian cerebral cortical histogenesis, pregnant F344 rats were treated with single whole-body gamma-irradiation at a dose of 0.48 Gy on day 13, 14, 15, 17, or 19 of gestation. The incidence of pyknotic cells in the ventricular zone of telencephalon was examined microscopically during 1 and 24 hours after irradiation. The peak incidence was shown 6 hours after irradiation in all the treated groups, and the highest peak incidence was shown in day-15-treated group. The developmental stage of telencephalon of day 15 rat fetuses was comparable to that of day 13 mouse fetuses. Thus, the highest radiosensitivity in terms of acute cell death was shown in the same developmental stage of brain development, i.e., the beginning phase of cerebral cortical histogenesis, in both mice and rats.« less

  11. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.

    PubMed

    Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain

    2016-01-15

    The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    PubMed

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers. Copyright © 2015 the American Physiological Society.

  13. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block

    PubMed Central

    Spindler, Anthony J.; Paterson, David; Noble, Denis

    2015-01-01

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na+ channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2–6.67 Hz) and exposed to various concentrations (5 × 10−6 to 500 × 10−6 mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10−4 mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10−6 mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na+ channel blockers. PMID:26342072

  14. The Five-Year Clinical and Angiographic Follow-Up Outcomes of Intracoronary Transfusion of Circulation-Derived CD34+ Cells for Patients With End-Stage Diffuse Coronary Artery Disease Unsuitable for Coronary Intervention-Phase I Clinical Trial.

    PubMed

    Sung, Pei-Hsun; Lee, Fan-Yen; Tong, Meng-Shen; Chiang, John Y; Pei, Sung-Nan; Ma, Ming-Chun; Li, Yi-Chen; Chen, Yung-Lung; Wu, Chiung-Jen; Sheu, Jiunn-Jye; Lee, Mel S; Yip, Hon-Kan

    2018-05-01

    This study investigated the clinical and angiographic long-term outcomes of intracoronary transfusion of circulation-derived CD34+ cells for patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention. A single-center prospective randomized double-blinded phase I clinical trial. Thirty-eight patients undergoing CD34+ cell therapy were allocated into groups 1 (1.0 × 10 cells/each vessel; n = 18) and 2 (3.0 × 10 cells/each vessel; n = 20). Those with end-stage diffuse coronary artery disease were unsuitable for percutaneous and surgical coronary revascularization. Intracoronary delivery of circulation-derived CD34+ cells. We prospectively evaluated long-term clinical and echocardiographic/angiographic outcomes between survivors and nonsurvivors. By the end of 5-year follow-up, the survival rate and major adverse cardio/cerebrovascular event were 78.9% (30/38) and 36.8% (14/38), respectively. During follow-up period, 31.6% patients (12/38) received coronary stenting for reason of sufficient target vessel size grown-up after the treatment. Endothelial function was significantly reduced in the nonsurvivors than the survivors (p = 0.039). Wimasis image analysis of angiographic findings showed that the angiogenesis was significantly and progressively increased from baseline to 1 and 5 years (all p < 0.001). The 3D echocardiography showed left ventricular ejection fraction increased from baseline to 1 year and then remained stable up to 5 years, whereas left ventricular chamber diameter exhibited an opposite pattern to left ventricular ejection fraction among the survivors. The clinical scores for angina and heart failure were significantly progressively reduced from baseline to 1 and 5 years (all p < 0.001). CD34+ cell therapy for end-stage diffuse coronary artery disease patients might contribute to persistently long-term effects on improvement of left ventricular function, angina/heart failure, and amelioration of left ventricular remodeling.

  15. Reduced N-Type Ca2+ Channels in Atrioventricular Ganglion Neurons Are Involved in Ventricular Arrhythmogenesis.

    PubMed

    Zhang, Dongze; Tu, Huiyin; Cao, Liang; Zheng, Hong; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2018-01-15

    Attenuated cardiac vagal activity is associated with ventricular arrhythmogenesis and related mortality in patients with chronic heart failure. Our recent study has shown that expression of N-type Ca 2+ channel α-subunits (Ca v 2.2-α) and N-type Ca 2+ currents are reduced in intracardiac ganglion neurons from rats with chronic heart failure. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Ventricular myocardium receives projection of neuronal terminals only from the AVG. In this study we tested whether a decrease in N-type Ca 2+ channels in AVG neurons contributes to ventricular arrhythmogenesis. Lentiviral Ca v 2.2-α shRNA (2 μL, 2×10 7  pfu/mL) or scrambled shRNA was in vivo transfected into rat AVG neurons. Nontransfected sham rats served as controls. Using real-time single-cell polymerase chain reaction and reverse-phase protein array, we found that in vivo transfection of Ca v 2.2-α shRNA decreased expression of Ca v 2.2-α mRNA and protein in rat AVG neurons. Whole-cell patch-clamp data showed that Ca v 2.2-α shRNA reduced N-type Ca 2+ currents and cell excitability in AVG neurons. The data from telemetry electrocardiographic recording demonstrated that 83% (5 out of 6) of conscious rats with Ca v 2.2-α shRNA transfection had premature ventricular contractions ( P <0.05 versus 0% of nontransfected sham rats or scrambled shRNA-transfected rats). Additionally, an index of susceptibility to ventricular arrhythmias, inducibility of ventricular arrhythmias evoked by programmed electrical stimulation, was higher in rats with Ca v 2.2-α shRNA transfection compared with nontransfected sham rats and scrambled shRNA-transfected rats. A decrease in N-type Ca 2+ channels in AVG neurons attenuates vagal control of ventricular myocardium, thereby initiating ventricular arrhythmias. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. [A research on real-time ventricular QRS classification methods for single-chip-microcomputers].

    PubMed

    Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J

    1997-05-01

    Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.

  17. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.

    PubMed

    Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning

    2017-09-29

    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.

  18. Cell Therapy Trials in Congenital Heart Disease.

    PubMed

    Oh, Hidemasa

    2017-04-14

    Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general practice. © 2017 American Heart Association, Inc.

  19. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium

    PubMed Central

    Herranz-Pérez, Vicente; Nakatani, Jin; Boletta, Alessandra; García-Verdugo, José Manuel

    2015-01-01

    Directional beating of ependymal (E) cells' cilia in the walls of the ventricles in the brain is essential for proper CSF flow. E cells display two forms of planar cell polarity (PCP): rotational polarity of individual cilium and translational polarity (asymmetric positioning of cilia in the apical area). The orientation of individual E cells varies according to their location in the ventricular wall (location-specific PCP). It has been hypothesized that hydrodynamic forces on the apical surface of radial glia cells (RGCs), the embryonic precursors of E cells, could guide location-specific PCP in the ventricular epithelium. However, the detection mechanisms for these hydrodynamic forces have not been identified. Here, we show that the mechanosensory proteins polycystic kidney disease 1 (Pkd1) and Pkd2 are present in primary cilia of RGCs. Ablation of Pkd1 or Pkd2 in Nestin-Cre;Pkd1flox/flox or Nestin-Cre;Pkd2flox/flox mice, affected PCP development in RGCs and E cells. Early shear forces on the ventricular epithelium may activate Pkd1 and Pkd2 in primary cilia of RGCs to properly polarize RGCs and E cells. Consistently, Pkd1, Pkd2, or primary cilia on RGCs were required for the proper asymmetric localization of the PCP protein Vangl2 in E cells' apical area. Analyses of single- and double-heterozygous mutants for Pkd1 and/or Vangl2 suggest that these genes function in the same pathway to establish E cells' PCP. We conclude that Pkd1 and Pkd2 mechanosensory proteins contribute to the development of brain PCP and prevention of hydrocephalus. SIGNIFICANCE STATEMENT This study identifies key molecules in the development of planar cell polarity (PCP) in the brain and prevention of hydrocephalus. Multiciliated ependymal (E) cells within the brain ventricular epithelium generate CSF flow through ciliary beating. E cells display location-specific PCP in the orientation and asymmetric positioning of their cilia. Defects in this PCP can result in hydrocephalus. Hydrodynamic forces on radial glial cells (RGCs), the embryonic progenitors of E cells, have been suggested to guide PCP. We show that the mechanosensory proteins Pkd1 and Pkd2 localize to primary cilia in RGCs, and their ablation disrupts the development of PCP in E cells. Early shear forces on RGCs may activate Pkd1 and Pkd2 in RGCs' primary cilia to properly orient E cells. This study identifies key molecules in the development of brain PCP and prevention of hydrocephalus. PMID:26245976

  20. Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells

    PubMed Central

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596

  1. Crebanine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes.

    PubMed

    Xiao-Shan, He; Qing, Lin; Yun-Shu, Ma; Ze-Pu, Yu

    2014-01-01

    To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have analyzed clonal cell proliferation in the ventricular zone (VZ) of the early developing mouse neocortex with a replication-incompetent retrovirus encoding human placental alkaline phosphatase (AP). The retrovirus was injected into the lateral ventricles on embryonic day 11 (E11), i.e., at the onset of neuronogenesis. Three days postinjection, on E14, a total of 259 AP-labeled clones of various sizes were found in 7 fetal brains. There are approximately 7 cell cycles between E11 and E14 (), and there is a 1-2 cell cycle delay between retroviral injection and the production of a retrovirally labeled "founder" cell; thus, we estimate that the "age" of the clones was about 5-6 cell cycles. Almost one-half of the clones (48.3%) identified were pure proliferating clones containing cells only in the VZ. Another 18.5% contained both proliferating and postproliferative cells, and 33.2% contained only postproliferative cells. It was striking that over 90% of the clonally related proliferating cells occurred in clusters of two or more apparently contiguous cells, and about 73% of the proliferating cells occurred in clusters of three or more cells. Regardless of the number of cells in the clone, these clusters were tightly packed and confined to a single level of the VZ. This clustering of proliferating cells indicates that clonally related cells maintain neighbor-neighbor relationships as they undergo interkinetic nuclear migration and progress through several cell cycles, and, as a result, the ventricular zone is a mosaic of small clusters of clonally related and synchronously cycling cells. In addition, cells in the intermediate zone and the cortical plate were also frequently clustered, indicating that they became postproliferative at a similar time and that the output of the VZ is influenced by its mosaic structure.

  3. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.

  4. A Study of Early Afterdepolarizations in a Model for Human Ventricular Tissue

    PubMed Central

    Vandersickel, Nele; Kazbanov, Ivan V.; Nuitermans, Anita; Weise, Louis D.; Pandit, Rahul; Panfilov, Alexander V.

    2014-01-01

    Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium. PMID:24427289

  5. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions.

    PubMed

    Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca

    2017-10-01

    Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin.

    PubMed

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-09-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR. Their abnormal expression was significantly correlated with left ventricular remodelling, thereby indicating an internal association (influences of two indexes in the experimental group and control group) between them.

  7. Basal cardiomyopathy develops in rabbits with ventricular tachyarrhythmias induced by a single injection of adrenaline.

    PubMed

    Ashida, Terunao; Takato, Tetsuya; Matsuzaki, Gen; Seko, Yoshinori; Fujii, Jun; Kawai, Sachio

    2014-01-01

    We have recently demonstrated that basal cardiomyopathy develops in rabbits with ventricular tachyarrhythmias that have been induced by electrical stimulation of the cervical vagus. This study investigated whether similar basal cardiomyopathy would develop in rabbits with ventricular tachyarrhythmias induced by a single injection of adrenaline. Adrenaline was intravenously infused for 10-360 seconds in anesthetized rabbits. Colloidal carbon was injected after adrenaline infusion. Wall movement velocity of the left ventricular base was assessed by tissue Doppler echocardiography. Animals were killed either 1 week or 3-4 weeks later. Pathological lesions were identified by deposits of carbon particles. Animals were divided into two groups according to the infused dose of adrenaline. The small-dose group (group S, n = 15) received 1-10 μg and the large-dose group (group L, n = 23) received 15-60 μg of adrenaline. Adrenaline infusion induced premature ventricular contractions followed by monomorphic ventricular tachycardias in 22 of 23 animals in group L, but in only 1 of 15 animals in group S. Wall movement velocity of the left ventricular base decreased just after adrenaline infusion, remained low after 1 week, and recovered to near-baseline levels after 3-4 weeks in group L. Unique cardiac lesions identified by deposits of carbon particles were frequently observed on the left ventricular basal portion, almost always associated with the mitral valve and papillary muscles, but were never observed in the apical area. Lesions involving all areas of the left ventricular basal portion were observed in 22 of 23 animals in group L, but in only 2 of 15 animals in group S. Basal cardiomyopathy developed in rabbits with ventricular tachycardias induced by a single injection of adrenaline.

  8. Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention.

    PubMed

    Honjo, Osami; Atlin, Cori R; Mertens, Luc; Al-Radi, Osman O; Redington, Andrew N; Caldarone, Christopher A; Van Arsdell, Glen S

    2011-08-01

    This study was to determine whether atrioventricular valve repair modifies natural history of single-ventricle patients with atrioventricular valve insufficiency and to identify factors predicting survival and reintervention. Fifty-seven (13.5%) of 422 single-ventricle patients underwent atrioventricular valve repair. Valve morphology, regurgitation mechanism, and ventricular morphology and function were analyzed for effect on survival, transplant, and reintervention with multivariate logistic and Cox regression models. Comparative analysis used case-matched controls. Atrioventricular valve was tricuspid in 67% and common in 28%. Ventricular morphology was right in 83%. Regurgitation mechanisms were prolapse (n = 24, 46%), dysplasia (n = 18, 35%), annular dilatation (n = 8, 15%), and restriction or cleft (n = 2, 4%). Postrepair insufficiency was none or trivial in 14 (26%), mild in 33 (61%), and moderate in 7 (13%). Survival in repair group was lower than in matched controls (78.9% vs 92.7% at 1 year, 68.7% vs 90.6% at 3 years, P = .015). Patients with successful repair and normal ventricular function had equivalent survival to matched controls (P = .36). Independent predictors for death or transplant included increased indexed annular size (P = .05), increased cardiopulmonary bypass time (P = .04), and decreased postrepair ventricular function (P = .01). Ventricular dilation was a time-related factor for all events, including failed repair. Survival was lower in single-ventricle patients operated on for atrioventricular valve insufficiency than in case-matched controls. Patients with little postoperative residual regurgitation and preserved ventricular function had equivalent survival to controls. Lower grade ventricular function and ventricular dilation correlated with death and repair failure, suggesting that timing of intervention may affect outcome. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  9. The Biological Role of Nestin(+)-Cells in Physiological and Pathological Cardiovascular Remodeling

    PubMed Central

    Calderone, Angelino

    2018-01-01

    The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein. PMID:29492403

  10. Reduction of I(Ca,L) and I(to1) density in hypertrophied right ventricular cells by simulated high altitude in adult rats.

    PubMed

    Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R

    1997-01-01

    The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.

  11. Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels

    NASA Astrophysics Data System (ADS)

    Gulothungan, G.; Malathi, R.

    2018-04-01

    Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.

  12. Evolving targeted therapies for right ventricular failure.

    PubMed

    Di Salvo, Thomas G

    2015-01-01

    Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.

  13. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr

    1996-01-01

    Neocortical neuronogenesis occurs in the pseudostratified ventricular epithelium (PVE) where nuclei of proliferative cells undergo interkinetic nuclear movement. A fraction of daughter cells exits the cell cycle as neurons (the quiescent, or Q, fraction), whereas a complementary fraction remains in the cell cycle (the proliferative, or P, fraction). By means of sequential thymidine and bromodeoxyuridine injections in mouse on embryonic day 14, we have monitored the proliferative and post-mitotic migratory behaviors of 1 and 2 hr cohorts of PVE cells defined by the injection protocols. Soon after mitosis, the Q fraction partitions into a rapidly exiting (up to 50 microns/hr) subpopulation (Qr) and a more slowly exiting (6 microns/hr) subpopulation (Qs). Qr and Qs are separated as two distributions on exit from the ventricular zone with an interpeak distance of approximately 40 microns. Cells in Qr and Qs migrate through the intermediate zone with no significant change in the interpeak distance, suggesting that they migrate at approximately the same velocities. The rate of migration increases with ascent through the intermediate zone (average 2-6.4 microns/hr) slowing only transiently on entry into the developing cortex. Within the cortex, Qr and Qs merge to form a single distribution most concentrated over layer V.

  14. Resistance Training Regulates Cardiac Function through Modulation of miRNA-214

    PubMed Central

    Melo, Stéphano Freitas Soares; Barauna, Valério Garrone; Júnior, Miguel Araújo Carneiro; Bozi, Luiz Henrique Marchesi; Drummond, Lucas Rios; Natali, Antônio José; de Oliveira, Edilamar Menezes

    2015-01-01

    Aims: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. Main methods: Male Wistar rats were divided into two groups (n = 7/group): Control (CO) or trained (TR). The exercise-training protocol consisted of: 4 × 12 bouts, 5×/week during 8 weeks, with 80% of one repetition maximum. Key findings: RT increased the left ventricular myocyte width by 15% and volume by 12%, compared with control animals (p < 0.05). The time to half relaxation and time to peak were 8.4% and 4.4% lower, respectively, in cells from TR group as compared to CO group (p < 0.05). RT decreased miRNA-214 level by 18.5% while its target SERCA2a expression were 18.5% higher (p < 0.05). Significance: Our findings showed that RT increases single left ventricular myocyte dimensions and also leads to faster cell contraction and relaxation. These mechanical adaptations may be related to the augmented expression of SERCA2a which, in turn, may be associated with the epigenetic modification of decreased miRNA-214 expression. PMID:25822872

  15. Predictive lethal proarrhythmic risk evaluation using a closed-loop-circuit cell network with human induced pluripotent stem cells derived cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji

    2016-06-01

    For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.

  16. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals.

    PubMed

    García-Verdugo, Jose Manuel; Ferrón, Sacri; Flames, Nuria; Collado, Lucía; Desfilis, Ester; Font, Enrique

    2002-04-01

    Although evidence accumulated during the last decades has advanced our understanding of adult neurogenesis in the vertebrate brain, many aspects of this intriguing phenomenon remain controversial. Here we review the organization and cellular composition of the ventricular wall of reptiles, birds, and mammals in an effort to identify differences and commonalities among these vertebrate classes. Three major cell types have been identified in the ventricular zone of reptiles and birds: migrating (Type A) cells, radial glial (Type B) cells, and ependymal (Type E) cells. Cells similar anatomically and functionally to Types A, B, and E have also been described in the ventricular wall of mammals, which contains an additional cell type (Type C) not found in reptiles or birds. The bulk of the evidence points to a role of Type B cells as primary neural precursors (stem cells) in the three classes of living amniotic vertebrates. This finding may have implications for the development of strategies for the possible treatment of human neurological disorders.

  17. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  18. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    PubMed Central

    2013-01-01

    Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal. PMID:23327114

  19. Proliferation zones in the axolotl brain and regeneration of the telencephalon.

    PubMed

    Maden, Malcolm; Manwell, Laurie A; Ormerod, Brandi K

    2013-01-17

    Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal.

  20. Single-site ventricular pacing via the coronary sinus in patients with tricuspid valve disease.

    PubMed

    Noheria, Amit; van Zyl, Martin; Scott, Luis R; Srivathsan, Komandoor; Madhavan, Malini; Asirvatham, Samuel J; McLeod, Christopher J

    2018-04-01

    To evaluate coronary sinus single-site (CSSS) left ventricular pacing in adult patients with normal left ventricular ejection fraction (LVEF) when traditional right ventricular lead implantation is not feasible or is contraindicated. We performed a retrospective analysis of 23 patients with tricuspid valve surgery/disease who received a CSSS ventricular pacing lead to avoid crossing the tricuspid valve. Two matched control populations were obtained from patients receiving (i) conventional right ventricular single-site (RVSS) leads and (ii) coronary sinus leads for cardiac resynchronization therapy (CSCRT). Main outcomes of interest were lead stability, electrical lead parameters and change in LVEF during long-term follow-up. Successful CSSS pacing was accomplished in all 23 patients without any procedural complications. During the 5.3 ± 2.8-year follow-up 22/23 (95.7%) leads were functional with stable pacing and sensing parameters, and 1/23 (4.3%) was extracted for unrelated reasons. Compared to CSSS leads, the lead revision/abandonment was similar with RVSS leads (Hazard ratio (HR) 0.87, 95% confidence interval (CI) 0.03, 22.0), but was higher with CSCRT leads (HR 7.41, 95% CI 1.30, 139.0). There was no difference in change in LVEF between CSSS and RVSS groups (-2.4 ± 11.0 vs. 1.5 ± 12.8, P = 0.76), but LVEF improved in CSCRT group (11.2 ± 16.5%, P = 0.002). Fluoroscopy times were longer during implantation of CSSS compared to RVSS leads (25.6 ± 24.6 min vs. 12.3 ± 18.6 min, P = 0.049). In patients with normal LVEF, single-site ventricular pacing via the coronary sinus is a feasible, safe and reliable alternative to right ventricular pacing.

  1. iPSC-derived cardiomyocytes reveal abnormal TGFβ signaling in left ventricular non-compaction cardiomyopathy

    PubMed Central

    Kodo, Kazuki; Ong, Sang-Ging; Jahanbani, Fereshteh; Termglinchan, Vittavat; Hirono, Keiichi; InanlooRahatloo, Kolsoum; Ebert, Antje D.; Shukla, Praveen; Abilez, Oscar J.; Churko, Jared M.; Karakikes, Ioannis; Jung, Gwanghyun; Ichida, Fukiko; Wu, Sean M.; Snyder, Michael P.; Bernstein, Daniel; Wu, Joseph C.

    2016-01-01

    Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and was associated with perturbed transforming growth factor beta (TGFβ) signaling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGFβ signaling. TBX20 regulates the expression of TGFβ signaling modifiers including a known genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGFβ signaling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC. PMID:27642787

  2. Fibroblasts and the extracellular matrix in right ventricular disease.

    PubMed

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  3. Finite element stress analysis of the human left ventricle whose irregular shape is developed from single plane cineangiocardiogram

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Hamid, M. S.

    1977-01-01

    The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.

  4. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.

    PubMed Central

    Jovanovic, A.; Terzic, A.

    1996-01-01

    Diadenosine 5',5''-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap4A could modulate ATP-sensitive K+ (KATP) channels, a family of channels regulated by the metabolic status of a cell. We applied the single-channel patch-clamp technique to measure the effect of Ap4A on KATP channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration approximately 17 microM) manner. We conclude that Ap4A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial KATP channel. PMID:8789372

  5. An Approach for Improvement of Carbon Fiber Technique to Study Cardiac Cell Contractility

    NASA Astrophysics Data System (ADS)

    Myachina, T.; Khokhlova, A.; Antsygin, I.; Lookin, O.

    2018-05-01

    The technologies to study cardiac cell mechanics in near-physiological conditions are limited. Carbon fiber (CF) technique is a unique tool to study single cardiomyocyte contractility. However, the CF adhesion to a cell is limited and it is difficult to control CF sliding occurred due to inappropriate adhesion. In this study, we present a CF adhesion quality index – a linear coefficient (slope) derived from “end-diastolic cell length - end-diastolic sarcomere length” relationship. Potential applicability of this index is demonstrated on isolated rat and guinea pig ventricular cardiomyocytes. Further improvement of the approach may help to increase the quality of the experimental data obtained by CF technique.

  6. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  7. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus.

    PubMed Central

    Kirshenbaum, L A; MacLellan, W R; Mazur, W; French, B A; Schneider, M D

    1993-01-01

    Molecular dissection of mechanisms that govern the differentiated cardiac phenotype has, for cogent technical reasons, largely been undertaken to date in neonatal ventricular myocytes. To circumvent expected limitations of other methods, the present study was initiated to determine whether replication-deficient adenovirus would enable efficient gene transfer to adult cardiac cells in culture. Adult rat ventricular myocytes were infected, 24 h after plating, with adenovirus type 5 containing a cytomegalovirus immediate-early promoter-driven lacZ reporter gene and were assayed for the presence of beta-galactosidase 48 h after infection. The frequency of lacZ+ rod-shaped myocytes was half-maximal at 4 x 10(5) plaque-forming units (PFU) and approached 90% at 1 x 10(8) PFU. Uninfected cells and cells infected with lacZ- virus remained colorless. Beta-galactosidase activity concurred with the proportion of lacZ+ cells and was contingent on the exogenous lacZ gene. At 10(8) PFU/dish, cell number, morphology, and viability each were comparable to uninfected cells. Thus, adult ventricular myocytes are amenable to efficient gene transfer with recombinant adenovirus. The relative uniformity for gene transfer by adenovirus should facilitate tests to determine the impact of putative regulators upon the endogenous genes and gene products of virally modified adult ventricular muscle cells. Images PMID:8326005

  8. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-16

    toxic effects . These studies demonstrated unequivocal reversible effects of certain mycotoxins on heart cell electrical activity. Preliminary studies...muscle cells shown in Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for 3xample...false tendon cells and V ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine cardiac

  9. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular rather than dual-chamber pacing may be due in part to increased sympathetic nervous outflow.

  10. Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure

    PubMed Central

    Badie, Nima; Bursac, Nenad

    2009-01-01

    Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993

  11. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy.

    PubMed

    Kang, Guoxin; Giovannone, Steven F; Liu, Nian; Liu, Fang-Yu; Zhang, Jie; Priori, Silvia G; Fishman, Glenn I

    2010-08-20

    The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.

  12. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation.

    PubMed

    Feridooni, Tiam; Hotchkiss, Adam; Baguma-Nibasheka, Mark; Zhang, Feixiong; Allen, Brittney; Chinni, Sarita; Pasumarthi, Kishore B S

    2017-05-01

    β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β 1 -AR antagonist) or ICI-118,551 (a β 2 -AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation. NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β 1 -AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation. Copyright © 2017 the American Physiological Society.

  13. Difference in propagation of Ca2+ release in atrial and ventricular myocytes.

    PubMed

    Tanaami, Takeo; Ishida, Hideyuki; Seguchi, Hidetaka; Hirota, Yuki; Kadono, Toshie; Genka, Chokoh; Nakazawa, Hiroe; Barry, William H

    2005-04-01

    Intracellular [Ca2+] ([Ca2+]i) was imaged in atrial and ventricular rat myocytes by means of a high-speed Nipkow confocal microscope. Atrial myocytes with an absent t-tubule system on 8-di- ANEPPS staining showed an initial rise in Ca2+ at the periphery of the cell, which propagated to the interior of the cell. Ventricular myocytes showed a uniform rise in [Ca2+]i after electrical stimulation, consistent with a prominent t-tubular network. In atrial myocytes, there was a much shorter time between the peak of the [Ca2+]i transient and the peak contraction as compared to ventricular myocytes. A regional release of Ca2+ induced by an exposure of one end of the myocyte to caffeine with a rapid solution switcher resulted in a uniform propagation of Ca2+ down the length of the cell in atrial myocytes, but we found no propagation in ventricular myocytes. A staining with rhodamine 123 indicated a much greater density of mitochondria in ventricular myocytes than in atrial myocytes. Thus the atrial myocytes display a lack of "local control" of Ca2+ release, with propagation after the Ca2+ release at the periphery induced by stimulation or at one end of the cell induced by exposure to caffeine. Ventricular myocytes showed the presence of local control, as indicated by an absence of the propagation of a local caffeine-induced Ca2+ transient. We suggest that this finding, as well as a reduced delay between the peak of the [Ca2+]i transient and the peak shortening in atrial myocytes, could be due in part to reduced Ca2+ buffering provided by mitochondria in atrial myocytes as opposed to ventricular myocytes.

  14. Larger late sodium current density as well as greater sensitivities to ATX II and ranolazine in rabbit left atrial than left ventricular myocytes.

    PubMed

    Luo, Antao; Ma, Jihua; Song, Yejia; Qian, Chunping; Wu, Ying; Zhang, Peihua; Wang, Leilei; Fu, Chen; Cao, Zhenzhen; Shryock, John C

    2014-02-01

    An increase of cardiac late sodium current (INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na(+)) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from -120 to -20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from -90 to -20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 (n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 (n = 12) in ventricular myocytes. Na(+) channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.

  15. Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer

    2016-12-01

    Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.

    PubMed

    Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D

    2016-12-01

    Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.

  17. The end of the unique myocardial band: Part I. Anatomical considerations.

    PubMed

    MacIver, David H; Stephenson, Robert S; Jensen, Bjarke; Agger, Peter; Sánchez-Quintana, Damián; Jarvis, Jonathan C; Partridge, John B; Anderson, Robert H

    2018-01-01

    The concept of the 'unique myocardial band', which proposes that the ventricular myocardial cone is arranged like skeletal muscle, provides an attractive framework for understanding haemodynamics. The original idea was developed by Francisco Torrent-Guasp. Using boiled hearts and blunt dissection, Torrent-Guasp created a single band of ventricular myocardium extending from the pulmonary trunk to the aortic root, with the band thus constructed encircling both ventricular cavities. Cooked hearts can, however, be dissected in many ways. In this review, we show that the band does not exist as an anatomical entity with defined borders. On the contrary, the ventricular cardiomyocytes are aggregated end to end and by their branching produce an intricate meshwork. Across the thickness of the left ventricular wall, the chains of cardiomyocytes exhibit a gradually changing helical angle, with a circumferential zone formed in the middle. There is no abrupt change in helical angle, as could be expected if the wall was constructed of opposing limbs of a single wrapped band, nor does the long axis of the cardiomyocytes consistently match with the long axis of the unique myocardial band. There are, furthermore, no connective tissue structures that could be considered to demarcate its purported boundaries. The unique myocardial band should be consistent with evolution, and although the ventricular wall of fish and reptiles has one or several distinct layers, a single band is not found. In 1965, Lev and Simpkins cautioned that the ventricular muscle mass of a cooked heart can be dissected almost at the whim of the anatomist. We suggest that the unique myocardial band should have ended there. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. [The reasonable use of right ventricular protection strategy in right ventricular outflow tract reconstruction].

    PubMed

    Zhang, Y; Yuan, H Y; Liu, X B; Wen, S S; Xu, G; Cui, H J; Zhuang, J; Chen, J M

    2018-06-01

    As a result of right ventricular outflow tract reconstruction, which is the important and basic step of complex cardiac surgery, the blood flow of right ventricular outflow tract is unobstructed, while pulmonary valve regurgitation and right heart dysfunction could be happened. These problems are often ignored in early days, more and more cases of right heart dysfunction need clinical intervention, which is quite difficult and less effective. How to protect effectively the right ventricular function is the focus. At present main methods to protect the right ventricular function include trying to avoid or reduce length of right ventricular incision, reserving or rebuilding the function of the pulmonary valve, using growth potential material for surgery. The protection of the right ventricular function is a systemic project, it involves many aspects, single measures is difficult to provide complete protection, only the comprehensive use of various protection strategy, can help to improve the long-term prognosis.

  19. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?

    PubMed

    Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C

    2006-01-01

    Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.

  20. Detection of ventricular fibrillation from multiple sensors

    NASA Astrophysics Data System (ADS)

    Lindsley, Stephanie A.; Ludeman, Lonnie C.

    1992-07-01

    Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.

  1. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-13

    Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for example, reduced the total duration of...potentials from false tendon cells and ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine...the plateau (arrow) from 14 my to 4 my. Table 6 summarizes the effects of T-2 mycotoxin on the action potential parameters of false tendon cells and

  2. Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles

    PubMed Central

    Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele

    2017-01-01

    Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level. PMID:29216239

  3. [Primary, single-stage arterial switch operations at a newly-established, comprehensive congenital cardiac center performed in the neonatal age and beyond].

    PubMed

    Király, László; Tamás, Csaba

    2015-06-21

    Outcome of arterial switch operation for transposition of the great arteries with/without ventricular septal defect is a service key-performance-indicator. The aim of the authors was to assess patient characteristics and parameters in the perioperative course. In the setting of a newly-established, comprehensive tertiary-care center, primary complete repair was performed including associated anomalies, e.g. transverse arch repairs. Patients with d-transposition were grouped according to coexistence of ventricular septal defect. 118 arterial switch operations were performed between 2007 and 2014 with 96.62% survival (114/118). Ventricular septal defect and repair of associated anomalies did not yield worse outcome. Left ventricular re-training with late presentation necessitated mechanical circulatory support for 4.5±1.5 days. D-transposition is suitable for standardization of clinical algorithm and surgical technique. Quality standards contribute to excellent outcomes, minimize complications, and serve as blueprint for other neonatal open-heart procedures. Availability of mechanical circulatory support is key for single-stage left ventricular re-training beyond the neonatal period.

  4. Assessment of Safety and Effectiveness of the Extracorporeal Continuous-Flow Ventricular Assist Device (BR16010) Use as a Bridge-to-Decision Therapy for Severe Heart Failure or Refractory Cardiogenic Shock: Study Protocol for Single-Arm Non-randomized, Uncontrolled, and Investigator-Initiated Clinical Trial.

    PubMed

    Fukushima, Norihide; Tatsumi, Eisuke; Seguchi, Osamu; Takewa, Yoshiaki; Hamasaki, Toshimitsu; Onda, Kaori; Yamamoto, Haruko; Hayashi, Teruyuki; Fujita, Tomoyuki; Kobayashi, Junjiro

    2018-06-08

    The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. The purpose of this study (NCVC-BTD_01, National Cerebral and Cardiovascular Center-Bridge to Dicision_01) is to assess the safety and effectiveness of the newly developed extracorporeal continuous-flow ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing (BR16010) use as a bridge-to-decision therapy for patients with severe heart failure or refractory cardiogenic shock. NCVC-BTD_01 is a single-center, single-arm, open-label, exploratory, medical device, investigator-initiated clinical study. It is conducted at the National Cerebral and Cardiovascular Center in Japan. A total of nine patients will be enrolled in the study. The study was planned using Simon's minimax two-stage phase design. The primary endpoint is a composite of survival free of device-related serious adverse events and complications during device support. For left ventricular assistance, withdrawal of a trial device due to cardiac function recovery or exchange to other ventricular assist devices (VADs) for the purpose of bridge to transplantation (BTT) during 30 days after implantation will be considered study successes. For right ventricular assistance, withdrawal of tal device due to right ventricular function recovery within 30 days after implantation will be considered a study success. Secondary objectives include changes in brain natriuretic peptide levels (7 days after implantation of a trial device and the day of withdrawal of a trial device), period of mechanical ventricular support, changes in left ventricular ejection fraction (7 days after implantation of a trial device and the day of withdrawal of a trial device), and changes in left ventricular diastolic dimension (7 days after implantation of a trial device and the day of withdrawal of a trial device). We will disseminate the findings through regional, national, and international conferences and through peer-reviewed journals. UMIN Clinical Trials Registry (UMIN-CTR; R000033243) registered on 8 September 2017.

  5. Three-dimensional Echocardiography of Right Ventricular Function Correlates with Severity of Pediatric Pulmonary Hypertension.

    PubMed

    Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar

    2016-12-01

    Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.

  6. A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails.

    PubMed

    Janardhan, Ajit H; Li, Wenwen; Fedorov, Vadim V; Yeung, Michael; Wallendorf, Michael J; Schuessler, Richard B; Efimov, Igor R

    2012-12-11

    The authors sought to develop a low-energy electrotherapy that terminates ventricular tachycardia (VT) when antitachycardia pacing (ATP) fails. High-energy implantable cardioverter-defibrillator (ICD) shocks are associated with device failure, significant morbidity, and increased mortality. A low-energy alternative to ICD shocks is desirable. Myocardial infarction was created in 25 dogs. Sustained, monomorphic VT was induced by programmed stimulation. Defibrillation electrodes were placed in the right ventricular apex, and coronary sinus and left ventricular epicardium. If ATP failed to terminate sustained VT, the defibrillation thresholds (DFTs) of standard versus experimental electrotherapies were measured. Sustained VT ranged from 276 to 438 beats/min (mean 339 beats/min). The right ventricular-coronary sinus shock vector had lower impedance than the right ventricular-left ventricular patch (54.4 ± 18.1 Ω versus 109.8 ± 16.9 Ω; p < 0.001). A single shock required between 0.3 ± 0.2 J to 5.9 ± 2.5 J (mean 2.64 ± 3.22 J; p = 0.008) to terminate VT, and varied depending upon the phase of the VT cycle in which it was delivered. By contrast, multiple shocks delivered within 1 VT cycle length were not phase dependent and achieved lower DFT compared with a single shock (0.13 ± 0.09 J for 3 shocks, 0.08 ± 0.04 J for 5 shocks, and 0.09 ± 0.07 J for 7 shocks; p < 0.001). Finally, a multistage electrotherapy (MSE) achieved significantly lower DFT compared with a single biphasic shock (0.03 ± 0.05 J versus 2.37 ± 1.20 J; respectively, p < 0.001). At a peak shock amplitude of 20 V, MSE achieved 91.3% of terminations versus 10.5% for a biphasic shock (p < 0.001). MSE achieved a major reduction in DFT compared with a single biphasic shock for ATP-refractory monomorphic VT, and represents a novel electrotherapy to reduce high-energy ICD shocks. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.

    PubMed

    Pastore, J M; Girouard, S D; Laurita, K R; Akar, F G; Rosenbaum, D S

    1999-03-16

    Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209+/-46 bpm) that was significantly lower (by 57+/-36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG. Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death.

  8. Dynamic Changes of QRS Morphology of Premature Ventricular Contractions During Ablation in the Right Ventricular Outflow Tract: A Case Report.

    PubMed

    Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin

    2015-10-01

    Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.

  9. Ventricular arrhythmias following intracoronary bone marrow stem cell transplantation.

    PubMed

    Villa, Adolfo; Sanchez, Pedro L; Fernandez-Aviles, Francisco

    2007-12-01

    We describe the appearance of delayed episodes of ventricular arrhythmias in 4 patients out of 72 undergoing intracoronary transplantation of autologous bone marrow mononuclear cells (BMMC) following ST elevated myocardial infarction (STEMI). Two cases with severely depressed systolic function presented electrical storms with monomorphic sustained ventricular tachycardia (SVT) within 2 to 3 days following cell transplantation, even though there were no periprocedural complications. Both patients were implanted with an internal defibrillator (ICD) after ruling out coronary re-occlusion. The remaining 2 patients presented several asymptomatic episodes of non-sustained ventricular tachycardia within one month following cell transfer. Only one of the latter presented syncopal SVT through programmed ventricular stimulation, undergoing ICD implantation afterwards. Neither new arrhythmic episodes nor ICD interventions have occurred during later follow-up of the three ICD patients (639+/-59 days). Information from large multicenter databases and our historical cohort of STEMI patients indicates that the rate of VT occurring within the first weeks after the initial 48 hours of infarction is significantly lower than that observed in our cell-therapy experience. The lack of information regarding the appearance of malignant arrhythmias in patients with severe systolic dysfunction following this type of therapy after STEMI requires us to be extremely cautious. However, any claim of a mechanism related to cell transfer would be completely speculative with the available data. Therefore, our only aim when reporting our findings is to recommend a short but longer stay (2-3 days) following cell transplantation, particularly in patients with a natural tendency to develop arrhythmic events.

  10. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    PubMed Central

    Wu, Delin; Jiang, Linqing; Wu, Hongjin; Wang, Shengqi; Zheng, Sidao; Yang, Jiyuan; Liu, Yuna; Ren, Jianxun; Chen, Xianbing

    2013-01-01

    Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (I K), the rapidly activating (I Kr) and slowly activating (I Ks) components of I K, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record I K (I Kr, I Ks) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited I K (I Kr, I Ks) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of I K (I Kr, I Ks) and HERG K+ channel. PMID:24069049

  11. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients.

    PubMed

    Provencio, J Javier; Kivisäkk, Pia; Tucky, Barbara H; Luciano, Mark G; Ransohoff, Richard M

    2005-06-01

    The aim of the present study was to define the cellular composition of ventricular, as compared with lumbar, cerebrospinal fluid (CSF) in patients with non-inflammatory neurological disorders (NIND). We addressed this issue by determining the cellular composition of lumbar CSF from patients with normal pressure hydrocephalus (NPH) who were undergoing lumbar CSF drainage during evaluation for shunting procedures, and evaluating ventricular CSF from a subset of these who underwent subsequent placement of ventriculoperitoneal shunts. We determined the cellular composition of lumbar CSF from 18 patients with NPH, and found that the leukocyte differentials, and relative proportions of CD4+ and CD8+ central memory (TCM), effector memory (TEM) and naive cell (TNaive) populations, were equivalent to those found previously in studies of CSF from patients with NIND. We further evaluated cells in the ventricular CSF of five patients who had previously undergone lumbar drainage. Leukocyte differential counts, as well as CD4+ and CD8+ TCM, TEM, and TNaive proportions, were equivalent in matched ventricular and lumbar CSF samples. These observations support the hypothesis that leukocytes enter the CSF in a selective fashion, at its site of formation in the choroid plexus. The results implicate CSF T cells in the immune surveillance of the central nervous system.

  12. Right and left ventricular volumes in vitro by a new nongeometric method

    NASA Technical Reports Server (NTRS)

    Buckey, J. C.; Beattie, J. M.; Nixon, J. V.; Gaffney, F. A.; Blomqvist, C. G.

    1987-01-01

    We present an evaluation of a new nongeometric technique for calculating right and left ventricular volumes. This method calculates ventricular chamber volumes from multiple cross-sectional echocardiographic views taken from a single point as the echo beam is tilted progressively through the ventricle. Right and left ventricular volumes are calculated from both the approximate short axis and approximate apical position on 20 in vitro human hearts and compared with the actual chamber volumes. The results for both ventricles from both positions are excellent. Correlation coefficients are > 0.95 for all positions; the standard errors are in the range of 5 to 7 mL and the slopes and intercepts for the regression lines are not significantly different from 1 and 0, respectively (except for the left ventricular short-axis intercept). For all positions, approximately 6 to 8 views are needed for peak accuracy (7.5 degrees to 10 degrees separation). This approach offers several advantages. No geometric assumptions about ventricular shape are made. All images are acquired from a single point (or window), and the digitized points can be used to make a three-dimensional reconstruction of the ventricle. Also, during the calculations a volume distribution curve for the ventricle is produced. The shape of this curve can be characteristic for certain situations (ie, right ventricle, short axis) and can be used to make new simple equations for calculating volume. We conclude that this is an accurate nongeometric method for determining both right and left ventricular volumes in vitro.

  13. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    PubMed

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (P<0.05); while IKs densities were significantly reduced [+60 mV: (0.36±0.03) pA/pF vs (0.58±0.05) pA/pF, P<0.01]. However, LVH exerted no significant effect on IKr densities. IKr blocker markedly prolonged the QTc interval (P<0.01) and increased the incidence of ventricular arrhythmias in guinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  14. Changes in left ventricular repolarization and ion channel currents following a transient rate increase superimposed on bradycardia in anesthetized dogs.

    PubMed

    Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P

    2000-06-01

    We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).

  15. Renin-Angiotensin-Aldosterone Genotype Influences Ventricular Remodeling in Infants with Single Ventricle

    PubMed Central

    Mital, Seema; Chung, Wendy K.; Colan, Steven D.; Sleeper, Lynn A.; Manlhiot, Cedric; Arrington, Cammon B.; Cnota, James F.; Graham, Eric M.; Mitchell, Michael E.; Goldmuntz, Elizabeth; Li, Jennifer S.; Levine, Jami C.; Lee, Teresa M.; Margossian, Renee; Hsu, Daphne T.

    2011-01-01

    Background We investigated the effect of polymorphisms in the renin-angiotensin-aldosterone system (RAAS) genes on ventricular remodeling, growth, renal function and response to enalapril in infants with single ventricle. Methods and Results Single ventricle infants enrolled in a randomized trial of enalapril were genotyped for polymorphisms in 5 genes: angiotensinogen, angiotensin-converting enzyme, angiotensin II type 1 receptor, aldosterone synthase, and chymase. Alleles associated with RAAS upregulation were classified as risk alleles. Ventricular mass, volume, somatic growth, renal function using estimated glomerular filtration rate (eGFR), and response to enalapril were compared between patients with ≥2 homozygous risk genotypes (high-risk), and those with <2 homozygous risk genotypes (low-risk) at two time points - before the superior-cavopulmonary-connection (pre-SCPC) and at age 14 months. Of 230 trial subjects, 154 were genotyped: 38 were high-risk, 116 were low-risk. Ventricular mass and volume were elevated in both groups pre-SCPC. Ventricular mass and volume decreased and eGFR increased after SCPC in the low-risk (p<0.05) but not the high-risk group. These responses were independent of enalapril treatment. Weight and height z-scores were lower at baseline and height remained lower in the high-risk group at 14 months especially in those receiving enalapril (p<0.05). Conclusions RAAS-upregulation genotypes were associated with failure of reverse remodeling after SCPC surgery, less improvement in renal function, and impaired somatic growth, the latter especially in patients receiving enalapril. RAAS genotype may identify a high-risk subgroup of single ventricle patients who fail to fully benefit from volume unloading surgery. Follow-up is warranted to assess longterm impact. Clinical Trial Registration Clinical Trials.gov Identifier NCT00113087 PMID:21576655

  16. Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Cerrone, Marina; Noujaim, Sami F.; Tolkacheva, Elena G.; Talkachou, Arkadzi; O’Connell, Ryan; Berenfeld, Omer; Anumonwo, Justus; Pandit, Sandeep V.; Vikstrom, Karen; Napolitano, Carlo; Priori, Silvia G.; Jalife, José

    2008-01-01

    Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol’s solution, and patch clamping in a knockin (RyR2/RyR2R4496C) mouse model to investigate the arrhythmogenic mechanisms in catecholaminergic polymorphic VT. In isolated hearts, spontaneous ventricular arrhythmias occurred in 54% of 13 RyR2/RyR2R4496C and in 9% of 11 wild-type (P=0.03) littermates perfused with Ca2+ and isoproterenol; 66% of 12 RyR2/RyR2R4496C and 20% of 10 wild-type hearts perfused with caffeine and epinephrine showed arrhythmias (P=0.04). Epicardial mapping showed that monomorphic VT, bidirectional VT, and polymorphic VT manifested as concentric epicardial breakthrough patterns, suggesting a focal origin in the His–Purkinje networks of either or both ventricles. Monomorphic VT was clearly unifocal, whereas bidirectional VT was bifocal. Polymorphic VT was initially multifocal but eventually became reentrant and degenerated into ventricular fibrillation. Endocardial mapping confirmed the Purkinje fiber origin of the focal arrhythmias. Chemical ablation of the right ventricular endocardial cavity with Lugol’s solution induced complete right bundle branch block and converted the bidirectional VT into monomorphic VT in 4 anesthetized RyR2/RyR2R4496C mice. Under current clamp, single Purkinje cells from RyR2/RyR2R4496C mouse hearts generated delayed afterdepolarization–induced triggered activity at lower frequencies and level of adrenergic stimulation than wild-type. Overall, the data demonstrate that the His–Purkinje system is an important source of focal arrhythmias in catecholaminergic polymorphic VT. PMID:17872467

  17. Bilirubin attenuates bufadienolide-induced ventricular arrhythmias and cardiac dysfunction in guinea-pigs by reducing elevated intracellular Na(+) levels.

    PubMed

    Ma, Hongyue; Zhang, Junfeng; Jiang, Jiejun; Zhou, Jing; Xu, Huiqin; Zhan, Zhen; Wu, Qinan; Duan, Jinao

    2012-03-01

    Bufadienolides, known ligands of the sodium pump, have been shown to inhibit the proliferation of several cancer cell types. However, their development to date as anticancer agents has been impaired by a narrow therapeutic margin resulting from their potential to induce cardiotoxicity. In the present study, we examined the effects of bilirubin, an endogenous antioxidant, on the cardiotoxicity of bufadienolides (derived from toad venom) in guinea-pigs. The results showed that bufadienolides (8 mg/kg) caused ventricular arrhythmias, conduction block, cardiac dysfunction and death in guinea-pigs. Pretreatment with bilirubin (75 and 150 mg/kg) significantly prevented bufadienolide-induced premature ventricular complexes, ventricular tachycardia, ventricular fibrillation and death. Bilirubin also markedly improved the inhibition of cardiac contraction in bufadienolide-treated guinea-pigs as evidenced by increases in left ventricular systolic pressure and decreases in left ventricular diastolic pressure in vivo. Furthermore, bilirubin significantly reduced the intracellular sodium content ([Na(+)]( i )) in ex vivo bufadienolide-stimulated guinea-pig ventricular myocytes loaded with the sodium indicator Sodium Green. An antitumor study showed that bilirubin did not compromise the ability of bufadienolides to inhibit gastric cancer cell MGC-803 proliferation. These results suggested that bilirubin can attenuate bufadienolide-induced arrhythmias and cardiac dysfunction in guinea-pigs by reducing elevated [Na(+)]( i ) and may improve bufadienolide therapeutic index in cancer treatment.

  18. Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction.

    PubMed

    Guo, Yiru; Wysoczynski, Marcin; Nong, Yibing; Tomlin, Alex; Zhu, Xiaoping; Gumpert, Anna M; Nasr, Marjan; Muthusamy, Senthikumar; Li, Hong; Book, Michael; Khan, Abdur; Hong, Kyung U; Li, Qianhong; Bolli, Roberto

    2017-03-01

    We have recently demonstrated that repeated administrations of c-kit POS cardiac progenitor cells (CPCs) have cumulative beneficial effects in rats with old myocardial infarction (MI), resulting in markedly greater improvement in left ventricular (LV) function compared with a single administration. To determine whether this paradigm applies to other species and cell types, mice with a 3-week-old MI received one or three doses of cardiac mesenchymal cells (CMCs), a novel cell type that we have recently described. CMCs or vehicle were infused percutaneously into the LV cavity, 14 days apart. Compared with vehicle-treated mice, the single-dose group exhibited improved LV ejection fraction (EF) after the 1st infusion (consisting of CMCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group, LV EF improved after each CMC infusion, so that at the end of the study, LV EF averaged 35.5 ± 0.7% vs. 32.7 ± 0.6% in the single-dose group (P < 0.05). The multiple-dose group also exhibited less collagen in the non-infarcted region vs. the single-dose group. Engraftment and differentiation of CMCs were negligible in both groups, indicating paracrine effects. These results demonstrate that, in mice with ischemic cardiomyopathy, the beneficial effects of three doses of CMCs are significantly greater than those of one dose, supporting the concept that multiple treatments are necessary to properly evaluate the full therapeutic potential of cell therapy. Thus, the repeated-treatment paradigm is not limited to c-kit POS CPCs or to rats, but applies to other cell types and species. The generalizability of this concept dramatically augments its significance.

  19. A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration.

    PubMed

    Janusek, D; Kania, M; Zaczek, R; Zavala-Fernandez, H; Maniewski, R

    2014-04-01

    The presence of T wave alternans (TWA) in the surface ECG signals has been recognized as a marker of electrical instability, and is hypothesized to be related to patients at increased risk for ventricular arrhythmias. In this paper we present a TWA simulation study. The TWA phenomenon was simulated by changing the duration of the ventricular heart cells action potential. The magnitude was calculated in the surface ECG with the use of the time domain method. The spatially concordant TWA, where during one heart beat all ventricular cells display a short-duration action potential and during the next beat they exhibit a long-duration action potential, as well as the discordant TWA, where at least one region is out of phase, was simulated. The vectocardiographic representation was employed. The obtained results showed a high level of T-loop pattern and location disturbances connected to the discordant TWA simulation in contrast to the concordant one. This result may be explained by the spatial heterogeneity of the ventricular repolarization process, which could be higher for the discordant TWA than for the concordant TWA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Cerebrovascular accidents in patients with a ventricular assist device.

    PubMed

    Tsukui, Hiroyuki; Abla, Adib; Teuteberg, Jeffrey J; McNamara, Dennis M; Mathier, Michael A; Cadaret, Linda M; Kormos, Robert L

    2007-07-01

    A cerebrovascular accident is a devastating adverse event in a patient with a ventricular assist device. The goal was to clarify the risk factors for cerebrovascular accident. Prospectively collected data, including medical history, ventricular assist device type, white blood cell count, thrombelastogram, and infection, were reviewed retrospectively in 124 patients. Thirty-one patients (25%) had 48 cerebrovascular accidents. The mean ventricular assist device support period was 228 and 89 days in patients with and without cerebrovascular accidents, respectively (P < .0001). Sixty-six percent of cerebrovascular accidents occurred within 4 months after implantation. Actuarial freedom from cerebrovascular accident at 6 months was 75%, 64%, 63%, and 33% with the HeartMate device (Thoratec Corp, Pleasanton, Calif), Thoratec biventricular ventricular assist device (Thoratec Corp), Thoratec left ventricular assist device (Thoratec), and Novacor device (WorldHeart, Oakland, Calif), respectively. Twenty cerebrovascular accidents (42%) occurred in patients with infections. The mean white blood cell count at the cerebrovascular accident was greater than the normal range in patients with infection (12,900/mm3) and without infection (9500/mm3). The mean maximum amplitude of the thrombelastogram in the presence of infection (63.6 mm) was higher than that in the absence of infection (60.7 mm) (P = .0309). The risk of cerebrovascular accident increases with a longer ventricular assist device support period. Infection may activate platelet function and predispose the patient to a cerebrovascular accident. An elevation of the white blood cell count may also exacerbate the risk of cerebrovascular accident even in patients without infection. Selection of device type, prevention of infection, and meticulous control of anticoagulation are key to preventing cerebrovascular accident.

  1. Developmental changes in electrophysiological characteristics of human induced Pluripotent Stem Cell-derived cardiomyocytes

    PubMed Central

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer

    2016-01-01

    Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456

  2. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  3. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    PubMed

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  4. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.

    PubMed

    Tomek, Jakub; Rodriguez, Blanca; Bub, Gil; Heijman, Jordi

    2017-08-01

    The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca 2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca 2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca 2+ load] modulation of SR Ca 2+ release as critical determinants of Ca 2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca 2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca 2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/%CE%B2-ar-stimulation-and-alternans-in-border-zone-cardiomyocytes/. Copyright © 2017 the American Physiological Society.

  5. Neural Stem Cells: Historical Perspective and Future Prospects

    PubMed Central

    Breunig, Joshua J.; Haydar, Tarik F.; Rakic, Pasko

    2011-01-01

    How a single fertilized cell generates diverse neuronal populations has been a fundamental biological problem since the 19th century. Classical histological methods revealed that post-mitotic neurons are produced in a precise temporal and spatial order from germinal cells lining the cerebral ventricles. In the 20th century DNA labeling and histo- and immuno-histochemistry helped to distinguish the subtypes of dividing cells and delineate their locations in the ventricular and subventricular zones. Recently, genetic and cell biological methods have provided insights into sequential gene expression and molecular and cellular interactions that generate heterogeneous populations of NSCs leading to specific neuronal classes. This precisely regulated developmental process does not tolerate significant in vivo deviation, making replacement of adult neurons by NSCs during pathology a colossal challenge. In contrast, utilizing the trophic factors emanating from the NSC or their derivatives to slow down deterioration or prevent death of degenerating neurons may be a more feasible strategy. PMID:21609820

  6. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    PubMed

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-05-10

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.

  7. A single-centre report on the characteristics of Tako-tsubo syndrome.

    PubMed

    Teh, Andrew W; New, Gishel; Cooke, Jennifer

    2010-02-01

    Tako-tsubo cardiomyopathy is an increasingly recognised phenomenon characterised by chest pain, ECG abnormalities, cardiac biomarker elevation and transient left ventricular dysfunction without significant coronary artery obstruction. To report the clinical and echocardiographic characteristics from a large single-centre Australian series of patients with Tako-tsubo syndrome. We prospectively collected data on 23 consecutive patients presenting between November 2005 and November 2007. Baseline demographics, ECG, echocardiography and coronary angiography were performed on nearly all patients. All patients presented with chest pain; 87% were female. Various stressors were noted and cardiac Troponin-T was elevated in 91% of patients. All patients had non-obstructive coronary disease at angiography. 19/23 patients had initial and subsequent echocardiography. Mean ejection fraction was 50% at baseline and 64% at follow-up (p<0.0001). Right ventricular dysfunction was present in eight, dynamic left ventricular outflow tract obstruction in two, diastolic dysfunction in seven and two patients had the mid-cavity variant. This large prospective single-centre Australian series of Tako-tsubo syndrome is in concert with previous published series. Complete recovery of left ventricular function on echocardiographic follow-up was typical. Although its pathogenesis remains unclear, early distinction from acute coronary syndromes is important and the prognosis is reassuringly good. Crown Copyright (c) 2009. Published by Elsevier B.V. All rights reserved.

  8. Left ventricular structural and functional changes evaluated by echocardiography and two-dimensional strain in patients with sickle cell disease.

    PubMed

    Bedirian, Ricardo; Soares, Andrea Ribeiro; Maioli, Maria Christina; de Medeiros, Jussara Fonseca Fernandes; Lopes, Agnaldo José; Castier, Marcia Bueno

    2018-04-01

    Patients with sickle cell disease have increased left ventricular size, which is not usually accompanied by changes in systolic function indexes. We assessed echocardiographic abnormalities present in patients with sickle cell anemia (SCA) and compared echocardiographic parameters to other sickle cell diseases (OSCD). A blind cross-sectional study with 60 patients with SCA and 16 patients with OSCD who underwent transthoracic echocardiography was performed. Echocardiographic findings were: left atrial volume index 47.7 ±11.5 ml/m² in SCA group and 31.7 ±8.42 ml/m² in OSCD group ( p < 0.001); left ventricular diastolic diameter index 3.47 ±0.37 cm/m² in SCA group and 2.97 ±0.41 cm/m² in OSCD group ( p < 0.001); left ventricular systolic diameter index 2.12 ±0.31 cm/m² in SCA group and 1.86 ±0.28 cm/m² in OSCD group ( p < 0.001). There were no differences in the left ventricular ejection fraction: 68.2 ±6.69% in SCA group and 67.1 ±6.21% in OSCD group ( p = 0.527). The ratio between mitral E wave and mean mitral annulus e' wave velocities was higher in the SCA group (7.72 ±1.54 vs. 6.70 ±1.65; p = 0.047). Mitral A wave correlated significantly with hemoglobin levels ( r = -0.340; p = 0.032). There was an increase of left ventricular and left atrial sizes in patients with SCA, compared to patients with OSCD, without changes in systolic or diastolic function in both groups. This could be due to the hyperkinetic state due to the more severe anemia in the SCA subjects.

  9. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload.

    PubMed

    Beetz, Nadine; Rommel, Carolin; Schnick, Tilman; Neumann, Elena; Lother, Achim; Monroy-Ordonez, Elsa Beatriz; Zeeb, Martin; Preissl, Sebastian; Gilsbach, Ralf; Melchior-Becker, Ariane; Rylski, Bartosz; Stoll, Monika; Schaefer, Liliana; Beyersdorf, Friedhelm; Stiller, Brigitte; Hein, Lutz

    2016-12-01

    Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Concealed Accessory Pathways with a Single Ventricular and Two Discrete Atrial Insertion Sites.

    PubMed

    Kipp, Ryan T; Abu Sham'a, Raed; Hiroyuki, Ito; Han, Frederick T; Refaat, Marwan; Hsu, Jonathan C; Field, Michael E; Kopp, Douglas E; Marcus, Gregory M; Scheinman, Melvin M; Hoffmayer, Kurt S

    2017-03-01

    Atrioventricular reciprocating tachycardia (AVRT) utilizing a concealed accessory pathway is common. It is well appreciated that some patients may have multiple accessory pathways with separate atrial and ventricular insertion sites. We present three cases of AVRT utilizing concealed pathways with evidence that each utilizing a single ventricular insertion and two discrete atrial insertion sites. In case one, two discrete atrial insertion sites were mapped in two separate procedures, and only during the second ablation was the Kent potential identified. Ablation of the Kent potential at this site remote from the two atrial insertion sites resulted in the termination of the retrograde conduction in both pathways. Case two presented with supraventricular tachycardia (SVT) with alternating eccentric atrial activation patterns without alteration in the tachycardia cycle length. The two distinct atrial insertion sites during orthodromic AVRT and ventricular pacing were targeted and each of the two atrial insertion sites were successfully mapped and ablated. In case three, retrograde decremental conduction utilizing both atrial insertion sites was identified prior to ablation. After mapping and ablation of the first discrete atrial insertion site, tachycardia persisted utilizing the second atrial insertion site. Only after ablation of the second atrial insertion site was SVT noninducible, and VA conduction was no longer present. Concealed retrograde accessory pathways with discrete atrial insertion sites may have a common ventricular insertion site. Identification and ablation of the ventricular insertion site or the separate discrete atrial insertion sites result in successful treatment. © 2017 Wiley Periodicals, Inc.

  11. Electrocardiograph-gated single photon emission computed tomography radionuclide angiography presents good interstudy reproducibility for the quantification of global systolic right ventricular function.

    PubMed

    Daou, Doumit; Coaguila, Carlos; Vilain, Didier

    2007-05-01

    Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.

  12. Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells.

    PubMed

    Yamauchi, Kaori; Li, Junjun; Morikawa, Kumi; Liu, Li; Shirayoshi, Yasuaki; Nakatsuji, Norio; Elliott, David A; Hisatome, Ichiro; Suemori, Hirofumi

    2018-01-01

    Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5 eGFP/w and MLC2v mCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5 eGFP/w and MLC2v mCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Use of a Doppler pulmonary artery catheter for continuous measurement of right ventricular pump function and contractility during single lung transplantation.

    PubMed

    Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N

    1993-01-01

    Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.

  14. Congenital left ventricular wall abnormalities in adults detected by gated cardiac multidetector computed tomography: clefts, aneurysms, diverticula and terminology problems.

    PubMed

    Erol, Cengiz; Koplay, Mustafa; Olcay, Ayhan; Kivrak, Ali Sami; Ozbek, Seda; Seker, Mehmet; Paksoy, Yahya

    2012-11-01

    Our aim was to evaluate congenital left ventricular wall abnormalities (clefts, aneurysms and diverticula), describe and illustrate imaging features, discuss terminology problems and determine their prevalence detected by cardiac CT in a single center. Coronary CT angiography images of 2093 adult patients were evaluated retrospectively in order to determine congenital left ventricular wall abnormalities. The incidence of left ventricular clefts (LVC) was 6.7% (141 patients) and statistically significant difference was not detected between the sexes regarding LVC (P=0.5). LVCs were single in 65.2% and multiple in 34.8% of patients. They were located at the basal to mid inferoseptal segment of the left ventricle in 55.4%, the basal to mid anteroseptal segment in 24.1%, basal to mid inferior segment in 17% and septal-apical septal segment in 3.5% of cases. The cleft length ranged from 5 to 22 mm (mean 10.5 mm) and they had a narrow connection with the left ventricle (mean 2.5 mm). They were contractile with the left ventricle and obliterated during systole. Congenital left ventricular septal aneurysm that was located just under the aortic valve was detected in two patients (0.1%). No case of congenital left ventricular diverticulum was detected. Cardiac CT allows us to recognize congenital left ventricular wall abnormalities which have been previously overlooked in adults. LVC is a congenital structural variant of the myocardium, is seen more frequently than previously reported and should be differentiated from aneurysm and diverticulum for possible catastrophic complications of the latter two. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Right ventricular effects of intracoronary delivery of mesenchymal stem cells (MSC) in an animal model of pressure overload heart failure.

    PubMed

    Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Gaughan, John P; Houser, Steven; Macha, Mahender

    2009-12-01

    In a rat model of left ventricular pressure overload hypertrophy with biventricular failure, we studied the effects of intracoronary delivery of mesenchymal stem cells (MCS) upon right ventricular hemodynamic performance, profiles of local inflammation and apoptosis, and determinants of extracellular matrix remodeling. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After a decrease in left ventricular fractional shortening of 25% from the baseline (relative 50% reduction), animals were randomized to an intracoronary injection of MSC (n=28) or PBS (n=20). Right ventricular hemodynamic assessment and measurement of local inflammatory markers, proapoptotic factors, and determinants of extracellular matrix remodeling were performed on post-transplantation day 7, 14, 21 or 28. MSC injection improved right ventricular systolic function in the MSC group compared to the control group (mean+/-SD, max dP/dt 772+/-272 mm Hg/s vs. 392+/-132 at 28 days, P<0.01). Diastolic function was similarly improved (mean+/-SD, max -dP/dt -558+/-171 mm Hg/s vs. -327+/-131 at 28 days, P<0.05). Right ventricular levels of IL-1, IL-6, TNF-alpha, bax, bak and p38 were significantly decreased in the MSC treated animals. Expression of MMP-3, MMP-6, MMP-9, TIMP-1 and TIMP-3 declined in the MSC group compared with controls after 28 days. In this model of left ventricular pressure overload hypertrophy and biventricular failure, intracoronary delivery of MSC was associated with an improvement in the right ventricular hemodynamic performance, profiles of local inflammation and apoptosis, and determinants of extracellular matrix remodeling.

  16. Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.

    PubMed

    Amino, Mari; Yoshioka, Koichiro; Fujibayashi, Daisuke; Hashida, Tadashi; Furusawa, Yoshiya; Zareba, Wojciech; Ikari, Yuji; Tanaka, Etsuro; Mori, Hidezo; Inokuchi, Sadaki; Kodama, Itsuo; Tanabe, Teruhisa

    2010-03-01

    A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5-15 Gy) on Cx43 expression in normal rabbit hearts (n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR > or =10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.

  17. Speckle tracking evaluation of right ventricular functions in children with sickle cell disease.

    PubMed

    Tolba, Osama Abd Rab Elrasol; El-Shanshory, Mohamed Ramadan; El-Gamasy, Mohamed Abd Elaziz; El-Shehaby, Walid Ahmed

    2017-01-01

    Cardiac dysfunction is a risk factor for death in patients with sickle cell disease (SCD). Aim of the work is to evaluate the right ventricular systolic and diastolic functions by tissue Doppler and speckling tracking imaging in children with SCD. Thirty children with SCD and thirty controls were subjected to clinical, laboratory evaluations, and echocardiographic study using GE Vivid 7 (GE Medical System, Horten, Norway with a 3.5-MHz multifrequency transducer) including; Two-dimensional and tissue Doppler echocardiographic study (lateral tricuspid valve annulus peak E' velocity, lateral tricuspid valve annulus peak A' velocity, E'/A' ratio, isovolumetric relaxation time, lateral tricuspid valve annulus S' and septal S' waves and peak longitudinal systolic strain [PLSS] and time to PLSS) were done in six right ventricular segments. There was a significant decrease in right ventricular systolic and diastolic function in patients group when compared to controls. Children with SCD have impaired right ventricular systolic and diastolic functions when compared to healthy children with early evaluation of the systolic dysfunction by speckle tracking imaging technique.

  18. Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy.

    PubMed

    Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Torres, Denise; Gaughan, John P; Houser, Steven; Macha, Mahender

    2008-02-01

    In a rat model of pressure overload hypertrophy, we studied the effects of intracoronary delivery of mesenchymal stem cells on hemodynamic performance, exercise capacity, systemic inflammation, and left ventricular reverse remodeling. Sprague-Dawley rats underwent aortic banding and were followed up by echocardiographic scanning. After a decrease in fractional shortening of 25% from baseline, animals were randomized to intracoronary injection of mesenchymal stem cells (MSC group; n = 28) or phosphate-buffered saline solution (control group; n = 20). Hemodynamic and echocardiographic assessment, swim testing to exhaustion, and measurement of inflammatory markers were performed before the rats were humanely killed on postoperative day 7, 14, 21, or 28. Injection of mesenchymal stem cells improved systolic function in the MSC group compared with the control group (mean +/- standard deviation: maximum dP/dt 3048 +/- 230 mm Hg/s vs 2169 +/- 97 mm Hg/s at 21 days and 3573 +/- 741 mm Hg/s vs 1363 +/- 322 mm Hg/s at 28 days: P < .001). Time to exhaustion was similarly increased in the MSC group compared with controls (487 +/- 35 seconds vs 306 +/- 27 seconds at 28 days; P < .01). Serum levels of interleukins 1 and 6, tumor necrosis factor-alpha, and brain natriuretic peptide-32 were significantly decreased in animals treated with mesenchymal stem cells. Stem cell transplantation improved left ventricular fractional shortening at 21 and 28 days. Left ventricular end-systolic and end-diastolic diameters were also improved at 28 days. In this model of pressure overload hypertrophy, intracoronary delivery of mesenchymal stem cells during heart failure was associated with an improvement in hemodynamic performance, maximal exercise tolerance, systemic inflammation, and left ventricular reverse remodeling. This study suggests a potential role of this treatment strategy for the management of hypertrophic heart failure resulting from pressure overload.

  19. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Feaster, Tromondae K; Cadar, Adrian G; Wang, Lili; Williams, Charles H; Chun, Young Wook; Hempel, Jonathan E; Bloodworth, Nathaniel; Merryman, W David; Lim, Chee Chew; Wu, Joseph C; Knollmann, Björn C; Hong, Charles C

    2015-12-04

    The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. © 2015 American Heart Association, Inc.

  20. Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes

    PubMed Central

    Cros, Caroline; Brette, Fabien

    2013-01-01

    β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca2+ transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca2+ transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca2+ transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells. PMID:24303124

  1. Right ventricular outflow tract tachycardia due to a somatic cell mutation in G protein subunitalphai2.

    PubMed Central

    Lerman, B B; Dong, B; Stein, K M; Markowitz, S M; Linden, J; Catanzaro, D F

    1998-01-01

    Idiopathic ventricular tachycardia is a generic term that describes the various forms of ventricular arrhythmias that occur in patients without structural heart disease and in the absence of the long QT syndrome. Many of these tachycardias are focal in origin, localize to the right ventricular outflow tract (RVOT), terminate in response to beta blockers, verapamil, vagal maneuvers, and adenosine, and are thought to result from cAMP-mediated triggered activity. DNA was prepared from biopsy samples obtained from myocardial tissue from a patient with adenosine-insensitive idiopathic ventricular tachycardia arising from the RVOT. Genomic sequences of the inhibitory G protein Galphai2 were determined after amplification by PCR and subcloning. A point mutation (F200L) in the GTP binding domain of the inhibitory G protein Galphai2 was identified in a biopsy sample from the arrhythmogenic focus. This mutation was shown to increase intracellular cAMP concentration and inhibit suppression of cAMP by adenosine. No mutations were detected in Galphai2 sequences from myocardial tissue sampled from regions remote from the origin of tachycardia, or from peripheral lymphocytes. These findings suggest that somatic cell mutations in the cAMP-dependent signal transduction pathway occurring during myocardial development may be responsible for some forms of idiopathic ventricular tachycardia. PMID:9637720

  2. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  3. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions.

    PubMed

    Carro, Jesús; Rodríguez, José Félix; Laguna, Pablo; Pueyo, Esther

    2011-11-13

    In this study, several modifications were introduced to a recently proposed human ventricular action potential (AP) model so as to render it suitable for the study of ventricular arrhythmias. These modifications were driven by new sets of experimental data available from the literature and the analysis of several well-established cellular arrhythmic risk biomarkers, namely AP duration at 90 per cent repolarization (APD(90)), AP triangulation, calcium dynamics, restitution properties, APD(90) adaptation to abrupt heart rate changes, and rate dependence of intracellular sodium and calcium concentrations. The proposed methodology represents a novel framework for the development of cardiac cell models. Five stimulation protocols were applied to the original model and the ventricular AP model developed here to compute the described arrhythmic risk biomarkers. In addition, those models were tested in a one-dimensional fibre in which hyperkalaemia was simulated by increasing the extracellular potassium concentration, [K(+)](o). The effective refractory period (ERP), conduction velocity (CV) and the occurrence of APD alternans were investigated. Results show that modifications improved model behaviour as verified by: (i) AP triangulation well within experimental limits (the difference between APD at 50 and 90 per cent repolarization being 78.1 ms); (ii) APD(90) rate adaptation dynamics characterized by fast and slow time constants within physiological ranges (10.1 and 105.9 s); and (iii) maximum S1S2 restitution slope in accordance with experimental data (S(S1S2)=1.0). In simulated tissues under hyperkalaemic conditions, APD(90) progressively shortened with the degree of hyperkalaemia, whereas ERP increased once a threshold in [K(+)](o) was reached ([K(+)](o)≈6 mM). CV decreased with [K(+)](o), and conduction was blocked for [K(+)](o)>10.4 mM. APD(90) alternans were observed for [K(+)](o)>9.8 mM. Those results adequately reproduce experimental observations. This study demonstrated the value of basing the development of AP models on the computation of arrhythmic risk biomarkers, as opposed to joining together independently derived ion channel descriptions to produce a whole-cell AP model, with the new framework providing a better picture of the model performance under a variety of stimulation conditions. On top of replicating experimental data at single-cell level, the model developed here was able to predict the occurrence of APD(90) alternans and areas of conduction block associated with high [K(+)](o) in tissue, which is of relevance for the investigation of the arrhythmogenic substrate in ischaemic hearts.

  4. Transesophageal Echocardiography, 3-Dimensional and Speckle Tracking Together as Sensitive Markers for Early Outcome in Patients With Left Ventricular Dysfunction Undergoing Cardiac Surgery.

    PubMed

    Kumar, Alok; Puri, Goverdhan Dutt; Bahl, Ajay

    2017-10-01

    Speckle tracking, when combined with 3-dimensional (3D) left ventricular ejection fraction, might prove to be a more sensitive marker for postoperative ventricular dysfunction. This study investigated early outcomes in a cohort of patients with left ventricular dysfunction undergoing cardiac surgery. Prospective, blinded, observational study. University hospital; single institution. The study comprised 73 adult patients with left ventricular ejection fraction <50% undergoing cardiac surgery using cardiopulmonary bypass. Routine transesophageal echocardiography before and after bypass. Global longitudinal strain using speckle tracking and 3D left ventricular ejection fraction were computed using transesophageal echocardiography. Mean prebypass global longitudinal strain and 3D left ventricle ejection fraction were significantly lower in patients with postoperative low-cardiac-output syndrome compared with patients who did not develop low cardiac output (global longitudinal strain -7.5% v -10.7% and 3D left ventricular ejection fraction 29% v 39%, respectively; p < 0.0001). The cut-off value of global longitudinal strain predicting postoperative low-cardiac-output syndrome was -6%, with 95% sensitivity and 68% specificity; and 3D left ventricular ejection fraction was 19% with 98% sensitivity and 81% specificity. Preoperative left ventricular global longitudinal strain (-6%) and 3D left ventricular ejection fraction (19%) together could act as predictor of postoperative low-cardiac-output states with high sensitivity (99.9%) in patients undergoing cardiac surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the rabbit heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-01-01

    Ventricular arrhythmias represent one of leading causes for sudden cardiac death, a significant problem in public health. Noninvasive imaging of cardiac electric activities associated with ventricular arrhythmias plays an important role in better our understanding of the mechanisms and optimizing the treatment options. The present study aims to rigorously validate a novel three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping during paced rhythm and ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous norepinephrine (NE). The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72 and a relative error of 0.30 averaged over all paced beats and NE-induced PVCs and VT beats. The averaged distance from imaged site of initial activation to measured site determined from intra-cardiac mapping was ∼5mm. These promising results suggest that 3-DCEI is feasible to non-invasively localize the origins and image activation sequence of focal ventricular arrhythmias.

  6. Importance of the atrial channel for ventricular arrhythmia therapy in the dual chamber implantable cardioverter defibrillator.

    PubMed

    Dijkman, B; Wellens, H J

    2000-12-01

    Performance of dual chamber implantable cardioverter defibrillator (ICD) systems has been judged based on functioning of the ventricular tachycardia:supraventricular tachycardia (VT:SVT) discrimination criteria and DDD pacing. The purpose of this study was to evaluate the use of dual chamber diagnostics to improve the electrical and antiarrhythmic therapy of ventricular arrhythmias. Information about atrial and ventricular rhythm in relation to ventricular arrhythmia occurrence and therapy was evaluated in 724 spontaneous arrhythmia episodes detected and treated by three types of dual chamber ICDs in 41 patients with structural heart disease. Device programming was based on clinically documented and induced ventricular arrhythmias. In ambulatory patients, sinus tachycardia preceded ventricular arrhythmias more often than in the hospital during exercise testing. The incidence of these VTs could be reduced by increasing the dose of a beta-blocking agent in only two patients. In five patients in whom sinus tachycardia developed after onset of hemodynamic stable VT, propranolol was more effective than Class III antiarrhythmics combined with another beta-blocking agent with regard to the incidence of VT and pace termination. In all but three cases, atrial arrhythmias were present for a longer time before the onset of ventricular arrhythmias. During atrial arrhythmias, fast ventricular rates before the onset of ventricular rate were observed more often than RR irregularities and short-long RR sequences. Dual chamber diagnostics allowed proper interpretation of detection and therapy outcome in patients with different types of ventricular arrhythmia. The advantages of the dual chamber ICD system go further than avoiding the shortcomings of the single chamber system. Information from the atrial chamber allows better device programming and individualization of drug therapy for ventricular arrhythmia.

  7. Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent.

    PubMed

    Myagmar, Bat-Erdene; Flynn, James M; Cowley, Patrick M; Swigart, Philip M; Montgomery, Megan D; Thai, Kevin; Nair, Divya; Gupta, Rumita; Deng, David X; Hosoda, Chihiro; Melov, Simon; Baker, Anthony J; Simpson, Paul C

    2017-03-31

    It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), β1, β2, β3, α1A, and α1B. The β1 and β2 are thought to be the dominant myocyte ARs. Quantify the 5 cardiac ARs in individual ventricular myocytes. We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and β1 and β2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the β1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The β2 and β3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total β-ARs were β2 and 20% were β3, both mainly in nonmyocytes. The dominant ventricular myocyte ARs present in all cells are the β1 and α1B. The β2 and β3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with β1 and α1B only; 60% that also have the α1A; and 5% each that also have the β2 or β3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms. © 2017 American Heart Association, Inc.

  8. PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients With Left Ventricular Dysfunction Post STEMI.

    PubMed

    Quyyumi, Arshed A; Vasquez, Alejandro; Kereiakes, Dean J; Klapholz, Marc; Schaer, Gary L; Abdel-Latif, Ahmed; Frohwein, Stephen; Henry, Timothy D; Schatz, Richard A; Dib, Nabil; Toma, Catalin; Davidson, Charles J; Barsness, Gregory W; Shavelle, David M; Cohen, Martin; Poole, Joseph; Moss, Thomas; Hyde, Pamela; Kanakaraj, Anna Maria; Druker, Vitaly; Chung, Amy; Junge, Candice; Preti, Robert A; Smith, Robin L; Mazzo, David J; Pecora, Andrew; Losordo, Douglas W

    2017-01-20

    Despite direct immediate intervention and therapy, ST-segment-elevation myocardial infarction (STEMI) victims remain at risk for infarct expansion, heart failure, reinfarction, repeat revascularization, and death. To evaluate the safety and bioactivity of autologous CD34+ cell (CLBS10) intracoronary infusion in patients with left ventricular dysfunction post STEMI. Patients who underwent successful stenting for STEMI and had left ventricular dysfunction (ejection fraction≤48%) ≥4 days poststent were eligible for enrollment. Subjects (N=161) underwent mini bone marrow harvest and were randomized 1:1 to receive (1) autologous CD34+ cells (minimum 10 mol/L±20% cells; N=78) or (2) diluent alone (N=83), via intracoronary infusion. The primary safety end point was adverse events, serious adverse events, and major adverse cardiac event. The primary efficacy end point was change in resting myocardial perfusion over 6 months. No differences in myocardial perfusion or adverse events were observed between the control and treatment groups, although increased perfusion was observed within each group from baseline to 6 months (P<0.001). In secondary analyses, when adjusted for time of ischemia, a consistently favorable cell dose-dependent effect was observed in the change in left ventricular ejection fraction and infarct size, and the duration of time subjects was alive and out of hospital (P=0.05). At 1 year, 3.6% (N=3) and 0% deaths were observed in the control and treatment group, respectively. This PreSERVE-AMI (Phase 2, randomized, double-blind, placebo-controlled trial) represents the largest study of cell-based therapy for STEMI completed in the United States and provides evidence supporting safety and potential efficacy in patients with left ventricular dysfunction post STEMI who are at risk for death and major morbidity. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01495364. © 2016 American Heart Association, Inc.

  9. The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway.

    PubMed

    Mahajan, Umesh B; Chandrayan, Govind; Patil, Chandragouda R; Arya, Dharamvir Singh; Suchal, Kapil; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-04-04

    We substantiated the role of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in the protective effect of apigenin against the myocardial infarction (MI) in diabetic rats. Diabetes was induced by intraperitoneal administration of a single dose of streptozotocin (55 mg/kg). The study groups included diabetic rats receiving vehicle, apigenin (75 mg/kg/day, orally), GW9662 (1 mg/kg/day, intraperitoneally), and a combination of apigenin and GW9662 for 14 days. The MI was induced in all the study groups except the diabetic control group by subcutaneous injection of 100 mg/kg/day of isoproterenol on the two terminal days. The diabetes and isoproterenol-induced MI was evident as a reduction in the maximal positive and negative rate of developed left ventricular pressure and an increase in the left ventricular end-diastolic pressure. The activities of creatine kinase on myocardial bundle (CK-MB) and lactate dehydrogenase (LDH) were also reduced. Apigenin treatment prevented the hemodynamic perturbations, restored the left ventricular function and reinstated a balanced redox status. It protected rats against an MI by attenuating myonecrosis, edema, cell death, and oxidative stress. GW9662, a PPAR-γ antagonist reversed the myocardial protection conferred by apigenin. Further, an increase in the PPAR-γ expression in the myocardium of the rats receiving apigenin reinforces the role of PPAR-γ pathway activation in the cardioprotective effects of apigenin.

  10. P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.

    PubMed

    Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G

    2011-01-01

    The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate its prognostic implication on the long-term disease outcome in sickle cell disease patients.

  11. Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function.

    PubMed

    Dennis, Malcolm J; Sparks, Paul B

    2004-06-01

    The autointrinsic conduction search (AICS) option, featured on some DDD pacemakers, performs periodic assessments of atrioventricular (AV) conduction capability during a single beat AV delay extension. Demonstration of ventricular conduction during the prolonged AV delay, permits ongoing AV delay extension if the patient's intrinsic conduction is preferred to ventricular pacing. A case is presented where the wide separation of atrial and ventricular pacing during the conduction search permitted retrograde ventriculoatrial conduction, precipitating pacemaker mediated tachycardia (PMT) on seven occasions in one patient. Two onset patterns are reported, both attributable to the AICS option. Recommendations for prevention strategies are made.

  12. Rho-Kinase Inhibition During Early Cardiac Development Causes Arrhythmogenic Right Ventricular Cardiomyopathy in Mice.

    PubMed

    Ellawindy, Alia; Satoh, Kimio; Sunamura, Shinichiro; Kikuchi, Nobuhiro; Suzuki, Kota; Minami, Tatsuro; Ikeda, Shohei; Tanaka, Shinichi; Shimizu, Toru; Enkhjargal, Budbazar; Miyata, Satoshi; Taguchi, Yuhto; Handoh, Tetsuya; Kobayashi, Kenta; Kobayashi, Kazuto; Nakayama, Keiko; Miura, Masahito; Shimokawa, Hiroaki

    2015-10-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice. © 2015 American Heart Association, Inc.

  13. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia

    PubMed Central

    Di Pasquale, E; Lodola, F; Miragoli, M; Denegri, M; Avelino-Cruz, J E; Buonocore, M; Nakahama, H; Portararo, P; Bloise, R; Napolitano, C; Condorelli, G; Priori, S G

    2013-01-01

    Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro ‘patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca2+/calmodulin-dependent serine–threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies. PMID:24113177

  14. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jisun; Department of Physiology, University of Ulsan College of Medicine, Seoul; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK{sup p42/44} and AKT signaling cascades. Although C1P priming had little effectmore » on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.« less

  15. Serum 25-hydroxyvitamin D is associated with both arterial and ventricular stiffness in healthy subjects.

    PubMed

    Şeker, Taner; Gür, Mustafa; Kuloğlu, Osman; Kalkan, Gülhan Yüksel; Şahin, Durmuş Yıldıray; Türkoğlu, Caner; Elbasan, Zafer; Baykan, Ahmet Oytun; Gözübüyük, Gökhan; Çaylı, Murat

    2013-12-01

    Vitamin D regulates the renin-angiotensin system, suppresses proliferation of vascular smooth muscle and improves endothelial cell dependent vasodilatation. These mechanisms may play a role on pathogenesis of arterial and left ventricular stiffness. We aimed to investigate the association between serum 25-hydroxyvitamin D with arterial and left ventricular stiffness in healthy subjects. We studied 125 healthy subjects without known cardiovascular risk factors or overt heart disease (mean age: 60.2 ± 11.9 years). Serum 25-hydroxyvitamin D was measured using a direct competitive chemiluminescent immunoassay. The subjects were divided into two groups according to the serum vitamin D level; vitamin D sufficient (≥ 20 ng/ml, n = 56) and vitamin D deficient (<20 ng/ml, n = 69). Indexes of LV stiffness such as E/A and E/E' were measured. Pulse wave velocity (PWV), which reflects arterial stiffness, was calculated using the single-point method via the Mobil-O-Graph(®) ARC solver algorithm. Systolic blood pressure, level of serum calcium, PWV and E/E' values were higher and E/A values were lower in vitamin D deficient group compared with vitamin D sufficient group. Multiple linear regression analysis showed that vitamin D level was independently associated with E/E' (β = -0.364, p<0.001), serum calcium (r = -0.136, p = 0.014), PWV (β = -0.203, p = 0.003), E/A (β = 0.209, p = 0.001) and systolic blood pressure (β = -0.293, p<0.001). 25-Hydroxyvitamin D levels are associated with increased ventricular and arterial stiffness as well as systolic blood pressure in healthy subjects. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  16. Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart.

    PubMed

    Chang, Gwo-Jyh; Chang, Chi-Jen; Chen, Wei-Jan; Yeh, Yung-Hsin; Lee, Hsiao-Yu

    2013-02-28

    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that exhibits cardioprotective and antiarrhythmic effects. The detailed mechanisms underlying these effects, however, are not entirely understood. The aim of this study was to elucidate the electromechanical effects of CAPE in guinea-pig cardiac preparations. Intracardiac electrograms, left ventricular (LV) pressure, and the anti-arrhythmic efficacy were determined using isolated hearts. Action potentials of papillary muscles were assessed with microelectrodes, Ca(2+) transients were measured by fluorescence, and ion fluxes were measured by patch-clamp techniques. In a perfused heart model, CAPE prolonged the atrio-ventricular conduction interval, the Wenckebach cycle length, and the refractory periods of the AV node and His-Purkinje system, while shortening the QT interval. CAPE reduced the occurrence of reperfusion-induced ventricular fibrillation and decreased LV pressure in isolated hearts. In papillary muscles, CAPE shortened the action potential duration and reduced both the maximum upstroke velocity and contractile force. In fura-2-loaded single ventricular myocytes, CAPE decreased cell shortening and the Ca(2+) transient amplitude. Patch-clamp experiments revealed that CAPE produced a use-dependent decrease in L-type Ca(2+) current (ICa,L) (IC50=1.1 μM) and Na(+) current (INa) (IC50=0.43 μM), caused a negative-shift of the voltage-dependent inactivation and a delay of recovery from inactivation. CAPE decreased the delayed outward K(+) current (IK) slightly, without affecting the inward rectifier K(+) current (IK1). These results suggest that the preferential inhibition of Ca(2+) inward and Na(+) inward currents by CAPE may induce major electromechanical alterations in guinea-pig cardiac preparations, which may underlie its antiarrhythmic action. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    PubMed

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis <50%) and thirty gender- and age-matched patients (control group) without coronary artery stenosis according to the coronary angiogram results were prospectively enrolled. All the patients had no left ventricular regional wall motion abnormality in two-dimensional echocardiography at rest and exercise stress. There was no significant difference in the 16 segmental systolic peak AS at rest between two groups. After exercise stress, the peak systolic AS rest-stress at mid anterior wall (-7.00%±10.90% vs 2.80%±23.69%) and mid anterolateral wall (-4.40%±18.81% vs 8.80%±19.16%) were decreased, while increased at basal inferolateral wall (14.00%±19.27% vs -5.60%±15.94%) in case group compared with control group (P<.05). In patients with mild single vessel coronary artery stenosis, the area strain was decreased at involved segments, while compensatory increased at noninvolved segments after exercise stress. Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  18. Cardiac troponin I for the prediction of functional recovery and left ventricular remodelling following primary percutaneous coronary intervention for ST-elevation myocardial infarction.

    PubMed

    Hallén, Jonas; Jensen, Jesper K; Fagerland, Morten W; Jaffe, Allan S; Atar, Dan

    2010-12-01

    To investigate the ability of cardiac troponin I (cTnI) to predict functional recovery and left ventricular remodelling following primary percutaneous coronary intervention (pPCI) in ST-elevation myocardial infarction (STEMI). Post hoc study extending from randomised controlled trial. 132 patients with STEMI receiving pPCI. Left ventricular ejection fraction (LVEF), end-diastolic and end-systolic volume index (EDVI and ESVI) and changes in these parameters from day 5 to 4 months after the index event. Cardiac magnetic resonance examination performed at 5 days and 4 months for evaluation of LVEF, EDVI and ESVI. cTnI was sampled at 24 and 48 h. In linear regression models adjusted for early (5 days) assessment of LVEF, ESVI and EDVI, single-point cTnI at either 24 or 48 h were independent and strong predictors of changes in LVEF (p<0.01), EDVI (p<0.01) and ESVI (p<0.01) during the follow-up period. In a logistic regression analysis for prediction of an LVEF below 40% at 4 months, single-point cTnI significantly improved the prognostic strength of the model (area under the curve = 0.94, p<0.01) in comparison with the combination of clinical variables and LVEF at 5 days. Single-point sampling of cTnI after pPCI for STEMI provides important prognostic information on the time-dependent evolution of left ventricular function and volumes.

  19. Left ventricular systolic function in sickle cell anaemia: an echocardiographic evaluation in adult Nigerian patients.

    PubMed

    Ejim, Emmanuel; Oguanobi, Nelson

    2016-09-01

    Reliable diagnostic measures for the evaluation of left ventricular systolic performance in the setting of altered myocardial loading characteristics in sickle cell anaemia remains unresolved. The study was designed to assess left ventricular systolic function in adult sickle cell patients using non-invasive endsystolic stress - end-systolic volume index ratio. A descriptive cross sectional comparative study was done using 52 patients recruited at the adult sickle cell anaemia clinic of the University of Nigeria Teaching Hospital Enugu. An equal number of age and sex-matched healthy volunteers served as controls. All the participants had haematocrit estimation, haemoglobin electrophoresis, as well as echocardiographic evaluation. The mean age of the patients and controls were 23.93 ± 5.28 (range 18-42) and 24.17 ± 4.39 (range 19 -42) years respectively, (t = 0.262; p= .794). No significant difference was seen in estimate of fractional shortening, and ejection fraction. The cardiac out-put, cardiac index and velocity of circumferential shortening were all significantly increased in the cases compared with the controls. The end systolic stress - end systolic volume index ratio (ESS/ESVI) was significantly lower in cases than controls. There were strong positive correlation between the ejection phase indices (ejection fraction and fractional shortening) and end systolic stress and ESS/ESVI. The study findings suggest the presence of left ventricular systolic dysfunction in adult sickle cell anaemia. This is best detected using the loading-pressures independent force-length relationship expressed in ESS/ESVI ratio.

  20. Electrophysiological changes of autonomic cells in left ventricular outflow tract in guinea pigs with iron deficiency anemia complicated with chronic heart failure.

    PubMed

    Fan, Ling; Chen, Li-Feng; Fan, Jing

    2017-12-01

    To investigate the electrophysiological changes of autonomic cells in left ventricular outflow tract in guinea pigs with iron deficiency anemia complicated with chronic heart failure. Guinea pigs model of iron deficiency anemia complicated with chronic heart failure in 10 guinea pigs of the experimental group was made by feeding a low iron diet, pure water and subcutaneous injection of isoproterenol. The control group consisting of 11 guinea pigs was given normal food, normal water and injected with normal saline. The left ventricular outflow tract model specimen was also prepared. The standard microelectrode technique was used to observe electrophysiological changes of autonomic cells in the outflow tract of left ventricular heart failure complicated with iron deficiency anemia in guinea pig model. The indicators of observation were maximal diastolic potential, action potential amplitude, 0 phase maximal depolarization velocity, 4 phase automatic depolarization velocity, repolarization 50% and 90%, and spontaneous discharge frequency. Compared with the control group, 4 phase automatic depolarization velocity, spontaneous discharge frequency and 0 phase maximal depolarization velocity decreased significantly (P < 0.01) and action potential amplitude reduced (P < 0.01) in model group. Moreover, repolarization 50% and 90% increased (P < 0.01). There are electrophysiological abnormalities of the left ventricular outflow tract in guinea pigs with iron deficiency anemia complicated with heart failure. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  1. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish

    PubMed Central

    Sarmah, Swapnalee; Muralidharan, Pooja

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  2. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    PubMed

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.

  3. [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction].

    PubMed

    Strauer, B E; Brehm, M; Zeus, T; Gattermann, N; Hernandez, A; Sorg, R V; Kögler, G; Wernet, P

    2001-08-24

    The regenerative potential of human autologous adult stem cells on myocardial regeneration and neovascularisation after myocardial infarction may contribute to healing of the infarction area. But no clinical application has previously been reported. We here describe for the first time the results of this method applied in a patient who had sustained an acute myocardial infarction. 14 hours after the onset of left precordial pain a 46-year-old man was admitted to our hospital for interventional diagnosis and treatment. Coronary angiography demonstrated occlusion of the anterior descending branch of the left coronary artery with transmural infarction. This was treated by percutaneous transluminal catheter angioplasty and stent placement. Mononuclear bone marrow cells of the patient were prepared and 6 days after infaction 1,2 infinity 107 cells were transplanted at low pressure via a percutaneous transluminal catheter placed in the infarct-related artery. Before and 10 weeks after this procedure left ventricular function, infarct size, ventricular geometry and myocardial perfusion were measured by (201)thallium SPECT both at rest and on exercise, together with bull's-eye analysis, dobutamine stress echocardiography, right heart catheterisation and radionuclide ventriculography. At 10 weeks after the stem cell transplantation the transmural infarct area had been reduced from 24.6 % to 15.7 % of left ventricular circumference, while ejection fraction, cardiac index and stroke volume had increased by 20-30 %. On exercise the end diastolic volume had decreased by 30 % and there was a comparable fall in left ventricular filling pressure (mean pulmonary capillary pressure). These results for the first time demonstrate that selective intracoronary transplantation of human autologous adult stem cells is possible under clinical conditions and that it can lead to regeneration of the myocardial scar after transmural infarction. The therapeutic effects may be ascribed to stem cell-associated myocardial regeneration and neovascularisation.

  4. How best to assess right ventricular function by echocardiography*

    PubMed Central

    DiLorenzo, Michael P.; Bhatt, Shivani M.; Mercer-Rosa, Laura

    2016-01-01

    Right ventricular function is a crucial determinant of long-term outcomes of children with heart disease. Quantification of right ventricular systolic and diastolic performance by echocardiography is of paramount importance, given the prevalence of children with heart disease, particularly those with involvement of the right heart, such as single or systemic right ventricles, tetralogy of Fallot, and pulmonary arterial hypertension. Identification of poor right ventricular performance can provide an opportunity to intervene. In this review, we will go through the different systolic and diastolic indices, as well as their application in practice. Quantification of right ventricular function is possible and should be routinely performed using a combination of different measures, taking into account each disease state. Quantification is extremely useful for individual patient follow-up. Laboratories should continue to strive to optimise reproducibility through quality improvement and quality assurance efforts in addition to investing in technology and training for new, promising techniques, such as three-dimensional echocardiography. PMID:26675593

  5. Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2016-01-01

    Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.

  6. Morphology and Classification of Right Ventricular Bands in the Domestic Dog (Canis familiaris).

    PubMed

    Cope, L A

    2017-10-01

    Ventricular bands, also designated as 'false tendons', are described as single or multiple strands that cross the ventricles and have no connection to valvular cusps. Previous work indicates these strands are present in the ventricles of humans and some animal hearts and not always associated with cardiac pathologies. Despite these previous studies, the published literature is limited in documenting the morphology of these strands and incidence in animals. In this study, examination of 89 hearts showed six types of ventricular bands in the right ventricle of the domestic dog. These bands were classified according to their prevalence and points of attachment. Type I extended from the interventricular septum to the ventricular free wall, type II connected a musculus papillaris parvus to the ventricular free wall and type III connected trabeculae carneae on the interventricular septum. Type IV connected the trabeculae carneae on the ventricular free wall, type V interconnected papillary muscles and type VI connected the interventricular septum to a papillary muscle. While the study of these ventricular bands provided additional information on the cardiac anatomy of the domestic dog, it also showed their clinical importance. Several studies have proposed that their position in the ventricle may interfere with cardiac catheterization and pacemaker lead placement or be misinterpreted during echocardiography. © 2017 Blackwell Verlag GmbH.

  7. Externalized Conductor Cables in QuickSite Left Ventricular Pacing Lead and Riata Right Ventricular Lead in a Single Patient: A Common Problem With Silicone Insulation

    PubMed Central

    Lakshmanadoss, Umashankar; Hackett, Vera; Deshmukh, Pramod

    2012-01-01

    QuickSite (St Jude Medical, Sylmar, CA, USA) is a silicone and polyurethane-insulated coronary sinus pacing lead. Riata lead (St Jude Medical, Sylmar, CA, USA) is a silicone insulated right ventricular shock lead. Recently, insulation breach of silicone based leads raised a huge concern. Fluoroscopic examination of these two leads in the same patient revealed externalization of these two leads. Same mechanism producing insulation breach of Riata lead may be involved in externalization of QuickSite LV lead as distal part of insulation is also made of silicone. PMID:28348692

  8. Complete transposition of the great arteries with double outlet right ventricle in a dog.

    PubMed

    Koo, S T; LeBlanc, N L; Scollan, K F; Sisson, D D

    2016-06-01

    A 2-year old intact male Collie dog presented to the cardiology service at Oregon State University for evaluation of cyanosis and suspected congenital cardiac disease. Echocardiography revealed a constellation of cardiac abnormalities including a single large vessel exiting the right ventricle with a diminutive left ventricular outflow tract, a ventricular septal defect, and marked concentric right ventricular hypertrophy with moderate right atrial dilation. Cardiac-gated computed tomography confirmed the previous anomalies in addition to supporting a diagnosis of complete transposition of the great arteries, double outlet right ventricle, and pulmonic hypoplasia with a single coronary ostium. Prominent bronchoesophageal collateral vessels were concurrently identified. Clinically, the dog was stable despite mild cyanosis that worsened with exercise; no intervention was elected at the time. This case report describes a rare combination of congenital cardiac defects and the usefulness of cardiac-gated cross-sectional imaging in the anatomic diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Goto, T.; Miyama, S.; Nowakowski, R. S.; Caviness, V. S. Jr

    1999-01-01

    Neurons destined for each region of the neocortex are known to arise approximately in an "inside-to-outside" sequence from a pseudostratified ventricular epithelium (PVE). This sequence is initiated rostrolaterally and propagates caudomedially. Moreover, independently of location in the PVE, the neuronogenetic sequence in mouse is divisible into 11 cell cycles that occur over a 6 d period. Here we use a novel "birth hour" method that identifies small cohorts of neurons born during a single 2 hr period, i.e., 10-20% of a single cell cycle, which corresponds to approximately 1.5% of the 6 d neuronogenetic period. This method shows that neurons arising with the same cycle of the 11 cycle sequence in mouse have common laminar fates even if they arise from widely separated positions on the PVE (neurons of fields 1 and 40) and therefore arise at different embryonic times. Even at this high level of temporal resolution, simultaneously arising cells occupy more than one cortical layer, and there is substantial overlap in the distributions of cells arising with successive cycles. We demonstrate additionally that the laminar representation of cells arising with a given cycle is little if at all modified over the early postnatal interval of histogenetic cell death. We infer from these findings that cell cycle is a neuronogenetic counting mechanism and that this counting mechanism is integral to subsequent processes that determine cortical laminar fate.

  10. Kawasaki syndrome in an adult: endomyocardial histology and ventricular function during acute and recovery phases of illness.

    PubMed

    Marcella, J J; Ursell, P C; Goldberger, M; Lovejoy, W; Fenoglio, J J; Weiss, M B

    1983-08-01

    Kawasaki syndrome, an acute systemic inflammatory illness of unknown origin usually affecting children, may develop into a serious illness complicated by coronary artery aneurysms or myocarditis. This report describes an adult with Kawasaki syndrome studied by right ventricular endomyocardial biopsy and cardiac catheterization during the acute and recovery phases of illness. The initial biopsy specimen showed acute myocarditis and was associated with hemodynamic evidence of biventricular dysfunction, a severely depressed left ventricular ejection fraction and global hypokinesia. With time, there was spontaneous and rapid resolution of the inflammatory cell infiltrate with concurrent return to normal myocardial function. Right ventricular endomyocardial biopsy studies early in the course of the cardiac disease associated with Kawasaki syndrome may correlate with ventricular function and may be useful for monitoring immunosuppressive therapy in patients with this syndrome.

  11. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers.

    PubMed

    Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S; Weissmann, Norbert; Ghofrani, Hossein A; Schermuly, Ralph T

    2018-01-01

    Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.

  12. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers

    PubMed Central

    Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S.; Weissmann, Norbert; Ghofrani, Hossein A.; Schermuly, Ralph T.

    2018-01-01

    Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function. PMID:29875701

  13. Relationship between right and left ventricular function in candidates for implantable cardioverter defibrillator with low left ventricular ejection fraction.

    PubMed

    Jimenez-Juan, Laura; Karur, Gauri R; Connelly, Kim A; Deva, Djeven; Yan, Raymond T; Wald, Rachel M; Singh, Sheldon; Leung, General; Oikonomou, Anastasia; Dorian, Paul; Angaran, Paul; Yan, Andrew T

    2017-04-01

    Indications for the primary prevention of sudden death using an implantable cardioverter defibrillator (ICD) are based predominantly on left ventricular ejection fraction (LVEF). However, right ventricular ejection fraction (RVEF) is also a known prognostic factor in a variety of structural heart diseases that predispose to sudden cardiac death. We sought to investigate the relationship between right and left ventricular parameters (function and volume) measured by cardiovascular magnetic resonance (CMR) among a broad spectrum of patients considered for an ICD. In this retrospective, single tertiary-care center study, consecutive patients considered for ICD implantation who were referred for LVEF assessment by CMR were included. Right and left ventricular function and volumes were measured. In total, 102 patients (age 62±14 years; 23% women) had a mean LVEF of 28±11% and RVEF of 44±12%. The left ventricular and right ventricular end diastolic volume index was 140±42 mL/m 2 and 81±27 mL/m 2 , respectively. Eighty-six (84%) patients had a LVEF <35%, and 63 (62%) patients had right ventricular systolic dysfunction. Although there was a significant and moderate correlation between LVEF and RVEF ( r =0.40, p <0.001), 32 of 86 patients (37%) with LVEF <35% had preserved RVEF, while 9 of 16 patients (56%) with LVEF ≥35% had right ventricular systolic dysfunction (Kappa=0.041). Among patients being considered for an ICD, there is a positive but moderate correlation between LVEF and RVEF. A considerable proportion of patients who qualify for an ICD based on low LVEF have preserved RVEF, and vice versa.

  14. Cerebrospinal fluid levels of amyloid precursor protein are associated with ventricular size in post-hemorrhagic hydrocephalus of prematurity.

    PubMed

    Morales, Diego M; Holubkov, Richard; Inder, Terri E; Ahn, Haejun C; Mercer, Deanna; Rao, Rakesh; McAllister, James P; Holtzman, David M; Limbrick, David D

    2015-01-01

    Neurological outcomes of preterm infants with post-hemorrhagic hydrocephalus (PHH) remain among the worst in infancy, yet there remain few instruments to inform the treatment of PHH. We previously observed PHH-associated elevations in cerebrospinal fluid (CSF) amyloid precursor protein (APP), neural cell adhesion molecule-L1 (L1CAM), neural cell adhesion molecule-1 (NCAM-1), and other protein mediators of neurodevelopment. The objective of this study was to examine the association of CSF APP, L1CAM, and NCAM-1 with ventricular size as an early step toward developing CSF markers of PHH. CSF levels of APP, L1CAM, NCAM-1, and total protein (TP) were measured in 12 preterm infants undergoing PHH treatment. Ventricular size was determined using cranial ultrasounds. The relationships between CSF APP, L1CAM, and NCAM-1, occipitofrontal circumference (OFC), volume of CSF removed, and ventricular size were examined using correlation and regression analyses. CSF levels of APP, L1CAM, and NCAM-1 but not TP paralleled treatment-related changes in ventricular size. CSF APP demonstrated the strongest association with ventricular size, estimated by frontal-occipital horn ratio (FOR) (Pearson R = 0.76, p = 0.004), followed by NCAM-1 (R = 0.66, p = 0.02) and L1CAM (R = 0.57,p = 0.055). TP was not correlated with FOR (R = 0.02, p = 0.95). Herein, we report the novel observation that CSF APP shows a robust association with ventricular size in preterm infants treated for PHH. The results from this study suggest that CSF APP and related proteins at once hold promise as biomarkers of PHH and provide insight into the neurological consequences of PHH in the preterm infant.

  15. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.

    PubMed

    Rhee, Siyeon; Chung, Jae I; King, Devin A; D'amato, Gaetano; Paik, David T; Duan, Anna; Chang, Andrew; Nagelberg, Danielle; Sharma, Bikram; Jeong, Youngtae; Diehn, Maximilian; Wu, Joseph C; Morrison, Ashby J; Red-Horse, Kristy

    2018-01-25

    During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.

  16. Evaluation of effect of atorvastatin on left ventricular systolic function in rats with myocardial infarction via 2D-STI technique.

    PubMed

    Hua, Yan; Xie, Manying; Yin, Jiabao; Wang, Yu; Gan, Ling; Sang, Ming; Sun, Xiaodong; Li, Mingyang; Liu, Shanjun; Xu, Jinzhi

    2018-05-01

    This report aims to evaluate the effect of atorvastatin (Ator) on left ventricular systolic function in myocardial infarction (MI) rats. Forty healthy adult Sprague-Dawley rats were randomly divided into four groups: Ator group, MI group, sham-operation group and normal group. The left anterior descending coronary arteries were ligated to establish the MI model; after modeling, the Ator group was treated with Ator for 4 consecutive weeks. The echocardiographic detection was performed; the left ventricular myocardial systolic peak velocities, strain and strain rates were analyzed using the 2D-STI technique. After 4 weeks, myocardial tissues were taken from all rats and received the pathological examination. Left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) in Ator group and MI group were increased after operation, but left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were decreased; myocardial function were decreased significantly (p<0.05). After Ator treatment, myocardial function at the 3rd and 4th week after operation increased significantly (p<0.05). After Ator treatment, LVEDD and LVESD decreased while LVEF and LVFS increased in Ator group at the 3rd and 4th week after operation compared with MI group (p<0.05). At the 4th week after operation, LVEDD and LVESD in Ator group were decreased compared with those at the 1st and 2nd week after operation, but LVEF and LVFS were increased compared with those at the 1st, 2nd and 3rd week after operation (p<0.05). Pathological examination showed that necrosis and fibrosis of myocardial cells and inflammatory reaction were obvious in MI group. The inflammatory reaction of myocardial cells and myocardial fibrosis were lighter in Ator group. Ator can effectively improve the left ventricular systolic function in MI rats, which could be related to the reduction of response to inflammation and fibrosis.

  17. The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway

    PubMed Central

    Mahajan, Umesh B.; Chandrayan, Govind; Patil, Chandragouda R.; Arya, Dharamvir Singh; Suchal, Kapil; Agrawal, Yogeeta O.; Ojha, Shreesh; Goyal, Sameer N.

    2017-01-01

    We substantiated the role of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in the protective effect of apigenin against the myocardial infarction (MI) in diabetic rats. Diabetes was induced by intraperitoneal administration of a single dose of streptozotocin (55 mg/kg). The study groups included diabetic rats receiving vehicle, apigenin (75 mg/kg/day, orally), GW9662 (1 mg/kg/day, intraperitoneally), and a combination of apigenin and GW9662 for 14 days. The MI was induced in all the study groups except the diabetic control group by subcutaneous injection of 100 mg/kg/day of isoproterenol on the two terminal days. The diabetes and isoproterenol-induced MI was evident as a reduction in the maximal positive and negative rate of developed left ventricular pressure and an increase in the left ventricular end-diastolic pressure. The activities of creatine kinase on myocardial bundle (CK-MB) and lactate dehydrogenase (LDH) were also reduced. Apigenin treatment prevented the hemodynamic perturbations, restored the left ventricular function and reinstated a balanced redox status. It protected rats against an MI by attenuating myonecrosis, edema, cell death, and oxidative stress. GW9662, a PPAR-γ antagonist reversed the myocardial protection conferred by apigenin. Further, an increase in the PPAR-γ expression in the myocardium of the rats receiving apigenin reinforces the role of PPAR-γ pathway activation in the cardioprotective effects of apigenin. PMID:28375162

  18. Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model

    NASA Astrophysics Data System (ADS)

    Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain

    2011-01-01

    Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.

  19. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad.

    PubMed

    Kerkhoffs, Wolfgang; Schumacher, Oliver; Meyns, Bart; Verbeken, Erik; Leunens, Veerle; Bollen, Hilde; Reul, Helmut

    2004-10-01

    The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications.

  20. Progenitor cell dynamics in the Newt Telencephalon during homeostasis and neuronal regeneration.

    PubMed

    Kirkham, Matthew; Hameed, L Shahul; Berg, Daniel A; Wang, Heng; Simon, András

    2014-04-08

    The adult newt brain has a marked neurogenic potential and is highly regenerative. Ventricular, radial glia-like ependymoglia cells give rise to neurons both during normal homeostasis and after injury, but subpopulations among ependymoglia cells have not been defined. We show here that a substantial portion of GFAP(+) ependymoglia cells in the proliferative hot spots of the telencephalon has transit-amplifying characteristics. In contrast, proliferating ependymoglia cells, which are scattered along the ventricular wall, have stem cell features in terms of label retention and insensitivity to AraC treatment. Ablation of neurons remodels the proliferation dynamics and leads to de novo formation of regions displaying features of neurogenic niches, such as the appearance of cells with transit-amplifying features and proliferating neuroblasts. The results have implication both for our understanding of the evolutionary diversification of radial glia cells as well as the processes regulating neurogenesis and regeneration in the adult vertebrate brain.

  1. Increased calcium deposits and decreased Ca2+-ATPase in right ventricular myocardium of ascitic broiler chickens.

    PubMed

    Li, K; Qiao, J; Zhao, L; Dong, S; Ou, D; Wang, J; Wang, H; Xu, T

    2006-11-01

    Right ventricular hypertrophy and failure is an important step in the development of ascites syndrome (AS) in broiler chickens. Cytoplasmic calcium concentration is a major regulator of cardiac contractile function and various physiological processes in cardiac muscle cells. The purpose of this study was to measure the right ventricular pressure and investigate the precise ultrastructural location of Ca(2+) and Ca(2+)-ATPase in the right ventricular myocardium of chickens with AS induced by low ambient temperature. The results showed that the right ventricular diastolic pressure of ascitic broilers was significantly higher than that of control broilers (P < 0.01), and the maximum change ratio of right intraventricular pressure (RV +/- dp/dt(max)) of ascitic broilers was significantly lower than that of the controls (P < 0.01). Extensively increased calcium deposits were observed in the right ventricular myocardium of ascitic broilers, whereas in the age-matched control broilers, calcium deposits were much less. The Ca(2+)-ATPase reactive products were obviously found on the sarcoplasmic reticulum and mitochondrial membrane of the control right ventricular myocardium, but rarely observed in the ascitic broilers. The data suggest that in ascitic broilers there is the right ventricular diastolic dysfunction, in which the overload of intracellular calcium and the decreased Ca(2+)-ATPase activity might be the important factors.

  2. Visualisation of exercise-induced ischaemia of the right ventricle by thallium-201 single photon emission computed tomography.

    PubMed Central

    Chiba, J.; Takeishi, Y.; Abe, S.; Tomoike, H.

    1997-01-01

    OBJECTIVE: Exercise thallium-201 (201T1) single photon emission computed tomography (SPECT) has been used to detect potential ischaemia in the left ventricular myocardium but not in the right ventricle. The purpose of this study was to establish the clinical usefulness of a right ventricular polar map of 201T1 SPECT for visualisation of exercise-induced right ventricular ischaemia. METHODS: Myocardial 201T1 SPECT was obtained immediately after treadmill exercise in 97 patients with suspected coronary artery disease. A region of interest was placed over the right ventricle (RV) on post-stress transaxial images. Short axis images of this region were generated and reconstructed as a bull's eye polar map. Normal ranges of RV 201T1 uptake were determined in 12 patients with normal coronary arteries. Scintigraphic criteria for identifying RV perfusion abnormality were derived from 25 patients with right coronary artery (RCA) stenosis greater than 75%. These criteria were applied to 60 consecutive patients with suspected coronary artery disease. RESULTS: Perfusion defects in the RV were larger in patients with proximal RCA stenosis than in those with distal RCA stenosis (mean (SD) 28 (16)% v 6 (5)%, P < 0.001). The sensitivity and specificity of the RV polar map for the detection of proximal RCA stenosis were 67% (8/12) and 98% (47/48), respectively. RV perfusion defects became undetectable in 9 patients who had successful percutaneous transluminal coronary angioplasty to a proximal RCA lesion. CONCLUSIONS: A right ventricular polar map display was useful for visualising exercise-induced right ventricular ischaemia. Images PMID:9038692

  3. Role of (123)I-Iobenguane Myocardial Scintigraphy in Predicting Short-term Left Ventricular Functional Recovery: An Interesting Image.

    PubMed

    Feola, Mauro; Chauvie, Stephane; Biggi, Alberto; Testa, Marzia

    2015-01-01

    (123)I-iobenguane myocardial scintigraphy (MIBG) has been shown to be a predictor of sudden cardiac mortality in patients with heart failure. One patient with recent anterior myocardial infarction (MI) treated with coronary angioplasty and having left ventricular ejection fraction (LVEF) of 30% underwent early MIBG myocardial scintigraphy/tetrofosmin single-photon emission computed tomography (SPECT) in order to help evaluate his eligibility for implantable cardioverter defibrillator (ICD). The late heart/mediastinum (H/M) ratio was calculated to be 1.32% and the washout rate was 1%. At 40-day follow-up after angioplasty, LVEF proved to be 32%, New York Heart Association (NYHA) class was still II-III, and an ICD was placed in order to reduce mortality from ventricular arrhythmias. MIBG myocardial scintigraphy might be a promising method for evaluating left ventricular recovery in post-MI patients.

  4. New Methods for the Analysis of Heartbeat Behavior in Risk Stratification

    PubMed Central

    Glass, Leon; Lerma, Claudia; Shrier, Alvin

    2011-01-01

    Developing better methods for risk stratification for tachyarrhythmic sudden cardiac remains a major challenge for physicians and scientists. Since the transition from sinus rhythm to ventricular tachycardia/fibrillation happens by different mechanisms in different people, it is unrealistic to think that a single measure will be adequate to provide a good index for risk stratification. We analyze the dynamical properties of ventricular premature complexes over 24 h in an effort to understand the underlying mechanisms of ventricular arrhythmias and to better understand the arrhythmias that occur in individual patients. Two dimensional density plots, called heartprints, correlate characteristic features of the dynamics of premature ventricular complexes and the sinus rate. Heartprints show distinctive characteristics in individual patients. Based on a better understanding of the natures of transitions from sinus rhythm to sudden cardiac and the mechanisms of arrhythmia prior to cardiac arrest, it should be possible to develop better methods for risk stratification. PMID:22144963

  5. Estimation of left ventricular mass in conscious dogs

    NASA Technical Reports Server (NTRS)

    Coleman, Bernell; Cothran, Laval N.; Ison-Franklin, E. L.; Hawthorne, E. W.

    1986-01-01

    A method for the assessment of the development or the regression of left ventricular hypertrophy (LVH) in a conscious instrumented animal is described. First, the single-slice short-axis area-length method for estimating the left-ventricular mass (LVM) and volume (LVV) was validated in 24 formaldehyde-fixed canine hearts, and a regression equation was developed that could be used in the intact animal to correct the sonomicrometrically estimated LVM. The LVM-assessment method, which uses the combined techniques of echocardiography and sonomicrometry (in conjunction with the regression equation), was shown to provide reliable and reproducible day-to-day estimates of LVM and LVV, and to be sensitive enough to detect serial changes during the development of LVH.

  6. Familial multiple ventricular extrasystoles, short stature, craniofacial abnormalities and digital hypoplasia: a further case of Stoll syndrome?

    PubMed

    Mercer, Catherine L; Keeton, Barry; Dennis, Nicolas R

    2008-04-01

    We report two brothers, their mother and a maternal cousin who had a distinctive facial phenotype, mild brachydactyly and prominence of the interphalangeal joints. One brother and the mother also had multiple ventricular extrasystoles. Six other relatives in four generations were probably affected on the basis of history and family photographs. We also report a further individual from a different family with a similar facial phenotype, Pierre-Robin sequence, tapering fingers and multiple ventricular extrasystoles. These families have some similarities to those reported by Stoll et al. in a single family, showing dominant inheritance. Our patients would seem to have the same or a related condition.

  7. Left ventricular function by echocardiogram in children with sickle cell anaemia in Mumbai, Western India.

    PubMed

    Tidake, Abhay; Gangurde, Pranil; Taksande, Anup; Mahajan, Ajay; Nathani, Pratap

    2015-10-01

    Cardiovascular events and complications are the leading cause of mortality and morbidity in patients with sickle cell disease. Cardiac abnormalities occur frequently and at an early stage in sickle cell anaemia patients, despite being more evident in adulthood. Sickle cell anaemia patients are increasingly able to reach adulthood owing to improved healthcare, and may, therefore, suffer the consequences of chronic cardiac injury. Thus, the study of cardiac abnormalities is essential in children The aim of this study was to determine the echocardiographic changes in left ventricular function in children suffering from sickle cell disease in Mumbai, Western India. The study comprised of 48 cases of sickle cell anaemia and 30 non-anaemic controls with normal haemoglobin and electrophoresis pattern. M-mode, two-dimensional, and Doppler echocardiographic measurements of patients and controls were performed according to the criteria of the American Echocardiography Society. On Doppler study, the A wave height was increased and the E/A ratio was decreased, whereas the deceleration and isovolumetric relaxation times were prolonged, which is typically seen in slowed or impaired myocardial relaxation (p<0.001). Although chamber dilatations were present, echocardiographic parameters showed no statistically significant correlation with severity of anaemia and age among the sickle cell patients. We conclude that the increased left ventricular stiffness, compared with controls, might be due to fibrosis related to ischaemia caused by SS disease in addition to wall hypertrophy.

  8. Effect of low oral doses of disopyramide and amiodarone on ventricular and atrial arrhythmias of chagasic patients with advanced myocardial damage.

    PubMed

    Carrasco, H A; Vicuña, A V; Molina, C; Landaeta, A; Reynosa, J; Vicuña, N; Fuenmayor, A; López, F

    1985-12-01

    Low-dose (7 mg/kg per day) disopyramide administration to arrhythmic chagasic patients decreased the frequency of ventricular extrasystoles in 4 of 17 patients (24%) and suppressed most complex ventricular arrhythmias in 12 of 15 patients (80%). This assessment was made from 72-h continuous Holter monitoring recorded during the course of this double blind, placebo-controlled randomized crossover study. Seven patients (41%) complained of anticholinergic side effects, but no contractile or conduction system depression was seen. Amiodarone (200 mg) given on a single blind, placebo-controlled basis to 9 of these patients reduced the frequency of ventricular extrasystoles in 6 of 9 patients (67%) and suppressed complex ventricular ectopy in 6 of 7 patients (85%). One patient was unable to tolerate this drug (11%). Both drugs seemed less effective in controlling supraventricular arrhythmias, although disopyramide eliminated paroxysms of supraventricular tachycardia in 9 of 13 (69%) and amiodarone in all 6 patients with this arrhythmia. Amiodarone appears to be a better antiarrhythmic drug for chagasic patients, due to its greater effectiveness and lower incidence of side effects.

  9. Stenting of the right ventricular outflow tract in 2 dogs for palliation of dysplastic pulmonary valve stenosis and right-to-left intracardiac shunting defects.

    PubMed

    Scansen, Brian A; Kent, Agnieszka M; Cheatham, Sharon L; Cheatham, John P; Cheatham, John D

    2014-09-01

    Two dogs with severe dysplastic pulmonary valve stenosis and right-to-left shunting defects (patent foramen ovale, perimembranous ventricular septal defect) underwent palliative stenting of the right ventricular outflow tract and pulmonary valve annulus using balloon expandable stents. One dog received 2 over-lapping bare metal stents placed 7 months apart; the other received a single covered stent. Both procedures were considered technically successful with a reduction in the transpulmonary valve pressure gradient from 202 to 90 mmHg in 1 dog and from 168 to 95 mmHg in the other. Clinical signs of exercise intolerance and syncope were temporarily resolved in both dogs. However, progressive right ventricular concentric hypertrophy, recurrent stenosis, and erythrocytosis were observed over the subsequent 6 months leading to poor long-term outcomes. Stenting of the right ventricular outflow tract is feasible in dogs with severe dysplastic pulmonary valve stenosis, though further study and optimization of the procedure is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The management of patients with aortic regurgitation and severe left ventricular dysfunction: a systematic review.

    PubMed

    Badar, Athar A; Brunton, Alan P T; Mahmood, Ammad H; Dobbin, Stephen; Pozzi, Andrea; McMinn, Jenna F; Sinclair, Andrew J E; Gardner, Roy S; Petrie, Mark C; Curry, Phil A; Al-Attar, Nawwar H K; Pettit, Stephen J

    2015-01-01

    A systematic search of Medline, EMBASE and CINAHL electronic databases was performed. Original research articles reporting all-cause mortality following surgery in patients with aortic regurgitation and severe left ventricular systolic dysfunction (LVSD) were identified. Nine of the 10 eligible studies were observational, single-center, retrospective analyses. Survival ranged from 86 to 100% at 30 days; 81 to 100% at 1 year and 68 to 84% at 5 years. Three studies described an improvement in mean left ventricular ejection fraction (LVEF) following aortic valve replacement (AVR) of 5-14%; a fourth study reported an increase in mean left ventricular ejection fraction (LVEF) of 9% in patients undergoing isolated AVR but not when AVR was combined with coronary artery bypass graft and/or mitral valve surgery. Three studies demonstrated improvements in functional New York Heart Association (NYHA) class following AVR. Additional studies are needed to clarify the benefits of AVR in patients with more extreme degrees of left ventricular systolic dysfunction (LVSD) and the potential roles of cardiac transplantation and transaortic valve implantation.

  11. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  12. Supraependymal cells of hypothalamic third ventricle: identification as resident phagocytes of the brain.

    PubMed

    Bleier, R; Albrecht, R; Cruce, J A

    1975-07-25

    Cells lying on the ventricular surface of the hypothalamic ependyma of the tegu lizard exhibit the pseudopodial and flaplike processes characteristic of macrophages found elsewhere. Since they ingest latex beads, they may be considered a resident phagocytic system of the brain. The importance of ependyma and ventricular phagocytes as a first line of defense against viral invasion of the brain, as well as their role in the pathogenesis of certain virus-related diseases, is suggested by a number of experimental and clinical observations.

  13. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  14. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum

    PubMed Central

    Olivera-Pasilio, Valentina; Peterson, Daniel A.; Castelló, María E.

    2014-01-01

    Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones. PMID:25249943

  15. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    PubMed

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  16. A Quantitative Comparison of the Behavior of Human Ventricular Cardiac Electrophysiology Models in Tissue

    PubMed Central

    Elshrif, Mohamed M.; Cherry, Elizabeth M.

    2014-01-01

    Numerical integration of mathematical models of heart cell electrophysiology provides an important computational tool for studying cardiac arrhythmias, but the abundance of available models complicates selecting an appropriate model. We study the behavior of two recently published models of human ventricular action potentials, the Grandi-Pasqualini-Bers (GPB) and the O'Hara-Virág-Varró-Rudy (OVVR) models, and compare the results with four previously published models and with available experimental and clinical data. We find the shapes and durations of action potentials and calcium transients differ between the GPB and OVVR models, as do the magnitudes and rate-dependent properties of transmembrane currents and the calcium transient. Differences also occur in the steady-state and S1–S2 action potential duration and conduction velocity restitution curves, including a maximum conduction velocity for the OVVR model roughly half that of the GPB model and well below clinical values. Between single cells and tissue, both models exhibit differences in properties, including maximum upstroke velocity, action potential amplitude, and minimum diastolic interval. Compared to experimental data, action potential durations for the GPB and OVVR models agree fairly well (although OVVR epicardial action potentials are shorter), but maximum slopes of steady-state restitution curves are smaller. Although studies show alternans in normal hearts, it occurs only in the OVVR model, and only for a narrow range of cycle lengths. We find initiated spiral waves do not progress to sustained breakup for either model. The dominant spiral wave period of the GPB model falls within clinically relevant values for ventricular tachycardia (VT), but for the OVVR model, the dominant period is longer than periods associated with VT. Our results should facilitate choosing a model to match properties of interest in human cardiac tissue and to replicate arrhythmia behavior more closely. Furthermore, by indicating areas where existing models disagree, our findings suggest avenues for further experimental work. PMID:24416228

  17. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    PubMed Central

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  18. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

    PubMed Central

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José

    2014-01-01

    Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945

  19. Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

    PubMed Central

    Lo, Yuan Hung; Peachey, Tom; Abramson, David; McCulloch, Andrew

    2013-01-01

    Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004) to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling. PMID:24222910

  20. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation

    PubMed Central

    Hirai, Maretoshi; Arita, Yoh; McGlade, C. Jane; Lee, Kuo-Fen; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine. PMID:28067668

  1. Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain.

    PubMed

    Ogino, Takashi; Sawada, Masato; Takase, Hiroshi; Nakai, Chiemi; Herranz-Pérez, Vicente; Cebrián-Silla, Arantxa; Kaneko, Naoko; García-Verdugo, José Manuel; Sawamoto, Kazunobu

    2016-10-15

    In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the neurogenic niche of the aged zebrafish brain has not been investigated. Here we show that multiciliated ependymal cells emerge in the neurogenic niche of the aged zebrafish telencephalon. These multiciliated cells appear predominantly in the dorsal part of the ventral telencephalic ventricular zone, which also contains clusters of migrating new neurons. Scanning electron microscopy and live imaging analyses indicated that these multiple cilia beat coordinately and generate constant fluid flow within the ventral telencephalic ventricle. Analysis of the cell composition by transmission electron microscopy revealed that the neurogenic niche in the aged zebrafish contains different types of cells, with ultrastructures similar to those of ependymal cells, transit-amplifying cells, and migrating new neurons in postnatal mice. These data suggest that the transformation capacity of radial glial cells is conserved but that its timing is different between fish and mice. J. Comp. Neurol. 524:2982-2992, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Comparison of DDD versus VVIR pacing modes in elderly patients with atrioventricular block.

    PubMed

    Kılıçaslan, Barış; Vatansever Ağca, Fahriye; Kılıçaslan, Esin Evren; Kınay, Ozan; Tigen, Kürşat; Cakır, Cayan; Nazlı, Cem; Ergene, Oktay

    2012-06-01

    Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of this study was to determine whether elderly patients who have implanted pacemakers for complete atrioventricular block gain significant benefits from dual-chamber (DDD) pacemakers compared with single chamber ventricular (VVIR) pacemakers. This study was designed as a randomized, two-period crossover study-each pacing mode was maintained for 1 month. Thirty patients (16 men, mean age 68.87 ± 6.89 years) with implanted DDD pacemakers were submitted to a standard protocol, which included an interview, pacemaker syndrome assessment, health related quality of life (HRQoL) questionnaires assessed by an SF-36 test, 6-minute walk test (6MWT), and transthoracic echocardiographic examinations. All of these parameters were obtained on both DDD and VVIR mode pacing. Paired data were compared. HRQoL scores were similar, and 6MWT results did not differ between the two groups. VVIR pacing elicited significant enlargement of the left atrium and impaired left ventricular diastolic functions as compared with DDD pacing. Two patients reported subclinical pacemaker syndrome, but this was not statistically significant. Our study revealed that in active elderly patients with complete heart block, DDD pacing and VVIR pacing yielded similar improvements in QoL and exercise performance. However, after a short follow-up period, we noted that VVIR pacing caused significant left atrial enlargement and impaired left ventricular diastolic functions.

  3. Wearable Cardioverter-Defibrillators following Cardiac Surgery-A Single-Center Experience.

    PubMed

    Heimeshoff, Jan; Merz, Constanze; Ricklefs, Marcel; Kirchhoff, Felix; Haverich, Axel; Bara, Christoph; Kühn, Christian

    2018-06-20

     A wearable cardioverter-defibrillator (WCD) can terminate ventricular fibrillation and ventricular tachycardias via electrical shock and thus give transient protection from sudden cardiac death. We investigated its role after cardiac surgery.  We retrospectively analyzed all patients who were discharged with a WCD from cardiac surgery department. The WCD was prescribed for patients with a left ventricular ejection fraction (LVEF) of ≤35% or an explanted implantable cardioverter-defibrillator (ICD).  A total of 100 patients were included in this study, the majority ( n  = 59) had received coronary artery bypass graft surgery. The median wearing time of a WCD patient was 23.5 hours per day. LVEF was 28.9 ± 8% after surgery and improved in the follow-up to 36.7 ± 11% ( p  < 0.001). Three patients were successfully defibrillated. Ten patients experienced ventricular tachycardias. No inappropriate shocks were given. An ICD was implanted in 25 patients after the WCD wearing period.  Ventricular arrhythmias occurred in 13% of the investigated patients. LVEF improved significantly after 3 months, and thus a permanent ICD implantation was avoided in several cases. Sternotomy did not impair wearing time of the WCD. A WCD can effectively protect patients against ventricular tachyarrhythmias after cardiac surgery. Georg Thieme Verlag KG Stuttgart · New York.

  4. Reptilian heart development and the molecular basis of cardiac chamber evolution.

    PubMed

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G

    2009-09-03

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.

  5. Reptilian heart development and the molecular basis of cardiac chamber evolution

    PubMed Central

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.

    2009-01-01

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199

  6. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  7. Arrhythmogenic right ventricular cardiomyopathy in Boxer dogs is associated with calstabin2 deficiency

    PubMed Central

    Oyama, Mark A.; Reiken, Steve; Lehnart, Stephan E.; Chittur, Sridar V.; Meurs, Kathryn M.; Stern, Joshua; Marks, Andrew R.

    2010-01-01

    Objective To examine the presence and effect of calstabin2-deficiency in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy (ARVC). Animals Thirteen Boxer dogs with ARVC. Materials and methods Tissue samples were collected for histopathology, oligonucleotide microarray, PCR, immunoelectrophoresis, ryanodine channel immunoprecipitation and single-channel recordings, and calstabin2 DNA sequencing. Results In cardiomyopathic Boxer dogs, myocardial calstabin2 mRNA and protein were significantly decreased as compared to healthy control dogs (calstabin2 protein normalized to tetrameric cardiac ryanodine receptor (RyR2) complex: affected, 0.51 ± 0.04; control, 3.81 ± 0.22; P < 0.0001). Calstabin2 deficiency in diseased dog hearts was associated with a significantly increased open probability of single RyR2 channels indicating intracellular Ca2+ leak. PCR-based sequencing of the promoter, exonic and splice site regions of the canine calstabin2 gene did not identify any causative mutations. Conclusions Calstabin2 deficiency is a potential mechanism of Ca2+ leak-induced ventricular arrhythmias and heart disease in Boxer dogs with ARVC. PMID:18515204

  8. Non-ventricular, Clinical, and Functional Features of the RyR2(R420Q) Mutation Causing Catecholaminergic Polymorphic Ventricular Tachycardia.

    PubMed

    Domingo, Diana; Neco, Patricia; Fernández-Pons, Elena; Zissimopoulos, Spyros; Molina, Pilar; Olagüe, José; Suárez-Mier, M Paz; Lai, F Anthony; Gómez, Ana M; Zorio, Esther

    2015-05-01

    Catecholaminergic polymorphic ventricular tachycardia is a malignant disease, due to mutations in proteins controlling Ca(2+) homeostasis. While the phenotype is characterized by polymorphic ventricular arrhythmias under stress, supraventricular arrhythmias may occur and are not fully characterized. Twenty-five relatives from a Spanish family with several sudden deaths were evaluated with electrocardiogram, exercise testing, and optional epinephrine challenge. Selective RyR2 sequencing in an affected individual and cascade screening in the rest of the family was offered. The RyR2(R420Q) mutation was generated in HEK-293 cells using site-directed mutagenesis to conduct in vitro functional studies. The exercise testing unmasked catecholaminergic polymorphic ventricular tachycardia in 8 relatives (sensitivity = 89%; positive predictive value = 100%; negative predictive value = 93%), all of them carrying the heterozygous RyR2(R420Q) mutation, which was also present in the proband and a young girl without exercise testing, a 91% penetrance at the end of the follow-up. Remarkably, sinus bradycardia, atrial and junctional arrhythmias, and/or giant post-effort U-waves were identified in patients. Upon permeabilization and in intact cells, the RyR2(R420Q) expressing cells showed a smaller peak of Ca(2+) release than RyR2 wild-type cells. However, at physiologic intracellular Ca(2+) concentration, equivalent to the diastolic cytosolic concentration, the RyR2(R420Q) released more Ca(2+) and oscillated faster than RyR2 wild-type cells. The missense RyR2(R420Q) mutation was identified in the N-terminus of the RyR2 gene in this highly symptomatic family. Remarkably, this mutation is associated with sinus bradycardia, atrial and junctional arrhythmias, and giant U-waves. Collectively, functional heterologous expression studies suggest that the RyR2(R420Q) behaves as an aberrant channel, as a loss- or gain-of-function mutation depending on cytosolic intracellular Ca(2+) concentration. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin

    PubMed Central

    Ni, Haibo; Whittaker, Dominic G.; Wang, Wei; Giles, Wayne R.; Narayan, Sanjiv M.; Zhang, Henggui

    2017-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF. PMID:29218016

  10. Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation

    PubMed Central

    Molotkov, Dmitry A.; Yukin, Alexey Y.; Afzalov, Ramil A.; Khiroug, Leonard S.

    2010-01-01

    Creation of transgenic animals is a standard approach in studying functions of a gene of interest in vivo. However, many knockout or transgenic animals are not viable in those cases where the modified gene is expressed or deleted in the whole organism. Moreover, a variety of compensatory mechanisms often make it difficult to interpret the results. The compensatory effects can be alleviated by either timing the gene expression or limiting the amount of transfected cells. The method of postnatal non-ventricular microinjection and in vivo electroporation allows targeted delivery of genes, siRNA or dye molecules directly to a small region of interest in the newborn rodent brain. In contrast to conventional ventricular injection technique, this method allows transfection of non-migratory cell types. Animals transfected by means of the method described here can be used, for example, for two-photon in vivo imaging or in electrophysiological experiments on acute brain slices. PMID:20972387

  11. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes

    PubMed Central

    Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan

    2015-01-01

    In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090

  12. Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.

    PubMed

    Bettiol, Esther; Sartiani, Laura; Chicha, Laurie; Krause, Karl Heinz; Cerbai, Elisabetta; Jaconi, Marisa E

    2007-10-01

    During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.

  13. Modeling our understanding of the His-Purkinje system.

    PubMed

    Vigmond, Edward J; Stuyvers, Bruno D

    2016-01-01

    The His-Purkinje System (HPS) is responsible for the rapid electric conduction in the ventricles. It relays electrical impulses from the atrioventricular node to the muscle cells and, thus, coordinates the contraction of ventricles in order to ensure proper cardiac pump function. The HPS has been implicated in the genesis of ventricular tachycardia and fibrillation as a source of ectopic beats, as well as forming distinct portions of reentry circuitry. Despite its importance, it remains much less well characterized, structurally and functionally, than the myocardium. Notably, important differences exist with regard to cell structure and electrophysiology, including ion channels, intracellular calcium handling, and gap junctions. Very few computational models address the HPS, and the majority of organ level modeling studies omit it. This review will provide an overview of our current knowledge of structure and function (including electrophysiology) of the HPS. We will review the most recent advances in modeling of the system from the single cell to the organ level, with considerations for relevant interspecies distinctions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy.

    PubMed

    Cho, Gun-Sik; Lee, Dong I; Tampakakis, Emmanouil; Murphy, Sean; Andersen, Peter; Uosaki, Hideki; Chelko, Stephen; Chakir, Khalid; Hong, Ingie; Seo, Kinya; Chen, Huei-Sheng Vincent; Chen, Xiongwen; Basso, Cristina; Houser, Steven R; Tomaselli, Gordon F; O'Rourke, Brian; Judge, Daniel P; Kass, David A; Kwon, Chulan

    2017-01-10

    Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    PubMed Central

    Cho, Gun-Sik; Lee, Dong I.; Tampakakis, Emmanouil; Murphy, Sean; Andersen, Peter; Uosaki, Hideki; Chelko, Stephen; Chakir, Khalid; Hong, Ingie; Seo, Kinya; Vincent Chen, Huei-Sheng; Chen, Xiongwen; Basso, Cristina; Houser, Steven R.; Tomaselli, Gordon F.; O’Rourke, Brian; Judge, Daniel P.; Kass, David A.; Kwon, Chulan

    2016-01-01

    SUMMARY Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of the transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which predominantly manifests in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. PMID:28076798

  16. The Physiological Basis of Chinese Höömii Generation.

    PubMed

    Li, Gelin; Hou, Qian

    2017-01-01

    The study aimed to investigate the physiological basis of vibration mode of sound source of a variety of Mongolian höömii forms of singing in China. The participant is a Mongolian höömii performing artist who was recommended by the Chinese Medical Association of Art. He used three types of höömii, namely vibration höömii, whistle höömii, and overtone höömii, which were compared with general comfortable pronunciation of /i:/ as control. Phonation was observed during /i:/. A laryngostroboscope (Storz) was used to determine vibration source-mucosal wave in the throat. For vibration höömii, bilateral ventricular folds approximated to the midline and made contact at the midline during pronunciation. Ventricular and vocal folds oscillated together as a single unit to form a composite vibration (double oscillator) sound source. For whistle höömii, ventricular folds approximated to the midline to cover part of vocal folds, but did not contact each other. It did not produce mucosal wave. The vocal folds produced mucosal wave to form a single vibration sound source. For overtone höömii, the anterior two-thirds of ventricular folds touched each other during pronunciation. The last one-third produced the mucosal wave. The vocal folds produced mucosal wave at the same time, which was a composite vibration (double oscillator) sound source mode. The Höömii form of singing, including mixed voices and multivoice, was related to the presence of dual vibration sound sources. Its high overtone form of singing (whistle höömii) was related to stenosis at the resonance chambers' initiation site (ventricular folds level). Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Impact of Cardiac Progenitor Cells on Heart Failure and Survival in Single Ventricle Congenital Heart Disease.

    PubMed

    Sano, Toshikazu; Ousaka, Daiki; Goto, Takuya; Ishigami, Shuta; Hirai, Kenta; Kasahara, Shingo; Ohtsuki, Shinichi; Sano, Shunji; Oh, Hidemasa

    2018-03-30

    Intracoronary administration of cardiosphere-derived cells (CDCs) in patients with single ventricles resulted in a short-term improvement in cardiac function. To test the hypothesis that CDC infusion is associated with improved cardiac function and reduced mortality in patients with heart failure. We evaluated the effectiveness of CDCs using an integrated cohort study in 101 patients with single ventricles, including 41 patients who received CDC infusion and 60 controls treated with staged palliation alone. Heart failure with preserved ejection fraction (EF) or reduced EF was stratified by the cardiac function after surgical reconstruction. The main outcome measure was to evaluate the magnitude of improvement in cardiac function and all-cause mortality at 2 years. Animal studies were conducted to clarify the underlying mechanisms of heart failure with preserved EF and heart failure with reduced EF phenotypes. At 2 years, CDC infusion increased ventricular function (stage 2: +8.4±10.0% versus +1.6±6.4%, P =0.03; stage 3: +7.9±7.5% versus -1.1±5.5%, P <0.001) compared with controls. In all available follow-up data, survival did not differ between the 2 groups (log-rank P =0.225), whereas overall patients treated by CDCs had lower incidences of late failure ( P =0.022), adverse events ( P =0.013), and catheter intervention ( P =0.005) compared with controls. CDC infusion was associated with a lower risk of adverse events (hazard ratio, 0.411; 95% CI, 0.179-0.942; P =0.036). Notably, CDC infusion reduced mortality ( P =0.038) and late complications ( P <0.05) in patients with heart failure with reduced EF but not with heart failure with preserved EF. CDC-treated rats significantly reversed myocardial fibrosis with differential collagen deposition and inflammatory responses between the heart failure phenotypes. CDC administration in patients with single ventricles showed favorable effects on ventricular function and was associated with reduced late complications except for all-cause mortality after staged procedures. Patients with heart failure with reduced EF but not heart failure with preserved EF treated by CDCs resulted in significant improvement in clinical outcome. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01273857 and NCT01829750. © 2018 American Heart Association, Inc.

  18. Effects of aluminium on electrical and mechanical properties of frog atrial muscle.

    PubMed Central

    Meiri, H.; Shimoni, Y.

    1991-01-01

    1. The effects of aluminium on membrane ionic currents were studied in single cardiac myocytes. Most of the work was done on frog atrial cells, but some experiments were also carried out on single cells isolated from rabbit ventricles and atria. 2. The effects of aluminium on the force of contraction of frog atrial trabeculae were also investigated. 3. Aluminium was prepared from AlCl3 as a stock 0.5 M solution which has a pH of 3.5. Before each experiment, this solution was added to the control solution, to give a final concentration of 20-100 micrograms ml-1 aluminium (0.75-3.75 mM AlCl3). The solutions were brought to a pH of 7.4 or 7.6. at which they consist of a mixture of amorphous aluminium hydroxides and a very small amount of soluble ionic aluminium complexes: free aluminium cations (less than 10 pM), aluminohydroxide anions (less than 8 microM). The addition of this suspension reduced the peak inward calcium currents in single rabbit atrial and ventricular cells and in frog atrial cells. In the latter, the peak current was reduced (at + 10 mV) to 45% of control (mean of 9 cells). This effect was reversible upon washout, and was obtained at all membrane potentials, with no shift of the calcium current voltage relationship along the voltage axis. 4. Aluminium also reduced the time-dependent potassium current IK. This reduction was observed at all membrane potentials. For example, at + 10 mV, the mean reduction of IK (n = 9) was to 69% of the control amplitude. This effect, which was very difficult to reverse, was not due to IK rundown.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015425

  19. Use of wave intensity analysis of carotid arteries in identifying and monitoring left ventricular systolic function dynamics in rabbits.

    PubMed

    Zhang, Hui; Zheng, Rongqin; Qian, Xiaoxian; Zhang, Chengxi; Hao, Baoshun; Huang, Zeping; Wu, Tao

    2014-03-01

    Wave intensity analysis (WIA) of the carotid artery was conducted to determine the changes that occur in left ventricular systolic function after administration of doxorubicin in rabbits. Each randomly selected rabbit was subject to routine ultrasound, WIA of the carotid artery, cardiac catheterization and pathologic examination every week and was followed for 16 wk. The first positive peak (WI1) of the carotid artery revealed that left ventricular systolic dysfunction occurred earlier than conventional indexes of heart function. WI1 was highly, positively correlated with the maximum rate of rise in left ventricular pressure in cardiac catheterization (r = 0.94, p < 0.01) and moderately negatively correlated with the apoptosis index of myocardial cells, an indicator of myocardial damage (r = -0.69, p < 0.01). Ultrasound WIA of the carotid artery sensitively reflects early myocardial damage and cardiac function, and the result is highly consistent with cardiac catheterization findings and the apoptosis index of myocardial cells. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

    PubMed Central

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan

    2017-01-01

    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  1. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload

    PubMed Central

    Kerckhoffs, Roy C.P.; Omens, Jeffrey; McCulloch, Andrew D.

    2011-01-01

    Adult cardiac muscle adapts to mechanical changes in the environment by growth and remodeling (G&R) via a variety of mechanisms. Hypertrophy develops when the heart is subjected to chronic mechanical overload. In ventricular pressure overload (e.g. due to aortic stenosis) the heart typically reacts by concentric hypertrophic growth, characterized by wall thickening due to myocyte radial growth when sarcomeres are added in parallel. In ventricular volume overload, an increase in filling pressure (e.g. due to mitral regurgitation) leads to eccentric hypertrophy as myocytes grow axially by adding sarcomeres in series leading to ventricular cavity enlargement that is typically accompanied by some wall thickening. The specific biomechanical stimuli that stimulate different modes of ventricular hypertrophy are still poorly understood. In a recent study, based on in-vitro studies in micropatterned myocyte cell cultures subjected to stretch, we proposed that cardiac myocytes grow longer to maintain a preferred sarcomere length in response to increased fiber strain and grow thicker to maintain interfilament lattice spacing in response to increased cross-fiber strain. Here, we test whether this growth law is able to predict concentric and eccentric hypertrophy in response to aortic stenosis and mitral valve regurgitation, respectively, in a computational model of the adult canine heart coupled to a closed loop model of circulatory hemodynamics. A non-linear finite element model of the beating canine ventricles coupled to the circulation was used. After inducing valve alterations, the ventricles were allowed to adapt in shape in response to mechanical stimuli over time. The proposed growth law was able to reproduce major acute and chronic physiological responses (structural and functional) when integrated with comprehensive models of the pressure-overloaded and volume-overloaded canine heart, coupled to a closed-loop circulation. We conclude that strain-based biomechanical stimuli can drive cardiac growth, including wall thickening during pressure overload. PMID:22639476

  2. Intracerebral hemorrhage after external ventricular drain placement: an evaluation of risk factors for post-procedural hemorrhagic complications.

    PubMed

    Rowe, A Shaun; Rinehart, Derrick R; Lezatte, Stephanie; Langdon, J Russell

    2018-03-07

    The objective of this study was to evaluate and identify the risk factors for developing a new or enlarged intracranial hemorrhage (ICH) after the placement of an external ventricular drain. A single center, nested case-control study of individuals who received an external ventricular drain from June 1, 2011 to June 30, 2014 was conducted at a large academic medical center. A bivariate analysis was conducted to compare those individuals who experienced a post-procedural intracranial hemorrhage to those who did not experience a new bleed. The variables identified as having a p-value less than 0.15 in the bivariate analysis were then evaluated using a multivariate logistic regression model. Twenty-seven of the eighty-one study participants experienced a new or enlarged intracranial hemorrhage after the placement of an external ventricular drain. Of these twenty-seven patients, 6 individuals received an antiplatelet within ninety-six hours of external ventricular drain placement (p = 0.024). The multivariate logistic regression model identified antiplatelet use within 96 h of external ventricular drain insertion as an independent risk factor for post-EVD ICH (OR 13.1; 95% CI 1.95-88.6; p = 0.008). Compared to those study participants who did not receive an antiplatelet within 96 h of external ventricular drain placement, those participants who did receive an antiplatelet were 13.1 times more likely to exhibit a new or enlarged intracranial hemorrhage.

  3. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  4. Modulation of Mg2+ influx and cytoplasmic free Mg2+ concentration in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2018-06-16

    To examine whether TRPM7, a member of the melastatin family of transient receptor potential channels, is a physiological pathway for Mg 2+ entry in mammalian cells, we studied the effect of TRPM7 regulators on cytoplasmic free Mg 2+ concentration ([Mg 2+ ] i ) of rat ventricular myocytes. Acutely isolated single cells were AM-loaded with the fluorescent indicator furaptra, and [Mg 2+ ] i was estimated at 25 °C. After [Mg 2+ ] i was lowered by soaking the cells with a high-K + and Mg 2+ -Ca 2+ -free solution, [Mg 2+ ] i was recovered by extracellular perfusion of Ca 2+ -free Tyrode's solution that contained 1 mM Mg 2+ . The initial rate of increase in [Mg 2+ ] i was analyzed as the Mg 2+ influx rate. The Mg 2+ influx rate was increased by the TRPM7 activator, naltriben (2-50 μM), in a concentration-dependent manner with a half maximal effective concentration (EC 50 ) of 24 μM. This EC 50 value is similar to that reported for the activation of recombinant TRPM7 overexpressed in HEK293 cells. Naltriben (50 μM) caused little change in basal [Mg 2+ ] i (~ 0.9 mM) in Ca 2+ -free Tyrode's solution, but significantly raised [Mg 2+ ] i to 1.31 ± 0.03 mM in 94 min after the removal of extracellular Na + . Re-introduction of extracellular Na + lowered [Mg 2+ ] i back to the basal level even in the presence of naltriben. Application of 10 μM NS8593, an inhibitor of TRPM7, significantly lowered [Mg 2+ ] i to 0.72 ± 0.03 mM in 50-60 min independent of extracellular Na + . The results suggest that Mg 2+ entry through TRPM7 significantly contributes to physiological Mg 2+ homeostasis in mammalian heart cells.

  5. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia

    PubMed Central

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying

    2016-01-01

    Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. PMID:27334487

  6. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia.

    PubMed

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying; Lü, Shuang-Hong; Zhang, Xiao-Zhong

    2016-08-01

    : Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton's jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called "no-option" patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. ©AlphaMed Press.

  7. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell-deficient and wild type mice. Our studies have identified B cells and antigen specific IgG1 as potential therapeutic targets for pulmonary hypertension associated with immune dysfunction and environmental exposures. PMID:26079807

  8. Modified single-port non-intubated video-assisted thoracoscopic decortication in high-risk parapneumonic empyema patients.

    PubMed

    Hsiao, Chen-Hao; Chen, Ke-Cheng; Chen, Jin-Shing

    2017-04-01

    Parapneumonic empyema patients with coronary artery disease and reduced left ventricular ejection fraction are risky to receive surgical decortication under general anesthesia. Non-intubated video-assisted thoracoscopy surgery is successfully performed to avoid complications of general anesthesia. We performed single-port non-intubated video-assisted flexible thoracoscopy surgery in an endoscopic center. In this study, the possible role of our modified surgery to treat fibrinopurulent stage of parapneumonic empyema with high operative risks is investigated. We retrospectively reviewed fibrinopurulent stage of parapneumonic empyema patients between July 2011 and June 2014. Thirty-three patients with coronary artery disease and reduced left ventricular ejection fraction were included in this study. One group received tube thoracostomy, and the other group received single-port non-intubated video-assisted flexible thoracoscopy surgery decortication. Patient demographics, characteristics, laboratory findings, etiology, and treatment outcomes were compared. Mean age of 33 patients (24 males, 9 females) was 76.2 ± 9.7 years. Twelve patients received single-port non-intubated video-assisted flexible thoracoscopy surgery decortication, and 21 patients received tube thoracostomy. Visual analog scale scores on postoperative first hour and first day were not significantly different in two groups (p value = 0.5505 and 0.2750, respectively). Chest tube drainage days, postoperative fever subsided days, postoperative hospital days, and total length of stay were significantly short in single-port non-intubated video-assisted flexible thoracoscopy surgery decortication (p value = 0.0027, 0.0001, 0.0009, and 0.0065, respectively). Morbidities were low, and mortality was significantly low (p value = 0.0319) in single-port non-intubated video-assisted flexible thoracoscopy surgery decortication. Single-port non-intubated video-assisted flexible thoracoscopy surgery decortication may be suggested to be a method other than tube thoracostomy to deal with fibrinopurulent stage of parapneumonic empyema patients with coronary artery disease and reduced left ventricular ejection fraction.

  9. Role of intramural platelet thrombus in the pathogenesis of wall rupture and intra-ventricular thrombosis following acute myocardial infarction.

    PubMed

    Du, Xiao-Jun; Shan, Leonard; Gao, Xiao-Ming; Kiriazis, Helen; Liu, Yang; Lobo, Abhirup; Head, Geoffrey A; Dart, Anthony M

    2011-02-01

    Left ventricular thrombus (LVT) and rupture are important mechanical complications following myocardial infarction (MI) and are believed to be due to unrelated mechanisms. We studied whether, in fact, wall rupture and LVT are closely related in their pathogenesis with intramural platelet thrombus (IMT) playing a pivotal role. Male 129sv and C57Bl/6 mice underwent operation to induce MI, and autopsy was performed to confirm rupture deaths. Haemodynamic features of rupture events were monitored by telemetry in conscious mice. Detailed histological examination was conducted with special attention to the presence of IMT in relation to rupture location and LVT formation. IMT was detected in infarcted hearts of 129sv (82%) and C57Bl/6 (39%) mice with rupture in the form of a narrow streak spanning the wall or an occupying mass dissecting the infarcted myofibers apart. IMT often contained dense inflammatory cells and blood clot, indicating a dynamic process of thrombus formation and destruction. Notably, IMT was found extending into the cavity to form LVT. Haemodynamic monitoring by telemetry revealed that rupture occurred either as a single event or recurrent episodes. Importantly, the anti-platelet drug clopidogrel, but not aspirin, reduced the prevalence of rupture (10% vs. 45%) and IMT, and suppressed the degree of inflammation. Thus, IMT is a key pathological element in the infarcted heart closely associated with the complications of rupture and LVT. IMT could be either triggered by a wall tear or act as initiator of rupture. IMT may propagate towards the ventricular chamber to trigger LVT.

  10. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    PubMed

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  11. MicroRNA 21 Inhibits Left Ventricular Remodeling in the Early Phase of Rat Model with Ischemia-reperfusion Injury by Suppressing Cell Apoptosis

    PubMed Central

    Qin, Yanjun; Yu, Yueqing; Dong, Hua; Bian, Xiaohua; Guo, Xuan; Dong, Shimin

    2012-01-01

    Objective: To determine the role of microRNA 21(miR-21) on left ventricular remodeling of rat heart with ischemia-reperfusion (I/R) injury and to investigate the underlying mechanism of miR-21 mediated myocardium protection. Methods: Rats were randomly divided into three groups: an I/R model group with Ad-GFP (Ad-GFP group), an I/R model group with Ad-miR-21 (Ad-miR-21 group) and a sham-surgery group. Changes in hemodynamic parameters were recorded at 1 week after I/R. Histological diagnosis was achieved by hematoxylin and eosin (H&E). Left ventricular (LV) dimensions, myocardial infarct size, LV/BW, collagen type Ⅰ, type Ⅲ and PCNA positive cells were measured. Primary cultures of neonatal rat cardiac ventricular myocytes were performed and cell ischemic injury was induced by hypoxia in a serum- and glucose-free medium, and reoxygenation (H/R).MiR-21 inhibitor and pre-miR-21 were respectively added to the culture medium for the miR-21 knockdown and for the miR-21 up-regulation. qRT-PCR was used to determine the miR-21 levels in cultured cells. Flow cytometry was performed to examine the cell apoptosis. Results: In the Ad-miR-21 group, LV dimensions, myocardial infarct size, LV/BW, collagen type Ⅰ, type Ⅲ and PCNA positive cells all significantly decreased compared with the Ad-GFP group. At 1 week after I/R, the Ad-miR-21 significantly improved LVSP, LV +dp/dtmax, LV − dp/dtmin, and decreased heart rate (HR) and LVEDP compared with the Ad-GFP group. Compared with the Ad-GFP, the cell apoptotic rate significantly decreased in the Ad-miR-21 group. The miR-21 inhibitor exacerbated cardiac myocyte apoptosis and the pre-miR-21 decreased hypoxia/reoxygenation- induced cardiac myocyte apoptosis. Conclusions: Ad-miR-21 improves LV remodeling and decreases the apoptosis of myocardial cells, suggesting the possible mechanism by which Ad-miR-21 functions in protecting against I/R injury. PMID:22859901

  12. The relationship between single and two-dimensional indices of left ventricular size using hemodynamic transesophageal echocardiography in trauma and burn patients.

    PubMed

    Younan, Duraid; Beasley, T Mark; Pigott, David C; Gibson, C Blayke; Gullett, John P; Richey, Jeffrey; Pittet, Jean-Francois; Zaky, Ahmed

    2017-10-11

    Conventional echocardiographic technique for assessment of volume status and cardiac contractility utilizes left ventricular end-diastolic area (LVEDA) and fractional area of change (FAC), respectively. Our goal was to find a technically reliable yet faster technique to evaluate volume status and contractility by measuring left ventricular end-diastolic diameter (LVEDD) and fractional shortening (FS) in a cohort of mechanically ventilated trauma and burn patients using hemodynamic transesophageal echocardiographic (hTEE) monitoring. Retrospective chart review performed at trauma/burn intensive care unit (TBICU). Data on 88 mechanically ventilated surgical intensive care patients cared for between July 2013 and July 2015 were reviewed. Initial measurements of LVEDA, left ventricular end-systolic area (LVESA) and FAC were collected. Post-processing left ventricular end-systolic (LVESD) and end-diastolic diameters (LVEDD) were measured and fractional shortening (FS) was calculated. Two orthogonal measurements of LV diameter were obtained in transverse (Tr) and posteroanterior (PA) orientation. There was a significant correlation between transverse and posteroanterior left ventricular diameter measurements in both systole and diastole. In systole, r = 0.92, p < 0.01 for LVESD-Tr (mean 23.47 mm, SD ± 6.77) and LVESD-PA (mean 24.84 mm, SD = 8.23). In diastole, r = 0.80, p < 0.01 for LVEDD-Tr (mean 37.60 mm, SD ± 6.45), and LVEDD-PA diameters (mean 42.24 mm, SD ± 7.97). Left ventricular area (LVEDA) also significantly correlated with left ventricular diameter LVEDD-Tr (r = 0.84, p < 0.01) and LVEDD-PA (r = 0.90, p < 0.01). Both transverse and PA measurements of fractional shortening were significantly (p < 0.0001) and similarly correlated with systolic function as measured by FAC. Bland-Altman analyses also indicated that the assessment of fractional shortening using left ventricular posteroanterior diameter measurement shows agreement with FAC. Left ventricular diameter measurements are a reliable and technically feasible alternative to left ventricular area measurements in the assessment of cardiac filling and systolic function.

  13. Relationship Between 24-Hour Ambulatory Central Systolic Blood Pressure and Left Ventricular Mass: A Prospective Multicenter Study.

    PubMed

    Weber, Thomas; Wassertheurer, Siegfried; Schmidt-Trucksäss, Arno; Rodilla, Enrique; Ablasser, Cornelia; Jankowski, Piotr; Lorenza Muiesan, Maria; Giannattasio, Cristina; Mang, Claudia; Wilkinson, Ian; Kellermair, Jörg; Hametner, Bernhard; Pascual, Jose Maria; Zweiker, Robert; Czarnecka, Danuta; Paini, Anna; Salvetti, Massimo; Maloberti, Alessandro; McEniery, Carmel

    2017-12-01

    We investigated the relationship between left ventricular mass and brachial office as well as brachial and central ambulatory systolic blood pressure in 7 European centers. Central systolic pressure was measured with a validated oscillometric device, using a transfer function, and mean/diastolic pressure calibration. M-mode images were obtained by echocardiography, and left ventricular mass was determined by one single reader blinded to blood pressure. We studied 289 participants (137 women) free from antihypertensive drugs (mean age: 50.8 years). Mean office blood pressure was 145/88 mm Hg and mean brachial and central ambulatory systolic pressures were 127 and 128 mm Hg, respectively. Mean left ventricular mass was 93.3 kg/m 2 , and 25.6% had left ventricular hypertrophy. The correlation coefficient between left ventricular mass and brachial office, brachial ambulatory, and central ambulatory systolic pressure was 0.29, 0.41, and 0.47, respectively ( P =0.003 for comparison between brachial office and central ambulatory systolic pressure and 0.32 for comparison between brachial and central ambulatory systolic pressure). The results were consistent for men and women, and young and old participants. The areas under the curve for prediction of left ventricular hypertrophy were 0.618, 0.635, and 0.666 for brachial office, brachial, and central ambulatory systolic pressure, respectively ( P =0.03 for comparison between brachial and central ambulatory systolic pressure). In younger participants, central ambulatory systolic pressure was superior to both other measurements. Central ambulatory systolic pressure, measured with an oscillometric cuff, shows a strong trend toward a closer association with left ventricular mass and hypertrophy than brachial office/ambulatory systolic pressure. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01278732. © 2017 American Heart Association, Inc.

  14. Sites of Successful Ventricular Fibrillation Ablation in Bileaflet Mitral Valve Prolapse Syndrome.

    PubMed

    Syed, Faisal F; Ackerman, Michael J; McLeod, Christopher J; Kapa, Suraj; Mulpuru, Siva K; Sriram, Chenni S; Cannon, Bryan C; Asirvatham, Samuel J; Noseworthy, Peter A

    2016-05-01

    Although the vast majority of mitral valve prolapse (MVP) is benign, a small subset of patients, predominantly women, with bileaflet prolapse, complex ventricular ectopy (VE), and abnormal T waves comprise the recently described bileaflet MVP syndrome. We compared findings on electrophysiological study in bileaflet MVP syndrome patients with and without cardiac arrest to identify factors that may predispose to malignant ventricular arrhythmia. Fourteen consecutive bileaflet MVP syndrome patients (n=13 women; median [limits], age at index ablation, 33.8 [21.0-58.7] years; ejection fraction, 60% [45%-67%]; all ≤ moderate mitral regurgitation; n=6 with previous cardiac arrest and implantable cardioverter defibrillator shocks for ventricular fibrillation; and n=8 without implantable cardioverter defibrillator although with symptomatic complex VE) were included. The 2 groups had similar baseline echocardiographic and electrocardiographic characteristics. All patients had at least 1 left ventricular papillary or fascicular VE focus. Purkinje origin VE was identified as the ventricular fibrillation trigger in 6 of 6 cardiac arrest patients (4 from papillary muscle) and Purkinje origin of dominant VE was seen in 5 of 8 (3 from papillary muscle) nonarrest patients. Acute success was seen in 17 of 19 procedures, and a ventricular fibrillation storm occurred within 24 hours of ablation in a single patient. Repeat ablation for recurrent symptomatic arrhythmia was performed in 6 patients. At 478 (39-2099) days of follow-up, 2 cardiac arrest patients received appropriate shocks. Symptoms from VE were reduced in 12 of 14. Bileaflet MVP syndrome is characterized by fascicular and papillary muscle VE that triggers ventricular fibrillation. Ablation of clinically dominant VE foci improves symptoms and reduces appropriate implantable cardioverter defibrillator shocks. © 2016 American Heart Association, Inc.

  15. Myocardial Viability and Impact of Surgical Ventricular Reconstruction on Outcomes of Patients with Severe Left Ventricular Dysfunction Undergoing Coronary Artery Bypass Surgery: Results of the Surgical Treatment for Ischemic Heart Failure (STICH) Trial

    PubMed Central

    Holly, Thomas A.; Bonow, Robert O.; Arnold, J. Malcolm O.; Oh, Jae K.; Varadarajan, Padmini; Pohost, Gerald M.; Haddad, Haissam; Jones, Robert H.; Velazquez, Eric J.; Birkenfeld, Bozena; Asch, Federico M.; Malinowski, Marcin; Barretto, Rodrigo; Kalil, Renato A.K.; Berman, Daniel S.; Sun, Jie-Lena; Lee, Kerry L.; Panza, Julio A.

    2014-01-01

    Objective In the Surgical Treatment for Ischemic Heart Failure (STICH) trial, surgical ventricular reconstruction plus coronary artery bypass surgery was not associated with a reduction in the rate of death or cardiac hospitalization compared to bypass alone. We hypothesized that the absence of viable myocardium identifies patients with coronary artery disease and left ventricular dysfunction who have a greater benefit with coronary artery bypass graft surgery and surgical ventricular reconstruction compared to bypass alone. Methods Myocardial viability was assessed by single photon computed tomography in 267 of the 1,000 patients randomized to bypass or bypass plus surgical ventricular reconstruction in STICH. Myocardial viability was assessed on a per patient basis as well as regionally based on pre-specified criteria. Results At 3 years, there was no difference in mortality or the combined outcome of death or cardiac hospitalization between those with and those without viability, and there was no significant interaction between the type of surgery and global viability status with respect to mortality or death plus cardiac hospitalization. Furthermore, there was no difference in mortality or death plus cardiac hospitalization between those with and without anterior wall or apical scar, and no significant interaction between the presence of scar in these regions and the type of surgery with respect to mortality. Conclusion In patients with coronary artery disease and severe regional left ventricular dysfunction, assessment of myocardial viability does not identify patients who will derive a mortality benefit from adding surgical ventricular reconstruction to coronary artery bypass graft surgery. PMID:25152476

  16. Mesenchymal Stem Cells from Fetal Heart Attenuate Myocardial Injury after Infarction: An In Vivo Serial Pinhole Gated SPECT-CT Study in Rats

    PubMed Central

    Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya

    2014-01-01

    Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting. PMID:24971627

  17. The effect of hyperthermia on the neuroepithelium of the 21-day guinea-pig foetus: histologic and ultrastructural study.

    PubMed

    Wanner, R A; Edwards, M J; Wright, R G

    1976-04-01

    Hyperthermia was induced in guinea-pigs on day 21 of gestation by placing them in an incubator set at 42-5 degrees-43-0 degrees C for 1 hr. At intervals thereafter foetuses were removed from the uterus and sections of the telencephalon were prepared for light and electron microscopy. The histologic and ultrastructural appearance of the telencephalon of the normal 21-day guinea-pig foetus was described for comparative purposes. Damage to cells in mitosis characterised by clumping of chromosomes, and dispersal of polysomes in interphase cells were observed immediately after hyperthermia. Breakdown of the network of junctional complexes was apparent at 4 hr and cellular proliferation was inhibited for 6-8 hr. Degenerative changes and cell deaths were observed deep in the venticular zone after 8 hr; the extent of cell death was related to the post-stressing temperature. Proliferation was resumed at 8 hr and damaged and dead cells moved outward toward the intermediate zone. Phagocytosis of debris by large mononuclear cells was a common finding. Cytoplasmic inclusions, some of which were Feulgen-positive, were present in otherwise normal ventricular cells. Occasional dead cells and empty spaces were present in the ventricular zone at 24 hr and by 48 hr the ventricular zone was normal in appearance. It was concluded that previously observed micrencephaly in the offspring of guine-pig mothers which were heat stressed on day 21 of gestation resulted from a temporary cessation of proliferation and partial depopulation of the proliferating neuroepithelium.

  18. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells.

    PubMed

    Zhang, Xiaoqian; Cao, Henghua; Bai, Shuyun; Huo, Weibang; Ma, Yue

    2017-04-01

    The combination of non-human primate animals and their induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provides not only transplantation models for cell-based therapy of heart diseases, but also opportunities for heart-related drug research on both cellular and animal levels. However, the subtypes and electrophysiology properties of non-human primate iPSC-CMs hadn't been detailed characterized. In this study, we generated rhesus monkey induced pluripotent stem cells (riPSCs), and efficiently differentiated them into ventricular or atrial cardiomyocytes by modulating retinoic acid (RA) pathways. Our results revealed that the electrophysiological characteristics and response to canonical drugs of riPSC-CMs were similar with those of human pluripotent stem cell derived CMs. Therefore, rhesus monkeys and their iPSC-CMs provide a powerful and practicable system for heart related biomedical research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes

    PubMed Central

    Buikema, Jan Willem; Mady, Ahmed S.; Mittal, Nikhil V.; Atmanli, Ayhan; Caron, Leslie; Doevendans, Pieter A.; Sluijter, Joost P. G.; Domian, Ibrahim J.

    2013-01-01

    In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications. PMID:24026118

  20. Cardiac event monitors

    MedlinePlus

    ... From Cell to Bedside . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 64. Maron BJ. Ventricular arrhythmias ... From Cell to Bedside . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 86. Mathur N, Seutter R, ...

  1. Analysis of cardiomyocyte movement in the developing murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hisayuki; Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp; Tabata, Hidenori

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cellmore » cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.« less

  2. Vulnerability to ventricular fibrillation

    NASA Astrophysics Data System (ADS)

    Janse, Michiel J.

    1998-03-01

    One of the factors that favors the development of ventricular fibrillation is an increase in the dispersion of refractoriness. Experiments will be described in which an increase in dispersion in the recovery of excitability was determined during brief episodes of enhanced sympathetic nerve activity, known to increase the risk of fibrillation. Whereas in the normal heart ventricular fibrillation can be induced by a strong electrical shock, a premature stimulus of moderate intensity only induces fibrillation in the presence of regional ischemia, which greatly increases the dispersion of refractoriness. One factor that is of importance for the transition of reentrant ventricular tachycardia to ventricular fibrillation during acute regional ischemia is the subendocardial Purkinje system. After selective destruction of the Purkinje network by lugol, reentrant tachycardias still develop in the ischemic region, but they do not degenerate into fibrillation. Finally, attempts were made to determine the minimal mass of thin ventricular myocardium required to sustain fibrillation induced by burst pacing. This was done by freezing of subendocardial and midmural layers. The rim of surviving epicardial muscle had to be larger than 20 g. Extracellular electrograms during fibrillation in both the intact and the "frozen" left ventricle were indistinguishable, but activation patterns were markedly different. In the intact ventricle epicardial activation was compatible with multiple wavelet reentry, in the "frozen" heart a single, or at most two wandering reentrant waves were seen.

  3. First report of atretic coronary sinus stenting in a 5-kg infant resulting in dramatic improvement of ventricular function in functional single ventricle.

    PubMed

    El-Said, Howaida; Hegde, Sanjeet; Moore, John

    2014-01-01

    The patient was a male infant with L-transposition of great arteries (L-TGA), Ebstein's anomaly of the tricuspid valve, subvalvar aortic stenosis, ventricular septal defect (VSD), hypoplastic right ventricle, arch hypoplasia, and congenital complete heart block. He underwent a Norwood procedure, aortic arch repair, permanent pacemaker implantation, and a 3.5-mm aortopulmonary shunt at 4 days of age. At the time of his surgery, left ventricular function was in the normal range (ejection fraction [EF] = 67%). However by 3 months of age, he was noted to have developed moderate-severe biventricular dysfunction (left ventricular ejection fraction [LVEF] = 34%). Atresia of the coronary sinus with a small left superior venacava (LSVC) and a bridging vein was discovered during cardiac catheterization at this time. The coronary sinus mean pressure was 17 mm Hg, and the common atrial mean pressure was 6 mmHg. We opened the atretic coronary sinus ostium using radiofrequency ablation and stent placement. There was dramatic improvement in ventricular function observed over a 2-month period. Follow-up cardiac catheterization 5 months later revealed the stent in the coronary sinus to be widely patent with no intimal buildup, and the ventricular function was normal (LVEF = 58%). The patient had a bidirectional Glenn procedure with an uncomplicated postoperative course and is currently awaiting Fontan completion. © 2013 Wiley Periodicals, Inc.

  4. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Model of excitation-contraction coupling of rat neonatal ventricular myocytes.

    PubMed

    Korhonen, Topi; Hänninen, Sandra L; Tavi, Pasi

    2009-02-01

    The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.

  6. Low energy transvenous cardioversion of short duration atrial tachyarrhythmias in humans using a single lead system.

    PubMed

    Heisel, A; Jung, J; Fries, R; Stopp, M; Sen, S; Schieffer, H; Ozbek, C

    1997-01-01

    The purpose of this study was to investigate the efficacy and safety of atrial cardioversion using an endocardial single lead system presently used for ventricular defibrillation. The study population consisted of 26 recipients of an ICD in combination with a conventional endocardial single lead system with the proximal spring electrode as anode in the SVC and the distal as cathode in the apex of the RV. Atrial tachyarrhythmias were induced by right atrial burst pacing. If the arrhythmia sustained > 1 minute, biphasic shocks synchronized with the R wave were delivered using the implanted device, beginning with an energy of 4 J. If 4 J failed to terminate the arrhythmia, energy was increased stepwise, if the first shock was successful, a step-down testing was performed after reinduction of atrial tachyarrhythmias. The mean atrial defibrillation threshold was 2.3 +/- 1.2 J (range, 0.5-5 J). A total of 154 shocks were delivered and no adverse effects were observed. The mean defibrillation threshold for atrial flutter was somewhat lower than that for AF (1.8 +/- 1 J vs 2.7 +/- 1.4 J, P = 0.08). There was no correlation between the atrial defibrillation threshold and a history of previously occurring atrial tachyarrhythmias, the kind of the underlying heart disease, a prescription of antiarrhythmic drugs, the dimension of the LA, the LVEF, or the ventricular DFT. Internal atrial cardioversion of short duration atrial tachyarrhythmias using a transvenous single lead system designed for ventricular defibrillation is feasible and safe at low energies, and may have important clinical applications.

  7. Sahlgrenska Cardiomyopathy Project

    ClinicalTrials.gov

    2018-05-15

    Dilated Cardiomyopathies; Hypertrophic Cardiomyopathy; Restrictive Cardiomyopathy; Arrhythmogenic Right Ventricular Cardiomyopathy; Myocarditis; Sarcoidosis With Myocarditis; Giant Cell Myocarditis; Amyloidosis; Heart (Manifestation)

  8. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation

    PubMed Central

    Fan, Zheng; Neff, Robert A

    2000-01-01

    Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2ΔC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage. PMID:11118500

  9. Single plane angiography: Current applications and limitations

    NASA Technical Reports Server (NTRS)

    Falsetti, H. L.; Carroll, R. J.

    1975-01-01

    Technical errors in measurement of one plane cineangiography are identified. Examples of angiographic estimates of left ventricular geometry are given. These estimates of contractility are useful in evaluating myocardial performance.

  10. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  11. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors.

    PubMed

    El Harane, Nadia; Kervadec, Anaïs; Bellamy, Valérie; Pidial, Laetitia; Neametalla, Hany J; Perier, Marie-Cécile; Lima Correa, Bruna; Thiébault, Léa; Cagnard, Nicolas; Duché, Angéline; Brunaud, Camille; Lemitre, Mathilde; Gauthier, Jeanne; Bourdillon, Alexandra T; Renault, Marc P; Hovhannisyan, Yeranuhi; Paiva, Solenne; Colas, Alexandre R; Agbulut, Onnik; Hagège, Albert; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E

    2018-05-21

    We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.

  12. Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: A possible implication of endothelin-1.

    PubMed

    Nassar, Seham Zakaria; Hassaan, Passainte S; Abdelmonsif, Doaa A; ElAchy, Samar Nabil

    2018-05-15

    Cerium oxide nanoparticles (CeO 2 NPs) have been recently introduced into the medical field for their antioxidant properties. The ability of CeO 2 NPs alone or in combination with spironolactone (SP) to attenuate monocrotaline (MCT)-induced pulmonary hypertension and associated right ventricular hypertrophy was studied in rats. A special emphasis was given to endothelin-1 pathway. Pulmonary hypertension was induced in albino rats by a single subcutaneous injection of MCT (60 mg/kg). Rats received either single CeO 2 NPs therapy or combined therapy with SP for 2 weeks. CeO 2 NPs improved pulmonary function tests with concomitant decrease in serum endothelin-1 and pulmonary expression of endothelin-1 and its receptor ETAR. Besides, CeO 2 NPs diminished MCT-induced right ventricular hypertrophy and reduced cardiac oxidative stress and apoptosis. CeO 2 NPs could improve pulmonary hypertension and associated right ventricular hypertrophy with no additive value for SP. Besides being an antioxidant, CeO 2 NPs work through endothelin-1 pathway to improve pulmonary hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  14. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction.

    PubMed

    Lee, Shuo-Tsan; White, Anthony J; Matsushita, Satoshi; Malliaras, Konstantinos; Steenbergen, Charles; Zhang, Yiqiang; Li, Tao-Sheng; Terrovitis, John; Yee, Kristine; Simsir, Sinan; Makkar, Raj; Marbán, Eduardo

    2011-01-25

    The purpose of this study was to test the safety and efficacy of direct injection of cardiosphere-derived cells (CDCs) and their 3-dimensional precursors, cardiospheres, for cellular cardiomyoplasty in a mini-pig model of heart failure after myocardial infarction. Intracoronary administration of CDCs has been demonstrated to reduce infarct size and improve hemodynamic indexes in the mini-pig model, but intramyocardial injection of CDCs or cardiospheres has not been assessed in large animals. Autologous cardiospheres or CDCs grown from endomyocardial biopsies were injected through thoracotomy 4 weeks after anteroseptal myocardial infarction. Engraftment optimization with luciferase-labeled CDCs guided the choice of cell dose (0.5 million cells/site) and target tissue (20 peri-infarct sites). Pigs were randomly allocated to placebo (n = 11), cardiospheres (n = 8), or CDCs (n = 10). Functional data were acquired before injection and again 8 weeks later, after which organs were harvested for histopathology. Beyond the immediate perioperative period, all animals survived to protocol completion. Ejection fraction was equivalent at baseline, but at 8 weeks was higher than placebo in both of the cell-treated groups (placebo vs. CDC, p = 0.01; placebo vs. cardiospheres, p = 0.01). Echocardiographic and hemodynamic indexes of efficacy improved disproportionately with cardiospheres; likewise, adverse remodeling was more attenuated with cardiospheres than with CDCs. Provocative electrophysiologic testing showed no differences among groups, and no tumors were found. Dosage-optimized direct injection of cardiospheres or CDCs is safe and effective in preserving ventricular function in porcine ischemic cardiomyopathy. Although CDCs and cardiospheres have equivalent effects on left ventricular ejection fraction, cardiospheres are superior in improving hemodynamics and regional function, and in attenuating ventricular remodeling. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.

    PubMed

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie

    2017-05-23

    Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.

  16. MicroRNA-363 negatively regulates the left ventricular determining transcription factor HAND1 in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Wagh, Vilas; Pomorski, Alexander; Wilschut, Karlijn J; Piombo, Sebastian; Bernstein, Harold S

    2014-06-06

    Posttranscriptional control of mRNA by microRNA (miRNA) has been implicated in the regulation of diverse biologic processes from directed differentiation of stem cells through organism development. We describe a unique pathway by which miRNA regulates the specialized differentiation of cardiomyocyte (CM) subtypes. We differentiated human embryonic stem cells (hESCs) to cardiac progenitor cells and functional CMs, and characterized the regulated expression of specific miRNAs that target transcriptional regulators of left/right ventricular-subtype specification. From >900 known human miRNAs in hESC-derived cardiac progenitor cells and functional CMs, a subset of differentially expressed cardiac miRNAs was identified, and in silico analysis predicted highly conserved binding sites in the 3'-untranslated regions (3'UTRs) of Hand-and-neural-crest-derivative-expressed (HAND) genes 1 and 2 that are involved in left and right ventricular development. We studied the temporal and spatial expression patterns of four miRNAs in differentiating hESCs, and found that expression of miRNA (miR)-363, miR-367, miR-181a, and miR-181c was specific for stage and site. Further analysis showed that miR-363 overexpression resulted in downregulation of HAND1 mRNA and protein levels. A dual luciferase reporter assay demonstrated functional interaction of miR-363 with the full-length 3'UTR of HAND1. Expression of anti-miR-363 in-vitro resulted in enrichment for HAND1-expressing CM subtype populations. We also showed that BMP4 treatment induced the expression of HAND2 with less effect on HAND1, whereas miR-363 overexpression selectively inhibited HAND1. These data show that miR-363 negatively regulates the expression of HAND1 and suggest that suppression of miR-363 could provide a novel strategy for generating functional left-ventricular CMs.

  17. Right-Dominant Unbalanced Atrioventricular Septal Defect: Echocardiography in Surgical Decision Making.

    PubMed

    Arunamata, Alisa; Balasubramanian, Sowmya; Mainwaring, Richard; Maeda, Katsuhide; Selamet Tierney, Elif Seda

    2017-03-01

    Management of right-dominant atrioventricular septal defect (AVSD) remains a challenge given the spectrum of ventricular hypoplasia. The purpose of this study was to assess whether reported echocardiographic indices and additional measurements were associated with operative strategy in right-dominant AVSD. A blinded observer retrospectively reviewed preoperative echocardiograms of patients who underwent surgery for right-dominant AVSD (January 2000 to July 2013). Ventricular dimensions, atrioventricular valve index (AVVI; left valve area/right valve area), and right ventricular (RV)/left ventricular (RV/LV) inflow angle were measured. A second observer measured a subset of studies to assess agreement. Pearson correlation analysis was performed to examine the relationship between ventricular septal defect size (indexed to body surface area) and RV/LV inflow angle in systole. A separate validation cohort was identified using the same methodology (August 2013 to July 2016). Of 46 patients with right-dominant AVSD (median age, 1 day; range, 0-11 months), overall survival was 76% at 7 years. Twenty-eight patients (61%) underwent single-ventricle palliation and had smaller LV dimensions and volumes, AVVIs (P = .005), and RV/LV inflow angles in systole (P = .007) compared with those who underwent biventricular operations. Three patients undergoing biventricular operations underwent transplantation or died and had lower indexed LV end-diastolic volumes compared with the remaining patients (P = .005). Interobserver agreement for the measured echocardiographic indices was good (intraclass correlation coefficient = 0.70-0.95). Ventricular septal defect size and RV/LV inflow angle in systole had a strong negative correlation (r = -0.7, P < .001). In the validation cohort (n = 12), RV/LV inflow angle in systole ≤ 114° yielded sensitivity of 100% and AVVI ≤ 0.70 yielded sensitivity of 88% for single-ventricle palliation. Mortality remains high among patients with right-dominant AVSD. RV/LV inflow angle in systole and AVVI are reproducible measurements that may be used in conjunction with several echocardiographic parameters to support suitability for a biventricular operation in right-dominant AVSD. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  18. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  19. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    PubMed

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.

  20. Rat strain differences in brain structure and neurochemistry in response to binge alcohol.

    PubMed

    Zahr, Natalie M; Mayer, Dirk; Rohlfing, Torsten; Hsu, Oliver; Vinco, Shara; Orduna, Juan; Luong, Richard; Bell, Richard L; Sullivan, Edith V; Pfefferbaum, Adolf

    2014-01-01

    Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.

  1. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression.

    PubMed

    Pascual, Marta; Abasolo, Ibane; Mingorance-Le Meur, Ana; Martínez, Albert; Del Rio, José A; Wright, Christopher V E; Real, Francisco X; Soriano, Eduardo

    2007-03-20

    We report in this study that, in the cerebellum, the pancreatic transcription factor Ptf1a is required for the specific generation of Purkinje cells (PCs) and interneurons. Moreover, granule cell progenitors in the external GCL (EGL) appear to be unaffected by deletion of Ptf1a. Cell lineage analysis in Ptf1a(Cre/Cre) mice was used to establish that, in the absence of Ptf1a expression, ventricular zone progenitors, normally fated to produce PCs and interneurons, aberrantly migrate to the EGL and express typical markers of these cells, such as Math1, Reelin, and Zic1/2. Furthermore, these cells have a fine structure typical of EGL progenitors, indicating that they adopt an EGL-like cell phenotype. These findings indicate that Ptf1a is necessary for the specification and normal production of PCs and cerebellar interneurons. Moreover, our results suggest that Ptf1a is also required for the suppression of the granule cell specification program in cerebellar ventricular zone precursors.

  2. Cardiac Stem Cell Hybrids Enhance Myocardial Repair

    PubMed Central

    Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.

    2015-01-01

    Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030

  3. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    PubMed

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  4. Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation

    PubMed Central

    Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.

    2010-01-01

    In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210

  5. Echodense spinal subarachnoid space in neonates with progressive ventricular dilatation: a marker of noncommunicating hydrocephalus.

    PubMed

    Rudas, G; Almássy, Z; Papp, B; Varga, E; Méder, U; Taylor, G A

    1998-10-01

    Our purpose was to evaluate the frequency and clinical significance of echogenic debris in the spinal subarachnoid space of neonates at risk for progressive ventricular dilatation. Spinal sonography was performed on 15 neonates with severe intracranial hemorrhage (n = 10) or bacterial meningitis (n = 5). Spinal sonography also was performed on 16 control neonates. Images were analyzed for the presence and location of echogeric debris within the thoracolumbar subarachnoid space. Lumbar punctures were performed on all 31 neonates, and CSF was analyzed for cell count and protein content. Ten of 15 neonates required ventricular drainage procedures. Progressive ventricular dilatation occurred in 11 of 15 neonates with intracranial hemorrhage or meningitis. Echogenic debris was present in the thoracolumbar subarachnoid space on spinal sonography in every neonate with progressive ventricular dilatation compared with none of the 16 control neonates (p < .0001 by chi-square analysis). In addition, the 11 neonates with echogenic subarachnoid space had significantly higher protein and RBC contents in the lumbar CSF (p < .04). Echogenic subarachnoid space revealed by sonography is associated with progressive ventricular dilatation after severe intracranial hemorrhage or bacterial meningitis and is caused by high protein and RBC contents in the subarachnoid space. This finding may be helpful in identifying neonates who will not benefit from serial lumbar punctures for treatment of hydrocephalus.

  6. Right ventricular function after repair of tetralogy of Fallot: a comparison between bovine pericardium and porcine small intestinal extracellular matrix.

    PubMed

    Naik, Ronak; Johnson, Jason; Kumar, T K S; Philip, Ranjit; Boston, Umar; Knott-Craig, Christopher J

    2017-05-29

    The porcine small intestinal extracellular matrix reportedly has the potential to differentiate into viable myocardial cells. When used in tetralogy of Fallot repair, it may improve right ventricular function. We evaluated right ventricular function after repair of tetralogy of Fallot with extracellular matrix versus bovine pericardium. Subjects with non-transannular repair of tetralogy of Fallot with at least 1 year of follow-up were selected. The extracellular matrix and bovine pericardium groups were compared. We used three-dimensional right ventricular ejection fraction, right ventricle global longitudinal strain, and tricuspid annular plane systolic excursion to assess right ventricular function. The extracellular matrix group had 11 patients, whereas the bovine pericardium group had 10 patients. No differences between the groups were found regarding sex ratio, age at surgery, and cardiopulmonary bypass time. The follow-up period was 28±12.6 months in the extracellular matrix group and 50.05±17.6 months in the bovine pericardium group (p=0.001). The mean three-dimensional right ventricular ejection fraction (55.7±5.0% versus 55.3±5.2%, p=0.73), right ventricular global longitudinal strain (-18.5±3.0% versus -18.0±2.2%, p=0.44), and tricuspid annular plane systolic excursions (1.59±0.16 versus 1.59±0.2, p=0.93) were similar in the extracellular matrix group and in the bovine pericardium group, respectively. Right ventricular global longitudinal strain in healthy children is reported at -29±3% in literature. In a small cohort of the patients undergoing non-transannular repair of tetralogy of Fallot, there was no significant difference in right ventricular function between groups having extracellular matrix versus bovine pericardium patches followed-up for more than 1 year. Lower right ventricular longitudinal strain noted in both the groups compared to healthy children.

  7. Marked attenuation of shock burden by the use of antitachycardia pacing therapy in a patient with an implanted cardioverter-defibrillator.

    PubMed

    Ganjehei, Leila; Nazeri, Alireza; Massumi, Ali; Razavi, Mehdi

    2012-01-01

    A 76-year-old man was admitted to our institution for elective exchange of his implanted cardioverter-defibrillator generator. Nine years earlier, he had been diagnosed with nonischemic cardiomyopathy and nonsustainable ventricular tachycardia. At that time, he had received a single-chamber implanted cardioverter-defibrillator, which was upgraded to a dual-chamber implanted cardioverter-defibrillator 3 years later. In the course of the current admission, routine device interrogation during exchange of the patient's implanted cardioverter-defibrillator generator revealed 150 episodes of ventricular tachycardia in the preceding 7 months, 137 of which had been successfully treated by antitachycardia pacing therapy without shock. These findings show the remarkable effectiveness of antitachycardia pacing in terminating ventricular tachycardia while preventing the delivery of shocks, minimizing patient discomfort, and avoiding implanted cardioverter-defibrillator battery depletion.

  8. Third Ventricular Cerebrospinal Fluid Cysts of Thalamic Origin: Review of Embryologic Origin, Presentation, and Management Strategies with a Case Series.

    PubMed

    Vasquez, Ciro A; Casey, Michael; Folzenlogen, Zach; Ormond, David R; Lillehei, Kevin; Youssef, A Samy

    2017-07-01

    Third ventricular cerebrospinal fluid (CSF) cysts of thalamic origin are rare. The objective of this study is to review their possible pathogenesis, clinical presentation, and management strategies with a case series describing management via an endoscopic approach with fenestration using a single burr-hole technique. A systematic literature review of reported cases of thalamic cysts was conducted with further meta-analysis of CSF cysts that involve the third ventricle. The mode of presentation, pathologic analysis, surgical management, and outcomes were analyzed. Twenty-two studies reported between 1990 and 2013 described 42 cases of thalamic cyst. Of those cases, 13 were consistent with CSF cyst that originated in the thalamus and involved the third ventricle. Eight cases (61.5%) were treated via endoscopic fenestration, 2 cases (15.4%) were surgically drained, 2 cases (15.4%) were stereotactically aspirated, and 1 case (7.69%) was observed. The most common presenting symptoms were gait disturbance (26.3%) and headaches (26.3%) followed by tremors (15.8%) and weakness (15.8%). In our series, a single burr-hole technique was a successful definitive treatment, with an average period of 23 months. Third ventricular CSF cysts of thalamic origin most commonly present with hydrocephalus. They can be safely definitively treated via endoscopic fenestration to the CSF circulation using a single burr-hole technique. Long-term follow-up shows lasting improvement in symptoms without reaccumulation of the cyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition

    PubMed Central

    Xiao, Ling; Koopmann, Tamara T.; Ördög, Balázs; Postema, Pieter G.; Verkerk, Arie O.; Iyer, Vivek; Sampson, Kevin J.; Boink, Gerard J.J.; Mamarbachi, Maya A.; Varro, Andras; Jordaens, Luc; Res, Jan; Kass, Robert S.; Wilde, Arthur A.; Bezzina, C.R.; Nattel, Stanley

    2015-01-01

    Rationale A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (Ito) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF Ito and that its overexpression might specifically alter PF Ito properties and repolarization. Objective To assess the potential role of DPP6 in PF Ito. Methods and Results Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle Ito had similar density, but PF Ito differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, Ito density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K+-channel interacting β-subunit K+-channel interacting protein type-2, essential for normal expression of Ito in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small Ito; Ito amplitude was greatly enhanced by coexpression with K+-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K+-channel interacting protein type-2 failed to alter Ito compared with Kv4.3/K+-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF Ito composition) greatly enhanced Ito compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that Ito enhancement can greatly accelerate PF repolarization. Conclusions These results point to a previously unknown central role of DPP6 in PF Ito, with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation. PMID:23532596

  10. Developmentally induced microencephalopathy in guinea pigs--embryonic glial cell activation marks selective neuronal death.

    PubMed

    Rossner, S; Brückner, M K; Bigl, V

    2001-06-01

    We have recently shown that in utero treatment of guinea pigs with the DNA methylating substance methylazoxymethanol acetate (MAM) on gestation day (GD) 24 results in neocortical microencephalopathy, increased protein kinase C activity and altered processing of the amyloid precursor protein in neocortex of the offsprings. In order to identify the primary neuronal lesions produced by MAM-treatment, we mapped the 5-bromo-2'-deoxyuridine (BrdU)-incorporation in dividing neurons on GD 24 and we followed the effects of MAM-treatment on GD 24 on embryonic immediate early gene expression and on glial cell activation. BrdU injected on GD 24 labeled many neurons of the ventricular zone and of the intermediate zone but only scattered neurons of the cortical plate. When time-mated guinea pigs were injected intraperitoneally with MAM on GD 24, we observed the activation of microglial cells in the ventricular/intermediate zone and the appearence of astrocytes between the intermediate zone and the cortical plate, 48 h after intoxification. The activation of glial cells was accompanied by the neuronal expression of c-Fos but not of c-Jun in the ventricular/intermediate zone. Based on our observations on BrdU-incorporation and on the morphological outcome of MAM treatment in the juvenile guinea pig, our data presented here indicate that selective neurodegeneration during development induces the activation of both phagocytotic microglial cells and of astrocytes which might trophically support damaged neurons surviving this lesion procedure.

  11. The Effect of Direct Current Transthoracic Countershock on Human Myocardial Cells Evidenced by Creatine Kinase and Lactic Dehydrogenase Isoenzymes.

    DTIC Science & Technology

    1986-05-01

    effects of DC- countershock on 12 patients without evidence of acute 19 myocardial infarction, following conversion of supra - ventricular tachyarrhythmias...atrial flutter, and supra - ventricular tachycardias. Termination of dysrhythmias--occurs when countershock disrupts a chaotic ectopic rhythm allowing the... catheters in dogs. Circulation, 69(5), 1006-1012. Lown, B., Amarasingham, R., & Neuman, J. (1962). New method for terminating cardiac arrhythmias. Use of

  12. Ranolazine effectively suppresses atrial fibrillation in the setting of heart failure.

    PubMed

    Burashnikov, Alexander; Di Diego, José M; Barajas-Martínez, Hector; Hu, Dan; Zygmunt, Andrew C; Cordeiro, Jonathan M; Moise, N Sydney; Kornreich, Bruce G; Belardinelli, Luiz; Antzelevitch, Charles

    2014-07-01

    There is a critical need for safer and more effective pharmacological management of atrial fibrillation (AF) in the setting of heart failure (HF). This study investigates the electrophysiological, antiarrhythmic, and proarrhythmic effects of a clinically relevant concentration of ranolazine (5 μmol/L) in coronary-perfused right atrial and left ventricular preparations isolated from the hearts of HF dogs. HF was induced by ventricular tachypacing (2-6 weeks at 200-240 beats per minute; n=17). Transmembrane action potentials were recorded using standard microelectrode techniques. In atria, ranolazine slightly prolonged action potential duration but significantly depressed sodium channel current-dependent parameters causing a reduction of maximum rate of rise of the action potential upstroke, a prolongation of the effective refractory period secondary to the development of postrepolarization refractoriness, and an increase in diastolic threshold of excitation and atrial conduction time. Ranolazine did not significantly alter these parameters or promote arrhythmias in the ventricles. Ranolazine produced greater inhibition of peak sodium channel current in atrial cells isolated from HF versus normal dogs. A single premature beat reproducibly induced self-terminating AF in 10 of 17 atria. Ranolazine (5 μmol/L) suppressed induction of AF in 7 of 10 (70%) atria. In the remaining 3 atria, ranolazine reduced frequency and duration of AF. Our results demonstrate more potent suppression of AF by ranolazine in the setting of HF than previously demonstrated in nonfailing hearts and absence of ventricular proarrhythmia. The data suggest that ranolazine may be of benefit as an alternative to amiodarone and dofetilide in the management of AF in patients with HF. © 2014 American Heart Association, Inc.

  13. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Leren, Ida S; Saberniak, Jørg; Majid, Eman; Haland, Trine F; Edvardsen, Thor; Haugaa, Kristina H

    2016-02-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inheritable cardiac disease predisposing to malignant ventricular arrhythmias. We aimed to explore the incidence and severity of ventricular arrhythmias in patients with CPVT before the initiation of β-blocker treatment, when treated with β1-selective β-blockers, and when treated with nadolol. In this study, 34 patients with CPVT were included (mean age 34 ± 19 years; 15 (44%) women; 30 (88%) ryanodine receptor 2 variant positive). We performed 3 bicycle exercise stress tests in each patient: (1) before the initiation of β-blocker treatment, (2) after >6 weeks of treatment with β1-selective β-blockers and (3) after >6 weeks of treatment with nadolol. We recorded resting and maximum heart rates and the most severe ventricular arrhythmia occurring. Severity of arrhythmias was scored as 1 point for no arrhythmias or only single ventricular extrasystoles, 2 points for >10 ventricular extrasystoles per minute or bigeminy, 3 points for couplets, and 4 points for nonsustained ventricular tachycardia or sustained ventricular tachycardia. Resting heart rate was similar during treatment with nadolol and β1-selective β-blockers (54 ± 10 beats/min vs 56 ± 14 beats/min; P = .50), while maximum heart rate was lower during treatment with nadolol compared with β1-selective β-blockers (122 ± 21 beats/min vs 139 ± 24 beats/min; P = .001). Arrhythmias during exercise stress testing were less severe during treatment with nadolol compared with during treatment with β1-selective β-blockers (arrhythmic score 1.6 ± 0.9 vs 2.5 ± 0.8; P < .001) and before the initiation of β-blocker treatment (arrhythmic score 1.6 ± 0.9 vs 2.7 ± 0.9; P = .001); however, no differences were observed during treatment with β1-selective β-blockers compared with before the initiation of β-blocker treatment (arrhythmic score 2.5 ± 0.8 vs 2.7 ± 0.9; P = .46). The incidence and severity of ventricular arrhythmias decreased during treatment with nadolol compared with during treatment with β1-selective β-blockers. β1-Selective β-blockers did not change the occurrence or severity of arrhythmias compared with no medication. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Effect of Milrinone Infusion on Pulmonary Vasculature and Stroke Work Indices: A Single-Center Retrospective Analysis in 69 Patients Awaiting Cardiac Transplantation.

    PubMed

    Abramov, Dmitry; Haglund, Nicholas A; Di Salvo, Thomas G

    2017-08-01

    Although milrinone infusion is reported to benefit left ventricular function in chronic left heart failure, few insights exist regarding its effects on pulmonary circulation and right ventricular function. We retrospectively reviewed right heart catheterization data at baseline and during continuous infusion of milrinone in 69 patients with advanced heart failure and analyzed the effects on ventricular stroke work indices, pulmonary vascular resistance and pulmonary arterial compliance. Compared to baseline, milrinone infusion after a mean 58 ± 61 days improved mean left ventricular stroke work index (1540 ± 656 vs. 2079 ± 919 mmHg·mL/m 2 , p = 0.0007) to a much greater extent than right ventricular stroke work index (616 ± 346 vs. 654 ± 332, p = 0.053); however, patients with below median stroke work indices experienced a significant improvement in both left and right ventricular stroke work performance. Overall, milrinone reduced left and right ventricular filling pressures and pulmonary and systemic vascular resistance by approximately 20%. Despite an increase in pulmonary artery capacitance (2.3 ± 1.6 to 3.0 ± 2.0, p = 0.013) and a reduction in pulmonary vascular resistance (3.8 ± 2.3 to 3.0 ± 1.7 Wood units), milrinone did not reduce the transpulmonary gradient (13 ± 7 vs. 12 ± 6 mmHg, p = 0.252), the pulmonary artery pulse pressure (25 ± 10 vs. 24 ± 10, p = 0.64) or the pulmonary artery diastolic to pulmonary capillary wedge gradient (2.0 ± 6.5 vs. 2.4 ± 6.0, p = 0.353). Milrinone improved left ventricular stroke work indices to a greater extent than right ventricular stroke work indices and had beneficial effects on right ventricular net input impedance, predominantly via augmentation of left ventricular stroke volume and passive unloading of the pulmonary circuit. Patients who had the worst biventricular performance benefited the most from chronic milrinone infusion.

  15. Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives.

    PubMed

    Marketou, Maria E; Parthenakis, Fragiskos; Vardas, Panos E

    2016-01-01

    Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.

  16. Haemangiosarcoma of the interventricular septum in a dog.

    PubMed

    Thompson, D J; Cave, N J; Scrimgeour, A B; Thompson, K G

    2011-11-01

    Abstract A 5-year-old male neutered Labrador Retriever Afghan crossbred dog was examined after collapsing. The dog was recumbent, dyspnoeic and mildly tachypnoeic. There was a tachyarrhythmia (300 beats per minute) and subcutaneous oedema of the ventral neck and right forelimb. The dog had a sustained ventricular tachycardia originating in the right ventricle and on echocardiography a mass was identified in the interventricular septum. Due to the poor prognosis the owners agreed to euthanasia of the dog. A reddish-grey mass was found in the interventricular septum and smaller red foci found scattered throughout the myocardium. There was a single, raised, splenic nodule with several smaller red foci within the splenic parenchyma. Hepatic congestion, pancreatic oedema, ascites and subcutaneous oedema of the right forelimb and neck were present. Sections of the splenic nodule, interventricular septal mass and both ventricular-free walls showed neoplastic mesenchymal cells. Haemangiosarcoma of the myocardium and spleen with right-sided congestive heart failure. This case report describes an atypical location for haemangiosarcoma. The investigation supports the use of echocardiography as a component of the protocol for staging haemangiosarcoma even in the absence of apericardial effusion. It also provides further evidence for the inclusion of intracardiac neoplasia as a differential diagnosis for dogs with unexplained cardiac arrhythmias.

  17. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice.

    PubMed

    Montgomery, Megan D; Chan, Trevor; Swigart, Philip M; Myagmar, Bat-Erdene; Dash, Rajesh; Simpson, Paul C

    2017-01-01

    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.

  18. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study).

    PubMed

    Margossian, Renee; Schwartz, Marcy L; Prakash, Ashwin; Wruck, Lisa; Colan, Steven D; Atz, Andrew M; Bradley, Timothy J; Fogel, Mark A; Hurwitz, Lynne M; Marcus, Edward; Powell, Andrew J; Printz, Beth F; Puchalski, Michael D; Rychik, Jack; Shirali, Girish; Williams, Richard; Yoo, Shi-Joon; Geva, Tal

    2009-08-01

    Assessment of the size and function of a functional single ventricle (FSV) is a key element in the management of patients after the Fontan procedure. Measurement variability of ventricular mass, volume, and ejection fraction (EF) among observers by echocardiography and cardiac magnetic resonance imaging (CMR) and their reproducibility among readers in these patients have not been described. From the 546 patients enrolled in the Pediatric Heart Network Fontan Cross-Sectional Study (mean age 11.9 +/- 3.4 years), 100 echocardiograms and 50 CMR studies were assessed for measurement reproducibility; 124 subjects with paired studies were selected for comparison between modalities. Interobserver agreement for qualitative grading of ventricular function by echocardiography was modest for left ventricular (LV) morphology (kappa = 0.42) and weak for right ventricular (RV) morphology (kappa = 0.12). For quantitative assessment, high intraclass correlation coefficients were found for echocardiographic interobserver agreement (LV 0.87 to 0.92, RV 0.82 to 0.85) of systolic and diastolic volumes, respectively. In contrast, intraclass correlation coefficients for LV and RV mass were moderate (LV 0.78, RV 0.72). The corresponding intraclass correlation coefficients by CMR were high (LV 0.96, RV 0.85). Volumes by echocardiography averaged 70% of CMR values. Interobserver reproducibility for the EF was similar for the 2 modalities. Although the absolute mean difference between modalities for the EF was small (<2%), 95% limits of agreement were wide. In conclusion, agreement between observers of qualitative FSV function by echocardiography is modest. Measurements of FSV volume by 2-dimensional echocardiography underestimate CMR measurements, but their reproducibility is high. Echocardiographic and CMR measurements of FSV EF demonstrate similar interobserver reproducibility, whereas measurements of FSV mass and LV diastolic volume are more reproducible by CMR.

  19. Use of Ventricular Assist Device in Univentricular Physiology: The Role of Lumped Parameter Models.

    PubMed

    Di Molfetta, Arianna; Ferrari, Gianfranco; Filippelli, Sergio; Fresiello, Libera; Iacobelli, Roberta; Gagliardi, Maria G; Amodeo, Antonio

    2016-05-01

    Failing single-ventricle (SV) patients might benefit from ventricular assist devices (VADs) as a bridge to heart transplantation. Considering the complex physiopathology of SV patients and the lack of established experience, the aim of this work was to realize and test a lumped parameter model of the cardiovascular system, able to simulate SV hemodynamics and VAD implantation effects. Data of 30 SV patients (10 Norwood, 10 Glenn, and 10 Fontan) were retrospectively collected and used to simulate patients' baseline. Then, the effects of VAD implantation were simulated. Additionally, both the effects of ventricular assistance and cavopulmonary assistance were simulated in different pathologic conditions on Fontan patients, including systolic dysfunction, diastolic dysfunction, and pulmonary vascular resistance increment. The model can reproduce patients' baseline well. Simulation results suggest that the implantation of VAD: (i) increases the cardiac output (CO) in all the three palliation conditions (Norwood 77.2%, Glenn 38.6%, and Fontan 17.2%); (ii) decreases the SV external work (SVEW) (Norwood 55%, Glenn 35.6%, and Fontan 41%); (iii) increases the mean pulmonary arterial pressure (Pap) (Norwood 39.7%, Glenn 12.1%, and Fontan 3%). In Fontan circulation, with systolic dysfunction, the left VAD (LVAD) increases CO (35%), while the right VAD (RVAD) determines a decrement of inferior vena cava pressure (Pvci) (39%) with 34% increment of CO. With diastolic dysfunction, the LVAD increases CO (42%) and the RVAD decreases the Pvci. With pulmonary vascular resistance increment, the RVAD allows the highest CO (50%) increment with the highest decrement of Pvci (53%). The single ventricular external work (SVEW) increases (decreases) increasing the VAD speed in cavopulmonary (ventricular) assistance. Numeric models could be helpful in this challenging and innovative field to support patients and VAD selection to optimize the clinical outcome and personalize the therapy. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age.

    PubMed

    Denegri, Marco; Bongianino, Rossana; Lodola, Francesco; Boncompagni, Simona; De Giusti, Verónica C; Avelino-Cruz, José E; Liu, Nian; Persampieri, Simone; Curcio, Antonio; Esposito, Francesca; Pietrangelo, Laura; Marty, Isabelle; Villani, Laura; Moyaho, Alejandro; Baiardi, Paola; Auricchio, Alberto; Protasi, Feliciano; Napolitano, Carlo; Priori, Silvia G

    2014-06-24

    Catecholaminergic polymorphic ventricular tachycardia is an inherited arrhythmogenic disorder characterized by sudden cardiac death in children. Drug therapy is still insufficient to provide full protection against cardiac arrest, and the use of implantable defibrillators in the pediatric population is limited by side effects. There is therefore a need to explore the curative potential of gene therapy for this disease. We investigated the efficacy and durability of viral gene transfer of the calsequestrin 2 (CASQ2) wild-type gene in a catecholaminergic polymorphic ventricular tachycardia knock-in mouse model carrying the CASQ2(R33Q/R33Q) (R33Q) mutation. We engineered an adeno-associated viral vector serotype 9 (AAV9) containing cDNA of CASQ2 wild-type (AAV9-CASQ2) plus the green fluorescent protein (GFP) gene to infect newborn R33Q mice studied by in vivo and in vitro protocols at 6, 9, and 12 months to investigate the ability of the infection to prevent the disease and adult R33Q mice studied after 2 months to assess whether the AAV9-CASQ2 delivery could revert the catecholaminergic polymorphic ventricular tachycardia phenotype. In both protocols, we observed the restoration of physiological expression and interaction of CASQ2, junctin, and triadin; the rescue of electrophysiological and ultrastructural abnormalities in calcium release units present in R33Q mice; and the lack of life-threatening arrhythmias. Our data demonstrate that viral gene transfer of wild-type CASQ2 into the heart of R33Q mice prevents and reverts severe manifestations of catecholaminergic polymorphic ventricular tachycardia and that this curative effect lasts for 1 year after a single injection of the vector, thus posing the rationale for the design of a clinical trial. © 2014 American Heart Association, Inc.

  1. Outcomes of HeartWare Ventricular Assist System support in 141 patients: a single-centre experience.

    PubMed

    Wu, Long; Weng, Yu-Guo; Dong, Nian-Guo; Krabatsch, Thomas; Stepanenko, Alexander; Hennig, Ewald; Hetzer, Roland

    2013-07-01

    A third-generation ventricular assist device, the HeartWare Ventricular Assist System, has demonstrated its reliability and durability in animal models and clinical experience. However, studies of a large series of applications are still lacking. We evaluate the safety and efficacy of the HeartWare pump in 141 patients with end-stage heart failure at a single centre. A total of 141 patients (116 men and 25 women with a mean age of 52 years) in New York Heart Association (NYHA) Class IV received implantation of the HeartWare Ventricular Assist System between August 2009 and April 2011 at the Deutsches Herzzentrum Berlin. The outcomes were measured in terms of laboratory data, adverse events, NYHA functional class and survival during device support. The HeartWare system provided an adequate haemodynamic support for patients both inside and outside the hospital. NYHA class improved to I-II. Organ function and pulmonary vascular resistance improved significantly. In this cohort of patients, 14 patients underwent heart transplantation, one had had the device explanted following myocardial recovery, one had changed to another assist device, 81 were on ongoing support and 44 died. The overall actuarial survival rates at 6 and 12 months were 70 and 67%, respectively, and the 3-, 6- and 12-month survival rates on a left ventricular assist device (LVAD) support for bridge to transplantation patients were 82, 81 and 79%, respectively. Infection and bleeding were the main adverse events. Four patients underwent an LVAD exchange for pump thrombosis. The HeartWare system provides a safe and effective circulatory support in a population with a wide range of body surface areas, with a satisfactory actuarial survival time and an improved quality of life. It can be used for univentricular or biventricular support, being implanted into the pericardial space with simplified surgical techniques.

  2. Ventricular efficiency in pregnant women with congenital heart disease.

    PubMed

    Muneuchi, Jun; Yamasaki, Keiko; Watanabe, Mamie; Fukumitsu, Azusa; Kawakami, Takeshi; Nakahara, Hiromasa; Joo, Kunitaka

    2018-06-15

    Pregnant women with congenital heart disease (CHD) are at risk of cardiovascular events during pregnancy as well as postpartum. The aim of our study is to address the feasibility of echocardiography-derived ventricular-arterial coupling during pregnancy and postpartum among women with CHD. In 31 pregnant women with CHD, we performed serial echocardiography at the first and third trimesters, early and late postpartum. The indices of contractility (single-beat determined end-systolic elastance, Ees ab ) and afterload (effective arterial elastance, Ea) were approximated on the basis of the systemic blood pressure and systemic ventricular volume. The ratio of stroke work and pressure-volume area (SW/PVA) representing ventricular efficiency was also calculated. Age at the delivery was 28 (24-31) years. ZAHARA score was 0.75 (0.75-1.50). Gestational age and birth weight of newborns were 38 (37-39) weeks and 2.73 (2.42-2.92) kg, respectively. Heart rate, systemic ventricular end-diastolic volume and stroke volume significantly increased from the first trimester to the third trimester and reversed postpartum to the values of the first trimester. Ees ab and Ea significantly decreased from the first trimester to the third trimester (Ees ab ; 4.90 [2.86-7.14] vs 3.41 [2.53-4.61] mm Hg/ml, p = 0.0001, Ea; 2.83 [1.74-3.30] vs 2.18 [1.67-2.68] mm Hg/ml, p = 0.0012), and reversed early postpartum parallelly. Ejection fraction and SW/PVA remained unchanged throughout pregnancy and postpartum. Echocardiography-derived ventricular-arterial coupling is feasible to understand ventricular function in pregnant women with CHD. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Noninvasive Imaging of Three-dimensional Cardiac Activation Sequence during Pacing and Ventricular Tachycardia

    PubMed Central

    Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.; He, Bin

    2011-01-01

    Background Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. Objective This study aims to rigorously assess the imaging performance of a three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE) induced ventricular tachycardia (VT) in the rabbit heart. Methods Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computer tomography images were obtained to construct geometry model. Results The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72±0.04, and a relative error of 0.30±0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from imaged site of initial activation to pacing site or site of arrhythmias determined from intra-cardiac mapping was ~5mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. Conclusion 3-DCEI can non-invasively delineate important features of focal or multi-focal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequence of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. PMID:21397046

  5. Long-Term Outcome With Catheter Ablation of Ventricular Tachycardia in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy.

    PubMed

    Santangeli, Pasquale; Zado, Erica S; Supple, Gregory E; Haqqani, Haris M; Garcia, Fermin C; Tschabrunn, Cory M; Callans, David J; Lin, David; Dixit, Sanjay; Hutchinson, Mathew D; Riley, Michael P; Marchlinski, Francis E

    2015-12-01

    Catheter ablation of ventricular tachycardia (VT) in arrhythmogenic right ventricular cardiomyopathy improves short-term VT-free survival. We sought to determine the long-term outcomes of VT control and need for antiarrhythmic drug therapy after endocardial (ENDO) and adjuvant epicardial (EPI) substrate modification in patients with arrhythmogenic right ventricular cardiomyopathy. We examined 62 consecutive patients with Task Force criteria for arrhythmogenic right ventricular cardiomyopathy referred for VT ablation with a minimum follow-up of 1 year. Catheter ablation was guided by activation/entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. Adjuvant EPI ablation was performed when recurrent VT or persistent inducibility after ENDO-only ablation. Endocardial plus adjuvant EPI ablation was performed in 39 (63%) patients, including 13 who crossed over to ENDO-EPI after VT recurrence during follow-up, after ENDO-only ablation. Before ablation, 54 of 62 patients failed a mean of 2.4 antiarrhythmic drugs, including amiodarone in 29 (47%) patients. During follow-up of 56±44 months after the last ablation, VT-free survival was 71% with only a single VT episode in additional 9 patients (15%). At last follow-up, 39 (64%) patients were only on β-blockers or no treatment, 21 were on class 1 or 3 antiarrhythmic drugs (11 for atrial arrhythmias), and 2 were on amiodarone as a bridge to heart transplantation. The long-term outcome after ENDO and adjuvant EPI substrate ablation of VT in arrhythmogenic right ventricular cardiomyopathy is good. Most patients have complete VT control without amiodarone therapy and limited need for antiarrhythmic drugs. © 2015 American Heart Association, Inc.

  6. Cardiomyopathy in children: Can we rely on echocardiographic tricuspid regurgitation gradient estimates of right ventricular and pulmonary arterial pressure?

    PubMed

    Lee, Simon; Lytrivi, Irene D; Roytman, Zhanna; Ko, Hyun-Sook Helen; Vinograd, Cheryl; Srivastava, Shubhika

    2016-10-01

    Introduction Agreement between echocardiography and right heart catheterisation-derived right ventricular systolic pressure is modest in the adult heart failure population, but is unknown in the paediatric cardiomyopathy population. All patients at a single centre from 2001 to 2012 with a diagnosis of cardiomyopathy who underwent echocardiography and catheterisation within 30 days were included in this study. The correlation between tricuspid regurgitation gradient and catheterisation-derived right ventricular systolic pressure and mean pulmonary artery pressure was determined. Agreement between echocardiography and catheterisation-derived right ventricular systolic pressure was assessed using Bland-Altman plots. Analysis was repeated for patients who underwent both procedures within 7 days. Haemodynamic data from those with poor agreement and good agreement between echocardiography and catheterisation were compared. A total of 37 patients who underwent 48 catheterisation procedures were included in our study. The median age was 11.8 (0.1-20.6 years) with 22 males (58% total). There was a modest correlation (r=0.65) between echocardiography and catheterisation-derived right ventricular systolic pressure, but agreement was poor. Agreement between tricuspid regurgitation gradient and right ventricular systolic pressure showed wide 95% limits of agreement. There was a modest correlation between the tricuspid regurgitation gradient and mean pulmonary artery pressure (r=0.6). Shorter time interval between the two studies did not improve agreement. Those with poor agreement between echocardiography and catheterisation had higher right heart pressures, but this difference became insignificant after accounting for right atrial pressure. Transthoracic echocardiography estimation of right ventricular systolic pressure shows modest correlation with right heart pressures, but has limited agreement and may underestimate the degree of pulmonary hypertension in paediatric cardiomyopathy patients.

  7. Association between hippuric acid and left ventricular hypertrophy in maintenance hemodialysis patients.

    PubMed

    Yu, Teng-Hung; Tang, Wei-Hua; Lu, Yung-Chuan; Wang, Chao-Ping; Hung, Wei-Chin; Wu, Cheng-Ching; Tsai, I-Ting; Chung, Fu-Mei; Houng, Jer-Yiing; Lan, Wen-Chun; Lee, Yau-Jiunn

    2018-05-22

    Left ventricular hypertrophy (LVH) is one of the most common cardiac abnormalities in patients with end-stage renal disease. Hippuric acid (HA), a harmful uremic toxin, is known to be elevated in patients with uremia, and serum HA levels are associated with neurological symptoms, metabolic acidosis, and accelerated renal damage associated with chronic kidney disease. However, the pathophysiological role of HA in patients with uremia remains unclear. We investigated the association between serum HA levels and echocardiographic measurements in patients undergoing hemodialysis (HD) treatment. Eighty consecutive patients treated at a single HD center (44 males, 36 females; mean age 66 y, mean HD duration 6 y) were included in this study. Comprehensive echocardiography was performed after HD. Blood samples were obtained before HD. Pearson's correlation analysis revealed that serum HA levels were positively correlated with diastolic blood pressure, serum creatinine, left ventricular mass index, end diastolic interventricular septal thickness, left ventricular end-diastolic diameter, left ventricular end systolic diameter, end systolic left ventricular posterior wall thickness, and left atrium diameter, and negatively correlated with age. Furthermore, the HD patients with LVH had higher median serum HA levels than those without LVH (34.2 vs. 18.1 μg/ml, p = 0.003). Multiple logistic regression analysis revealed that HA was independently associated with LVH even after adjusting for known biomarkers. Moreover, the receiver operator characteristics curve of HA showed that a HA level of >26.9 μg/ml was associated with LVH. HA was significantly associated with LVH. HA could be a novel biomarker of left ventricular overload, which is closely associated with an increased risk of death in HD patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction - MI3 Trial

    PubMed Central

    Nair, Velu; Madan, Hemant; Sofat, Sunil; Ganguli, Prosenjit; Jacob, M.J.; Datta, Rajat; Bharadwaj, Prashant; Sarkar, R.S.; Pandit, A.J.; Nityanand, Soniya; Goel, Pravin K.; Garg, Naveen; Gambhir, Sanjay; George, Paul V.; Chandy, Sunil; Mathews, Vikram; George, Oomen K.; Talwar, K.K.; Bahl, Ajay; Marwah, Neelam; Bhatacharya, Anish; Bhargava, Balram; Airan, Balram; Mohanty, Sujata; Patel, Chetan D.; Sharma, Alka; Bhatnagar, Shinjini; Mondal, A.; Jose, Jacob; Srivastava, A.

    2015-01-01

    Background & objectives: Acute myocardial infarction (AMI) is characterized by irreparable and irreversible loss of cardiac myocytes. Despite major advances in the management of AMI, a large number of patients are left with reduced left ventricular ejection fraction (LVEF), which is a major determinant of short and long term morbidity and mortality. A review of 33 randomized control trials has shown varying improvement in left ventricular (LV) function in patients receiving stem cells compared to standard medical therapy. Most trials had small sample size and were underpowered. This phase III prospective, open labelled, randomized multicenteric trial was undertaken to evaluate the efficacy in improving the LVEF over a period of six months, after injecting a predefined dose of 5-10 × 108 autologous mononuclear cells (MNC) by intra-coronary route, in patients, one to three weeks post ST elevation AMI, in addition to the standard medical therapy. Methods: In this phase III prospective, multicentric trial 250 patients with AMI were included and randomized into stem cell therapy (SCT) and non SCT groups. All patients were followed up for six months. Patients with AMI having left ventricular ejection fraction (LVEF) of 20-50 per cent were included and were randomized to receive intracoronary stem cell infusion after successfully completing percutaneous coronary intervention (PCI). Results: On intention-to-treat analysis the infusion of MNCs had no positive impact on LVEF improvement of ≥ 5 per cent. The improvement in LVEF after six months was 5.17 ± 8.90 per cent in non SCT group and 4.82 ± 10.32 per cent in SCT group. The adverse effects were comparable in both the groups. On post hoc analysis it was noted that the cell dose had a positive impact when infused in the dose of ≥ 5 × 108(n=71). This benefit was noted upto three weeks post AMI. There were 38 trial deviates in the SCT group which was a limitation of the study. Interpretation & conclusions: Infusion of stem cells was found to have no benefit in ST elevation AMI. However, the procedure was safe. A possible benefit was seen when the predefined cell dose was administered which was noted upto three weeks post AMI, but this was not significant and needs confirmation by larger trials. PMID:26354213

  9. A modified Glenn shunt reduces venous congestion during acute right ventricular failure due to pulmonary banding: a randomized experimental study

    PubMed Central

    Vikholm, Per; Schiller, Petter; Hellgren, Laila

    2014-01-01

    OBJECTIVES Right ventricular failure after left ventricular assist device implantation is a serious complication with high rates of mortality and morbidity. It has been demonstrated in experimental settings that volume exclusion of the right ventricle with a modified Glenn shunt can improve haemodynamics during ischaemic right ventricular failure. However, the concept of a modified Glenn shunt is dependent on a normal pulmonary vascular resistance, which can limit its use in some patients. The aim of this study was to explore the effects of volume exclusion with a modified Glenn shunt during right ventricular failure due to pulmonary banding, and to study the alterations in genetic expression in the right ventricle due to pressure and volume overload. METHODS Experimental right ventricular failure was induced in pigs (n = 11) through 2 h of pulmonary banding. The pigs were randomized to either treatment with a modified Glenn shunt and pulmonary banding (n = 6) or solely pulmonary banding (n = 5) as a control group. Haemodynamic measurements, blood samples and right ventricular biopsies for genetic analysis were sampled at baseline, at right ventricular failure (i.e. 2 h of pulmonary banding) and 1 h post-right ventricular failure in both groups. RESULTS Right atrial pressure increased from 10 mmHg (9.0–12) to 18 mmHg (16–22) (P < 0.01) and the right ventricular pressure from 31 mmHg (26–35) to 57 mmHg (49–61) (P < 0.01) after pulmonary banding. Subsequent treatment with the modified Glenn shunt resulted in a decrease in right atrial pressure to 13 mmHg (11–14) (P = 0.03). In the control group, right atrial pressure was unchanged at 19 mmHg (16–20) (P = 0.18). At right heart failure, there was an up-regulation of genes associated with heart failure, inflammation, angiogenesis, negative regulation of cell death and proliferation. CONCLUSIONS Volume exclusion with a modified Glenn shunt during right ventricular failure reduced venous congestion compared with the control group. The state of right heart failure was verified through genetic expressional changes. PMID:24396048

  10. Cardiac contractility modulation in heart failure patients: Randomized comparison of signal delivery through one vs. two ventricular leads.

    PubMed

    Röger, Susanne; Said, Samir; Kloppe, Axel; Lawo, Thomas; Emig, Ulf; Rousso, Benny; Gutterman, David; Borggrefe, Martin; Kuschyk, Jürgen

    2017-01-01

    Cardiac contractility modulation (CCM) is an electrical stimulation treatment for symptomatic heart failure (HF) patients. The procedure involves implantation of two ventricular leads for delivery of CCM impulses. The purpose of this study is to compare the efficacy and safety of CCM when the signal is delivered through one vs. two ventricular leads. This prospective blinded randomized trial enrolled 48 patients. Eligible subjects had symptoms despite optimal HF medications, left ventricular ejection fraction <40% and peakVO 2 ≥9ml O 2 /kg/min. All patients received a CCM system with two ventricular leads, and were randomized to CCM active through both or just one ventricular lead; 25 patients were randomized to receive signal delivery through two leads (Group A) and 23 patients to signal delivery through one lead (Group B). The study compared the mean changes from baseline to 6 months follow-up in peakVO 2 , New York Heart Association (NYHA) classification, and quality of life (by MLWHFQ). Following 6 months, similar and significant (p<0.05) improvements from baseline in NYHA (-0.7±0.5 vs. -0.9±0.7) and MLWHFQ (-14±20 vs. -16±22) were observed in Group A and in Group B. PeakVO 2 showed improvement trends in both groups (0.34±1.52 vs. 0.10±2.21ml/kg/min; p=ns). No patient died. Serious adverse event rates (20 events in 10 subjects) were not different between groups. No statistically significant difference was found in any of the study endpoints. The efficacy and safety of CCM in this study were similar when the signal was delivered through either one or two ventricular leads. These results support the potential use of a single ventricular lead for delivery of CCM. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. The angulation of the septal structures impacts ventricular imbalance in atrioventricular septal defects with a common atrioventricular junction.

    PubMed

    Ahmad, Zaheer; Lim, Zek; Roman, Kevin; Haw, Marcus; Anderson, Robert H; Vettukattil, Joseph

    2016-02-01

    Multiplanar re-formatting of full-volume three-dimensional echocardiography data sets offers new insights into the morphology of atrioventricular septal defects. We hypothesised that distortion of the alignment between the atrial and ventricular septums results in imbalanced venous return to the ventricles, with consequent proportional ventricular hypoplasia. A single observer evaluated 31 patients, with a mean age of 52.09 months, standard deviation of 55, and with a range from 2 to 264 months, with atrioventricular septal defects, of whom 17 were boys. Ventricular imbalance, observed in nine patients, was determined by two-dimensional assessment, and confirmed at surgical inspection in selected cases when a univentricular strategy was undertaken. Offline analysis using multiplanar re-formatting was performed. A line was drawn though the length of the ventricular septum and a second line along the plane of the atrial septum, taking the angle between these two lines as the atrioventricular septal angle. We compared the angle between 22 patients with adequately sized ventricles, and those with ventricular imbalance undergoing univentricular repair. In the 22 patients undergoing biventricular repair, the septal angle was 0 in 14 patients; the other eight patients having angles ranging from 1 to 36, with a mean angle of 7.4°, and standard deviation of 11.1°.The mean angle in the nine patients with ventricle imbalance was 28.6°, with a standard deviation of 3.04°, and with a range from 26 to 35°. Of those undergoing univentricular repair, two patients died, with angles of 26 and 30°, respectively. The atrioventricular septal angle derived via multiplanar formatting gives important information regarding the degree of ventricular hypoplasia and imbalance. When this angle is above 25°, patients are likely to have ventricular imbalance requiring univentricular repair.

  12. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization.

    PubMed

    Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E

    2013-07-09

    Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.

  13. A Right Ventricular Mass in a Patient with Squamous Cell Lung Cancer: A Case Report and Review of Literature

    PubMed Central

    Payne, Katie; Parikh, Shailja; Enriquez, Jonathan

    2018-01-01

    Cardiac metastasis is much more common than primary cardiac tumors. Lung cancer is one of the most common primary malignancies to metastasize to the heart. It is not common for metastasis in the heart to present as a cavitary mass. To our knowledge, four cases have been reported in the literature showing metastatic lung cancer to the heart, presenting as a right ventricular mass. PMID:29725564

  14. Left ventricular assist device and drug therapy for the reversal of heart failure.

    PubMed

    Birks, Emma J; Tansley, Patrick D; Hardy, James; George, Robert S; Bowles, Christopher T; Burke, Margaret; Banner, Nicholas R; Khaghani, Asghar; Yacoub, Magdi H

    2006-11-02

    In patients with severe heart failure, prolonged unloading of the myocardium with the use of a left ventricular assist device has been reported to lead to myocardial recovery in small numbers of patients for varying periods of time. Increasing the frequency and durability of myocardial recovery could reduce or postpone the need for subsequent heart transplantation. We enrolled 15 patients with severe heart failure due to nonischemic cardiomyopathy and with no histologic evidence of active myocarditis. All had markedly reduced cardiac output and were receiving inotropes. The patients underwent implantation of left ventricular assist devices and were treated with lisinopril, carvedilol, spironolactone, and losartan to enhance reverse remodeling. Once regression of left ventricular enlargement had been achieved, the beta2-adrenergic-receptor agonist clenbuterol was administered to prevent myocardial atrophy. Eleven of the 15 patients had sufficient myocardial recovery to undergo explantation of the left ventricular assist device a mean (+/-SD) of 320+/-186 days after implantation of the device. One patient died of intractable arrhythmias 24 hours after explantation; another died of carcinoma of the lung 27 months after explantation. The cumulative rate of freedom from recurrent heart failure among the surviving patients was 100% and 88.9% 1 and 4 years after explantation, respectively. The quality of life as assessed by the Minnesota Living with Heart Failure Questionnaire score at 3 years was nearly normal. Fifty-nine months after explantation, the mean left ventricular ejection fraction was 64+/-12%, the mean left ventricular end-diastolic diameter was 59.4+/-12.1 mm, the mean left ventricular end-systolic diameter was 42.5+/-13.2 mm, and the mean maximal oxygen uptake with exercise was 26.3+/-6.0 ml per kilogram of body weight per minute. In this single-center study, we found that sustained reversal of severe heart failure secondary to nonischemic cardiomyopathy could be achieved in selected patients with the use of a left ventricular assist device and a specific pharmacologic regimen. Copyright 2006 Massachusetts Medical Society.

  15. Right ventricular systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery: An observational study.

    PubMed

    Guinot, Pierre Grégoire; Abou-Arab, Osama; Longrois, Dan; Dupont, Herve

    2015-08-01

    Several authors have suggested that right ventricular dysfunction (RVd) may contribute to renal dysfunction in nonsurgical patients. We tested the hypothesis that RVd diagnosed immediately after cardiac surgery may be associated with subsequent development of renal dysfunction and tried to identify the possible mechanisms. A single-centre, prospective observational study. Amiens University Hospital, France. All adult patients undergoing cardiac surgery were considered eligible for participation. Patients who had undergone pulmonary or tricuspid valve surgery, repeat surgery or who underwent immediate postoperative renal replacement therapy were excluded. Data from 74 patients were analysed. Left ventricular and right ventricular function were assessed before surgery and on admission to ICU by transthoracic echocardiography (TTE): left ventricular and right ventricular ejection fractions (LVEF/RVEF), tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (Sr(t)) and right ventricular dilatation. RVd was defined as values in the lowest quartile of at least two echocardiographic variables. Renal dysfunction was defined as an increase in serum creatinine concentration (sCr) on postoperative day 1. All right ventricular TTE variables decreased (P < 0.05) after surgery: RVEF from 50% (49 to 60) to 40% (35 to 50); TAPSE from 22.3 mm (19.4 to 25.3) to 12.2 mm (8.8 to 14.8); and Sr(t) from 15.0 cm s(-1) (12.0 to 18.0) to 8.1 cm s(-1) (6.3 to 9.2). Fourteen (19%) patients had right ventricular dilatation and RVd was present in 23 (31%) patients. Forty patients had a positive variation in sCr. In multivariate analysis, patients with RVd had an odds ratio (OR) of 12.7 [95% confidence interval (95% CI) 2.6 to 63.4, P = 0.02] for development of renal dysfunction. Renal dysfunction was associated with increased central venous pressure but was not associated with cardiac index (CI). These results suggest that early postoperative RVd is associated with a subsequent increase of sCr and that the mechanism involved is congestion (vena cava dilatation/elevated CVP) rather than decreased CI.

  16. Tpeak - Tend and Tpeak - Tend /QT ratio as markers of ventricular arrhythmia risk in cardiac resynchronization therapy patients.

    PubMed

    Barbhaiya, Chirag; Po, Jose Ricardo F; Hanon, Sam; Schweitzer, Paul

    2013-01-01

    Cardiac resynchronization therapy (CRT) increases transmural dispersion of repolarization (TDR) and can be pro-arrhythmic. However, overall arrhythmia risk was not increased in large-scale CRT clinical trials. Increased TDR as measured by T(peak ) -T(end) (TpTe) was associated with arrhythmia risk in CRT in a single-center study. This study investigates whether QT interval, TpTe, and TpTe/QT ratio are associated with ventricular arrhythmias in patients with CRT-defibrillator (CRT-D). Post-CRT-D implant electrocardiograms of 128 patients (age 71.3 years ± 10.3) with at least 2 months of follow-up at our institution's device clinic (mean follow-up of 28.5 months ± 17) were analyzed for QT interval, TpTe, and TpTe/QT ratio. Incidence of ventricular arrhythmias was determined based on routine and directed device interrogations. Appropriate implantable cardioverter-defibrillator therapy for sustained ventricular tachycardia or ventricular fibrillation was delivered in 18 patients (14%), and nonsustained ventricular tachycardia (NSVT) was detected but did not require therapy in 58 patients (45%). Patients who received appropriate defibrillator therapy had increased TpTe/QT ratio (0.24 ± 0.03 ms vs 0.20 ± 0.04, P = 0.0002) and increased TpTe (105.56 ± 20.36 vs 87.82 ± 22.32 ms, P = 0.002), and patients with NSVT had increased TpTe/QT ratio (0.22 ± 0.04 vs 0.20 ± 0.04, P = 0.016). Increased QT interval was not associated with risk of ventricular arrhythmia. The relative risk for appropriate defibrillator therapy of T(p) T(e) /QT ratio ≥ 0.25 was 3.24 (P = 0.016). Increased TpTe and increased TpTe/QT ratio are associated with increased incidence of ventricular arrhythmias in CRT-D. The utility of TpTe interval and TpTe/QT ratio as potentially modifiable risk factors for ventricular arrhythmias in CRT requires further study. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  17. Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction: The Randomized Multicenter Double-Blind Controlled CAREMI Trial (Cardiac Stem Cells in Patients With Acute Myocardial Infarction).

    PubMed

    Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso

    2017-06-23

    Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.

  18. Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica

    PubMed Central

    2010-01-01

    Background Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known. Methods Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn Monodelphis pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer. Results Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion. Conclusions The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development. PMID:20920364

  19. Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica.

    PubMed

    Liddelow, Shane A; Dziegielewska, Katarzyna M; Vandeberg, John L; Saunders, Norman R

    2010-10-05

    Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known. Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn Monodelphis pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer. Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion. The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development.

  20. Histone Deacetylase Adaptation in Single Ventricle Heart Disease and a Young Animal Model of Right Ventricular Hypertrophy

    PubMed Central

    Blakeslee, Weston W.; Demos-Davies, Kimberly M.; Lemon, Douglas D.; Lutter, Katharina M.; Cavasin, Maria A.; Payne, Sam; Nunley, Karin; Long, Carlin S.; McKinsey, Timothy A.; Miyamoto, Shelley D.

    2017-01-01

    Background Histone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac disease. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle heart disease of right ventricular morphology (SV), as well as in a rodent model of right ventricular hypertrophy (RVH). Methods Homogenates of RV explants from non-failing controls and SV children were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day old rat pups were placed in hypoxic conditions and echocardiographic analysis, gene expression, HDAC catalytic activity and isoform expression studies of the RV were performed. Results Class I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in hearts of SV children. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression and elevated class I and class IIb HDAC catalytic activity and protein expression in the RV compared to control. Conclusions These data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. While further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for pre-clinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies. PMID:28549058

  1. Innervation of the rabbit cardiac ventricles.

    PubMed

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles. © 2015 Anatomical Society.

  2. Early assessment of proarrhythmic risk of drugs using the in vitro data and single-cell-based in silico models: proof of concept.

    PubMed

    Abbasi, Mitra; Small, Ben G; Patel, Nikunjkumar; Jamei, Masoud; Polak, Sebastian

    2017-02-01

    To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects. To assess drug proarrhythmic risk, we used a set of in vitro electrophysiological measurements describing ion channel inhibition triggered by the investigated drugs. The Cardiac Safety Simulator version 2.0 (CSS; Simcyp, Sheffield, UK) platform was used to simulate human left ventricular cardiac myocyte action potential models. This study shows the impact of drug concentration changes on particular ionic currents by using available experimental data. The simulation results display safety threshold according to drug concentration threshold and log (threshold concentration/ effective therapeutic plasma concentration (ETPC)). We reproduced the underlying biophysical characteristics of cardiac cells resulted in effects of drugs associated with cardiac arrhythmias (action potential duration (APD) and QT prolongation and TdP) which were observed in published 3D simulations, yet with much less computational burden.

  3. Quasiperiodicity route to chaos in cardiac conduction model

    NASA Astrophysics Data System (ADS)

    Quiroz-Juárez, M. A.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J. L.

    2017-01-01

    It has been suggested that cardiac arrhythmias are instances of chaos. In particular that the ventricular fibrillation is a form of spatio-temporal chaos that arises from normal rhythm through a quasi-periodicity or Ruelle-Takens-Newhouse route to chaos. In this work, we modify the heterogeneous oscillator model of cardiac conduction system proposed in Ref. [Ryzhii E, Ryzhii M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput Meth Prog Bio 2014;117(1):40-49. doi:10.1016/j.cmpb.2014.04.009.], by including an ectopic pacemaker that stimulates the ventricular muscle to model arrhythmias. With this modification, the transition from normal rhythm to ventricular fibrillation is controlled by a single parameter. We show that this transition follows the so-called torus of quasi-periodic route to chaos, as verified by using numerical tools such as power spectrum and largest Lyapunov exponent.

  4. Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: pathological consequences and protective effects of metoprolol

    PubMed Central

    Li, Y; Shi, J; Yang, BF; Liu, L; Han, CL; Li, WM; Dong, DL; Pan, ZW; Liu, GZ; Geng, JQ; Sheng, L; Tan, XY; Sun, DH; Gong, ZH; Gong, YT

    2012-01-01

    BACKGROUND AND PURPOSE Growing evidence suggests that long-term abuse of ketamine does harm the heart and increases the risk of sudden death. The present study was performed to explore the cardiotoxicity of ketamine and the protective effects of metoprolol. EXPERIMENTAL APPROACH Rats and rabbits were divided into control, ketamine, metoprolol alone and ketamine plus metoprolol groups. Ketamine (40 mg·kg−1·day−1, i.p.) and metoprolol (20 mg·kg−1·day−1, p.o.) were administered continuously for 12 weeks in rats and 8 weeks in rabbits. Cardiac function, electrophysiological disturbances, cardiac collagen, cardiomyocte apoptosis and the remodelling-related proteins were evaluated. KEY RESULTS Rabbits treated with ketamine showed decreased left ventricular ejection fraction, slowed ventricular conduction velocity and increased susceptibility to ventricular arrhythmia. Metoprolol prevented these pathophysiological alterations. In ketamine-treated rats, cardiac collagen volume fraction and apoptotic cell number were higher than those of control animals; these effects were prevented by co-administration of metoprolol. Consistently, the expressions of poly (ADP-ribose) polymerases-1, apoptosis-inducing factor and NF-κB-light-chain-enhancer of activated B cells were all increased after ketamine treatment and sharply reduced after metoprolol administration. Moreover, ketamine enhanced sympathetic sprouting, manifested as increased growth-associated protein 43 and tyrosine TH expression. These effects of ketamine were prevented by metoprolol. CONCLUSIONS AND IMPLICATIONS Chronic treatment with ketamine caused significant ventricular myocardial apoptosis, fibrosis and sympathetic sprouting, which altered the electrophysiological properties of the heart and increased its susceptibility to malignant arrhythmia that may lead to sudden cardiac death. Metoprolol prevented the cardiotoxicity of ketamine, indicating a promising new therapeutic strategy. PMID:21883145

  5. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    PubMed

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    PubMed Central

    Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu

    2012-01-01

    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735

  7. Both endothelin-A and endothelin-B receptors are present on adult rat cardiac ventricular myocytes.

    PubMed

    Allen, Bruce G; Phuong, Luu Lien; Farhat, Hala; Chevalier, Dominique

    2003-02-01

    Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.

  8. Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation

    PubMed Central

    Yamaguchi, Yukiko; Cavallero, Susana; Patterson, Michaela; Shen, Hua; Xu, Jian; Kumar, S. Ram; Sucov, Henry M.

    2015-01-01

    The hearts of many mammalian species are surrounded by an extensive layer of fat called epicardial adipose tissue (EAT). The lineage origins and determinative mechanisms of EAT development are unclear, in part because mice and other experimentally tractable model organisms are thought to not have this tissue. In this study, we show that mouse hearts have EAT, localized to a specific region in the atrial–ventricular groove. Lineage analysis indicates that this adipose tissue originates from the epicardium, a multipotent epithelium that until now is only established to normally generate cardiac fibroblasts and coronary smooth muscle cells. We show that adoption of the adipocyte fate in vivo requires activation of the peroxisome proliferator activated receptor gamma (PPARγ) pathway, and that this fate can be ectopically induced in mouse ventricular epicardium, either in embryonic or adult stages, by expression and activation of PPARγ at times of epicardium–mesenchymal transformation. Human embryonic ventricular epicardial cells natively express PPARγ, which explains the abundant presence of fat seen in human hearts at birth and throughout life. PMID:25646471

  9. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes

    PubMed Central

    Yu, Huimin; Smallwood, Philip M.; Wang, Yanshu; Vidaltamayo, Roman; Reed, Randall; Nathans, Jeremy

    2010-01-01

    The closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and eye. In mice, targeted mutations of the genes encoding frizzled 1 (Fz1) and frizzled 2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity gene Vangl2 (Vangl2Lp), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and misorientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans. PMID:20940229

  10. Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow

    PubMed Central

    Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.

    2014-01-01

    Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541

  11. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  12. Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig.

    PubMed Central

    Kaibara, M; Kameyama, M

    1988-01-01

    1. The inhibitory effects of intracellular protons (Hi+) on the L-type Ca2+ channel activity were investigated in single ventricular myocytes of guinea-pigs by using the patch-clamp method in the open-cell-attached patch configuration, where 'run down' of the channel was partially prevented. 2. Hi+ reduced the unitary Ba2+ current of the Ca2+ channel by 10-20% without changing the maximum slope conductance. 3. Hi+ did not alter the number of channels in patches containing one or two channels. 4. Hi+ markedly reduced the mean current normalized by the unitary current, which gave the open-state probability multiplied by the number of channels in the patch. The dose-response curve between Hi+ and the open-state probability indicated half-maximum inhibition at pHi 6.6 and an apparent Hill coefficient of 1. 5. Hi+ shifted both the steady-state activation and inactivation curves in a negative direction by 10-15 mV, and the effects were reversible. 6. Hi+ did not affect the fast open-closed kinetics represented by the C-C-O scheme, apart from increasing the slow time constant of the closed time. 7. Hi+ increased the percentage of blank sweeps and reduced that of non-blank sweeps resulting in a decreased probability of channel opening. 8. Photo-oxidation with Rose Bengal abolished the reducing effect of Hi+ on the open-state probability (Po) in two out of ten experiments, suggesting the possible involvement of histidine residues in the Hi+ effect. 9. The above results indicate that Hi+ inhibits the Ba2+ current mainly by affecting the slow gating mechanism of the channel. PMID:2855346

  13. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells.

    PubMed

    Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk

    2017-10-16

    Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.

  14. Achieving ventricular rate control using metoprolol in β-blocker-naive patients vs patients on chronic β-blocker therapy.

    PubMed

    Kuang, Patricia; Mah, Nathan D; Barton, Cassie A; Miura, Andrea J; Tanas, Laura R; Ran, Ran

    2016-03-01

    The objective of the study is to evaluate the difference in ventricular rate control using an intravenous (IV) metoprolol regimen commonly used in clinical practice in patients receiving chronic β-blocker therapy compared to patients considered β-blocker naive admitted to the emergency department (ED) for atrial fibrillation (AF) with rapid ventricular rate. A single-center retrospective cohort study of adult ED patients who were admitted with a rapid ventricular rate of 120 beats per minute (bpm) or greater and treated with IV metoprolol was performed. Rate control was defined as either a decrease in ventricular rate to less than 100 bpm or a 20% decrease in heart rate to less than 120 bpm after metoprolol administration. Patient demographics, differences in length of stay, and adverse events were recorded. A total of 398 patients were included in the study, with 79.4% (n=316) receiving chronic β-blocker therapy. Patients considered to be β-blocker naive were more likely to achieve successful rate control with IV metoprolol compared to patients on chronic β-blocker therapy (56.1% vs 42.4%; P=.03). β-Blocker-naive status was associated with a shorter length of stay in comparison to patients receiving chronic β-blocker therapy (1.79 vs 2.64 days; P<.01). Intravenous metoprolol for the treatment of atrial fibrillation with rapid ventricular rate was associated with a higher treatment response in patients considered β-blocker naive compared to patients receiving chronic β-blocker therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Efficacy of Flecainide in the Treatment of Catecholaminergic Polymorphic Ventricular Tachycardia: A Randomized Clinical Trial.

    PubMed

    Kannankeril, Prince J; Moore, Jeremy P; Cerrone, Marina; Priori, Silvia G; Kertesz, Naomi J; Ro, Pamela S; Batra, Anjan S; Kaufman, Elizabeth S; Fairbrother, David L; Saarel, Elizabeth V; Etheridge, Susan P; Kanter, Ronald J; Carboni, Michael P; Dzurik, Matthew V; Fountain, Darlene; Chen, Heidi; Ely, E Wesley; Roden, Dan M; Knollmann, Bjorn C

    2017-07-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal genetic arrhythmia syndrome characterized by polymorphic ventricular tachycardia with physical or emotional stress, for which current therapy with β-blockers is incompletely effective. Flecainide acetate directly suppresses sarcoplasmic reticulum calcium release-the cellular mechanism responsible for triggering ventricular arrhythmias in CPVT-but has never been assessed prospectively. To determine whether flecainide dosed to therapeutic levels and added to β-blocker therapy is superior to β-blocker therapy alone for the prevention of exercise-induced arrhythmias in CPVT. This investigator-initiated, multicenter, single-blind, placebo-controlled crossover clinical trial was conducted from December 19, 2011, through December 29, 2015, with a midtrial protocol change at 10 US sites. Patients with a clinical diagnosis of CPVT and an implantable cardioverter-defibrillator underwent a baseline exercise test while receiving maximally tolerated β-blocker therapy that was continued throughout the trial. Patients were then randomized to treatment A (flecainide or placebo) for 3 months, followed by exercise testing. After a 1-week washout period, patients crossed over to treatment B (placebo or flecainide) for 3 months, followed by exercise testing. Patients received oral flecainide or placebo twice daily, with the dosage guided by trough serum levels. The primary end point of ventricular arrhythmias during exercise was compared between the flecainide and placebo arms. Exercise tests were scored on an ordinal scale of worst ventricular arrhythmia observed (0 indicates no ectopy; 1, isolated premature ventricular beats; 2, bigeminy; 3, couplets; and 4, nonsustained ventricular tachycardia). Of 14 patients (7 males and 7 females; median age, 16 years [interquartile range, 15.0-22.5 years]) randomized, 13 completed the study. The median baseline exercise test score was 3.0 (range, 0-4), with no difference noted between the baseline and placebo (median, 2.5; range, 0-4) exercise scores. The median ventricular arrhythmia score during exercise was significantly reduced by flecainide (0 [range, 0-2] vs 2.5 [range, 0-4] for placebo; P < .01), with complete suppression observed in 11 of 13 patients (85%). Overall and serious adverse events did not differ between the flecainide and placebo arms. In this randomized clinical trial of patients with CPVT, flecainide plus β-blocker significantly reduced ventricular ectopy during exercise compared with placebo plus β-blocker and β-blocker alone. clinicaltrials.gov Identifier: NCT01117454.

  16. Reference values of left heart echocardiographic dimensions and mass in male peri-pubertal athletes.

    PubMed

    Cavarretta, Elena; Maffessanti, Francesco; Sperandii, Fabio; Guerra, Emanuele; Quaranta, Federico; Nigro, Antonia; Minati, Monia; Rebecchi, Marco; Fossati, Chiara; Calò, Leonardo; Pigozzi, Fabio

    2018-01-01

    Background Several articles have proposed reference values in healthy paediatric subjects, but none of them has evaluated a large population of healthy trained adolescents. Design The study purpose was to establish normal echocardiographic measurements of left heart (aortic root, left atrium and left ventricular dimensions and mass) in relation to age, weight, height, body mass index, body surface area and training hours in this specific population. Methods We retrospectively evaluated 2151 consecutive, healthy, peri-pubertal athletes (100% male, mean age 12.4 ± 1.4 years, range 8-18) referred to a single centre for pre-participation screening. All participants were young soccer athletes who trained for a mean of 7.2 ± 1.1 h per week. Results Left ventricular internal diameters, wall thickness, left ventricular mass, aortic root and left atrium diameters were significantly correlated to age, body surface area, height and weight ( p < 0.01). Age, height, weight and body surface area were found associated with chamber size, while body mass index and training hours were not. Inclusion of both age and body size parameters in the statistical models resulted in improved overall explained variance for diameters and left ventricular mass. Conclusion Equations, mean values and percentile charts for the different age groups may be useful as reference data in efficiently assessing left ventricular parameters in young athletes.

  17. Effect of chronic right ventricular apical pacing on left ventricular function.

    PubMed

    O'Keefe, James H; Abuissa, Hussam; Jones, Philip G; Thompson, Randall C; Bateman, Timothy M; McGhie, A Iain; Ramza, Brian M; Steinhaus, David M

    2005-03-15

    The determinants of change in left ventricular (LV) ejection fraction (EF) over time in patients with impaired LV function at baseline have not been clearly established. Using a nuclear database to assess changes in LV function over time, we included patients with a baseline LVEF of 25% to 40% on a gated single-photon emission computed tomographic study at rest and only if second-gated photon emission computed tomography performed approximately 18 months after the initial study showed an improvement in LVEF at rest of > or =10 points or a decrease in LVEF at rest of > or =7 points. In all, 148 patients qualified for the EF increase group and 59 patients for the EF decrease group. LVEF on average increased from 33 +/- 4% to 51 +/- 8% in the EF increase group and decreased from 35 +/- 4% to 25 +/- 5% in the EF decrease group. The strongest multivariable predictor of improvement of LVEF was beta-blocker therapy (odds ratio 3.9, p = 0.002). The strongest independent predictor of LVEF decrease was the presence of a permanent right ventricular apical pacemaker (odds ratio 6.6, p = 0.002). Thus, this study identified beta-blocker therapy as the major independent predictor for improvement in LVEF of > or =10 points, whereas a permanent pacemaker (right ventricular apical pacing) was the strongest predictor of a LVEF decrease of > or =7 points.

  18. Left ventricular early diastolic inflow velocity and atrial ventricular plane downward velocity: useful parameters to test diastolic function in clinical practice? Diastolic parameters tested in a clinical setting.

    PubMed

    Winter, R; Gudmundsson, P; Ericsson, G; Willenheimer, R

    2001-06-01

    To study the clinical value of the colour-M-mode slope of the early diastolic left ventricular filling phase (Vp) and the early diastolic downward M-mode slope of the left atrioventricular plane displacement (EDS), compared with diastolic function assessed by traditional Doppler evaluation. In 65 consecutive patients EDS and Vp were compared with a four-degree traditional diastolic function classification, based on pulsed Doppler assessment of the early to atrial transmitral flow ratio (E/A), the E-wave deceleration time (Edt), and the systolic to diastolic (S/D) pulmonary venous inflow ratio. Vp (P=0.006) and EDS (P=0.045) were related to traditional diastolic function (Kruskal--Wallis analysis). EDS showed a trend brake between the moderate and severe diastolic dysfunction groups by traditional Doppler evaluation. Vp and EDS correlated weakly in simple linear regression analysis (r=0.33). Vp and EDS discriminated poorly between normal and highly abnormal diastolic function. Vp and EDS were significantly related to diastolic function by traditional Doppler evaluation. They were, however, not useful as single parameters of left ventricular diastolic function due to a small difference between normal and highly abnormal values, allowing for little between-measurement variability. Consequently, these methods for the evaluation of left ventricular diastolic function do not add significantly to traditional Doppler evaluation.

  19. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon.

    PubMed

    Edelmann, Kathrin; Glashauser, Lena; Sprungala, Susanne; Hesl, Birgit; Fritschle, Maike; Ninkovic, Jovica; Godinho, Leanne; Chapouton, Prisca

    2013-09-01

    The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia. Copyright © 2013 Wiley Periodicals, Inc.

  20. DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block.

    PubMed

    Ouali, Sana; Neffeti, Elyes; Ghoul, Karima; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia

    2010-05-01

    Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of the study was to determine whether elderly patients with implanted pacemaker for complete atrioventricular block gain significant benefit from dual-chamber (DDD) compared with single-chamber ventricular demand (VVIR). The study was designed as a double-blind randomized two-period crossover study-each pacing mode was maintained for 3 months. Thirty patients (eight men, mean age 76.5 +/- 4.3 years) with implanted PM were submitted to a standard protocol, which included an interview, functional class assessment, quality of life (QoL) questionnaires, 6-minute walk test, and transthoracic echocardiographic examinations. QoL was measured by the SF-36. All these parameters were obtained on DDD mode pacing and VVIR mode pacing. Paired data were compared. QoL was significantly different between the two groups and showed the best values in DDD. Overall, no patient preferred VVIR mode, 18 preferred DDD mode, and 12 expressed no preference. No differences in mean walking distances were observed between patients with single-chamber and dual-chamber pacing. VVI pacing elicited marked decrease in left ventricle ejection fraction and significant enlargement of the left atrium. DDD pacing resulted in significant increase of the peak systolic velocities in lateral mitral annulus and septal mitral annulus. Early diastolic velocities on both sides of mitral annulus did not change. In active elderly patients with complete heart block, DDD pacing is associated with improved quality of life and systolic ventricular function compared with VVI pacing.

  1. Long-term outcome of catheter ablation for left posterior fascicular ventricular tachycardia with the development of left posterior fascicular block and characteristics of repeat procedures.

    PubMed

    Luo, Bin; Zhou, Gongbu; Guo, Xiaogang; Liu, Xu; Yang, Jiandu; Sun, Qi; Ma, Jian; Zhang, Shu

    2017-06-01

    The present study aimed to retrospectively investigate long-term clinical outcomes of patients undergoing catheter ablation of left posterior fascicular ventricular tachycardia (LPF-VT) with the development of left posterior fascicular block (LPF block) and characteristics of repeat procedures. A total of 195 patients (mean age 29.76±1.03years, 16.4% females) who underwent catheter ablation for LPF-VT were consecutively enrolled. The earliest ventricular potential with a single fused Purkinje potential (PP) during VT and the PP located in the inferior-apical or mid-apical septum during SR were targeted for linear ablation. The endpoint of the procedure was noninducible VT and development of new-onset LPF block. Follow-up with clinic visits or telephonic interviews, electrocardiogram (ECG), or Holter monitoring was performed after the procedure. With a median follow-up of 85 (18,181) months, 20 patients were censored and 152 of 175 (86.86%) patients had long-term freedom from VT after a single procedure. No statistical difference in the outcome of catheter ablation of LPF-VT was found between inducible and non-inducible groups (P=0.89). Twenty-three patients exhibited recurrent LPF-VT. Seven of 23 patients developed new-onset left upper septal ventricular tachycardia that was successfully ablated. All the patients undergoing repeat procedures had freedom from VT. No procedural complications occurred. Ablation of LPF-VT using the development of LPF block as the endpoint is associated with a high procedural success rate. No difference in freedom from LPF-VT was found between inducible and non-inducible patients. New-onset LPF block recovery and non-early PP-QRS interval can be the predictors of LPF-VT repeat procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Single-centre experience with the Thoratec paracorporeal ventricular assist device for patients with primary cardiac failure.

    PubMed

    Kirsch, Matthias; Vermes, Emmanuelle; Damy, Thibaud; Nakashima, Kuniki; Sénéchal, Mélanie; Boval, Bernadette; Drouet, Ludovic; Loisance, Daniel

    2009-01-01

    Temporary mechanical circulatory support may be indicated in some patients with cardiac failure refractory to conventional therapy, as a bridge to myocardial recovery or transplantation. To evaluate outcomes in cardiogenic shock patients managed by the primary use of a paracorporeal ventricular assist device (p-VAD). We did a retrospective analysis of demographics, clinical characteristics and survival of patients assisted with a Thoratec p-VAD. p-VADs were used in 84 patients with cardiogenic shock secondary to acute myocardial infarction (35%), idiopathic (31%) or ischaemic (12%) cardiomyopathy, myocarditis or other causes (23%). Before implantation, 23% had cardiac arrest, 38% were on a ventilator and 31% were on an intra-aortic balloon pump. Cardiac index was 1.6+/-0.5 L/min/m(2) and total bilirubin levels were 39+/-59 micromol/L. During support, 29 patients (35%) died in the intensive care unit and seven (10%) died after leaving. Forty-seven patients (56%) were weaned or transplanted, with one still under support. Despite significantly more advanced preoperative end-organ dysfunction, survival rates were similar in patients with biventricular devices (74%) and those undergoing isolated left ventricular support (24%) (63% versus 45%, respectively; p=0.2). Actuarial survival estimates after transplantation were 78.7+/-6.3%, 73.4+/-6.9% and 62.6+/-8.3% at 1, 3 and 5 years, respectively. Our experience validates the use of p-VAD as a primary device to support patients with cardiogenic shock. In contrast to short-term devices, p-VADs provide immediate ventricular unloading and pulsatile perfusion in a single procedure. Biventricular support should be used liberally in patients with end-organ dysfunction.

  3. Assessment of Diastolic Function in Single Ventricle Patients Following the Fontan Procedure

    PubMed Central

    Margossian, Renee; Sleeper, Lynn A.; Pearson, Gail D.; Barker, Piers C.; Mertens, Luc; Quartermain, Michael D.; Su, Jason T.; Shirali, Girish; Chen, Shan; Colan, Steven D.

    2016-01-01

    Objectives Patients with functional single ventricles (FSV) following the Fontan procedure have abnormal cardiac mechanics. We sought to determine factors that influence diastolic function and to describe associations of diastolic function with current clinical status. Methods Echocardiograms were obtained as part of the Pediatric Heart Network Fontan Cross-Sectional Study. Diastolic function grade (DFG) was assessed as normal (grade 0), impaired relaxation (grade 1), pseudonormalization (grade 2), restrictive (grade 3). Studies were also classified dichotomously (restrictive pattern present or absent). Relationships between DFG and pre-Fontan variables (e.g., ventricular morphology, age at Fontan, history of volume-unloading surgery), and current status (e.g., systolic function, valvar regurgitation, exercise performance) were explored. Results DFG was calculable in 326/546 subjects (60%); mean age = 11.7±3.3 years. Overall, 32% of patients had grade 0, 9% grade 1, 37% grade 2, and 22% grade 3. Although there was no association between ventricular morphology and DFG, there was an association between ventricular morphology and E’, which was lowest in those with right ventricular morphology (p<.001); this association remained significant when using z-scores adjusted for age (p=<.001). DFG was associated with achieving maximal effort on exercise testing (p=.004); the majority (64%) of those not achieving maximal effort had DFG 2 or 3.No additional significant associations of DFG with laboratory or clinical measures were identified. Conclusion Assessment of diastolic function by current algorithms results in a high percentage of patients with abnormal DFG, but we found few clinically or statistically significant associations. This may imply a lack of impact of abnormal diastolic function upon clinical outcome in this cohort, or may indicate that the methodology may not be applicable to pediatric FSV patients. PMID:27624592

  4. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr

    1996-01-01

    Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.

  5. The dorso-lateral recess of the hypothalamic ventricle in neonatal rats.

    PubMed

    Menéndez, A; Alvarez-Uría, M

    1987-10-01

    Light and electron microscopy of the hypothalamic ventricle in neonatal rats demonstrate morphological specializations of the ventricular wall at the level of the premammillary region of the third ventricle. The morphological features are: (1) A ventricular recess that we have called the "hypothalamic dorso-lateral recess" (HDR). (2) The presence of intraventricular capillaries near the dorso-lateral recess. (3) The HDR possessing a specialized ependymal lining; this consists of non-ciliated cells with short microvilli and bleb-like processes. (4) The existence of cerebrospinal fluid-contacting neurons within the HDR. (5) The presence of numerous phagocytic supraependymal cells. The HDR is not found in adult rats. This indicates that the dorso-lateral recess may play a physiological role during development.

  6. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    PubMed

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  7. Dilation and Hypertrophy: A Cell-Based Continuum Mechanics Approach Towards Ventricular Growth and Remodeling

    NASA Astrophysics Data System (ADS)

    Ulerich, J.; Göktepe, S.; Kuhl, E.

    This manuscript presents a continuum approach towards cardiac growth and remodeling that is capable to predict chronic maladaptation of the heart in response to changes in mechanical loading. It is based on the multiplicative decomposition of the deformation gradient into and elastic and a growth part. Motivated by morphological changes in cardiomyocyte geometry, we introduce an anisotropic growth tensor that can capture both hypertrophic wall thickening and ventricular dilation within one generic concept. In agreement with clinical observations, we propose wall thickening to be a stress-driven phenomenon whereas dilation is introduced as a strain-driven process. The features of the proposed approach are illustrated in terms of the adaptation of thin heart slices and in terms overload-induced dilation in a generic bi-ventricular heart model.

  8. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer

    PubMed Central

    Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2001-01-01

    When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647

  9. Electrophysiological effects of FK664, a new cardiotonic agent, on preparations from guinea pig ventricle and from rabbit sino-atrial node.

    PubMed

    Kodama, I; Anno, T; Sudo, Y; Satake, N; Shibata, S

    1989-05-01

    Effects of the cardiotonic agent FK664, 6-(3, 4-dimethoxy-phenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-dihydro-2 (1H)-pyrimidone, on isolated guinea pig ventricular muscles and rabbit sinus node pacemaker cells were studied using micro-electrode techniques. In ventricular muscles driven at 0.5-1.0 Hz, FK664 above 3 mumol.litre-1 caused an increase in contractile force and a shortening of time to peak tension. This positive inotropic effect of FK664 was accompanied by a slight elevation of the early plateau phase of the action potential, while other action potential variables were unaffected. The change in contractile force induced by FK664 was abolished in a low Ca2+ medium (0.12 mmol.litre-1) or by treatment with ryanodine (2 mumol.litre-1), whereas it was relatively well preserved in the preparations pretreated with nefedipine (1 mumol.litre-1). The slow action potentials induced by isoprenaline (0.3 mumol.litre-1) in high K+ medium (30 mmol.litre-1) and the slow inward current measured by single sucrose gap voltage clamp at a holding potential of -40 mV were unaffected by FK664. In sinus node pacemaker cells, FK664 (1-10 mumol.litre-1) caused a dose dependent acceleration of phase 4 depolarisation and a shortening of spontaneous firing cycle length. This positive chronotropic effect of FK664 was markedly inhibited in a low Ca2+ medium (0.3 mmol.litre-1). These findings suggest that FK664 has positive inotropic and chronotropic effects on the heart, due to an enhancement of transsarcolemmal calcium influx through the low threshold, dihydropyridine insensitive Ca2+ channel population.

  10. Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte

    PubMed Central

    Gauthier, Laura Doyle; Greenstein, Joseph L.; Winslow, Raimond L.

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function. PMID:22783206

  11. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    PubMed

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  12. Amiodarone inhibits sarcolemmal but not mitochondrial KATP channels in Guinea pig ventricular cells.

    PubMed

    Sato, Toshiaki; Takizawa, Taichi; Saito, Tomoaki; Kobayashi, Satoru; Hara, Yukio; Nakaya, Haruaki

    2003-12-01

    ATP-sensitive K(+) (KATP) channels are present on the sarcolemma (sarcKATP channels) and mitochondria (mitoKATP channels) of cardiac myocytes. Amiodarone, a class III antiarrhythmic drug, reduces sudden cardiac death in patients with organic heart disease. The objective of the present study was to investigate the effects of amiodarone on sarcKATP and mitoKATP channels. Single sarcKATP channel current and flavoprotein fluorescence were measured in guinea pig ventricular myocytes to assay sarcKATP and mitoKATP channel activity, respectively. Amiodarone inhibited the sarcKATP channel currents in a concentration-dependent manner without affecting its unitary amplitude. The IC50 values were 0.35 microM in the inside-out patch exposed to an ATP-free solution and 2.8 microM in the cell-attached patch under metabolic inhibition, respectively. Amiodarone (10 microM) alone did not oxidize the flavoprotein. In addition, the oxidative effect of the mitoKATP channel opener diazoxide (100 microM) was unaffected by amiodarone. Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca(2+) overload, and the intensity of rhod-2 fluorescence increased to 246 +/- 16% of baseline (n = 9). Amiodarone did not alter the ouabain-induced mitochondrial Ca(2+) overload (236 +/- 10% of baseline, n = 7). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca(2+) overload (158 +/- 15% of baseline, n = 8, p < 0.05 versus ouabain); this effect was not abolished by amiodarone (154 +/- 10% of baseline, n = 8, p < 0.05 versus ouabain). These results suggest that amiodarone inhibits sarcKATP but not mitoKATP channels in cardiac myocytes. Such an action of amiodarone may effectively prevent ischemic arrhythmias without causing ischemic damage.

  13. Angina pectoris in a child with sickle cell anemia.

    PubMed

    Hamilton, W; Rosenthal, A; Berwick, D; Nadas, A S

    1978-06-01

    A 7-year-old black boy with sickle cell disease, Wolff-Parkinson-White syndrome, mild left ventricular dysfunction, and normal coronary arteries developed angina pectoris five months after cessation of hypertransfusion therapy. Exercise-induced ECG ST segment depression associated with angina disappeared following transfusion therapy.

  14. Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1α-related defense mechanisms.

    PubMed

    Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki

    2013-01-18

    Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)-expressing cells and heart-specific ChAT transgenic (ChAT-tg) mice. Compared with cardiomyocytes of wild-type (WT) mice, those of the ChAT-tg mice had high levels of ACh and hypoxia-inducible factor (HIF)-1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT-overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT-tg mice showed similar hemodynamics; after MI, however, the ChAT-tg mice had better survival than did the WT mice. In the ChAT-tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post-MI remodeling. The ChAT-tg heart was more resistant to ischemia-reperfusion injury than was the WT heart. These results suggest that the activated cardiac ACh-HIF-1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self-defense against ischemia.

  15. Left ventricular functions in children with newly diagnosed Graves' disease. A single-center study from Upper Egypt.

    PubMed

    Metwalley, Kotb Abbass; Farghaly, Hekma Saad; Abdelhamid, Abdelrahman

    2018-01-01

    This study aimed to evaluate the left ventricular (LV) functions in a cohort of children with Graves' disease (GD). This is a cross-sectional case-control study. It included 36 children with GD and 36 healthy children matched for age and gender. Thyroid hormones (TSH, FT4, and FT3) and anti-thyroid autoantibodies [anti-thyroid peroxidase (anti-TPO), thyrotropin receptor (TRAbs), and thyroglobulin antibodies] were measured. Conventional and tissue Doppler imaging (TDI) echocardiographies were used to assess left ventricular systolic and diastolic functions. LV mass index (LVMI) and myocardial performance index (MPI) were also measured. Compared to healthy children, conventional echocardiography of patients with GD revealed higher LVMI (P = 0.001) indicating LV hypertrophy but normal LV functions while TDI revealed lower Em/Am ratio indicating LV diastolic dysfunction (P = 0.001). Significant correlations were reported between FT4 with LVMI (P = 0.05), Em/Am (P = 0.01), and MPI (P = 0.01). In multivariate analysis, a positive correlation was identified between FT4 with MPI (OR = 1.17; 95% CI = 1.09-1.15; P = 0.001). Children with newly diagnosed GD may have significant subclinical changes in LV structure and function (diastolic and global). TDI is more sensitive than conventional Doppler in detecting LV dysfunction. These findings highlight the importance of early monitoring of children with GD for left ventricular mass index and diastolic function. What is Known: • There is an increased risk for cardiac abnormalities in children with Graves' disease (GD). • Limited studies assessed left ventricular function in patients with GD. What is New: • Children with newly diagnosed GD may have significant subclinical changes in left ventricular structure and functions. • Children with newly diagnosed GD should be monitored for left ventricular mass index and diastolic function.

  16. ASSESSMENT OF DIASTOLIC DYSFUNCTION, ARTERIAL STIFFNESS, AND CAROTID INTIMA-MEDIA THICKNESS IN PATIENTS WITH ACROMEGALY.

    PubMed

    Cansu, Güven Barış; Yılmaz, Nusret; Yanıkoğlu, Atakan; Özdem, Sebahat; Yıldırım, Aytül Belgi; Süleymanlar, Gültekin; Altunbaş, Hasan Ali

    2017-05-01

    Early diagnosis and treatment of cardiovascular diseases, the most frequent cause of morbidity and mortality in acromegaly, may be an efficient approach to extending the lifespan of affected patients. Therefore, it is crucial to determine any cardiovascular diseases in the subclinical period. The study objectives were to determine markers of subclinical atherosclerosis and asses heart structure and function. This was a cross-sectional, single-center study of 53 patients with acromegaly and 22 age- and sex-matched healthy individuals. Carotid intima-media thickness (CIMT), pulse-wave velocity (PWV), and echocardiographic data were compared between these groups. CIMT and PWV were higher in the acromegaly group than in the healthy group (P = .008 and P = .002, respectively). Echocardiography showed that left ventricular diastolic dysfunction was present in 11.3% of patients. Left ventricular mass index and left atrial volume index were higher in the patients (P = .016 and P<.001, respectively). No differences in the CIMT, PWV, or echocardiographic measurements were identified between the patients with biochemically controlled and uncontrolled acromegaly and the control group. Our results showed that subclinical atherosclerosis (i.e., CIMT and PWV markers) and heart structure and function were worse in patients with acromegaly than in healthy individuals. Because there were no differences in these parameters between patients with controlled and uncontrolled acromegaly, our results suggest that the structural and functional changes do not reverse with biochemical control. AA = active acromegaly BSA = body surface area CA = biochemically controlled acromegaly CH = concentric hypertrophy CIMT = carotid intima-media thickness DBP = diastolic blood pressure DM = diabetes mellitus ECHO = echocardiography EDV = enddiastolic volume EF = ejection fraction ESV = endsystolic volume GH = growth hormone HC = healthy control HL = hyperlipidemia HT = hypertension IGF-1 = insulin-like growth factor 1 LA = left atrial LAV = left atrial volume LAVI = left atrial volume index LV = left ventricular LVDD = left ventricular diastolic dysfunction LVEF = left ventricular ejection fraction LVH = left ventricular hypertrophy LVMI = left ventricular mass index PWV = pulse-wave velocity RWT = relative wall thickness.

  17. Left ventricular torsion assessed by two-dimensional echocardiography speckle tracking as a predictor of left ventricular remodeling and short-term outcome following primary percutaneous coronary intervention for acute myocardial infarction: A single-center experience.

    PubMed

    Awadalla, Hany; Saleh, Mohamed Ayman; Abdel Kader, Mohamed; Mansour, Amr

    2017-08-01

    Left ventricular (LV) torsion is a novel method to assess systolic LV function. This study aimed at exploring the utility of 2D speckle tracking-based assessment of left ventricular torsion in patients with acute myocardial infarction (AMI) undertaking primary percutaneous intervention (pPCI) in predicting left ventricular remodeling. The study included 115 patients (mean±SD, age 52.2±9.67, males 84.3%) who underwent pPCI for AMI. Echocardiographic assessment of LV torsion by two-dimensional speckle tracking was performed early after the index pPCI. Patients underwent repeat echocardiography at 6 months to detect remodeling. LV torsion in the acute setting was significantly lower in those who demonstrated LV remodeling at follow-up compared to those without remodeling (7.56±1.95 vs 15.16±4.65; P<.005). Multivariate analysis identified peak CK & CK-MB elevation (β=-0.767 and -0.725; P<.001), SWMA index (β=-0.843; P<.001), and Simpson's derived LV ejection fraction (LVEF; β=0.802; P<.001) as independent predictors of baseline LV torsion. It also identified peak LV torsion (β: 0.27; 95% CI: 0.15-0.5, P=.001) and SWMA index (β: 1.07, 95% CI: 1.03-1.12, P=.005) as independent predictors of LV remodeling. Baseline Killip's grades II and higher (β: 48.6; 95% CI 5.5-428, P<.001) and diabetes mellitus (β: 29.7; 95% CI 1.1-763, P<.05) were independent predictors of mortality. Left ventricular torsion in acute MI setting is impaired and predicts subsequent LV remodeling at 6-month follow-up. © 2017, Wiley Periodicals, Inc.

  18. Dissociation of hemodynamic and electrocardiographic indexes of myocardial ischemia in pigs with hibernating myocardium and sudden cardiac death.

    PubMed

    Pizzuto, Matthew F; Suzuki, Gen; Banas, Michael D; Heavey, Brendan; Fallavollita, James A; Canty, John M

    2013-06-15

    Many survivors of sudden cardiac death (SCD) have normal global ventricular function and severe coronary artery disease but no evidence of symptomatic ischemia or infarction before the development of lethal ventricular arrhythmias, and the trigger for ventricular tachycardia (VT)/ventricular fibrillation (VF) remains unclear. We sought to identify the role of spontaneous ischemia and temporal hemodynamic factors preceding SCD using continuous telemetry of left ventricular (LV) pressure and the ECG for periods up to 5 mo in swine (n = 37) with hibernating myocardium who experience spontaneous VT/VF in the absence of heart failure or infarction. Hemodynamics and ST deviation at the time of VT/VF were compared with survivors with hibernating myocardium as well as sham controls. All episodes of VT/VF occurred during sympathetic activation and were initiated by single premature ventricular contractions, and the VT degenerated into VF in ∼ 30 s. ECG evidence of ischemia was infrequent and no different from those that survived. Baseline hemodynamics were no different among groups, but LV end-diastolic pressure during sympathetic activation was higher at the time of SCD (37 ± 4 vs. 26 ± 4 mmHg, P < 0.05) and the ECG demonstrated QT shortening (155 ± 4 vs. 173 ± 5 ms, P < 0.05). The week before SCD, both parameters were no different from survivors. These data indicate that there are no differences in the degree of sympathetic activation or hemodynamic stress when VT/VF develops in swine with hibernating myocardium. The transiently elevated LV end-diastolic pressure and QT shortening preceding VT/VF raises the possibility that electrocardiographically silent subendocardial ischemia and/or mechanoelectrical feedback serve as a trigger for the development of SCD in chronic ischemic heart disease.

  19. An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis)

    PubMed

    Link, M S; Wang, P J; Pandian, N G; Bharati, S; Udelson, J E; Lee, M Y; Vecchiotti, M A; VanderBrink, B A; Mirra, G; Maron, B J; Estes, N A

    1998-06-18

    The syndrome of sudden death due to low-energy trauma to the chest wall (commotio cordis) has been described in young sports participants, but the mechanism is unknown. We developed a swine model of commotio cordis in which a low-energy impact to the chest wall was produced by a wooden object the size and weight of a regulation baseball. This projectile was thrust at a velocity of 30 miles per hour and was timed to the cardiac cycle. We first studied 18 young pigs, 6 subjected to multiple chest impacts and 12 to single impacts. Of the 10 impacts occurring within the window from 30 to 15 msec before the peak of the T wave on the electrocardiogram, 9 produced ventricular fibrillation. Ventricular fibrillation was not produced by impacts at any other time during the cardiac cycle. Of the 10 impacts sustained during the QRS complex, 4 resulted in transient complete heart block. We also studied whether the use of safety baseballs, which are softer than standard ones, would reduce the risk of arrhythmia. A total of 48 additional animals sustained up to three impacts during the T-wave window of vulnerability to ventricular fibrillation with a regulation baseball and safety baseballs of three degrees of hardness. We found that the likelihood of ventricular fibrillation was proportional to the hardness of the ball, with the softest balls associated with the lowest risk (two instances of ventricular fibrillation after 26 impacts, as compared with eight instances after 23 impacts with regulation baseballs). This experimental model of commotio cordis closely resembles the clinical profile of this catastrophic event. Whether ventricular fibrillation occurred depended on the precise timing of the impact. Safety baseballs, as compared with regulation balls, may reduce the risk of commotio cordis.

  20. The Role of Spatial Dispersion of Repolarization in Inherited and Acquired Sudden Cardiac Death Syndromes

    PubMed Central

    Antzelevitch, Charles

    2007-01-01

    This review examines the role of spatial electrical heterogeneity within ventricular myocardium on the function of the heart in health and disease. The cellular basis for transmural dispersion of repolarization (TDR) is reviewed and the hypothesis that amplification of spatial dispersion of repolarization underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies is evaluated. The role of TDR in the long QT, short QT and Brugada syndromes as well as catecholaminergic polymorphic ventricular tachycardia (CPVT) are critically examined. In the long QT Syndrome, amplification of TDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells, whereas in the Brugada Syndrome, it is thought to be due to selective abbreviation of the APD of right ventricular (RV) epicardium. Preferential abbreviation of APD of either endocardium or epicardium appears to be responsible for amplification of TDR in the short QT syndrome. In catecholaminergic polymorphic VT, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. In conclusion, the long QT, short QT, Brugada and catecholaminergic polymorphic VT syndromes are pathologies with very different phenotypes and etiologies, but which share a common final pathway in causing sudden cardiac death. PMID:17586620

  1. Ferret-mouse differences in interkinetic nuclear migration and cellular densification in the neocortical ventricular zone.

    PubMed

    Okamoto, Mayumi; Shinoda, Tomoyasu; Kawaue, Takumi; Nagasaka, Arata; Miyata, Takaki

    2014-09-01

    The thick outer subventricular zone (OSVZ) is characteristic of the development of human neocortex. How this region originates from the ventricular zone (VZ) is largely unknown. Recently, we showed that over-proliferation-induced acute nuclear densification and thickening of the VZ in neocortical walls of mice, which lack an OSVZ, causes reactive delamination of undifferentiated progenitors and invasion by these cells of basal areas outside the VZ. In this study, we sought to determine how VZ cells behave in non-rodent animals that have an OSVZ. A comparison of mid-embryonic mice and ferrets revealed: (1) the VZ is thicker and more pseudostratified in ferrets. (2) The soma and nuclei of VZ cells were horizontally and apicobasally denser in ferrets. (3) Individual endfeet were also denser on the apical (ventricular) surface in ferrets. (4) In ferrets, apicalward nucleokinesis was less directional, whereas basalward nucleokinesis was more directional; consequently, the nuclear density in the periventricular space (within 16 μm of the apical surface) was smaller in ferrets than in mice, despite the nuclear densification seen basally in ferrets. These results suggest that species-specific differences in nucleokinesis strategies may have evolved in close association with the magnitudes and patterns of nuclear stratification in the VZ. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Single cardiac ventricular myosins are autonomous motors

    PubMed Central

    Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2018-01-01

    Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825

  3. In vitro chronotropic effects of Erythrina senegalensis DC (Fabaceae) aqueous extract on mouse heart slice and pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain

    2015-05-13

    Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Lessons learned from 150 continuous-flow left ventricular assist devices: a single institutional 7 year experience.

    PubMed

    Tsiouris, Athanasios; Paone, Gaetano; Nemeh, Hassan W; Brewer, Robert J; Borgi, Jamil; Hodari, Arielle; Morgan, Jeffrey A

    2015-01-01

    Continuous-flow (CF) left ventricular assist devices (LVADs) have become the standard of care for patients with advanced heart failure refractory to optimal medical therapy. The goal of this study was to review our 7 year single institutional experience with CF LVADs. Mean age was 50.4 + 12.5 (17-69) years for bridge-to-transplantation (BTT) patients and 57.6 + 10.4 (31-81) years for destination therapy (DT) patients (p < 0.001). Overall, 38 patients (26%) were female and 58 (41%) were African American. Etiology of heart failure was ischemic in 54 patients (37%) and nonischemic in 93 patients (63%). Overall survival at 30 days, 6 months, 12 months, and 2 years was 93%, 89%, 84%, and 81%, respectively. Gastrointestinal bleeding (GIB) was the most common complication (24%), followed by stroke (18%), right ventricular (RV) failure (18%), ventilator-dependent respiratory failure (10%), reoperation for bleeding (10%), and driveline infection (9%). These data demonstrate excellent survival with low mortality for both BTT and DT patients on long-term LVAD support. However, for LVAD therapy to become the gold standard for long-term treatment of end-stage heart failure and a plausible alternative to heart transplantation, we need to continue to improve the incidence of frequent postoperative complications, such as RV failure, driveline infections, strokes, and GIB.

  5. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling.

    PubMed

    Wang, Xiaohong; Hu, Qingsong; Nakamura, Yasuhiro; Lee, Joseph; Zhang, Ge; From, Arthur H L; Zhang, Jianyi

    2006-07-01

    Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.

  6. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro.

    PubMed

    Rockwood, Danielle N; Akins, Robert E; Parrag, Ian C; Woodhouse, Kimberly A; Rabolt, John F

    2008-12-01

    The function of the mammalian heart depends on the functional alignment of cardiomyocytes, and controlling cell alignment is an important consideration in biomaterial design for cardiac tissue engineering and research. The physical cues that guide functional cell alignment in vitro and the impact of substrate-imposed alignment on cell phenotype, however, are only partially understood. In this report, primary cardiac ventricular cells were grown on electrospun, biodegradable polyurethane (ES-PU) with either aligned or unaligned microfibers. ES-PU scaffolds supported high-density cultures and cell subpopulations remained intact over two weeks in culture. ES-PU cultures contained electrically-coupled cardiomyocytes with connexin-43 localized to points of cell:cell contact. Multi-cellular organization correlated with microfiber orientation and aligned materials yielded highly oriented cardiomyocyte groupings. Atrial natriuretic peptide, a molecular marker that shows decreasing expression during ventricular cell maturation, was significantly lower in cultures grown on ES-PU scaffolds than in those grown on tissue culture polystyrene. Cells grown on aligned ES-PU had significantly lower steady state levels of ANP and constitutively released less ANP over time indicating that scaffold-imposed cell organization resulted in a shift in cell phenotype to a more mature state. We conclude that the physical organization of microfibers in ES-PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype in vitro.

  7. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Accurate computer-aided quantification of left ventricular parameters: experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study.

    PubMed

    Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J

    2012-05-01

    Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.

  9. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish

    PubMed Central

    Itou, Junji; Akiyama, Ryutaro; Pehoski, Steve; Yu, Xiaodan; Kawakami, Hiroko; Kawakami, Yasuhiko

    2014-01-01

    Background The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury inducing techniques. Results Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. Conclusions Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and would be used as simple injury model. Scratching the ventricle did not induce heart regeneration and would be used for studying wound responses to epicardium. PMID:25074230

  10. Computational and Organotypic Modeling of Microcephaly ...

    EPA Pesticide Factsheets

    Microcephaly is associated with reduced cortical surface area and ventricular dilations. Many genetic and environmental factors precipitate this malformation, including prenatal alcohol exposure and maternal Zika infection. This complexity motivates the engineering of computational and experimental models to probe the underlying molecular targets, cellular consequences, and biological processes. We describe an Adverse Outcome Pathway (AOP) framework for microcephaly derived from literature on all gene-, chemical-, or viral- effects and brain development. Overlap with NTDs is likely, although the AOP connections identified here focused on microcephaly as the adverse outcome. A query of the Mammalian Phenotype Browser database for ‘microcephaly’ (MP:0000433) returned 85 gene associations; several function in microtubule assembly and centrosome cycle regulated by (microcephalin, MCPH1), a gene for primary microcephaly in humans. The developing ventricular zone is the likely target. In this zone, neuroprogenitor cells (NPCs) self-replicate during the 1st trimester setting brain size, followed by neural differentiation of the neocortex. Recent studies with human NPCs confirmed infectivity with Zika virions invoking critical cell loss (apoptosis) of precursor NPCs; similar findings have been shown with fetal alcohol or methylmercury exposure in rodent studies, leading to mathematical models of NPC dynamics in size determination of the ventricular zone. A key event

  11. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  12. Suppressive Effect of Carvedilol on Na+/Ca2+ Exchange Current in Isolated Guinea-Pig Cardiac Ventricular Myocytes.

    PubMed

    Tashiro, Miyuki; Watanabe, Yasuhide; Yamakawa, Tomomi; Yamashita, Kanna; Kita, Satomi; Iwamoto, Takahiro; Kimura, Junko

    2017-01-01

    Carvedilol ((+/-)-1-(carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol), a β-adrenoceptor-blocker, has multi-channel blocking and vasodilator properties. This agent dose-dependently improves left ventricular function and reduces mortality in patients with arrhythmia and chronic heart failure. However, the effect of carvedilol on the cardiac Na+/Ca2+ exchanger (NCX1) has not been investigated. We examined the effects of carvedilol and metoprolol, 2 β-blockers, on Na+/Ca2+ exchange current (INCX) in guinea-pig cardiac ventricular cells and fibroblasts expressing dog cardiac NCX1. Carvedilol suppressed INCX in a concentration-dependent manner but metoprolol did not. IC50 values for the Ca2+ influx (outward) and efflux (inward) components of INCX were 69.7 and 61.5 µmol/l, respectively. Carvedilol at 100 μmol/l inhibited INCX in CCL39 cells expressing wild type NCX1 similar to mutant NCX1 without the intracellular regulatory loop. Carvedilol at 30 µmol/l abolished ouabain-induced delayed afterdepolarizations. Carvedilol inhibited cardiac NCX in a concentration-dependent manner in isolated cardiac ventricles, but metoprolol did not. We conclude that carvedilol inhibits NCX1 at supratherapeutic concentrations. © 2016 S. Karger AG, Basel.

  13. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex

    NASA Technical Reports Server (NTRS)

    Nowakowski, Richard S.; Caviness, Verne S Jr; Takahashi, Takao; Hayes, Nancy L.

    2002-01-01

    During the development of the neocortex, cell proliferation occurs in two specialized zones adjacent to the lateral ventricle. One of these zones, the ventricular zone, produces most of the neurons of the neocortex. The proliferating population that resides in the ventricular zone is a pseudostratified ventricular epithelium (PVE) that looks uniform in routine histological preparations, but is, in fact, an active and dynamically changing population. In the mouse, over the course of a 6-day period, the PVE produces approximately 95% of the neurons of the adult neocortex. During this time, the cell cycle of the PVE population lengthens from about 8 h to over 18 h and the progenitor population passes through a total of 11 cell cycles. This 6-day, 11-cell cycle period comprises the "neuronogenetic interval" (NI). At each passage through the cell cycle, the proportion of daughter cells that exit the cell cycle (Q cells) increases from 0 at the onset of the NI to 1 at the end of the NI. The proportion of daughter cells that re-enter the cell cycle (P cells) changes in a complementary fashion from 1 at the onset of the NI to 0 at the end of the NI. This set of systematic changes in the cell cycle and the output from the proliferative population of the PVE allows a quantitative and mathematical treatment of the expansion of the PVE and the growth of the cortical plate that nicely accounts for the observed expansion and growth of the developing neocortex. In addition, we show that the cells produced during a 2-h window of development during specific cell cycles reside in a specific set of laminae in the adult cortex, but that the distributions of the output from consecutive cell cycles overlap. These dynamic events occur in all areas of the PVE underlying the neocortex, but there is a gradient of maturation that begins in the rostrolateral neocortex near the striatotelencephalic junction and which spreads across the surface of the neocortex over a period of 24-36 h. The presence of the gradient across the hemisphere is a possible source of positional information that could be exploited during development to establish the areal borders that characterize the adult neocortex.

  14. Bifurcation diagrams of frequency dependence of repolarization during long QT syndrome using the Luo-Rudy model of cardiac repolarization

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. E.; Doedel, E. J.; Rasmusson, R. L.

    2000-02-01

    We applied bifurcation analysis to the Luo-Rudy model of the guinea pig cardiac ventricular cell to investigate the behavior of repolarization in response to a simulated form of inherited arrhythmia, long QT syndrome. In this paper, we simulate pathological changes in cardiac repolarization through reductions in IKr. Decreased expression of this current has been linked to an inherited form of long QT syndrome which results in a high mortality, presumably due to sudden cardiac death from ventricular fibrillation.

  15. Stem-cell therapy for dilated cardiomyopathy: a pilot study evaluating retrograde coronary venous delivery.

    PubMed

    Pogue, B; Estrada, A H; Sosa-Samper, I; Maisenbacher, H W; Lamb, K E; Mincey, B D; Erger, K E; Conlon, T J

    2013-07-01

    To evaluate retrograde coronary venous stem-cell delivery for Dobermanns with dilated cardiomyopathy. Retrograde coronary venous delivery of adipose-derived mesenchymal stem cells transduced with tyrosine mutant adeno-associated virus 2 to express stromal-derived factor-1 was performed in Dobermanns with dilated cardiomyopathy. Cases were followed for 2 years and electrocardiograms (ECG), echocardiograms and Holter monitoring were performed. Delivery of cells was feasible in 15 of 15 dogs. One dog died following the development of ventricular fibrillation 24 hours after cell delivery. The remaining 14 dogs were discharged the following day without complications. Echocardiographic measurements of left ventricular size and function showed continued progression of disease. On the basis of Kaplan-Meier product limit estimates, median survival for dogs following stem-cell delivery was 620 days (range of 1-799 days). When including only the occult-dilated cardiomyopathy population and excluding those dogs already in congestive heart failure, median survival was 652 days (range of 46-799 days). Retrograde venous delivery of tyrosine mutant adeno-associated virus 2-stromal-derived factor-1 adipose-derived mesenchymal stem cells appears safe. Stem-cell therapy in dogs with occult-dilated cardiomyopathy does not appear to offer advantage compared to recently published survival data in similarly affected Dobermanns. © 2013 British Small Animal Veterinary Association.

  16. Clinical Experience With the Subcutaneous Implantable Cardioverter-Defibrillator in Adults With Congenital Heart Disease.

    PubMed

    Moore, Jeremy P; Mondésert, Blandine; Lloyd, Michael S; Cook, Stephen C; Zaidi, Ali N; Pass, Robert H; John, Anitha S; Fish, Frank A; Shannon, Kevin M; Aboulhosn, Jamil A; Khairy, Paul

    2016-09-01

    Sudden cardiac death is a major contributor to mortality for adults with congenital heart disease. The subcutaneous implantable cardioverter-defibrillator (ICD) has emerged as a novel tool for prevention of sudden cardiac death, but clinical performance data for adults with congenital heart disease are limited. A retrospective study involving 7 centers over a 5-year period beginning in 2011 was performed. Twenty-one patients (median 33.9 years) were identified. The most common diagnosis was single ventricle physiology (52%), 9 palliated by Fontan operation and 2 by aortopulmonary shunts: d-transposition of the great arteries after Mustard/Senning (n=2), tetralogy of Fallot (n=2), aortic valve disease (n=2), and other biventricular surgery (n=4). A prior cardiac device had been implanted in 7 (33%). The ICD indication was primary prevention in 67% and secondary in 33% patients. The most common reason for subcutaneous ICD placement was limited transvenous access for ventricular lead placement (n=10) followed by intracardiac right-to-left shunt (n=5). Ventricular arrhythmia was induced in 17 (81%) and was converted with ≤80 Joules in all. There was one implant complication related to infection, not requiring device removal. Over a median follow-up of 14 months, 4 patients (21%) received inappropriate and 1 (5%) patient received appropriate shocks. There was one arrhythmic death related to asystole in a single ventricle patient. Subcutaneous ICD implantation is feasible for adults with congenital heart disease patients. Most candidates have single ventricle heart disease and limited transvenous options for ICD placement. Despite variable anatomy, this study demonstrates successful conversion of induced ventricular arrhythmia and reasonable rhythm discrimination during follow-up. © 2016 American Heart Association, Inc.

  17. [Worldwide experience with automated external defibrillators: What have we achieved? What else can we expect?].

    PubMed

    Trappe, Hans-Joachim

    2016-03-01

    In Germany approximately 70,000-100,000 SCD patients die from sudden cardiac death (SCD). SCD is not caused by a single factor but is a multifactorial problem. In 50 % of SCD victims, sudden cardiac death is the first manifestation of heart disease. SCD is caused by ventricular tachyarrhythmias in approximately 90 % of patients, whereas SCD is caused by bradyarrhythmias in 5-10 % of the patients. Risk stratification is not possible in the majority of them prior to the fatal event. Early defibrillation is the method of choice to terminate ventricular fibrillation. Therefore, it is mandatory to install automatic external defibrillators (AED) in places with many people. There is general agreement that early defibrillation with automated external defibrillators (AED) is an effective tool to treat patients with ventricular fibrillation and will improve survival. It seems necessary to teach cardiocompression and AED use, also to children and adolescents. AED therapy "at home" did not improve survival in patients with cardiac arrest and can not be recommended.

  18. Landmark lecture: Perloff lecture: Tribute to Professor Joseph Kayle Perloff and lessons learned from him: aortopathy in adults with CHD.

    PubMed

    Niwa, Koichiro

    2017-12-01

    Marfan syndrome, bicuspid aortic valve, and/or coarctation of the aorta are associated with medial abnormalities of the ascending aortic or para-coarctation aorta. Medial abnormalities in the ascending aorta are prevalent in other type of patients with a variety of CHDs such as single ventricle, persistent truncus arteriosus, transposition of the great arteries, hypoplastic left heart syndrome, and tetralogy of Fallot, encompassing a wide age range and may predispose to dilatation, aneurysm, and rapture necessitating aortic valve and root surgery. These CHDs exhibit ongoing dilatation of the aortic root and reduced aortic elasticity and increased aortic stiffness that may relate to intrinsic properties of the aortic root. These aortic dilatation and increased stiffness can induce aortic aneurysm, rapture of the aorta, and aortic regurgitation, but also provoke left ventricular hypertrophy, reduced coronary artery flow, and left ventricular failure. Therefore, a new clinical entity can be used to call this association of aortic pathophysiological abnormality, aortic dilation, and aorto-left ventricular interaction - "aortopathy".

  19. Intravenous Xenogeneic Transplantation of Human Adipose-Derived Stem Cells Improves Left Ventricular Function and Microvascular Integrity in Swine Myocardial Infarction Model

    PubMed Central

    Jun Hong, Soon; Rogers, Pamela I.; Kihlken, John; Warfel, Jessica; Bull, Chris; Deuter-Reinhard, Maja; Feng, Dongni; Xie, Jie; Kyle, Aaron; Merfeld-Clauss, Stephanie; Johnstone, Brian H.; Traktuev, Dmitry O.; Chen, Peng-Sheng; Lindner, Jonathan R.; March, Keith L.

    2018-01-01

    Objectives The potential for beneficial effects of adipose-derived stem cells(ASCs) on myocardial perfusion and left ventricular dysfunction in myocardial ischemia(MI) has not been tested following intravenous delivery. Methods Surviving pigs following induction of MI were randomly assigned to 1 of 3 different groups: the placebo group (n=7), the single bolus group (SB)(n=7, 15×107 ASCs), or the divided dose group (DD)(n=7, 5×107 ASCs/day for three consecutive days). Myocardial perfusion defect area and coronary flow reserve (CFR) were compared during the 28-day follow-up. Also, serial changes in the absolute number of circulating CD4+T and CD8+T cells were measured. Results The increases in ejection fraction were significantly greater in both the SB and the DD groups compared to the placebo group (5.4±0.9%, 3.7±0.7%, and -0.4±0.6%, respectively), and the decrease in the perfusion defect area was significantly greater in the SB group than the placebo group (-36.3±1.8 and -11.5±2.8). CFR increased to a greater degree in the SB and the DD groups than in the placebo group (0.9±0.2, 0.8±0.1, and 0.2±0.2, respectively). The circulating number of CD8+T cells was significantly greater in the SB and DD groups than the placebo group at day 7(3,687±317/μL, 3,454±787/μL, and 1,928±457/μL, respectively). The numbers of small vessels were significantly greater in the SB and the DD groups than the placebo group in the peri-infarct area. Conclusions Both intravenous SB and DD delivery of ASCs are effective modalities for the treatment of MI in swine. Intravenous delivery of ASCs, with its immunomodulatory and angiogenic effects, is an attractive noninvasive approach for myocardial rescue. PMID:24905889

  20. Accelerated Evolution of PAK3- and PIM1-like Kinase Gene Families in the Zebra Finch, Taeniopygia guttata

    PubMed Central

    Kong, Lesheng; Lovell, Peter V.; Heger, Andreas; Mello, Claudio V.; Ponting, Chris P.

    2010-01-01

    Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniotic genomes (including chicken) that harbor only single copies of p21-activated serine/threonine kinase 3 (PAK3) and proviral integration site 1 (PIM1) genes, the zebra finch genome appeared at first to additionally contain 67 PAK3-like (PAK3L) and 51 PIM1-like (PIM1L) protein kinase genes. An exhaustive analysis of these gene models, however, revealed most to be incomplete, owing to the absence of terminal exons. After reprediction, 31 PAK3L genes and 10 PIM1L genes remain, and all but three are predicted, from the retention of functional sites and open reading frames, to be enzymatically active. PAK3L, but not PIM1L, gene sequences show evidence of recurrent episodes of positive selection, concentrated within structures spatially adjacent to N- and C-terminal protein regions that have been discarded from zebra finch PAK3L genes. At least seven zebra finch PAK3L genes were observed to be expressed in testis, whereas two sequences were found transcribed in the brain, one broadly including the song nuclei and the other in the ventricular zone and in cells resembling Bergmann's glia in the cerebellar Purkinje cell layer. Two PIM1L sequences were also observed to be expressed with broad distributions in the zebra finch brain, one in both the ventricular zone and the cerebellum and apparently associated with glial cells and the other showing neuronal cell expression and marked enrichment in midbrain/thalamic nuclei. These expression patterns do not correlate with zebra finch-specific features such as vocal learning. Nevertheless, our results show how ancient and conserved intracellular signaling molecules can be co-opted, following duplication, thereby resulting in lineage-specific functions, presumably affecting the zebra finch testis and brain. PMID:20237222

  1. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-05

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. © 2015 American Heart Association, Inc.

  2. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  3. Effects of extracts from flowering tops of Crataegus meyeri A. Pojark. on ischaemic arrhythmias in anaesthetized rats.

    PubMed

    Garjani, A; Nazemiyeh, H; Maleki, N; Valizadeh, H

    2000-09-01

    Different species of Crataegus, commonly called Hawthorn, were reported to possess wide pharmacological effects on the cardiovascular system. In the present study, chloroform, ethylacetate and methanol (70%) extracts of the flowering tops of Crataegus meyeri A. Pojark. were studied. The extracts were tested on the incidence and severity of arrhythmias induced by a period of myocardial ischaemia in open-chest anaesthetized male Wistar rats. Infusion of a hydroalcohol extract (1 mg/kg/min) resulted in a significant decrease in the total number of ventricular ectopic beats (from 1494 +/- 362 in the control to 634 +/- 102), mainly by reduction of beats occurring as ventricular tachycardia. A chloroform extract (1 mg/kg/min) also reduced the total number of ventricular ectopic beats but this reduction was due to the decrease of single extrasystoles. A significant reduction in the time spent for ventricular fibrillation was seen by the hydroalcohol and ethylacetate extracts. There were no significant changes in the heart rate and blood pressure during the extract infusion. However, bolus injection of all the extracts caused a significant reduction in the blood pressure. Thus, the extracts of Crataegus meyeri have a hypotensive and a potential antiarrhythmic action on ischaemic myocardium and may possess active principles. Copyright 2000 John Wiley & Sons, Ltd.

  4. Utility of dual source CT with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to evaluate morphological features of ventricles in children with complex congenital heart defects.

    PubMed

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Nomura, Norikazu; Inukai, Sachiko; Tsubokura, Satoshi; Sakurai, Keita; Shimohira, Masashi; Ogawa, Masaki; Shibamoto, Yuta

    2016-04-01

    We evaluated the ability of dual source CT (DSCT) with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to depict the morphological features of ventricles in pediatric patients with congenital heart defects (CHD). Between July 2013 and April 2015, 78 pediatric patients with CHD (median age 4 months) were examined using DSCT with the Flash Spiral Cardio mode. The types of ventricular abnormalities were ventricular septal defect (VSD) in 42 (the malaligned type in 11, perimembranous type in 23, supracristal type in 2, atrioventricular type in 2, and muscular type in 4), single ventricle (SV) in 11, and congenital corrected transposition of the great arteries (ccTGA) in 4. We evaluated the accuracy of the diagnosis of the VSD type. In cases of SV and ccTGA, we assessed the detectability of the anatomical features of both ventricles for a diagnosis of ventricular situs. DSCT confirmed the diagnoses for all VSDs. The type of defect was precisely diagnosed for all patients. The anatomical features of both ventricles were also depicted and ventricular situs of SV and ccTGA was correctly diagnosed. The results suggest that DSCT has the ability to clearly depict the configuration of ventricles.

  5. Bacopa monnieri extract increases rat coronary flow and protects against myocardial ischemia/reperfusion injury.

    PubMed

    Srimachai, Sirintorn; Devaux, Sylvie; Demougeot, Celine; Kumphune, Sarawut; Ullrich, Nina D; Niggli, Ernst; Ingkaninan, Kornkanok; Kamkaew, Natakorn; Scholfield, C Norman; Tapechum, Sompol; Chootip, Krongkarn

    2017-02-20

    This study explored Bacopa monnieri, a medicinal Ayurvedic herb, as a cardioprotectant against ischemia/reperfusion injury using cardiac function and coronary flow as end-points. In normal isolated rat hearts, coronary flow, left ventricular developed pressure, heart rate, and functional recovery were measured using the Langendorff preparation. Hearts were perfused with either (i) Krebs-Henseleit (normal) solution, (control), or with 30, 100 μg/ml B. monnieri ethanolic extract (30 min), or (ii) with normal solution or extract for 10 min preceding no-perfusion ischemia (30 min) followed by reperfusion (30 min) with normal solution. Infarct volumes were measured by triphenyltetrazolium staining. L-type Ca 2+ -currents (I Ca, L ) were measured by whole-cell patching in HL-1 cells, a mouse atrial cardiomyocyte cell line. Cytotoxicity of B. monnieri was assessed in rat isolated ventricular myocytes by trypan blue exclusion. In normally perfused hearts, B. monnieri increased coronary flow by 63 ± 13% (30 μg/ml) and 216 ± 21% (100 μg/ml), compared to control (5 ± 3%) (n = 8-10, p < 0.001). B. monnieri treatment preceding ischemia/reperfusion improved left ventricular developed pressure by 84 ± 10% (30 μg/ml), 82 ± 10% (100 μg/ml) and 52 ± 6% (control) compared to pre- ischemia/reperfusion. Similarly, functional recovery showed a sustained increase. Moreover, B. monnieri (100 μg/ml) reduced the percentage of infarct size from 51 ± 2% (control) to 25 ± 2% (n = 6-8, p < 0.0001). B. monnieri (100 μg/ml) reduced I Ca, L by 63 ± 4% in HL-1 cells. Ventricular myocyte survival decreased at higher concentrations (50-1000 μg/ml) B. monnieri. B. monnieri improves myocardial function following ischemia/reperfusion injury through recovery of coronary blood flow, contractile force and decrease in infarct size. Thus this may lead to a novel cardioprotectant strategy.

  6. Histological evidence of inflammatory reaction associated with fibrosis in the atrial and ventricular walls in a case-control study of patients with history of atrial fibrillation.

    PubMed

    Mitrofanova, Lubov B; Orshanskaya, Victoria; Ho, Siew Yen; Platonov, Pyotr G

    2016-12-01

    Chronic inflammation in the atrial myocardium was shown to play an important role in the development of atrial fibrosis in patients with atrial fibrillation (AF). However, it is not clear to what extent atrial inflammatory reaction associated with AF extends on the ventricular myocardium. Our aim was to assess the extent of fibrosis and lymphomononuclear infiltration in human ventricular myocardium and explore its association with AF. Medical records from consecutive autopsies were checked for presence of AF. Heart specimens from 30 patients died from cardiovascular causes (64 ± 12 years, 17 men) were collected in three equal groups: no AF, paroxysmal AF, and permanent AF. Tissue samples were taken from the Bachmann's bundle, crista terminalis, posterior left atrium, left ventricle and right ventricle free walls and stained with Masson's trichrome for analysis of fibrosis extent. Immunohistochemistry was performed using antibodies against CD3- and CD45-antigens and quantified as number of antigen-positive cells per 1 mm 2 . Fibrosis extent, CD3+ and CD45+ cell counts were elevated in AF patients at all sites (P < 0.001 for all). Fibrosis extent demonstrated correlation with both CD3+ and CD45+ cell counts in the right (r = 0.781, P < 0.001 for CD45+ and r = 0.720, P < 0.001 for CD3+) and the left (r = 0.515, P = 0.004 for CD45+ and r = 0.573, P = 0.001 for CD3+) ventricles. Neither fibrosis nor inflammatory cell count showed association with either age or comorbidities. Histological signs of chronic inflammation affecting ventricular myocardium are strongly associated with AF and demonstrate significant correlation with fibrosis extent that cannot be explained by cardiovascular comorbidities otherwise. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  7. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. Copyright © 2015 the American Physiological Society.

  8. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor

    PubMed Central

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H.; Hull, Robert; Davis, Mary

    2015-01-01

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1–30 μg/kg) decreased resting heart rate; at high doses (150–300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03–0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. PMID:26408544

  9. Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart

    PubMed Central

    Ramanujam, Deepak; Sassi, Yassine; Laggerbauer, Bernhard; Engelhardt, Stefan

    2016-01-01

    Systemic inhibition of miR-21 has proven effective against myocardial fibrosis and dysfunction, while studies in cardiac myocytes suggested a protective role in this cell type. Considering potential implications for therapy, we aimed to determine the cell fraction where miR-21 exerts its pathological activity. We developed a viral vector-based strategy for gene targeting of nonmyocyte cardiac cells in vivo and compared global to cardiac myocyte-specific and nonmyocyte-specific deletion of miR-21 in chronic left ventricular pressure overload. Murine moloney virus and serotype 9 of adeno-associated virus were engineered to encode improved Cre recombinase for genetic deletion in miR-21fl/fl mice. Pericardial injection of murine moloney virus-improved Cre recombinase to neonates achieved highly selective genetic ablation of miR-21 in nonmyocyte cardiac cells, identified as cardiac fibroblasts and endothelial cells. Upon left ventricular pressure overload, cardiac function was only preserved in mice with miR-21 deficiency in nonmyocyte cardiac cells, but not in mice with global or cardiac myocyte-specific ablation. Our data demonstrate that miR-21 exerts its pathologic activity directly in cardiac nonmyocytes and encourage further development of antimiR-21 therapy toward cellular tropism. PMID:27545313

  10. Heart‐Specific Overexpression of Choline Acetyltransferase Gene Protects Murine Heart Against Ischemia Through Hypoxia‐Inducible Factor‐1α–Related Defense Mechanisms

    PubMed Central

    Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki

    2013-01-01

    Background Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. Methods and Results To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)–expressing cells and heart‐specific ChAT transgenic (ChAT‐tg) mice. Compared with cardiomyocytes of wild‐type (WT) mice, those of the ChAT‐tg mice had high levels of ACh and hypoxia‐inducible factor (HIF)‐1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT‐overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT‐tg mice showed similar hemodynamics; after MI, however, the ChAT‐tg mice had better survival than did the WT mice. In the ChAT‐tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post‐MI remodeling. The ChAT‐tg heart was more resistant to ischemia–reperfusion injury than was the WT heart. Conclusions These results suggest that the activated cardiac ACh‐HIF‐1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self‐defense against ischemia. PMID:23525439

  11. The effect of captopril and losartan on the electrophysiology of myocardial cells of myocardial ischemia rats.

    PubMed

    Shi, Xiangmin; Shan, Zhaoling; Yuan, Hongtao; Guo, Hongyang; Wang, Yutang

    2014-01-01

    This study aims to investigate the effect of captopril and losartan on the electrophysiology of myocardial cells parameters in ventricular vulnerable period and effective refractory period of myocardial ischemia rats. 96 wistar rats were enrolled in the study and divided into six groups: Captopril myocardial ischemia group, losartan myocardial ischemia group, myocardial ischemia control group, captopril normal group, losartan normal group and normal control group (n=16). We observed morphological changes of myocardial tissue in each group. The cardiac electrophysiological parameters in effective refractory period of each group were measured. Creatine kinase (CK), alanine aminotransferase (GOT), lactate dehydrogenase (LDH), the expression of Cardiotrophin 1 (CT-1) and malonaldehyde (MDA) were detected. Compared the losartan and captopril group with the control group, (P<0.05). Losartan and captopril can shorten the ventricular vulnerable period of the normal group and ischemic group. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. The effect of losartan and captopril on time window in ventricular vulnerable period showed that compared with the control group (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period of normal and ischemic rats. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. Compared with the myocardial ischemia control group, CK, GOT, LDH and MDA decreased in captopril and losartan myocardial ischemia groups (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period and shorten ventricular vulnerable period, they can also effectively prevent arrhythmias.

  12. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene.

    PubMed

    Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B

    2006-10-01

    Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.

  13. Muscle remodeling in relation to blood supply: implications for seasonal changes in mitochondrial enzymes.

    PubMed

    McClelland, G B; Dalziel, A C; Fragoso, N M; Moyes, C D

    2005-02-01

    We investigated if seasonal changes in rainbow trout muscle energetics arise in response to seasonal changes in erythrocyte properties. We assessed if skeletal muscle mitochondrial enzymes changed (1) acutely in response to changes in erythrocyte abundance, or (2) seasonally when we altered the age profile of erythrocytes. Rainbow trout were treated with pheynylhydrazine, causing a 75% reduction in hematocrit within 4 days. After erythropoiesis had returned hematocrit to normal, treated and control fish were subjected to a seasonal cold acclimation regime to assess the impact of erythrocyte age on skeletal muscle remodeling. Anemia (i.e. phenylhydrazine treatment) did not alter the specific activities (U g(-1) tissue) of mitochondrial enzymes in white or red muscle. Anemic pretreatment did not alter the normal pattern of cold-induced mitochondrial proliferation in skeletal muscle, suggesting erythrocyte age was not an important influence on seasonal remodeling of muscle. Anemia and cold acclimation both induced a 25-30% increase in relative ventricular mass. The increase in relative ventricular mass with phenylhydrazine treatment was accompanied by a 35% increase in DNA content (mg DNA per ventricle), suggesting an increase in number of cells. In contrast, the increase in ventricular mass with cold temperature acclimation occurred without a change in DNA content (mg DNA per ventricle), suggesting an increase in cell size. Despite the major increases in relative ventricular mass, neither anemia nor seasonal acclimation had a major influence on the specific activities of a suite of mitochondrial enzymes in heart. Collectively, these studies argue against a role for erythrocyte dynamics in seasonal adaptive remodeling of skeletal muscle energetics.

  14. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  15. Spontaneous Transition of Double Tachycardias with Atrial Fusion in a Patient with Wolff-Parkinson-White Syndrome.

    PubMed

    Kim, Dongmin; Lee, Myung-Yong

    2016-07-01

    Among patients with Wolff-Parkinson-White syndrome, atrioventricular reciprocating tachycardia (AVRT) and atrioventricular nodal reentrant tachycardia (AVNRT) can coexist in a single patient. Direct transition of both tachycardias is rare; however, it can occur after premature atrial or ventricular activity if the cycle lengths of the two tachycardias are similar. Furthermore, persistent atrial activation by an accessory pathway (AP) located outside of the AV node during ongoing AVNRT is also rare. This article describes a case of uncommon atrial activation by an AP during AVNRT and gradual transition of the two supraventricular tachycardias without any preceding atrial or ventricular activity in a patient with preexcitation syndrome.

  16. Modulation of K(ATP) currents in rat ventricular myocytes by hypoxia and a redox reaction.

    PubMed

    Yan, Xi-Sheng; Ma, Ji-Hua; Zhang, Pei-Hua

    2009-10-01

    The present study investigated the possible regulatory mechanisms of redox agents and hypoxia on the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Single-channel and whole-cell patch-clamp techniques were used to record the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Oxidized glutathione (GSSG, 1 mmol/L) increased the I(KATP), while reduced glutathione (GSH, 1 mmol/L) could reverse the increased I(KATP) during normoxia. To further corroborate the effect of the redox agent on the K(ATP) channel, we employed the redox couple DTT (1 mmol/L)/H2O2 (0.3, 0.6, and 1 mmol/L) and repeated the previous processes, which produced results similar to the previous redox couple GSH/GSSG during normoxia. H2O2 increased the I(KATP) in a concentration dependent manner, which was reversed by DTT (1 mmol/L). In addition, our results have shown that 15 min of hypoxia increased the I(KATP), while GSH (1 mmol/L) could reverse the increased I(KATP). Furthermore, in order to study the signaling pathways of the I(KATP) augmented by hypoxia and the redox agent, we applied a protein kinase C(PKC) inhibitor bisindolylmaleimide VI (BIM), a protein kinase G(PKG) inhibitor KT5823, a protein kinase A (PKA) inhibitor H-89, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-62 and KN-93. The results indicated that BIM, KT5823, KN-62, and KN-93, but not H-89, inhibited the I(KATP) augmented by hypoxia and GSSG; in addition, these results suggest that the effects of both GSSG and hypoxia on K(ATP) channels involve the activation of the PKC, PKG, and CaMK II pathways, but not the PKA pathway. The present study provides electrophysiological evidence that hypoxia and the oxidizing reaction are closely related to the modulation of I(KATP).

  17. Modulation of contraction by intracellular Na+ via Na(+)-Ca2+ exchange in single shark (Squalus acanthias) ventricular myocytes.

    PubMed Central

    Näbauer, M; Morad, M

    1992-01-01

    1. The effect of direct alteration of intracellular Na+ concentration on contractile properties of whole-cell clamped shark ventricular myocytes was studied using an array of 256 photodiodes to monitor the length of the isolated myocytes. 2. In myocytes dialysed with Na(+)-free solution, the voltage dependence of Ca2+ current (ICa) and contraction were similar and bell shaped. Contractions activated at all voltages were completely suppressed by nifedipine (5 microM), and failed to show significant tonic components, suggesting dependence of the contraction on Ca2+ influx through the L-type Ca2+ channel. 3. In myocytes dialysed with 60 mM Na+, a ICa-dependent and a ICa-independent component of contraction could be identified. The Ca2+ current-dependent component was prominent in voltages between -30 to +10 mV. The ICa-independent contractions were maintained for the duration of depolarization, increased with increasing depolarization between +10 to +100 mV, and were insensitive to nifedipine. 4. In such myocytes, repolarization produced slowly decaying inward tail currents closely related to the time course of relaxation and the degree of shortening prior to repolarization. 5. With 60 mM Na+ in the pipette solution, positive clamp potentials activated decaying outward currents which correlated to the size of contraction. These outward currents appeared to be generated by the Na(+)-Ca(2+)-exchanger since they depended on the presence of intracellular Na+, and were neither suppressed by nifedipine nor by K+ channel blockers. 6. The results suggest that in shark (Squalus acanthias) ventricular myocytes, which lack functionally relevant Ca2+ release pools, both Ca2+ channel and the Na(+)-Ca2+ exchanger deliver sufficient Ca2+ to activate contraction, though the effectiveness of the latter mechanism was highly dependent on the [Na+]i. PMID:1338467

  18. A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity.

    PubMed

    Liu, Michael B; Ko, Christopher Y; Song, Zhen; Garfinkel, Alan; Weiss, James N; Qu, Zhilin

    2016-12-06

    Ventricular myocytes are excitable cells whose voltage threshold for action potential (AP) excitation is ∼-60 mV at which I Na is activated to give rise to a fast upstroke. Therefore, for a short stimulus pulse to elicit an AP, a stronger stimulus is needed if the resting potential lies further away from the I Na threshold, such as in hypokalemia. However, for an AP elicited by a long duration stimulus or a diastolic spontaneous calcium release, we observed that the stimulus needed was lower in hypokalemia than in normokalemia in both computer simulations and experiments of rabbit ventricular myocytes. This observation provides insight into why hypokalemia promotes calcium-mediated triggered activity, despite the resting potential lying further away from the I Na threshold. To understand the underlying mechanisms, we performed bifurcation analyses and demonstrated that there is a dynamical threshold, resulting from a saddle-node bifurcation mainly determined by I K1 and I NCX . This threshold is close to the voltage at which I K1 is maximum, and lower than the I Na threshold. After exceeding this dynamical threshold, the membrane voltage will automatically depolarize above the I Na threshold due to the large negative slope of the I K1 -V curve. This dynamical threshold becomes much lower in hypokalemia, especially with respect to calcium, as predicted by our theory. Because of the saddle-node bifurcation, the system can automatically depolarize even in the absence of I Na to voltages higher than the I Ca,L threshold, allowing for triggered APs in single myocytes with complete I Na block. However, because I Na is important for AP propagation in tissue, blocking I Na can still suppress premature ventricular excitations in cardiac tissue caused by calcium-mediated triggered activity. This suppression is more effective in normokalemia than in hypokalemia due to the difference in dynamical thresholds. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement.

    PubMed

    Zeng, Bin; Ren, Xiaofeng; Lin, Guosheng; Zhu, Chengang; Chen, Honglei; Yin, Jiechao; Jiang, Hong; Yang, Bo; Ding, Danhua

    2008-10-01

    The aim has been to determine whether the supernatants of mesenchymal stem cells (MSCs) transfected with adenovirus carrying human heme oxygenase-1 (hHO-1) gene protect cardiomyocytes from ischemic injury. We have found that hHO-1 infected MSCs (hHO-1-MSCs) increased expression of hHO-1 protein. Apoptosis of cultured hHO-1-MSCs exposed to hypoxia was suppressed. Several cytokines, including HGF, bFGF, TGF-beta, VEGF and IL-1beta, were produced by hHO-1-MSCs, some being significantly enhanced under hypoxia stimulation. Meanwhile, those cytokines reduced caspase-3 level and activity in cultured adult rat ventricular cardiomyocytes (ARVCs) exposed to hypoxia. Supernatants obtained from hHO-1-MSCs improved left ventricular function, limited myocardial infarct size, increased microvessel density, and inhibited apoptosis of cardiomyocytes in rat myocardial infarction. It can be concluded hHO-1-modified MSCs prevent myocardial cell injury via secretion of paracrine-acting mediators.

  20. [Effects of genistein on contractility of isolated right ventricular muscles in guinea pig].

    PubMed

    Wu, Jin-xia; Li, Hong-fang; Liu, Chong-bin; Tian, Zhi-feng

    2008-11-01

    To study the effect of genistein (GEN) on contractility of isolated right ventricular muscles in guinea pig and its mechanisms. Isolated guinea pig ventricular muscles were suspended in organ baths containing K-H solution.After an equilibration period, the effect of GEN on contraction of myocardium was observed. GEN and isoprenaline hydrochloride had the positive inotropic effects on contractity of myocardium. Meanwhile, the effect of GEN (1-100 micromol x L(-1)) was in dose-dependent manner. Propranolol (1 micromol x L(-1)) and verapamil hydrochloride (0.5 micromol x L(-1)) attenuated the positive inotropic effect of isoprenaline hydrochloride (1 micromol x L(-1)), but did not change the effect of GEN (50 micromol x L(-1)). Further more, the enhancement of the contraction induced by elevation of extracellular Ca2+ concentration in ventricular muscles had no change after pretreatment with GEN (1.10 micromol x L(-1)). In addition,the positive inotropic effect of GEN was inhibited partially by tamoxifen (1 micromol x L(-1)) and SQ22536 (1 micromol x L(-1)), also, could be attenuated by bpV (1 micromol x L(-1)). GEN has the positive inotropic effect on guinea pig ventricular muscles, which is not related to the activation of beta adrenoceptor, Ca2+ channel on cell membrane,but may involve in cAMP of intracellular signal transduction and tyrosine kinase pathway.

  1. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique

    PubMed Central

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J.

    2015-01-01

    A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619

  2. Fine structure of the ependyma and intercellular junctions in the area postrema of the rat.

    PubMed

    Gotow, T; Hashimoto, P H

    1979-09-03

    Ependymal cells and their junctional complexes in the area postrema of the rat were studied in detail by tracer experiments using horseradish peroxidase (HRP) and colloidal lanthanum and by freeze-etch techniques, in addition to routine electron microscopy. The ependyma of the area postrema is characterized as flattened cells possessing very few cilia, a moderate amount of microvilli, a well-developed Golgi apparatus and rough endoplasmic reticulum. Numerous vesicles or tubular formations with internal dense content were found to accumulate in the basal processes of ependymal cells; the basal process makes contact with the perivascular basal lamina. It is suggested that the dense material in the tubulovesicular formations is synthesized within the ependymal cell and discharged into the perivascular space. The apical junctions between adjacent ependymal cells display very close apposition, with a gap of 2--3 nm, but no fusion of adjacent plasma membranes; they thus represent a transitional form between the zonulae adhaerentes present in the ordinary mural ependyma and the zonulae occludentes in the choroidal epithelium. A direct intercommunication between the ventricular cerebrospinal fluid (CSF) and the blood vascular system indicates that a region exists lacking a blood-ventricular CSF barrier.

  3. Lethal effect of electric fields on isolated ventricular myocytes.

    PubMed

    de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães

    2008-11-01

    Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.

  4. Electron-microscopic study of the secretion of the ependymal cells in the domestic cat (ependymin-beta cells).

    PubMed

    Gonzalez-Santander, R

    1979-01-01

    We have studied, by electron microscopy, the ultrastructural aspects of secretion (neurosecretion) of the ependyma of the third ventricle of the domestic cat. We have found cytoplasmic protrusions and isolated masses of cytoplasm, some with homogeneous cytoplasm and others with very dense granulation (protein-beta?). Axons, synaptic terminals and free secretory granules in the ventricular lumen were also seen. The existence of ependymin-beta cells (ependymocyte-beta) and axohormonal buttons is suggested. The ependymal cells are classified into seven types: (1) covering ependymocytes, (2) tanycyt ependymocytes, (3) secretory ependymocytes, (4) ependymocytes-beta, (5) neurosecretory ependymocytes, (6) neurosensorial ependymocytes (crown-like) and (7) supraependymal microgial ependymocytes. A neurohormonal hypothesis and the possible existence of one or more cerebral hormones (neurohormones) are suggested. These hormones would flow into the CSF through some of the ependymal cells (by microapocrine secretion, liberation of neurosecretion granules, or by axohormonal buttons): this could be the most important link in the endocrine system, assuring the functional unity throughout the ventricular system of the cerebrospinal axis which it winds through, although its basic influence is exercised) on the hypophysis level as a vertex of the classical endocrine system.

  5. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials.

    PubMed

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.

  6. Controversies in Cardiovascular Research: Induced pluripotent stem cell-derived cardiomyocytes – boutique science or valuable arrhythmia model?

    PubMed Central

    Knollmann, Björn C

    2013-01-01

    As part of the series on Controversies in Cardiovascular Research, the article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize anti-arrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders such as long QT syndrome, Brugada Syndrome or Catecholaminergic Polymorphic Ventricular Tachycardia. PMID:23569106

  7. Matrix modulation and heart failure: new concepts question old beliefs.

    PubMed

    Deschamps, Anne M; Spinale, Francis G

    2005-05-01

    Myocardial remodeling is a complex process involving several molecular and cellular factors. Extracellular matrix has been implicated in the remodeling process. Historically, the myocardial extracellular matrix was thought to serve solely as a means to align cells and provide structure to the tissue. Although this is one of its important functions, evidence suggests that the extracellular matrix plays a complex and divergent role in influencing cell behavior. This paper characterizes some of the notable studies on this dynamic entity and on adverse myocardial remodeling that have been published over the past year, which further question the belief that the extracellular matrix is a static structure. Progress has been made in understanding how the extracellular matrix is operative in the three major conditions (myocardial infarction, left ventricular hypertrophy due to overload, and dilated cardiomyopathy) that involve myocardial remodeling. Several studies have examined plasma profiles of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases following myocardial infarction and during left ventricular hypertrophy as surrogate markers of remodeling/remodeled myocardium. It has been demonstrated that bioactive signaling molecules and growth factors, proteases, and structural proteins influence cell-matrix interactions in the context of left ventricular hypertrophy. Finally, studies that either removed or added tissue inhibitor of metalloproteinases species in the myocardium demonstrated the importance of this regulatory protein in the remodeling process. Understanding the cellular and molecular triggers that in turn give rise to changes in the extracellular matrix could provide opportunities to modify the remodeling process.

  8. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  9. Perspective: A Dynamics-Based Classification of Ventricular Arrhythmias

    PubMed Central

    Weiss, James N.; Garfinkel, Alan; Karagueuzian, Hrayr S.; Nguyen, Thao P.; Olcese, Riccardo; Chen, Peng-Sheng; Qu, Zhilin

    2015-01-01

    Despite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling. PMID:25769672

  10. Blood pressure and left ventricular hypertrophy during American-style football participation.

    PubMed

    Weiner, Rory B; Wang, Francis; Isaacs, Stephanie K; Malhotra, Rajeev; Berkstresser, Brant; Kim, Jonathan H; Hutter, Adolph M; Picard, Michael H; Wang, Thomas J; Baggish, Aaron L

    2013-07-30

    Hypertension, a strong determinant of cardiovascular disease risk, has been documented among elite, professional American-style football (ASF) players. The risk of increased blood pressure (BP) and early adulthood hypertension among the substantially larger population of collegiate ASF athletes is not known. We conducted a prospective, longitudinal study to examine BP, the incidence of hypertension, and left ventricular remodeling among collegiate ASF athletes. Resting BP and left ventricular structure were assessed before and after a single season of competitive ASF participation in 6 consecutive groups of first-year university athletes (n=113). ASF participation was associated with significant increases in systolic BP (116±8 versus 125±13 mm Hg; P<0.001) and diastolic BP (64±8 mm Hg versus 66±10 mm Hg; P<0.001). At the postseason assessment, the majority of athletes met criteria for Joint National Commission (seventh report) prehypertension (53 of 113, 47%) or stage 1 hypertension (16 of 113, 14%). Among measured characteristics, lineman field position, intraseason weight gain, and family history of hypertension were the strongest independent predictors of postseason BP. Among linemen, there was a significant increase in the prevalence of concentric left ventricular hypertrophy (2 of 64 [3%] versus 20 of 64 [31%]; P<0.001) and change in left ventricular mass correlated with intraseason change in systolic BP (R=0.46, P<0.001). Collegiate ASF athletes may be at risk for clinically relevant increases in BP and the development of hypertension. Enhanced surveillance and carefully selected interventions may represent important opportunities to improve later-life cardiovascular health outcomes in this population.

  11. Left ventricular outflow tract arrhythmias with divergent QRS morphology: mapping of different exits and ablation strategy.

    PubMed

    Reithmann, Christopher; Fiek, Michael

    2018-01-01

    Ventricular arrhythmias (VAs) from the left ventricular outflow tract (LVOT) can have multiple exits exhibiting divergent ECG features. In a series of 131 patients with VAs with LVOT origin, 10 patients presented with divergent QRS morphologies. Multisite endo- and epicardial mapping of different exit sites was performed. The earliest ventricular activity of 23 LVOT VAs in 10 patients was detected in the endocardium of the LV in 7 patients, the aortic sinuses of Valsalva (SoV) in 3 patients, the distal coronary sinus in 6 patients, the anterior interventricular vein in 3 patients, and the posterior right ventricular outflow tract (RVOT) in 4 patients. Simultaneous elimination of two divergent QRS morphologies of LVOT VAs by ablation from a single site was achieved in 5 patients (aorto-mitral continuity in 3 patients, SoV and RVOT in each 1 patient) using a mean maximum ablation energy of 46 ± 5 W. Sequential ablation from two or three different sites, including trans-pericardial and distal coronary sinus ablation in each 2 patients, led to elimination of the divergent VA QRS morphologies in the other 5 patients. During the follow-up of 28 ± 29 months, 4 of the 10 patients had recurrence of at least one LVOT VA. A 43-year-old patient with muscular dystrophy Curschmann-Steinert had recurrence of sustained LVOT VTs and died of sudden cardiac death. Multisite mapping of different exit sites of LVOT VAs can guide ablation of intramural foci but the recurrence rate after initially successful ablation was high.

  12. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    PubMed

    Silverton, Natalie A; Patel, Ravi; Zimmerman, Josh; Ma, Jianing; Stoddard, Greg; Selzman, Craig; Morrissey, Candice K

    2018-02-15

    To determine whether intraoperative measures of right ventricular (RV) function using transesophageal echocardiography are associated with subsequent RV failure after left ventricular assist device (LVAD) implantation. Retrospective, nonrandomized, observational study. Single tertiary-level, university-affiliated hospital. The study comprised 100 patients with systolic heart failure undergoing elective LVAD implantation. Transesophageal echocardiographic images before and after cardiopulmonary bypass were analyzed to quantify RV function using tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (S'), fractional area change (FAC), RV global longitudinal strain, and RV free wall strain. A chart review was performed to determine which patients subsequently developed RV failure (right ventricular assist device placement or prolonged inotrope requirement ≥14 days). Nineteen patients (19%) subsequently developed RV failure. Postbypass FAC was the only measure of RV function that distinguished between the RV failure and non-RV failure groups (21.2% v 26.5%; p = 0.04). The sensitivity, specificity, and area under the curve of an abnormal RV FAC (<35%) for RV failure after LVAD implantation were 84%, 20%, and 0.52, respectively. No other intraoperative measure of RV function was associated with subsequent RV failure. RV failure increased ventilator time, intensive care unit and hospital length of stay, and mortality. Intraoperative measures of RV function such as tricuspid annular plane systolic excursion, tricuspid annular systolic velocity, and RV strain were not associated with RV failure after LVAD implantation. Decreased postbypass FAC was significantly associated with RV failure but showed poor discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Coarctation of the aorta and ventricular septal defect: should we perform a single-stage repair?

    PubMed

    Isomatsu, Y; Imai, Y; Shin'oka, T; Aoki, M; Sato, K

    2001-09-01

    Optimal management for coarctation of the aorta and ventricular septal defect remains controversial. The current study was undertaken to determine outcome, including recoarctation after 2-stage repair, at our institution. Between 1984 and 1998, 79 patients younger than 3 months with coarctation and ventricular septal defect underwent 2-stage repair at our institution. The first-stage operation consisted of subclavian flap angioplasty and pulmonary banding. The median age at the time of first operation was 28 days (range, 4-90 days), and median weight was 3.2 kg (range, 1.2-5.1 kg). Hypoplastic aortic arch was present in 27 patients, and coexisting anomalies were present in 13 patients. After a mean interval of 10.4 +/- 9.6 months, they underwent a second-stage repair, with closure of the ventricular septal defect and pulmonary debanding. There were 2 hospital deaths and 4 late deaths. Mean follow-up was 9.2 +/- 4.9 years (range, 2.0-18.3 years), and actuarial survival was 92.3% at 10 years (95% confidence interval, 86.6%-98.3%). Age at first operation, body weight, hypoplastic arch, and coexisting anomalies had no significant influence on overall mortality. Freedom from recoarctation rate was 90.4% at 10 years (95% confidence interval, 83.7%-97.2%). To diminish mortality and the recoarctation rate and also to decrease the possibility of complications related to circulatory arrest and allogeneic blood transfusion, 2-stage repair is still an effective technique for coarctation of the aorta associated with ventricular septal defect.

  14. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.

  15. Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance.

    PubMed

    Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R

    2008-04-08

    Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.

  16. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of compensatory regulation may exist to maintain overall proportions in the neural tube. We propose a model in which Kif11 normally functions during mitotic spindle formation to facilitate the progression of radial glia through mitosis, which leads to the maturation of progeny into specific secondary neuronal and glial lineages in the developing neural tube. Copyright © 2014. Published by Elsevier Inc.

  17. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube

    PubMed Central

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Gole, Christophe; Barresi, Michael J.F.

    2014-01-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226x delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of compensatory regulation may exist to maintain overall proportions in the neural tube. We propose a model in which Kif11 normally functions during mitotic spindle formation to facilitate the progression of radial glia through mitosis, which leads to the maturation of progeny into specific secondary neuronal and glial lineages in the developing neural tube. PMID:24370453

  18. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy: the Losartan Intervention For Endpoint (LIFE) reduction in hypertension study.

    PubMed

    Larstorp, Anne Cecilie K; Ariansen, Inger; Gjesdal, Knut; Olsen, Michael H; Ibsen, Hans; Devereux, Richard B; Okin, Peter M; Dahlöf, Björn; Kjeldsen, Sverre E; Wachtell, Kristian

    2012-08-01

    Previous studies have found pulse pressure (PP), a marker of arterial stiffness, to be an independent predictor of atrial fibrillation (AF) in general and hypertensive populations. We examined whether PP predicted new-onset AF in comparison with other blood pressure components in the Losartan Intervention For Endpoint reduction in hypertension study, a double-blind, randomized (losartan versus atenolol), parallel-group study, including 9193 patients with hypertension and electrocardiographic left ventricular hypertrophy. In 8810 patients with neither a history of AF nor AF at baseline, Minnesota coding of electrocardiograms confirmed new-onset AF in 353 patients (4.0%) during mean 4.9 years of follow-up. In multivariate Cox regression analyses, baseline and in-treatment PP and baseline and in-treatment systolic blood pressure predicted new-onset AF, independent of baseline age, height, weight, and Framingham Risk Score; sex, race, and treatment allocation; and in-treatment heart rate and Cornell product. PP was the strongest single blood pressure predictor of new-onset AF determined by the decrease in the -2 Log likelihood statistic, in comparison with systolic blood pressure, diastolic blood pressure, and mean arterial pressure. When evaluated in the same model, the predictive effect of systolic and diastolic blood pressures together was similar to that of PP. In this population of patients with hypertension and left ventricular hypertrophy, PP was the strongest single blood pressure predictor of new-onset AF, independent of other risk factors.

  19. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    NASA Astrophysics Data System (ADS)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  20. Reducing the immediate availability of red blood cells in cardiac surgery, a single-centre experience.

    PubMed

    Haanschoten, M C; van Straten, A H M; Verstappen, F; van de Kerkhof, D; van Zundert, A A J; Soliman Hamad, M A

    2015-01-01

    In our institution, we have redefined our criteria for direct availability of red blood cell (RBC) units in the operation room. In this study, we sought to evaluate the safety of applying this new logistical policy of blood transfusion in the first preliminary group of patients. In March 2010, we started a new policy concerning the elective availability of RBC units in the operation room. This policy was called: No Elective Red Cells (NERC) program. The program was applied for patients undergoing primary isolated coronary artery bypass grafting (CABG) or single valve surgery. No elective RBC units were preoperatively ordered for these patients. In case of urgent need, blood was delivered to the operating room within 20 min. The present study includes the first 500 patients who were managed according to this policy. Logistic regression analyses were performed to investigate the impact of biomedical variables on fulfilling this NERC program. The majority of patients (n = 409, 81 %) did not receive any RBCs during the hospital stay. In patients who did receive RBCs (n = 91, 19 %), 11 patients (2.2 %) received RBCs after 24 h postoperatively. Female gender, left ventricular ejection fraction (LVEF) and EuroSCORE were significant predictors for the need of blood transfusion (OR = 3.12; 2.79; 1.17 respectively). In a selected group of patients, it is safe to perform cardiac surgery without the immediate availability of RBCs in the operating room. Transfusion was avoided in 81 % of these patients. Female gender, LVEF and EuroSCORE were associated with blood transfusion.

  1. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices.

    PubMed

    Hanak, Brian W; Ross, Emily F; Harris, Carolyn A; Browd, Samuel R; Shain, William

    2016-08-01

    OBJECTIVE Shunt obstruction by cells and/or tissue is the most common cause of shunt failure. Ventricular catheter obstruction alone accounts for more than 50% of shunt failures in pediatric patients. The authors sought to systematically collect explanted ventricular catheters from the Seattle Children's Hospital with a focus on elucidating the cellular mechanisms underlying obstruction. METHODS In the operating room, explanted hardware was placed in 4% paraformaldehyde. Weekly, samples were transferred to buffer solution and stored at 4°C. After consent was obtained for their use, catheters were labeled using cell-specific markers for astrocytes (glial fibrillary acidic protein), microglia (ionized calcium-binding adapter molecule 1), and choroid plexus (transthyretin) in conjunction with a nuclear stain (Hoechst). Catheters were mounted in custom polycarbonate imaging chambers. Three-dimensional, multispectral, spinning-disk confocal microscopy was used to image catheter cerebrospinal fluid-intake holes (10× objective, 499.2-μm-thick z-stack, 2.4-μm step size, Olympus IX81 inverted microscope with motorized stage and charge-coupled device camera). Values are reported as the mean ± standard error of the mean and were compared using a 2-tailed Mann-Whitney U-test. Significance was defined at p < 0.05. RESULTS Thirty-six ventricular catheters have been imaged to date, resulting in the following observations: 1) Astrocytes and microglia are the dominant cell types bound directly to catheter surfaces; 2) cellular binding to catheters is ubiquitous even if no grossly visible tissue is apparent; and 3) immunohistochemical techniques are of limited utility when a catheter has been exposed to Bugbee wire electrocautery. Statistical analysis of 24 catheters was performed, after excluding 7 catheters exposed to Bugbee wire cautery, 3 that were poorly fixed, and 2 that demonstrated pronounced autofluorescence. This analysis revealed that catheters with a microglia-dominant cellular response tended to be implanted for shorter durations (24.7 ± 6.7 days) than those with an astrocyte-dominant response (1183 ± 642 days; p = 0.027). CONCLUSIONS Ventricular catheter occlusion remains a significant source of shunt morbidity in the pediatric population, and given their ability to intimately associate with catheter surfaces, astrocytes and microglia appear to be critical to this pathophysiology. Microglia tend to be the dominant cell type on catheters implanted for less than 2 months, while astrocytes tend to be the most prevalent cell type on catheters implanted for longer time courses and are noted to serve as an interface for the secondary attachment of ependymal cells and choroid plexus.

  2. Comparison of plasma B-type natriuretic peptide levels in single ventricle patients with systemic ventricle heart failure versus isolated cavopulmonary failure.

    PubMed

    Law, Yuk Ming; Ettedgui, Jose; Beerman, Lee; Maisel, Alan; Tofovic, Stevan

    2006-08-15

    The measurement of plasma B-type natriuretic peptide (BNP) has emerged as a useful biomarker of heart failure in patients with cardiomyopathy. The pathophysiology of heart failure in single ventricle (SV) circulation may be distinct from that of cardiomyopathies. A distinct pattern of BNP elevation in heart failure in the SV population was hypothesized: it is elevated in heart failure secondary to ventricular dysfunction but not in isolated cavopulmonary failure. BNP was measured prospectively in SV patients at catheterization (n = 22) and when assessing for heart failure (n = 11) (7 normal controls). Of 33 SV subjects (median age 62 months), 13 had aortopulmonary connections and 20 had cavopulmonary connections. Median and mean +/- SD BNP levels by shunt type were 184 and 754 +/- 1,086 pg/ml in the patients with aortopulmonary connections, 38 and 169 +/- 251 pg/ml in the patients with cavopulmonary connections, and 10 and 11 +/- 5 pg/ml in normal controls, respectively (p = 0.004). Median systemic ventricular end-diastolic pressure (8mm Hg, R = 0.45), mean pulmonary artery pressure (14.5 mm Hg, R = 0.62), and mean right atrial pressure (6.5 mm Hg, R = 0.54) were correlated with plasma BNP. SV subjects with symptomatic heart failure from dysfunctional systemic ventricles had median and mean +/- SD BNP levels of 378 and 714 +/- 912 pg/ml (n = 18) compared with patients with isolated failed Glenn or Fontan connections (19 and 23 +/- 16 pg/ml [n = 7, p = 0.001]) and those with no heart failure (22 and 22 +/- 12 pg/ml [n = 8, p = 0.001]). Excluding the group with cavopulmonary failure, the severity of heart failure from systemic ventricular dysfunction was associated with plasma BNP. In conclusion, plasma BNP is elevated in SV patients with systemic ventricular or left-sided cardiac failure. BNP is not elevated in patients missing a pulmonary ventricle with isolated cavopulmonary failure.

  3. Short- and long-term performance of a tripolar down-sized single lead for implantable cardioverter defibrillator treatment: a randomized prospective European multicenter study. European Endotak DSP Investigator Group.

    PubMed

    Sandstedt, B; Kennergren, C; Schaumann, A; Herse, B; Neuzner, J

    1998-11-01

    A new, thinner (10 Fr) and more flexible, single-pass transvenous endocardial ICD lead, Endotak DSP, was compared with a conventional lead, Endotak C, as a control in a prospective randomized multicenter study in combination with a nonactive can ICD. A total of 123 patients were enrolled, 55 of whom received a down-sized DSP lead. Lead-alone configuration was successfully implanted in 95% of the DSP patients vs 88% in the control group. The mean defibrillation threshold (DFT) was determined by means of a step-down protocol, and was identical in the two groups, 10.5 +/- 4.8 J in the DSP group versus 10.5 +/- 4.8 J in the control group. At implantation, the DSP mean pacing threshold was lower, 0.51 +/- 0.18 V versus 0.62 +/- 0.35 V (p < 0.05) in the control group, and the mean pacing impedance higher, 594 +/- 110 omega vs 523 +/- 135 omega (p < 0.05). During the follow-up period, the statistically significant difference in thresholds disappeared, while the difference in impedance remained. Tachyarrhythmia treatment by shock or antitachycardia pacing (ATP) was delivered in 53% and 41%, respectively, of the patients with a 100% success rate. In the DSP group, all 28 episodes of polymorphic ventricular tachycardia or ventricular fibrillation were converted by the first shock as compared to 57 of 69 episodes (83%) in the control group (p < 0.05). Monomorphic ventricular tachycardias were terminated by ATP alone in 96% versus 94%. Lead related problems were minor and observed in 5% and 7%, respectively. In summary, both leads were safe and efficacious in the detection and treatment of ventricular tachyarrhythmias. There were no differences between the DSP and control groups regarding short- or long-term lead related complications.

  4. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    PubMed

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Impact of Ancillary Subunits on Ventricular Repolarization

    PubMed Central

    Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.

    2007-01-01

    Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, e.g. KChIP2 and the epicardial-endocardial Ito current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium. PMID:17993327

  6. Differences in transient outward currents of feline endocardial and epicardial myocytes.

    PubMed

    Furukawa, T; Myerburg, R J; Furukawa, N; Bassett, A L; Kimura, S

    1990-11-01

    Whole-cell voltage-clamp experiments were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to test the hypothesis that the differences in the amplitude of transient outward current (Ito) contribute to the difference in action potential configuration between endocardial and epicardial myocytes. In the control state, action potentials recorded from epicardial cells demonstrated a prominent notch between phases 1 and 2, and membrane current recordings displayed a prominent Ito, whereas in endocardial cells the notch in action potentials and Ito were small. External application of 4-aminopyridine (2 mM) reduced the amplitudes of notch and Ito in epicardial cells but not in endocardial cells. After application of 4-aminopyridine (2 mM) and caffeine (5 mM), the notch and Ito were abolished completely in both endocardial and epicardial cells. The first component of Ito (Ito1) was present in all epicardial cells studied (n = 20); it was absent in 12 of the 20 endocardial cells, and a small Ito1 was present in the remaining eight endocardial cells. The mean amplitude of Ito1 was significantly greater in epicardial than in endocardial cells. At a test voltage of +80 mV, the amplitude of Ito1 was 102.0 +/- 47.7 pA/pF in epicardial cells and 3.3 +/- 3.3 pA/pF in endocardial cells (p less than 0.01). The second component of Ito (Ito2) was present in all endocardial (n = 30) and epicardial (n = 30) cells studied. The amplitude of Ito2 was significantly greater in epicardial than in endocardial cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The cellular prion protein identifies bipotential cardiomyogenic progenitors.

    PubMed

    Hidaka, Kyoko; Shirai, Manabu; Lee, Jong-Kook; Wakayama, Takanari; Kodama, Itsuo; Schneider, Michael D; Morisaki, Takayuki

    2010-01-08

    The paucity of specific surface markers for cardiomyocytes and their progenitors has impeded the development of embryonic or pluripotent stem cell-based transplantation therapy. Identification of relevant surface markers may also enhance our understanding of the mechanisms underlying differentiation. Here, we show that cellular prion protein (PrP) serves as an effective surface marker for isolating nascent cardiomyocytes as well as cardiomyogenic progenitors. Embryonic stem (or embryo-derived) cells were analyzed using flow cytometry to detect surface expression of PrP and intracellular myosin heavy chain (Myhc) proteins. Sorted cells were then analyzed for their differentiation potential. PrP+ cells from beating embryoid bodies (EBs) frequently included nascent Myhc+ cardiomyocytes. Cultured PrP+ cells further differentiated, giving rise to cardiac troponin I+ definitive cardiomyocytes with either an atrial or a ventricular identity. These cells were electrophysiologically functional and able to survive in vivo after transplantation. Combining PrP with a second marker, platelet-derived growth factor receptor (PDGFR)alpha, enabled us to identify an earlier cardiomyogenic population from prebeating EBs, the PrP+PDGFRalpha+ (PRa) cells. The Myhc- PRa cells expressed cardiac transcription factors, such as Nkx2.5, T-box transcription factor 5, and Isl1 (islet LIM homeobox 1), although they were not completely committed. In mouse embryos, PRa cells in cardiac crescent at the 1 to 2 somite stage were Myhc+, whereas they were Myhc- at headfold stages. PRa cells clonally expanded in methlycellulose cultures. Furthermore, single Myhc- PRa cell-derived colonies contained both cardiac and smooth muscle cells. Thus, PrP demarcates a population of bipotential cardiomyogenic progenitor cells that can differentiate into cardiac or smooth muscle cells.

  8. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    PubMed

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions.

  9. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans

    PubMed Central

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions. PMID:27504470

  10. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.

    PubMed

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-08-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma.

  11. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research

    PubMed Central

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-01-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and ‑negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma. PMID:28830577

  12. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    PubMed Central

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  13. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    PubMed

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Longitudinal Assessment of Vascular Function With Sunitinib in Patients With Metastatic Renal Cell Carcinoma.

    PubMed

    Catino, Anna B; Hubbard, Rebecca A; Chirinos, Julio A; Townsend, Ray; Keefe, Stephen; Haas, Naomi B; Puzanov, Igor; Fang, James C; Agarwal, Neeraj; Hyman, David; Smith, Amanda M; Gordon, Mary; Plappert, Theodore; Englefield, Virginia; Narayan, Vivek; Ewer, Steven; ElAmm, Chantal; Lenihan, Daniel; Ky, Bonnie

    2018-03-01

    Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P =0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P <0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P <0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function. © 2018 American Heart Association, Inc.

  15. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    PubMed

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  16. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers.

    PubMed

    Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  17. Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    PubMed

    Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Férnandez, Marco A; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo; Bayes-Genis, Antoni

    2015-08-01

    Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. ©AlphaMed Press.

  18. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers

    NASA Astrophysics Data System (ADS)

    Nayak, Alok Ranjan; Panfilov, A. V.; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  19. Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.

    PubMed

    George, Uduak Z; Wang, Jun; Yu, Zeyun

    2014-01-01

    Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+, buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes.

  20. Simultaneous assessment of myocardial perfusion and function during mental stress in patients with chronic coronary artery disease.

    PubMed

    Arrighi, James A; Burg, Matthew; Cohen, Ira S; Soufer, Robert

    2003-01-01

    Mental stress (MS) is an important provocateur of myocardial ischemia in many patients with chronic coronary artery disease. The majority of laboratory assessments of ischemia in response to MS have included measurements of either myocardial perfusion or function alone. We performed this study to determine the relationship between alterations in perfusion and ventricular function during MS. Methods and results Twenty-eight patients with reversible perfusion defects on exercise or pharmacologic stress myocardial perfusion imaging (MPI) underwent simultaneous technetium 99m sestamibi single photon emission computed tomography (SPECT) MPI and transthoracic echocardiography at rest and during MS according to a mental arithmetic protocol. In all cases the MS study was performed within 4 weeks of the initial exercise or pharmacologic MPI that demonstrated ischemia. SPECT studies were analyzed visually with the use of a 13-segment model and quantitatively by semiautomated circumferential profile analysis. Echocardiograms were graded on a segmental model for regional wall motion on a 4-point scale. Of 28 patients, 18 (64%) had perfusion defects and/or left ventricular dysfunction develop during MS: 9 (32%) had myocardial perfusion defects develop, 6 (21%) had regional or global left ventricular dysfunction develop, and 3 (11%) had both perfusion defects and left ventricular dysfunction develop. The overall concordance between perfusion and function criteria for ischemia during MS was only 46%. Among 9 patients with MS-induced left ventricular dysfunction, 5 had new regional wall motion abnormalities and 4 had a global decrement in function. In patients with MS-induced ischemia by SPECT, the number of reversible perfusion defects was similar during both MS and exercise/pharmacologic stress (2.8 +/- 2.0 vs 3.5 +/- 1.8, P =.41). Hemodynamic changes during MS were similar whether patients were divided on the basis of perfusion defects or left ventricular dysfunction during MS. These data indicate the feasibility of simultaneous assessment of perfusion and function responses during MS. Flow and function responses to MS are frequently not concordant. These data suggest that MS-induced changes in perfusion may represent a different phenomenon than MS-induced changes in left ventricular function (either globally or regionally).

  1. Differential responses of rabbit ventricular and atrial transient outward current (Ito) to the Ito modulator NS5806.

    PubMed

    Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C

    2017-03-01

    Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10  μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6  μ mol/L and inhibition had an IC 50 of 40.7  μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18  μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10  μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    PubMed

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.

  3. Effects of Xinjining extract on inward rectifier potassium current in ventricular myocytes of guinea pig.

    PubMed

    Zhu, Ming-jun; Wang, Guo-juan; Wang, Yong-xia; Pu, Jie-lin; Liu, Hong-jun; Yu, Hai-bin

    2010-02-01

    To study the effect of Xinjining extract (, XJN) on inward rectifier potassium current (I(K1)) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the I(k1) in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of I(K1) as well as the outward component of peak I(K1) and conductance of it accordingly was recorded when the test voltage was set on -110 mV. The suppressive rate of XJN on the inward component of I(K1) was 9.54% + or - 5.81%, 34.82% + or - 15.03%, and 59.52% + or - 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak I(K1) was 23.94% + or - 7.45%, 52.98% + or - 19.62%, and 71.42% + or - 23.01%, respectively (all P<0.05). Moreover, different concentrations of XJN also showed effects for reducing I(K1) conductance. XJN has inhibitory effect on I(K1) in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect.

  4. A novel hydrodynamic approach of drag-reducing polymers to improve left ventricular hypertrophy and aortic remodeling in spontaneously hypertensive rats.

    PubMed

    Zhang, Xinlu; Wang, Xu; Hu, Feng; Zhou, Boda; Chen, Hai-Bin; Zha, Daogang; Liu, Yili; Guo, Yansong; Zheng, Lemin; Xiu, Jiancheng

    Drag-reducing polymers (DRPs), when added in minute concentrations, have been shown to decrease peripheral vascular resistance. In this study, the effect of DRPs on the hypertension-induced left ventricular hypertrophy and aortic remodeling was evaluated in spontaneously hypertensive rats (SHR). Male SHR and age-matched Wistar rats were divided into four groups and received intravenous injection of normal saline (NS) or DRPs. Body weight (BW), heart rate (HR) and systolic blood pressure (SBP) were measured. Echocardiography was used to evaluate the changes in left ventricle (LV) function and global wall motion. The LV and aorta were stained by hematoxylin and eosin. Cell size of cardiomyocytes and aortic medial thickness were evaluated for each section. The expression of endothelin-1 (ET-1) of LV and aorta was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. There was no significant difference in the increase of SBP among SHR + NS, SHR + 10DRP and SHR + 20DRP groups. SHR + NS group had markedly smaller left ventricular end-systolic diameter and left ventricular end-diastolic diameter but bigger anterior and posterior systolic wall thicknesses, while there was no significant difference in fractional shortening and ejection fraction. The cross-sectional areas (CSAs) of cardiomyocytes and the medial thickness of the aorta in SHR + 10 (ppm) DRP and SHR + 20 (ppm) DRP groups were significantly reduced compared with SHR + NS group. The expression of ET-1 in SHR + 10DRP and SHR + 20DRP groups was significantly attenuated. These results suggest that chronic treatment with DRPs can protect against left ventricular hypertrophy and aortic remodeling. DRPs may offer a new approach to the treatment of left ventricular hypertrophy and aortic remodeling caused by hypertension.

  5. A novel hydrodynamic approach of drag-reducing polymers to improve left ventricular hypertrophy and aortic remodeling in spontaneously hypertensive rats

    PubMed Central

    Zhang, Xinlu; Wang, Xu; Hu, Feng; Zhou, Boda; Chen, Hai-Bin; Zha, Daogang; Liu, Yili; Guo, Yansong; Zheng, Lemin; Xiu, Jiancheng

    2016-01-01

    Drag-reducing polymers (DRPs), when added in minute concentrations, have been shown to decrease peripheral vascular resistance. In this study, the effect of DRPs on the hypertension-induced left ventricular hypertrophy and aortic remodeling was evaluated in spontaneously hypertensive rats (SHR). Male SHR and age-matched Wistar rats were divided into four groups and received intravenous injection of normal saline (NS) or DRPs. Body weight (BW), heart rate (HR) and systolic blood pressure (SBP) were measured. Echocardiography was used to evaluate the changes in left ventricle (LV) function and global wall motion. The LV and aorta were stained by hematoxylin and eosin. Cell size of cardiomyocytes and aortic medial thickness were evaluated for each section. The expression of endothelin-1 (ET-1) of LV and aorta was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. There was no significant difference in the increase of SBP among SHR + NS, SHR + 10DRP and SHR + 20DRP groups. SHR + NS group had markedly smaller left ventricular end-systolic diameter and left ventricular end-diastolic diameter but bigger anterior and posterior systolic wall thicknesses, while there was no significant difference in fractional shortening and ejection fraction. The cross-sectional areas (CSAs) of cardiomyocytes and the medial thickness of the aorta in SHR + 10 (ppm) DRP and SHR + 20 (ppm) DRP groups were significantly reduced compared with SHR + NS group. The expression of ET-1 in SHR + 10DRP and SHR + 20DRP groups was significantly attenuated. These results suggest that chronic treatment with DRPs can protect against left ventricular hypertrophy and aortic remodeling. DRPs may offer a new approach to the treatment of left ventricular hypertrophy and aortic remodeling caused by hypertension. PMID:28008249

  6. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  7. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  8. Is there a right place to pace the right ventricle? Evaluation of apical and septal positions in a pacemaker population: study protocol for a prospective intervention-control trial.

    PubMed

    Muto, Carmine; Calvi, Valeria; Botto, Giovanni Luca; Pecora, Domenico; Ciaramitaro, Gianfranco; Valsecchi, Sergio; Malacrida, Maurizio; Maglia, Giampiero

    2014-11-01

    The main objective of research in pacemaker therapy has been to provide the best physiologic way to pace the heart. Despite the good results provided by right ventricular pacing minimization and by biventricular pacing in specific subsets of heart failure patients, these options present many limitations for standard pacemaker recipients. In these patients, pacing the right ventricle at alternative sites could result in a lower degree of left intraventricular dyssynchrony. Despite the lack of strong evidence and the difficulty in placing and accurately classifying the final lead position, pacing at alternative right ventricular sites seems to have become a standard procedure at many implanting centers. The RIGHT PACE study is a multi-center, prospective, single-blind, double-arm, intervention-control trial comparing right ventricular pacing from the apex and from the septal site in terms of left intraventricular dyssynchrony. A total of 408 patients with indications for cardiac pacing but without indications for ICD and/or CRT will be enrolled. Investigators will be divided on the basis of their prior experience of selective site pacing lead implantation and patients will be treated according to the clinical practice of the centers. After device implantation, they will be followed up for 24 months through evaluation of clinical, echocardiographic and safety/system-performance variables. This study might provide important information about the impact of the right ventricular pacing on the left ventricular dyssynchrony, and about acute and chronic responses to selective site pacing, as adopted in current clinical practice. This trial is registered at ClinicalTrials.gov (ID:NCT01647490). Right Ventricular Lead Placement in a Pacemaker Population: Evaluation of apical and alternative position. ClinicalTrials.gov: NCT01647490. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Impaired Right, Left, or Biventricular Function and Resting Oxygen Saturation Are Associated With Mortality in Eisenmenger Syndrome: A Clinical and Cardiovascular Magnetic Resonance Study.

    PubMed

    Jensen, Annette S; Broberg, Craig S; Rydman, Riikka; Diller, Gerhard-Paul; Li, Wei; Dimopoulos, Konstantinos; Wort, Stephen J; Pennell, Dudley J; Gatzoulis, Michael A; Babu-Narayan, Sonya V

    2015-12-01

    Patients with Eisenmenger syndrome (ES) have better survival, despite similar pulmonary vascular pathology, compared with other patients with pulmonary arterial hypertension. Cardiovascular magnetic resonance (CMR) is useful for risk stratification in idiopathic pulmonary arterial hypertension, whereas it has not been evaluated in ES. We studied CMR together with other noninvasive measurements in ES to evaluate its potential role as a noninvasive risk stratification test. Between 2003 and 2005, 48 patients with ES, all with a post-tricuspid shunt, were enrolled in a prospective, longitudinal, single-center study. All patients underwent a standardized baseline assessment with CMR, blood test, echocardiography, and 6-minute walk test and were followed up for mortality until the end of December 2013. Twelve patients (25%) died during follow-up, mostly from heart failure (50%). Impaired ventricular function (right or left ventricular ejection fraction) was associated with increased risk of mortality (lowest quartile: right ventricular ejection fraction, <40%; hazard ratio, 4.4 [95% confidence interval, 1.4-13.5]; P=0.01 and left ventricular ejection fraction, <50%; hazard ratio, 6.6 [95% confidence interval, 2.1-20.8]; P=0.001). Biventricular impairment (lowest quartile left ventricular ejection fraction, <50% and right ventricular ejection fraction, <40%) conveyed an even higher risk of mortality (hazard ratio, 8.0 [95% confidence interval, 2.5-25.1]; P=0.0004). No other CMR or noninvasive measurement besides resting oxygen saturation (hazard ratio, 0.90 [0.83-0.97]/%; P=0.007) was associated with mortality. Impaired right, left, or biventricular systolic function derived from baseline CMR and resting oxygen saturation are associated with mortality in adult patients with ES. CMR is a useful noninvasive tool, which may be incorporated in the risk stratification assessment of ES during lifelong follow-up. © 2015 American Heart Association, Inc.

  10. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca²⁺release leading to catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Suetomi, Takeshi; Yano, Masafumi; Uchinoumi, Hitoshi; Fukuda, Masakazu; Hino, Akihiro; Ono, Makoto; Xu, Xiaojuan; Tateishi, Hiroki; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Ikeda, Yasuhiro; Yamamoto, Takeshi; Ikemoto, Noriaki; Matsuzaki, Masunori

    2011-08-09

    The molecular mechanism by which catecholaminergic polymorphic ventricular tachycardia is induced by single amino acid mutations within the cardiac ryanodine receptor (RyR2) remains elusive. In the present study, we investigated mutation-induced conformational defects of RyR2 using a knockin mouse model expressing the human catecholaminergic polymorphic ventricular tachycardia-associated RyR2 mutant (S2246L; serine to leucine mutation at the residue 2246). All knockin mice we examined produced ventricular tachycardia after exercise on a treadmill. cAMP-dependent increase in the frequency of Ca²⁺ sparks was more pronounced in saponin-permeabilized knockin cardiomyocytes than in wild-type cardiomyocytes. Site-directed fluorescent labeling and quartz microbalance assays of the specific binding of DP2246 (a peptide corresponding to the 2232 to 2266 region: the 2246 domain) showed that DP2246 binds with the K201-binding sequence of RyR2 (1741 to 2270). Introduction of S2246L mutation into the DP2246 increased the affinity of peptide binding. Fluorescence quench assays of interdomain interactions within RyR2 showed that tight interaction of the 2246 domain/K201-binding domain is coupled with domain unzipping of the N-terminal (1 to 600)/central (2000 to 2500) domain pair in an allosteric manner. Dantrolene corrected the mutation-caused domain unzipping of the domain switch and stopped the exercise-induced ventricular tachycardia. The catecholaminergic polymorphic ventricular tachycardia-linked mutation of RyR2, S2246L, causes an abnormally tight local subdomain-subdomain interaction within the central domain involving the mutation site, which induces defective interaction between the N-terminal and central domains. This results in an erroneous activation of Ca²⁺ channel in a diastolic state reflecting on the increased Ca²⁺ spark frequency, which then leads to lethal arrhythmia.

  11. Risk Stratification in Arrhythmogenic Right Ventricular Cardiomyopathy.

    PubMed

    Calkins, Hugh; Corrado, Domenico; Marcus, Frank

    2017-11-21

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by ventricular arrhythmias and an increased risk of sudden cardiac death. Although structural abnormalities of the right ventricle predominate, it is well recognized that left ventricular involvement is common, particularly in advanced disease, and that left-dominant forms occur. The pathological characteristic of ARVC is myocyte loss with fibrofatty replacement. Since the first detailed clinical description of the disorder in 1982, significant advances have been made in understanding this disease. Once the diagnosis of ARVC is established, the single most important clinical decision is whether a particular patient's sudden cardiac death risk is sufficient to justify placement of an implantable cardioverter-defibrillator. The importance of this decision reflects the fact that ARVC is a common cause of sudden death in young people and that sudden death may be the first manifestation of the disease. This decision is particularly important because these are often young patients who are expected to live for many years. Although an implantable cardioverter-defibrillator can save lives in individuals with this disease, it is also well recognized that implantable cardioverter-defibrillator therapy is associated with both short- and long-term complications. Decisions about the placement of an implantable cardioverter-defibrillator are based on an estimate of a patient's risk of sudden cardiac death, as well as their preferences and values. The primary purpose of this article is to provide a review of the literature that concerns risk stratification in patients with ARVC and to place this literature in the framework of the 3 authors' considerable lifetime experiences in caring for patients with ARVC. The most important parameters to consider when determining arrhythmic risk include electric instability, including the frequency of premature ventricular contractions and sustained ventricular arrhythmia; proband status; extent of structural disease; cardiac syncope; male sex; the presence of multiple mutations or a mutation in TMEM43; and the patient's willingness to restrict exercise and to eliminate participation in competitive or endurance exercise. © 2017 American Heart Association, Inc.

  12. Rate-dependent Loss of Capture during Ventricular Pacing.

    PubMed

    Wang, Jingfeng; Chen, Haiyan; Su, Yangang; Ge, Junbo

    2015-01-01

    A 63-year-old patient who had undergone atrial septal defect surgical repair received implantation of a single chamber VVI pacemaker for long RR intervals during atrial fibrillation. One week later, an intermittent loss of capture and sensing failure was detected at a pacing rate of 70 beats/min. However, a successful capture was observed during rapid pacing. Consequently, the pacing rate was temporarily adjusted to 90 beats/min. At the 3-month follow-up, the pacemaker was shown to be functioning properly independent of the pacing rate. An echocardiogram showed that the increased pacing rates were accompanied by a reduction in the right ventricular outflow tract dimension. The pacemaker was then permanently programmed at a lower rate of 60 beats/min.

  13. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome.

    PubMed

    Akdis, Deniz; Saguner, Ardan M; Shah, Khooshbu; Wei, Chuanyu; Medeiros-Domingo, Argelia; von Eckardstein, Arnold; Lüscher, Thomas F; Brunckhorst, Corinna; Chen, H S Vincent; Duru, Firat

    2017-05-14

    Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is characterized by fibrofatty infiltration of the myocardium and ventricular arrhythmias that may lead to sudden cardiac death. It has been observed that male patients develop the disease earlier and present with more severe phenotypes as compared to females. Thus, we hypothesized that serum levels of sex hormones may contribute to major arrhythmic cardiovascular events (MACE) in patients with ARVC/D. The serum levels of five sex hormones, sex hormone-binding globulin, high sensitivity troponin T, pro-brain natriuretic peptide, cholesterol, triglycerides, insulin, and glucose were measured in 54 ARVC/D patients (72% male). Twenty-six patients (48%) experienced MACE. Total and free testosterone levels were significantly increased in males with MACE as compared to males with a favourable outcome, whereas estradiol was significantly lower in females with MACE as compared to females with a favourable outcome. Increased testosterone levels remained independently associated with MACE in males after adjusting for age, body mass index, Task Force criteria, ventricular function, and desmosomal mutation status. Furthermore, an induced pluripotent stem cell-derived ARVC/D cardiomyocyte model was used to investigate the effects of sex hormones. In this model, testosterone worsened and estradiol improved ARVC/D-related pathologies such as cardiomyocyte apoptosis and lipogenesis, strongly supporting our clinical findings. Elevated serum testosterone levels in males and decreased estradiol levels in females are independently associated with MACE in ARVC/D, and directly influence disease pathology. Therefore, determining the levels of sex hormones may be useful for risk stratification and may open a new window for preventive interventions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  14. Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling

    PubMed Central

    Saegusa, Noriko; Garg, Vivek

    2013-01-01

    The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132

  15. Multiple left anterior descending coronary artery to left ventricular fistula - A case series and literature review.

    PubMed

    Iyer, Praneet; Yelisetti, Rishitha

    2017-10-01

    Coronary artery fistulas (CAFs) are found in 0.3-0.8% of patients who undergo coronary angiography. CAFs are defined as single or multiple, small or large direct communications that arise from one or more coronary arteries and enter into one of the four cardiac chambers or major vessels. We present two cases of multiple coronary artery fistulas arising from diagonal and left anterior descending (LAD) branches of left coronary artery draining into the left ventricle. In both the cases, No intervention was performed. Of the congenital fistulas, two major groups are identified: solitary CAFs or coronary artery-left ventricular multiple micro-fistulas (CALVMMFs). Noninvasive techniques such as transthoracic echocardiography, transesophageal echocardiography and magnetic resonance imaging are becoming increasingly popular for diagnosis and follow-up of CAFs. Despite the advent of these newer non-invasive modalities, coronary angiography remains the gold standard for diagnosis. Treatment of CAFs is indicated when the patients are symptomatic with left ventricular volume overload, myocardial ischemia, left ventricular dysfunction or in the presence of a large or increasing left-to-right shunt. If the fistula is small and hemodynamically insignificant, it can be managed with conservative management. Multiple left anterior descending to left ventricle (LV) fistulas are extremely rare and, as per our literature review, we noted only a few case reports of coronary artery fistulas between branches of LAD and left ventricle.

  16. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    PubMed

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels.

  17. The Selective Late Sodium Current Inhibitor Eleclazine, Unlike Amiodarone, Does Not Alter Defibrillation Threshold or Dominant Frequency of Ventricular Fibrillation.

    PubMed

    Silva, Ana F G; Bonatti, Rodolfo; Batatinha, Julio A P; Nearing, Bruce D; Zeng, Dewan; Belardinelli, Luiz; Verrier, Richard L

    2017-03-01

    We examined the effects of the selective late INa inhibitor eleclazine on the 50% probability of successful defibrillation (DFT50) before and after administration of amiodarone to determine its suitability for use in patients with implantable cardioverter defibrillators (ICDs). In 20 anesthetized pigs, transvenous active-fixation cardiac defibrillation leads were fluoroscopically positioned into right ventricular apex through jugular vein. ICDs were implanted subcutaneously. Dominant frequency of ventricular fibrillation was analyzed by fast Fourier transform. The measurements were made before drug administration (control), and at 40 minutes after vehicle, eleclazine (2 mg/kg, i.v., bolus over 15 minutes), or subsequent/single amiodarone administration (10 mg/kg, i.v., bolus over 10 minutes). Eleclazine did not alter DFT50, dominant frequency, heart rate, or mean arterial pressure (MAP). Subsequent amiodarone increased DFT50 (P = 0.006), decreased dominant frequency (P = 0.022), and reduced heart rate (P = 0.031) with no change in MAP. Amiodarone alone increased DFT50 (P = 0.005; NS compared to following eleclazine) and decreased dominant frequency (P = 0.003; NS compared to following eleclazine). Selective late INa inhibition with eleclazine does not alter DFT50 or dominant frequency of ventricular fibrillation when administered alone or in combination with amiodarone. Accordingly, eleclazine would not be anticipated to affect the margin of defibrillation safety in patients with ICDs.

  18. Variations in the structure of nexuses in the myocardium of the golden hamster Mesocricetus auratus.

    PubMed Central

    Skepper, J N; Navaratnam, V

    1986-01-01

    The structure of nexuses in the atrioventricular node of the golden hamster was studied with the transmission electron microscope, using thin sections and freeze-fracture replicas, and was compared with that of nexuses in the working myocardium of the right ventricular wall. Whereas ventricular myocardium contained macular nexuses only, nodal tissue contained annular and linear configurations as well as maculae of varying size. The significance of such variations in nexus pattern is not clear although several hypotheses are discussed in the literature. Measurements made on electron micrographs, after allowing for tilt of the specimen, yielded a particle diameter of 10.59 nm for nodal myocardium and 10.95 nm for ventricular myocardium, both measurements being substantially higher than figures generally cited in the literature. In each area the measurements had a normal distribution suggesting a single type of particle. The small but significant difference in particle size between the two areas is more likely to be caused by dissimilarities in packing arrangement rather than by differences in intrinsic structure or in functional state. Images Fig. 1 Fig. 3 PMID:3693102

  19. Iatrogenic left ventricular-right atrial communication after tricuspid annuloplasty; a case report.

    PubMed

    Tayama, Eiki; Tomita, Yukihiro; Imasaka, Ken-ichi; Kono, Takanori

    2014-06-18

    A 75-year-old man (Asian, Japanese) was readmitted for examination of a heart murmur and haemolytic anemia 3 months after mitral valve and tricuspid annuloplasties and coronary artery bypass. A new systolic murmur was heard, and echocardiography showed a high-velocity jet originating from the left ventricular outflow tract and extending to the right atrium, a small defect between the left ventricle and the right atrium. No periprosthetic leaks were found in the mitral position. We judged that surgical repair of the defect was essential to treat mechanical haemolysis. At operation, we found a communication (3 mm in diameter) just beneath the detached prosthetic ring at the anteroseptal commissure of the tricuspid valve. After partially removing the tricuspid ring from the anteroseptal commissure area, the defect was closed using a single mattress suture with pledget. In this case, the tricuspid annuloplasty stitch in the atrioventricular region was probably placed on the membranous septum rather than on the tricuspid annulus. A tear then occurred in the atrioventricular membranous septum, leading to left ventricular-right atrial communication.

  20. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  1. Early detection of ventricular tachycardia with sending messages to cell phone

    NASA Astrophysics Data System (ADS)

    Ramirez, L. J.; Lozano, F. A.; Rondon, C. R.

    2011-09-01

    Sustained ventricular tachycardia (VTs) can be asymptomatic for some people, but for other is deadly because it is a major cause of sudden cardiac death [1]. Some patients may present this arrhythmia, and even so, they decide to drive car increasing the likelihood of VTs, putting at risk not only his life but that of the other drivers. We developed a system for early detection of VTs, consisting of EKG sensors, a card of processing and a cell phone, which detects this arrhythmia, gives an alarm signal to the driver, and it simultaneously sending to text messages a specialist doctor and a relative or friend, all in real time. This design was conditioned to the car, is light and comfortable, that allowed that work of car's driver without discomfort. This system will save lives, since in case of emergency sends a help message, no matter where you are in the driver.

  2. Permanent Leadless Cardiac Pacemaker Therapy: A Comprehensive Review.

    PubMed

    Tjong, Fleur V Y; Reddy, Vivek Y

    2017-04-11

    A new technology, leadless pacemaker therapy, was recently introduced clinically to address lead- and pocket-related complications in conventional transvenous pacemaker therapy. These leadless devices are self-contained right ventricular single-chamber pacemakers implanted by using a femoral percutaneous approach. In this review of available clinical data on leadless pacemakers, early results with leadless devices are compared with historical results with conventional single-chamber pacing. Both presently manufactured leadless pacemakers show similar complications, which are mostly related to the implant procedure: cardiac perforation, device dislocation, and femoral vascular access site complications. In comparison with conventional transvenous single-chamber pacemakers, slightly higher short-term complication rates have been observed: 4.8% for leadless pacemakers versus 4.1% for conventional pacemakers. The complication rate of the leadless pacemakers is influenced by the implanter learning curve for this new procedure. No long-term outcome data are yet available for the leadless pacemakers. Larger leadless pacing trials, with long-term follow-up and direct randomized comparison with conventional pacing systems, will be required to define the proper clinical role of these leadless systems. Although current leadless pacemakers are limited to right ventricular pacing, future advanced, communicating, multicomponent systems are expected to expand the potential benefits of leadless therapy to a larger patient population. © 2017 American Heart Association, Inc.

  3. Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function.

    PubMed

    Bagno, Luiza L; Carvalho, Deivid; Mesquita, Fernanda; Louzada, Ruy A; Andrade, Bruno; Kasai-Brunswick, Taís H; Lago, Vivian M; Suhet, Grazielle; Cipitelli, Debora; Werneck-de-Castro, João Pedro; Campos-de-Carvalho, Antonio C

    2016-01-01

    The mechanism by which stem cell-based therapy improves heart function is still unknown, but paracrine mechanisms seem to be involved. Adipose-derived stem cells (ADSCs) secrete several factors, including insulin-like growth factor-1 (IGF-1), which may contribute to myocardial regeneration. Our aim was to investigate whether the overexpression of IGF-1 in ADSCs (IGF-1-ADSCs) improves treatment of chronically infarcted rat hearts. ADSCs were transduced with a lentiviral vector to induce IGF-1 overexpression. IGF-1-ADSCs transcribe100- to 200-fold more IGF-1 mRNA levels compared to nontransduced ADSCs. IGF-1 transduction did not alter ADSC immunophenotypic characteristics even under hypoxic conditions. However, IGF-1-ADSCs proliferate at higher rates and release greater amounts of growth factors such as IGF-1, vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) under normoxic and hypoxic conditions. Importantly, IGF-1 secreted by IGF-1-ADSCs is functional given that Akt-1 phosphorylation was remarkably induced in neonatal cardiomyocytes cocultured with IGF-1-ADSCs, and this increase was prevented with phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. Next, we tested IGF-1-ADSCs in a rat myocardial infarction (MI) model. MI was performed by coronary ligation, and 4 weeks after MI, animals received intramyocardial injections of either ADSCs (n = 7), IGF-1-ADSCs (n = 7), or vehicle (n = 7) into the infarcted border zone. Left ventricular function was evaluated by echocardiography before and after 6 weeks of treatment, and left ventricular hemodynamics were assessed 7 weeks after cell injection. Notably, IGF-1-ADSCs improved left ventricular ejection fraction and cardiac contractility index, but did not reduce scar size when compared to the ADSC-treated group. In summary, transplantation of ADSCs transduced with IGF-1 is a superior therapeutic approach to treat MI compared to nontransduced ADSCs, suggesting that gene and cell therapy may bring additional benefits to the treatment of MI.

  4. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action. PMID:25360118

  5. Late deterioration of left ventricular function after right ventricular pacemaker implantation.

    PubMed

    Bellmann, Barbara; Muntean, Bogdan G; Lin, Tina; Gemein, Christopher; Schmitz, Kathrin; Schauerte, Patrick

    2016-09-01

    Right ventricular (RV) pacing induces a left bundle branch block pattern on ECG and may promote heart failure. Patients with dual chamber pacemakers (DCPs) who present with progressive reduction in left ventricular ejection fraction (LVEF) secondary to RV pacing are candidates for cardiac resynchronization therapy (CRT). This study analyzes whether upgrading DCP to CRT with the additional implantation of a left ventricular (LV) lead improves LV function in patients with reduced LVEF following DCP implantation. Twenty-two patients (13 males) implanted with DCPs and a high RV pacing percentage (>90%) were evaluated in term of new-onset heart failure symptoms. The patients were enrolled in this retrospective single-center study after obvious causes for a reduced LVEF were excluded with echocardiography and coronary angiography. In all patients, DCPs were then upgraded to biventricular devices. LVEF was analyzed with a two-sided t-test. QRS duration and brain natriuretic peptide (BNP) levels were analyzed with the unpaired t-test. LVEF declined after DCP implantation from 54±10% to 31±7%, and the mean QRS duration was 161±20 ms during RV pacing. NT-pro BNP levels were elevated (3365±11436 pmol/L). After upgrading to a biventricular device, a biventricular pacing percentage of 98.1±2% was achieved. QRS duration decreased to 108±16 ms and 106±20 ms after 1 and 6 months, respectively. There was a significant increase in LVEF to 38±8% and 41±11% and a decrease in NT-pro BNP levels to 3088±2326 pmol/L and 1860±1838 pmol/L at 1 and 6 months, respectively. Upgrading to CRT may be beneficial in patients with DCPs and heart failure induced by a high RV pacing percentage.

  6. Assessment of subclinical right ventricular systolic dysfunction in coal miners using myocardial isovolumic acceleration.

    PubMed

    Ozcan Abacıoglu, Ozge; Kaplan, Mehmet; Abacıoglu, Serkan; Quisi, Ala

    2017-09-01

    Several studies have been conducted regarding the effects of coal mining on the respiratory system. However, there is a lack of data concerning potential effects of coal mining on the cardiovascular system. In this study, we aimed to evaluate the potential subclinical right and left ventricular dysfunction in coal miners. This single-center, prospective study included a total of 102 patients. Patient and control groups consisted of 54 coal miners and 48 healthy men, respectively. All patients underwent 12-lead electrocardiography, transthoracic echocardiography, and pulmonary function test. As compared to control group, coal miners had significantly higher right ventricular myocardial performance index (RVMPI) (0.41 ± 0.03 vs 0.37 ± 0.02, P < .001), lower right ventricular fractional area change (RVFAC) (33.55% ± 6.70% vs 37.04 ± 9.26 P < .05), lower tricuspid annular plane systolic excursion (TAPSE) (1.54 ± 0.17 vs 1.73 ± 0.25, P < .001), lower myocardial isovolumic acceleration (IVA) (2.13 ± 0.16 vs 2.56 ± 0.36 P < .001) and decreased aortic distensibility (AD) (4.14 ± 2.18 vs 6.63 ± 3.91 P < .001). All of the echocardiographic parameters were positively correlated with exposure time to coal mine dust, except IVA. Echocardiographic parameters of both right and left ventricular dysfunction, including RVMPI, RVFAC, TAPSE, IVA, and AD, are impaired in coal miners. © 2017 The Authors Echocardiography Published by Wiley Periodicals, Inc.

  7. Continuous Flow Left Ventricular Assist Device Implant Significantly Improves Pulmonary Hypertension, Right Ventricular Contractility, and Tricuspid Valve Competence

    PubMed Central

    Atluri, Pavan; Fairman, Alexander S.; MacArthur, John W.; Goldstone, Andrew B.; Cohen, Jeffrey E.; Howard, Jessica L.; Zalewski, Christyna M.; Shudo, Yasuhiro; Woo, Y. Joseph

    2014-01-01

    Background Continuous flow left ventricular assist devices (CF LVAD) are being implanted with increasing frequency for end-stage heart failure. At the time of LVAD implant, a large proportion of patients have pulmonary hypertension, right ventricular (RV) dysfunction, and tricuspid regurgitation (TR). RV dysfunction and TR can exacerbate renal dysfunction, hepatic dysfunction, coagulopathy, edema, and even prohibit isolated LVAD implant. Repairing TR mandates increased cardiopulmonary bypass time and bicaval cannulation, which should be reserved for the time of orthotopic heart transplantation. We hypothesized that CF LVAD implant would improve pulmonary artery pressures, enhance RV function, and minimize TR, obviating need for surgical tricuspid repair. Methods One hundred fourteen continuous flow LVADs implanted from 2005 through 2011 at a single center, with medical management of functional TR, were retrospectively analyzed. Pulmonary artery pressures were measured immediately prior to and following LVAD implant. RV function and TR were graded according to standard echocardiographic criteria, prior to, immediately following, and long-term following LVAD. Results There was a significant improvement in post-VAD mean pulmonary arterial pressures (26.6 ± 4.9 vs. 30.2 ± 7.4 mmHg, p = 0.008) with equivalent loading pressures (CVP = 12.0 ± 4.0 vs. 12.1 ± 5.1 p = NS). RV function significantly improved, as noted by right ventricular stroke work index (7.04 ± 2.60 vs. 6.05 ± 2.54, p = 0.02). There was an immediate improvement in TR grade and RV function following LVAD implant, which was sustained long term. Conclusion Continuous flow LVAD implant improves pulmonary hypertension, RV function, and tricuspid regurgitation. TR may be managed nonoperatively during CF LVAD implant. PMID:24118109

  8. Association of time to reperfusion with left ventricular function and heart failure in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: a systematic review.

    PubMed

    Goel, Kashish; Pinto, Duane S; Gibson, C Michael

    2013-04-01

    Shorter time to reperfusion is associated with a significant reduction in mortality; however, its association with heart failure (HF) is not clearly documented. We conducted a systematic review to examine the association between time to reperfusion and incident HF and/or left ventricular dysfunction. MEDLINE/OVID, EMBASE, Cochrane Library, and Web of Science databases were searched from January 1974 to May 2012 for studies that reported the association between time to reperfusion and incident HF or left ventricular ejection fraction (LVEF) in patients undergoing primary percutaneous coronary intervention. Of 362 nonduplicate abstracts, 71 studies were selected for full-text review. Thirty-three studies were included in the final review, of which 16 were single-center studies, 7 were population-based studies, 7 were subanalyses from randomized controlled trials, and 3 were based on national samples. The pooled data demonstrate that every 1-hour delay in time to reperfusion is associated with a 4% to 12% increased risk of new-onset HF and a 4% relative increase in the risk of incident HF during follow-up. Early reperfusion was associated with a 2% to 8% greater LVEF before discharge and a 3% to 12% larger improvement in absolute LVEF at follow-up compared with the index admission. This systematic review presents evidence that longer time to reperfusion is not only associated with worsened left ventricular systolic function and new-onset HF at the time of index admission, but also with increased risk of HF and reduced improvement in left ventricular systolic function during follow-up. Copyright © 2013 Mosby, Inc. All rights reserved.

  9. Carotid atherosclerosis and right ventricular diastolic dysfunction in a sample of hypertensive Nigerian patients

    PubMed Central

    Akintunde, Adeseye A.; Adebayo, Philip B.; Aremu, Ademola A.; Opadijo, Oladimeji G.

    2013-01-01

    Aim To determine the association of carotid atherosclerosis and right ventricular diastolic dysfunction (DD) among treated hypertensive Nigerian patients. Methods This was a single center cross-sectional study performed at the Cardiology Clinic of LAUTECH Teaching Hospital, Ogbomoso, Nigeria between January and December 2012. The study included 122 hypertensive Nigerians (mean age, 57.3 ± 14.7 years, 36.9% women). Patients’ clinical, demographic, and echocardiographic parameters were obtained. Diastolic dysfunction was assessed with the trans-tricuspid Doppler flow. Results Patients with DD were significantly older than those with normal diastolic function. Mean and maximum carotid intima media thickness measurements were significantly higher among patients with right ventricular DD than in those with normal diastolic function. Mean systolic blood pressure (148.3 ± 31.9 vs 128.0 ± 2.8 mm Hg, P = 0.049) and interventricular septal thickness in diastole (12.8 ± 2.3 vs 11.6 ± 2.8mm, P = 0.048) were significantly higher and tricuspid annular pulmonary systolic excursion (33.6 ± 4.9 vs 23.0 ± 4.2 mm, P = 0.035) was significantly lower in patients with right ventricular DD than in those with normal diastolic function. Carotid intima media thickness measurements were correlated with early trans-tricuspid Doppler flow and early transtricuspid diastolic flow/late right atrial transtricupsid diastolic flow ratio. Conclusion Right ventricular DD in hypertensive patients was significantly correlated with increased carotid atherosclerosis. Carotid intima media thickness measurements may therefore be a surrogate marker for DD in hypertensive subjects. PMID:24382850

  10. Ventricular-Arterial Coupling and Exercise-Induced Pulmonary Hypertension During Low-Level Exercise in Heart Failure With Preserved or Reduced Ejection Fraction.

    PubMed

    Obokata, Masaru; Nagata, Yasufumi; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki

    2017-03-01

    Exercise-induced pulmonary hypertension (EIPH) may develop even at low workloads in heart failure (HF) patients. Ventricular-arterial stiffening plays an important role in the pathophysiology of HF with preserved ejection fraction (HFpEF). This study aimed to compare the response of ventricular-arterial coupling and PH during low-level exercise between HFpEF and HF with reduced EF (HFrEF). Echocardiography was performed at rest and during 10 W of bicycle exercise in HFpEF (n = 37) and HFrEF (n = 43). Load-independent contractility (end-systolic elastance [Ees], preload recruitable stroke work [PRSW], and peak power index [PWRI]), arterial afterload (arterial elastance [Ea]), and ventricular-arterial interaction (Ea/Ees) were measured with the use of a noninvasive single-beat technique. EIPH was defined as an estimated pulmonary arterial systolic pressure (PASP) of ≥50 mm Hg at 10 W of exercise. PASP was significantly increased during 10 W of exercise in both HF types, and ~50% of HFpEF patients developed EIPH. Arterial afterload was increased significantly during exercise in both groups. HFrEF and HFpEF patients showed a significant increase in LV contractility assessed by Ees, PRSW, and PWRI during exercise. Although Ea/Ees ratio decreased significantly in HFrEF, reduction in Ea/Ees was attenuated because of blunted Ees increases in patients with HFpEF compared with HFrEF. Even at low-level exercise, ~50% of HFpEF patients developed EIPH. Reduction in Ea/Ees was attenuated owing to less Ees increase in HFpEF compared with HFrEF. Further studies are needed to elucidate the association between ventricular-arterial coupling and EIPH in HFpEF. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure

    PubMed Central

    2013-01-01

    Background In the last recent years a new percutaneous procedure, the MitraClip, has been validated for the treatment of mitral regurgitation. MitraClip procedure is a promising alternative for patients unsuitable for surgery as it reduces the risk of death related to surgery ensuring a similar result. Few data are present in literature about the variation of hemodynamic parameters and ventricular coupling after Mitraclip implantation. Methods Hemodynamic data of 18 patients enrolled for MitraClip procedure were retrospectively reviewed and analyzed. Echocardiographic measurements were obtained the day before the procedure (T0) and 21 ± 3 days after the procedure (T1), including evaluation of Ejection Fraction, mitral valve regurgitation severity and mechanism, forward Stroke Volume, left atrial volume, estimated systolic pulmonary pressure, non invasive echocardiographic estimation of single beat ventricular elastance (Es(sb)), arterial elastance (Ea) measured as systolic pressure • 0.9/ Stroke Volume, ventricular arterial coupling (Ea/Es(sb) ratio). Data were expressed as median and interquartile range. Measures obtained before and after the procedure were compared using Wilcoxon non parametric test for paired samples. Results Mitraclip procedure was effective in reducing regurgitation. We observed an amelioration of echocardiographic parameters with a reduction of estimated systolic pulmonary pressure (45 to 37,5 p = 0,0002) and left atrial volume (110 to 93 p = 0,0001). Despite a few cases decreasing in ejection fraction (37 to 35 p = 0,035), the maintained ventricular arterial coupling after the procedure (P = 0,67) was associated with an increasing in forward stroke volume (60,3 to 78 p = 0,05). Conclusion MitraClip is effective in reducing mitral valve regurgitation and determines an amelioration of hemodynamic parameters with preservation of ventricular arterial coupling. PMID:23642140

  12. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel CAD.

    PubMed

    Gimelli, Alessia; Liga, Riccardo; Giorgetti, Assuero; Casagranda, Mirta; Marzullo, Paolo

    2017-03-28

    Abnormal left ventricular (LV) eccentricity index (EI) is a marker of adverse cardiac remodeling. However, the interaction between stress-induced alterations of EI and major cardiac parameters has not been explored. We sought to evaluate the relationship between LV EI and coronary artery disease (CAD) burden in patients submitted to myocardial perfusion imaging (MPI). Three-hundred and forty-three patients underwent MPI and coronary angiography. LV ejection fraction (EF) and EI were computed from gated stress images as measures of stress-induced functional impairment. One-hundred and thirty-six (40%), 122 (35%), and 85 (25%) patients had normal coronary arteries, single-vessel CAD, and multivessel CAD, respectively. Post-stress EI was lower in patients with multivessel CAD than in those with normal coronary arteries and single-vessel CAD (P = 0.001). This relationship was confirmed only in patients undergoing exercise stress test, where a lower post-stress EI predicted the presence of multivessel CAD (P = 0.039). Post-stress alterations of LV EI on MPI may unmask the presence of multivessel CAD.

  13. In-depth proteomic profiling of left ventricular tissues in human end-stage dilated cardiomyopathy.

    PubMed

    Liu, Shanshan; Xia, Yan; Liu, Xiaohui; Wang, Yi; Chen, Zhangwei; Xie, Juanjuan; Qian, Juying; Shen, Huali; Yang, Pengyuan

    2017-07-18

    Dilated cardiomyopathy (DCM) is caused by reduced left ventricular (LV) myocardial function, which is one of the most common causes of heart failure (HF). We performed iTRAQ-coupled 2D-LC-MS/MS to profile the cardiac proteome of LV tissues from healthy controls and patients with end-stage DCM. We identified 4263 proteins, of which 125 were differentially expressed in DCM tissues compared to LV controls. The majority of these were membrane proteins related to cellular junctions and neuronal metabolism. In addition, these proteins were involved in membrane organization, mitochondrial organization, translation, protein transport, and cell death process. Four key proteins involved in the cell death process were also detected by western blotting, indicated that cell death was activated in DCM tissues. Furthermore, S100A1 and eEF2 were enriched in the "cellular assembly and organization" and "cell cycle" networks, respectively. We verified decreases in these two proteins in end-stage DCM LV samples through multiple reaction monitoring (MRM). These observations demonstrate that our understanding of the mechanisms underlying DCM can be deepened through comparison of the proteomes of normal LV tissues with that from end-stage DCM in humans.

  14. Left ventricular torsional mechanics and myocardial iron load in beta-thalassaemia major: a potential role of titin degradation.

    PubMed

    Chen, Mei-Pian; Li, Shu-Na; Lam, Wendy W M; Ho, Yuen-Chi; Ha, Shau-Yin; Chan, Godfrey C F; Cheung, Yiu-Fai

    2014-04-12

    Iron may damage sarcomeric proteins through oxidative stress. We explored the left ventricular (LV) torsional mechanics in patients with beta-thalassaemia major and its relationship to myocardial iron load. Using HL-1 cell and B6D2F1 mouse models, we further determined the impact of iron load on proteolysis of the giant sarcomeric protein titin. In 44 thalassaemia patients aged 25 ± 7 years and 38 healthy subjects, LV torsion and twisting velocities were determined at rest using speckle tracking echocardiography. Changes in LV torsional parameters during submaximal exercise testing were further assessed in 32 patients and 17 controls. Compared with controls, patients had significantly reduced LV apical rotation, torsion, systolic twisting velocity, and diastolic untwisting velocity. T2* cardiac magnetic resonance findings correlated with resting diastolic untwisting velocity. The increments from baseline and resultant LV torsion and systolic and diastolic untwisting velocities during exercise were significantly lower in patients than controls. Significant correlations existed between LV systolic torsion and diastolic untwisting velocities in patients and controls, both at rest and during exercise. In HL-1 cells and ventricular myocardium of B6D2F1 mice overloaded with iron, the titin-stained pattern of sarcomeric structure became disrupted. Gel electrophoresis of iron-overloaded mouse myocardial tissue further showed significant decrease in the amount of titin isoforms and increase in titin degradation products. Resting and dynamic LV torsional mechanics is impaired in patients with beta-thalassaemia major. Cell and animal models suggest a potential role of titin degradation in iron overload-induced alteration of LV torsional mechanics.

  15. Arrhythmia discrimination by physician and defibrillator: importance of atrial channel.

    PubMed

    Diemberger, Igor; Martignani, Cristian; Biffi, Mauro; Frabetti, Lorenzo; Valzania, Cinzia; Cooke, Robin M T; Rapezzi, Claudio; Branzi, Angelo; Boriani, Giuseppe

    2012-01-26

    Many ICD carriers experience inappropriate shocks, but the relative merits of dual- /single-chamber devices for arrhythmia discrimination still remain unclear. We explored possible advantages of the atrial data provided by dual-chamber implantable defibrillators (ICD) for discrimination of real-life supraventricular/ventricular tachyarrhythmias (SVT/VT). 100 dual-chamber traces from 24 ICD were blindly reviewed in dual-chamber and simulated single-chamber (with/without discriminator data) reading modes by five electrophysiologists who determined chamber of origin and provided Likert-scale "confidence" ratings. We assessed 1) intra/interobserver concordance; 2) diagnostic accuracy, using expert diagnoses as a reference standard; 3) ROC curves of sensitivity/specificity of "likelihood perception" scores, generated by combining chamber-of-origin diagnostic judgments with Likert-scale "confidence" ratings. We also assessed diagnostic accuracy of automated discrimination by all possible dual-/single-chamber algorithm configurations. Interobserver concordance was "substantial" (modified Cohen kappa-test values for dual-/single-chamber, 0.79/0.68); intraobserver concordance "almost complete" (kappa ≥ 0.89). Dual-chamber mode provided best diagnostic sensitivity/specificity (99%/92%) and highest reader confidence (p<0.001). Area under ROC curves of sensitivity/specificity values for the "likelihood perception" score (representing electrophysiologists' perceptions of the likelihood that an episode was of ventricular origin) was highest in dual-chamber mode (0.98 vs. 0.93 for both single-chamber modes; p<0.001). Regarding automated discrimination, all four dual-chamber configurations conferred 100% sensitivity (specificity values ranged 39%-88%), whereas single-chamber configurations appeared inferior (best sensitivity/specificity combination, 89%/64%). Availability of the atrial channel helps in reducing inappropriate ICD therapies by providing relevant advantages in terms of both appropriate cardiologist's post-hoc discrimination of SVT/VT (improving program tailoring) and automated arrhythmia discrimination. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Mechanisms and management of the heart in Myotonic Dystrophy

    PubMed Central

    McNally, Elizabeth M.; Sparano, Dina

    2015-01-01

    Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy and is caused by expansion of short nucleotide repeats that, in turn, produce toxic RNA aggregates within cells. DM is multisystemic, and the heart is primary site of pathology. DM patients exhibit cardiac conduction disorders including atrial fibrillation, atrio-ventricular heart block and ventricular arrhythmias. DM patients are also at risk for cardiomyopathy and congestive heart failure. Myotonic dystrophy is also characterized by myotonia, muscle weakness, and profound fatigue. The management of these symptoms requires input from the cardiologist and a team approach to minimize the debilitating aspects of the disorder and optimize cardiac function. PMID:21642660

  17. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes

    PubMed Central

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-01-01

    Abstract The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling. Key points Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. PMID:26096996

  18. Regularity of beating of small clusters of embryonic chick ventricular heart-cells: experiment vs. stochastic single-channel population model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Kold Taylor, Louise; Skriver, Anne D.; Schaffer, Peter; Guevara, Michael R.

    2017-09-01

    The transmembrane potential is recorded from small isopotential clusters of 2-4 embryonic chick ventricular cells spontaneously generating action potentials. We analyze the cycle-to-cycle fluctuations in the time between successive action potentials (the interbeat interval or IBI). We also convert an existing model of electrical activity in the cluster, which is formulated as a Hodgkin-Huxley-like deterministic system of nonlinear ordinary differential equations describing five individual ionic currents, into a stochastic model consisting of a population of ˜20 000 independently and randomly gating ionic channels, with the randomness being set by a real physical stochastic process (radio static). This stochastic model, implemented using the Clay-DeFelice algorithm, reproduces the fluctuations seen experimentally: e.g., the coefficient of variation (standard deviation/mean) of IBI is 4.3% in the model vs. the 3.9% average value of the 17 clusters studied. The model also replicates all but one of several other quantitative measures of the experimental results, including the power spectrum and correlation integral of the voltage, as well as the histogram, Poincaré plot, serial correlation coefficients, power spectrum, detrended fluctuation analysis, approximate entropy, and sample entropy of IBI. The channel noise from one particular ionic current (IKs), which has channel kinetics that are relatively slow compared to that of the other currents, makes the major contribution to the fluctuations in IBI. Reproduction of the experimental coefficient of variation of IBI by adding a Gaussian white noise-current into the deterministic model necessitates using an unrealistically high noise-current amplitude. Indeed, a major implication of the modelling results is that, given the wide range of time-scales over which the various species of channels open and close, only a cell-specific stochastic model that is formulated taking into consideration the widely different ranges in the frequency content of the channel-noise produced by the opening and closing of several different types of channels will be able to reproduce precisely the various effects due to membrane noise seen in a particular electrophysiological preparation.

  19. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.

    PubMed

    Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle

    2017-06-01

    Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K 2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K 2p channels. Copyright © 2017 the American Physiological Society.

  20. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function.

    PubMed

    Koenig, Steven C; Litwak, Kenneth N; Giridharan, Guruprasad A; Pantalos, George M; Dowling, Robert D; Prabhu, Sumanth D; Slaughter, Mark S; Sobieski, Michael A; Spence, Paul A

    2008-01-01

    The acute hemodynamic efficacy of an implantable counterpulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation.

  1. Acute Hemodynamic Efficacy of a 32-ml Subcutaneous Counterpulsation Device in a Calf Model of Diminished Cardiac Function

    PubMed Central

    Koenig, Steven C.; Litwak, Kenneth N.; Giridharan, Guruprasad A.; Pantalos, George M.; Dowling, Robert D.; Prabhu, Sumanth D.; Slaughter, Mark S.; Sobieski, Michael A.; Spence, Paul A.

    2010-01-01

    The acute hemodynamic efficacy of an implantable counter-pulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  2. Peripheral Distribution of Thrombus Does Not Affect Outcomes After Surgical Pulmonary Embolectomy.

    PubMed

    Pasrija, Chetan; Shah, Aakash; George, Praveen; Mohammed, Isa; Brigante, Francis A; Ghoreishi, Mehrdad; Jeudy, Jean; Taylor, Bradley S; Gammie, James S; Griffith, Bartley P; Kon, Zachary N

    2018-04-04

    Thrombus located distal to the main or primary pulmonary arteries has been previously viewed as a relative contraindication to surgical pulmonary embolectomy. We compared outcomes for surgical pulmonary embolectomy for submassive and massive pulmonary embolism (PE) in patients with central versus peripheral thrombus burden. All consecutive patients (2011-2016) undergoing surgical pulmonary embolectomy at a single center were retrospectively reviewed. Based on computed tomographic angiography of each patient, central PE was defined as any thrombus originating within the lateral pericardial borders (main or right/left pulmonary arteries). Peripheral PE was defined as thrombus exclusively beyond the lateral pericardial borders, involving the lobar pulmonary arteries or distal. The primary outcome was in-hospital and 90-day survival. 70 patients were identified: 52 (74%) with central PE and 18 (26%) with peripheral PE. Preoperative vital signs and right ventricular dysfunction were similar between the two groups. Compared to the central PE cohort, operative time was significantly longer in the peripheral PE group (191 vs. 210 minutes, p<0.005)). Median right ventricular dysfunction decreased from moderate dysfunction preoperatively to no dysfunction at discharge in both groups. Overall 90-day survival was 94%, with 100% survival in patients with submassive PE in both cohorts. This single center experience demonstrates excellent overall outcomes for surgical pulmonary embolectomy with resolution of right ventricular dysfunction, and comparable morbidity and mortality for central and peripheral PE. In an experienced center and when physiologically warranted, surgical pulmonary embolectomy for peripheral distribution of thrombus is both technically feasible and effective. Copyright © 2018. Published by Elsevier Inc.

  3. Single-site access robot-assisted epicardial mapping with a snake robot: preparation and first clinical experience.

    PubMed

    Neuzil, Petr; Cerny, Stepan; Kralovec, Stepan; Svanidze, Oleg; Bohuslavek, Jan; Plasil, Petr; Jehlicka, Pavel; Holy, Frantisek; Petru, Jan; Kuenzler, Richard; Sediva, Lucie

    2013-06-01

    CardioARM, a highly flexible "snakelike" medical robotic system (Medrobotics, Raynham, MA), has been developed to allow physicians to view, access, and perform complex procedures intrapericardially on the beating heart through a single-access port. Transthoracic epicardial catheter mapping and ablation has emerged as a strategy to treat arrhythmias, particularly ventricular arrhythmias, originating from the epicardial surface. The aim of our investigation was to determine whether the CardioARM could be used to diagnose and treat ventricular tachycardia (VT) of epicardial origin. Animal and clinical studies of the CardioARM flexible robot were performed in hybrid surgical-electrophysiology settings. In a porcine model study, single-port pericardial access, navigation, mapping, and ablation were performed in nine animals. The device was then used in a small, single-center feasibility clinical study. Three patients, all with drug-refractory VT and multiple failed endocardial ablation attempts, underwent epicardial mapping with the flexible robot. In all nine animals, navigation, mapping, and ablation were successful without hemodynamic compromise. In the human study, all three patients demonstrated a favorable safety profile, with no major adverse events through a 30-day follow-up. Two cases achieved technical success, in which an electroanatomic map of the epicardial ventricle surface was created; in the third case, blood obscured visualization. These results, although based on a limited number of experimental animals and patients, show promise and suggest that further clinical investigation on the use of the flexible robot in patients requiring epicardial mapping of VT is warranted.

  4. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol. PMID:7819510

  5. Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Ischemic Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy

    PubMed Central

    Young, Rebeccah F.; Leiker, Merced M.; Suzuki, Takayuki

    2016-01-01

    A major problem in translating stem cell therapeutics is the difficulty of producing stable, long-term severe left ventricular (LV) dysfunction in a large animal model. For that purpose, extensive infarction was created in sinclair miniswine by injecting microspheres (1.5 × 106 microspheres, 45 μm diameter) in LAD. At 2 months after embolization, animals (n = 11) were randomized to receive allogeneic cardiosphere-derived cells derived from atrium (CDCs: 20 × 106, n = 5) or saline (untreated, n = 6). Four weeks after therapy myocardial function, myocyte proliferation (Ki67), mitosis (phosphor-Histone H3; pHH3), apoptosis, infarct size (TTC), myocyte nuclear density, and cell size were evaluated. CDCs injected into infarcted and remodeled remote myocardium (global infusion) increased regional function and global function contrasting no change in untreated animals. CDCs reduced infarct volume and stimulated Ki67 and pHH3 positive myocytes in infarct and remote regions. As a result, myocyte number (nuclear density) increased and myocyte cell diameter decreased in both infarct and remote regions. Coronary microembolization produces stable long-term ischemic cardiomyopathy. Global infusion of CDCs stimulates myocyte regeneration and improves left ventricular ejection fraction. Thus, global infusion of CDCs could become a new therapy to reverse LV dysfunction in patients with asymptomatic heart failure. PMID:27738436

  6. Microtubule Stabilization in Pressure Overload Cardiac Hypertrophy

    PubMed Central

    Sato, Hiroshi; Nagai, Toshio; Kuppuswamy, Dhandapani; Narishige, Takahiro; Koide, Masaaki; Menick, Donald R.; IV, George Cooper

    1997-01-01

    Increased microtubule density, for which microtubule stabilization is one potential mechanism, causes contractile dysfunction in cardiac hypertrophy. After microtubule assembly, α-tubulin undergoes two, likely sequential, time-dependent posttranslational changes: reversible carboxy-terminal detyrosination (Tyr-tubulin ↔ Glu-tubulin) and then irreversible deglutamination (Glu-tubulin → Δ2-tubulin), such that Glu- and Δ2-tubulin are markers for long-lived, stable microtubules. Therefore, we generated antibodies for Tyr-, Glu-, and Δ2-tubulin and used them for staining of right and left ventricular cardiocytes from control cats and cats with right ventricular hypertrophy. Tyr- tubulin microtubule staining was equal in right and left ventricular cardiocytes of control cats, but Glu-tubulin and Δ2-tubulin staining were insignificant, i.e., the microtubules were labile. However, Glu- and Δ2-tubulin were conspicuous in microtubules of right ventricular cardiocytes from pressure overloaded cats, i.e., the microtubules were stable. This finding was confirmed in terms of increased microtubule drug and cold stability in the hypertrophied cells. In further studies, we found an increase in a microtubule binding protein, microtubule-associated protein 4, on both mRNA and protein levels in pressure-hypertrophied myocardium. Thus, microtubule stabilization, likely facilitated by binding of a microtubule-associated protein, may be a mechanism for the increased microtubule density characteristic of pressure overload cardiac hypertrophy. PMID:9362514

  7. Validation of an in vitro contractility assay using canine ventricular myocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscopemore » at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.« less

  8. Persistence of neoangiogenesis and cardiomyocyte divisions in right ventricular myocardium of rats born and raised in hypoxic conditions.

    PubMed

    Moravec, Mireille; Turek, Zdenek; Moravec, Josef

    2002-03-01

    Effects of chronic hypoxia on capillary and myocyte growth were examined in rats born and raised in a low pressure chamber (equivalent of 3500 m a.s.l.). The animals were sacrificed at the age of 3 months and their hearts were used to study right ventricular growth and vascularization. The results of our cytological and morphometric analysis suggest the persistence of capillary neogenesis in this particular model of cardiac hypertrophy. Under the optical microscope, we observed significant changes in capillary spatial patterns such as the presence of sinusoids and irregular capillary sprouts. This resulted in a significant shortening of the effective diffusion distance and in a slight decrease in the calculated diameter of the Krogh cylinder. Concomitant to the remodeling of the terminal capillary network, the right ventricular myocardium of hypoxic rats exhibited peculiar changes in myocyte cytology. The principal alteration consisted in the ectopic subsarcolemmal location of some of muscle cell nuclei which appeared enlarged and rounded, sometimes irregularly folded. At the E. M. level, they presented chromatine condensation, nucleolemmal folding and, occasionally, nuclear splitting. Irregular chromatin densifications at the equatorial position were also encountered but we never observed nucleolemmal dissolution or typical metaphase plaques which excludes the presence of mitotic division. Some of the marginalized nuclei were progressively excluded from original binucleate cells into small cytoplasmic processes that invaded the adjacent neo-formed pericapillar spaces and gave rise to small well-organized cardiomyocytes. This apparent fragmentation of cardiomyocytes may evoke the description of the apoptotic process which is believed to be stimulated in hypoxic tissues. However, we could not confirm that myocyte fragmentation that we describe is followed by shrinkage necrosis or by any mobilization of adjacent resident cells. Nuclear exclusions into pericapillary myocyte sprouts may, therefore, reflect amitotic divisions of polyploid cardiomyocytes which contribute to the persistence of hyperplasic growth in right ventricular myocardium in hearts of rats exposed to chronic hypoxia during their early postnatal life. Par analogie with our data, it can be expected that an appropriate stimulation of angiogenesis in hearts of adult animals attenuates some of cytological and functional drawbacks that accompany hypertrophic cardiomyopathies of other etiologies.

  9. Growth Factor-Induced Mobilization of Cardiac Progenitor Cells Reduces the Risk of Arrhythmias, in a Rat Model of Chronic Myocardial Infarction

    PubMed Central

    Graiani, Gallia; Rossi, Stefano; Agnetti, Aldo; Stillitano, Francesca; Lagrasta, Costanza; Baruffi, Silvana; Berni, Roberta; Frati, Caterina; Vassalle, Mario; Squarcia, Umberto; Cerbai, Elisabetta; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2011-01-01

    Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs) appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI), lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60) or vehicle (V, n = 55), or sham operated (n = 18). In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP) without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration of mechanical function. In conclusion, local injection of GFs ameliorates electromechanical competence in chronic MI. Reduced arrhythmogenesis is attributable to prolongation of ERP resulting from improved intercellular coupling via increased expression of connexin43, and attenuation of unfavorable remodeling. PMID:21445273

  10. Dependences of the geometrical parameters of cell community on stimulation voltage and frequency in chick embryonic cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Fujii, Koki; Nomura, Fumimasa; Kaneko, Tomoyuki

    2018-03-01

    To investigate the optimal conditions for electrical stimulation, communities of lined-up chick embryonic cardiomyocytes were evaluated in terms of their threshold voltage for pacing (PVMin) and the half-maximum paced frequency (PF50), with a focus on the following factors: (1) the orientation of the major axis of cell communities to the electric field (EF) direction as the external factor; (2) the number of cells in a cell community, the length of the cell community, and the mean length of cells comprising the community as the internal factors. Firstly, PVMin decreased with increasing length of the cell network oriented parallel to the EF. PVMin was approximately 0.041 ± 0.025 V/mm when the community was sufficiently long. On the other hand, PVMin in the orthogonal orientation was constant at 1.7 ± 0.047 V/mm with no dependence on the length of the cell network. Secondly, we found that PF50 increased with increasing length of the cell network or the number of cells in the network; the PF50 values were 2.03 ± 0.05 and 3.39 ± 0.05 Hz when the respective cell network lengths were 100 µm (n = 43) and more than 300 µm (n = 6) and the cells were oriented parallel to the EF. These findings indicate that it is important to suppress ventricular fibrillation with minimal efficient stimulation by considering the EF direction with respect to the orientation of cardiomyocytes. Furthermore, expanded cells showed the loss of ability to respond to stimulation at higher frequencies. Cardiomyocytes combined with seeded fibroblasts as a cell network at a low density are a possible model of a ventricular remodeling heart.

  11. Non-invasive estimation of pulmonary artery pressures in patients with sickle cell anaemia in Ibadan, Nigeria: an echocardiographic study.

    PubMed

    Enakpene, Evbu O; Adebiyi, Adewole A; Ogah, Okechukwu S; Olaniyi, John A; Aje, Akinyemi; Adeoye, Moshood A; Falase, Ayodele O

    2014-10-01

    Pulmonary hypertension is emerging as one of the causes of morbidity and mortality in adults with sickle cell disease. The prevalence of pulmonary hypertension in Nigerian adults with sickle cell anaemia is unknown. We decided to estimate the pulmonary artery systolic and diastolic pressures in subjects with sickle cell anaemia seen at the University College Hospital, Ibadan, Nigeria, and to determine the frequency of pulmonary hypertension among them. Ninety patients (38 males and 52 females) with sickle cell anaemia in steady state and comparable age- and sex-matched normal controls had a clinical evaluation and echocardiographic examination. The mean age of the subjects with sickle cell anaemia was 24.0 (9.00) years while the mean age for the control group was 24.0 (7.00) years. The frequency of pulmonary hypertension as assessed by a tricuspid regurgitant jet velocity of > 2.5 m/s in this study was 12.2%. Larger left ventricular dimensions and volumes, higher stroke volume and increased left ventricular mass indexed by body surface area were found to be associated with pulmonary hypertension. A multivariate analysis of the potential predictors of pulmonary hypertension in this study showed that male sex and lower packed cell volume (PCV) were independent predictors of pulmonary hypertension in patients with sickle cell anaemia. We conclude that pulmonary artery systolic and diastolic pressures are higher in subjects with sickle cell disease than normal controls. Male sex and low PCV are independent determinants of pulmonary arterial pressure in subjects with sickle cell anaemia in Nigeria.

  12. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Ventricular assist device use in single ventricle congenital heart disease.

    PubMed

    Carlo, Waldemar F; Villa, Chet R; Lal, Ashwin K; Morales, David L

    2017-11-01

    As VAD have become an effective therapy for end-stage heart failure, their application in congenital heart disease has increased. Single ventricle congenital heart disease introduces unique physiologic challenges for VAD use. However, with regard to the mixed clinical results presented within this review, we suggest that patient selection, timing of implant, and center experience are all important contributors to outcome. This review focuses on the published experience of VAD use in single ventricle patients and details physiologic challenges and novel approaches in this growing pediatric and adult population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravo, R.R.; Shulman, L.P.; Tharapel, A.T.

    The occurrence of multiple aneuploidy is quite rare, and the mechanisms by which it arises have not been well-characterized except in cases of 49,XXXXX and 49,XXXXY. These originate by successive nondisjunction of the X chromosomes in meiosis I and meiosis II, giving rise to a gamete with four X chromosomes. Here, we describe a case of double trisomy involving chromosome 21 and the X chromosome. The 19-year-old patient underwent amniocentesis at 17.5 weeks gestation following a positive serum analyte screen (estimated 1/120 risk of Down syndrome). Ultrasound findings at the time of the procedure were ventricular septal defect, dilated renalmore » calyx, clinodactyly, and a two-vessel cord. Cytogenetic analysis revealed a nonmosaic karyotype of 48,XXX,+21. The couple opted for pregnancy termination. A comfimatory karyotype could not be obtained due to microbial contamination of the products of conception. Therefore, we used a {open_quotes}touch prep{close_quotes} procedure to deposit fetal cells on microscope slides and performed interphase FISH (fluorescence in situ hybridization) to confirm the presence of three X chromosomes and three copies of chromosome 21. Microsatellite polymorphisms in the mother, father, and fetus were used to evaluate segregation of the X and 21 chromosomes. Based on the results obtained with the most centromeric loci, both extra chromosomes arose from nondisjunction in maternal meiosis II. More distal markers showed evidence of recombination in both chromosomes. To our knowledge, this is the first report of a double trisomy arising by this mechanism. Based on our results and those reported for tetrasomy/pentasomy X, we postulate that multiple aneuploidies are more likely to arise by related errors (involving a single chromosome or a single cell division) than by independent errors (in different cell divisions or different gametes).« less

  15. The Expression Pattern of the Cell Cycle Inhibitor p19INK4d by Progenitor Cells of the Rat Embryonic Telencephalon and Neonatal Anterior Subventricular Zone

    PubMed Central

    Coskun, Volkan; Luskin, Marla B.

    2014-01-01

    In this study we investigated whether the pattern of expression of the cyclin-dependent kinase inhibitor p19INK4d by the unique progenitor cells of the neonatal anterior subventricular zone (SVZa) can account for their ability to divide even though they express phenotypic characteristics of differentiated neurons. p19INK4d was chosen for analysis because it usually acts to block permanently the cell cycle at the G1 phase. p19INK4d immunoreactivity and the incorporation of bromodeoxyuridine (BrdU) by SVZa cells were compared with that of the more typical progenitor cells of the prenatal telencephalic ventricular zone. In the developing telencephalon, p19INK4d is expressed by postmitotic cells and has a characteristic perinuclear distribution depending on the laminar position and state of differentiation of a cell. Moreover, the laminar-specific staining of the developing cerebral cortex revealed that the ventricular zone (VZ) is divided into p19INK4d(+) and p19INK4d(−) sublaminae, indicating that the VZ has a previously unrecognized level of functional organization. Furthermore, the rostral migratory stream, traversed by the SVZa-derived cells, exhibits an anteriorhigh–posteriorlow gradient of p19INK4d expression. On the basis of the p19INK4d immunoreactivity and BrdU incorporation, SVZa-derived cells appear to exit and reenter the cell cycle successively. Thus, in contrast to telencephalic VZ cells, SVZa cells continue to undergo multiple rounds of division and differentiation before becoming postmitotic. PMID:11312294

  16. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death.

    PubMed

    Tribulova, Narcis; Seki, Shingo; Radosinska, Jana; Kaplan, Peter; Babusikova, Eva; Knezl, Vladimir; Mochizuki, Seibu

    2009-12-01

    Using whole-heart preparations, we tested our hypothesis that Ca(2+) handling is closely related to cell-to-cell coupling at the gap junctions and that both are critical for the development and particularly the termination of ventricular fibrillation (VF) and hence the prevention of sudden arrhythmic death. Intracellular free calcium concentration ([Ca(2+)](i)), ECG, and left ventricular pressure were continuously monitored in isolated guinea pig hearts before and during development of low K(+)-induced sustained VF and during its conversion into sinus rhythm facilitated by stobadine. We also examined myocardial ultrastructure to detect cell-to-cell coupling alterations. We demonstrated that VF occurrence was preceded by a 55.9% +/- 6.2% increase in diastolic [Ca(2+)](i), which was associated with subcellular alterations indicating Ca(2+) overload of the cardiomyocytes and disorders in coupling among the cells. Moreover, VF itself further increased [Ca(2+)](i) by 58.2% +/- 3.4% and deteriorated subcellular and cell-to-cell coupling abnormalities that were heterogeneously distributed throughout the myocardium. In contrast, termination of VF and its conversion into sinus rhythm was marked by restoration of basal [Ca(2+)](i), resulting in recovery of intercellular coupling linked with synchronous contraction. Furthermore, we have shown that hearts exhibiting lower SERCA2a (sarcoplasmic reticulum Ca(2+)-ATPase) activity and abnormal intercellular coupling (as in older guinea pigs) are more prone to develop Ca(2+) overload associated with cell-to-cell uncoupling than hearts with higher SERCA2a activity (as in young guinea pigs). Consequently, young animals are better able to terminate VF spontaneously. These findings indicate the crucial role of Ca(2+) handling in relation to cell-to-cell coupling in both the occurrence and termination of malignant arrhythmia.

  17. Putative β4-adrenoceptors in rat ventricle mediate increases in contractile force and cell Ca2+: comparison with atrial receptors and relationship to (−)-[3H]-CGP 12177 binding

    PubMed Central

    Sarsero, Doreen; Molenaar, Peter; Kaumann, Alberto J; Freestone, Nicholas S

    1999-01-01

    We identified putative β4-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (−)-CGP 12177 and (±)-cyanopindolol and demonstrated increased Ca2+ transients by (−)-CGP 12177 in rat cardiomyocytes.(−)-[3H]-CGP 12177 labelled 13–22 fmol mg−1 protein ventricular β1, β2-adrenoceptors (pKD ∼9.0) and 50–90 fmol mg−1 protein putative β4-adrenoceptors (pKD ∼7.3). The affinity values (pKi) for (β1,β2-) and putative β4-adrenoceptors, estimated from binding inhibition, were (−)-propranolol 8.4, 5.7; (−)-bupranolol 9.7, 5.8; (±)-cyanopindolol 10.0,7.4.In left ventricular papillary muscle, in the presence of 30 μM 3-isobutyl-1-methylxanthine, (−)-CGP 12177 and (±)-cyanopindolol caused positive inotropic effects, (pEC50, (−)-CGP 12177, 7.6; (±)-cyanopindolol, 7.0) which were antagonized by (−)-bupranolol (pKB 6.7–7.0) and (−)-CGP 20712A (pKB 6.3–6.6). The cardiostimulant effects of (−)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (±)-cyanopindolol (pKP 7.0–7.4).(−)-CGP 12177 (1 μM) in the presence of 200 nM (−)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 μM 3-isobutyl-1-methylxanthine and 200 nM (−)-propranolol, 1 μM (−)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (−)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes.Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative β4-adrenoceptors, suggesting coupling to Gs protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative β4-adrenoceptors labelled with (−)-[3H]-CGP 12177. PMID:10602323

  18. Risk of ventricular arrhythmias associated with nonsedating antihistamine drugs

    PubMed Central

    José de Abajo, Francisco; Rodríguez, Luis Alberto García

    1999-01-01

    Aims To quantify and compare the incidence of ventricular arrhythmias associated with the use of five nonsedating antihistamines: acrivastine, astemizole, cetirizine, loratadine and terfenadine. The effects of age, sex, dose, duration of treatment, and the interaction with P450 inhibitor drugs were also examined. Methods We carried out a cohort study with a nested case-control analysis using the UK-based General Practice Research Database (GPRD). The study cohort included persons aged less than 80 years old who received their first prescription for any of the five study drugs between January 1, 1992 and September 30, 1996. We estimated relative risks and 95% confidence intervals of idiopathic ventricular arrhythmias with current use of antihistamines as compared with non use. Results The study cohort included 197 425 persons who received 513 012 prescriptions. Over the study period 18 valid cases of idiopathic ventricular arrhythmias were detected. Nine occurred during the current use of any antihistamine, resulting in a crude incidence of 1.9 per 10 000 person-years (95%CI: 1.0–3.6) and a relative risk of 4.2 (95%CI: 1.5–11.8) as compared with non use. Astemizole presented the highest relative risk (RR = 19.0; 95%CI: 4.8–76.0) of all study drugs, while terfenadine (RR = 2.1; 95%CI:0.5–8.5) was in the range of other nonsedating antihistamines. Older age was associated with a greater risk of ventricular arrhythmias (RR = 7.4; 95%CI: 2.6–21.4) and seemed to increase the effect of antihistamines (RR = 6.4; 95%CI: 1.7–24.8). The proportions of high dose terfenadine and the concomitant use with P450 inhibitors among current users of terfenadine were 2.7% and 3.4%, respectively over the study period with no single case of ventricular arrhythmias occurring in the presence of these two risk factors. Conclusions The use of nonsedating antihistamines increases the risk of ventricular arrhythmias by a factor of four in the general population. Yet, the absolute effect is quite low requiring 57 000 prescriptions, or 5300 person-years of use for one case to occur. The risk associated with terfenadine was no different from that with other nonsedating antihistamines. PMID:10215756

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropp, J.; Reske, S.N.; Biersack, H.J.

    Stimulated Renin-Angiotensin System (RAS) in aortic insufficiency (AI) leads to increased afterload and consequently to augmented aortic regurgitation (R). Therefore Captopril (C) mediated RAS-inhibition should diminish systemic vascular resistance and thus reduce R. In 9 patients (pts) with pure severe AI regurgitation fraction (RF) and left ventricular ejection fraction (LVEF) were determined before and 1 hr after i.v. injection of 25 mg C by gated radionuclide ventriculographie (RNV), using red blood cells labeled in vivo with 15 mCi Tc-99m. Enddiastolic and endsystolid frames were derived from the left ventricular volume curve. ROI's were selected over both ventricles. Ventricular boundaries weremore » defined by a fourier phase image overlay. RF was calculated by the background corrected count rate ratio of left and right ventricular ROI. Arterial blood pressure (BP), heart rate (HR), plasma levels of angiotensin I, II (A1,A2), and the activity of angiotensin converting enzyme (ACE) were determined before and 1 hr after C-injection. Before C-medication mean RF was 54% (range 34% - 67%), after C mean RF decreased to 37% (17% - 59% range, rho<.05). Mean LVEF increased not significantly from 60% (range 51%-70%) to 66% (range 56% - 77%, rho>0.55). C did not significantly change HR or BP (HR: rho>0.9, BP: rho>0.6). A2 and ACE activity decreased to 40% and 50% of control values (rho<.01), respectively. A1 increased excessively. The authors conclude that the inhibition of ACE reduces significantly aortic regurgitation in patients with A1 and has thus a beneficial effect on left ventricular performance.« less

  20. Connexin40 and connexin43 determine gating properties of atrial gap junction channels.

    PubMed

    Lin, Xianming; Gemel, Joanna; Glass, Aaron; Zemlin, Christian W; Beyer, Eric C; Veenstra, Richard D

    2010-01-01

    While ventricular gap junctions contain only Cx43, atrial gap junctions contain both Cx40 and Cx43; yet the functional consequences of this co-expression remain poorly understood. We quantitated the expression of Cx40 and Cx43 and their contributions to atrial gap junctional conductance (g(j)). Neonatal murine atrial myocytes showed similar abundances of Cx40 and Cx43 proteins, while ventricular myocytes contained at least 20 times more Cx43 than Cx40. Since Cx40 gap junction channels are blocked by 2 mM spermine while Cx43 channels are unaffected, we used spermine block as a functional dual whole cell patch clamp assay to determine Cx40 contributions to cardiac g(j). Slightly more than half of atrial g(j) and

  1. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    PubMed

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  2. Neuroinflammation Induced by Intracerebroventricular Injection of Microbial Neuraminidase

    PubMed Central

    Granados-Durán, Pablo; López-Ávalos, María D.; Grondona, Jesús M.; Gómez-Roldán, María del Carmen; Cifuentes, Manuel; Pérez-Martín, Margarita; Alvarez, Martina; Rodríguez de Fonseca, Fernando; Fernández-Llebrez, Pedro

    2015-01-01

    In the present paper, we describe the facts that took place in the rat brain after a single injection of the enzyme neuraminidase from Clostridium perfringens into the right lateral ventricle. After injection, it diffused through the cerebrospinal fluid of the ipsilateral ventricle and the third ventricle, and about 400 μm into the periventricular brain parenchyma. The expression of ICAM1 in the endothelial cells of the periventricular vessels, IBA1 in microglia, and GFAP in astrocytes notably increased in the regions reached by the injected neuraminidase. The subependymal microglia and the ventricular macrophages begun to express IL1β and some appeared to cross the ependymal layer. After about 4 h of the injection, leukocytes migrated from large venules of the affected choroid plexus, the meninges and the local subependyma, and infiltrated the brain. The invading cells arrived orderly: first neutrophils, then macrophage-monocytes, and last CD8α-positive T-lymphocytes and B-lymphocytes. Leukocytes in the ventricles and the perivascular zones penetrated the brain parenchyma passing through the ependyma and the glia limitans. Thus, it is likely that a great part of the damage produced by microorganism invading the brain may be due to their neuraminidase content. PMID:25853134

  3. Neuroinflammation induced by intracerebroventricular injection of microbial neuraminidase.

    PubMed

    Granados-Durán, Pablo; López-Ávalos, María D; Grondona, Jesús M; Gómez-Roldán, María Del Carmen; Cifuentes, Manuel; Pérez-Martín, Margarita; Alvarez, Martina; Rodríguez de Fonseca, Fernando; Fernández-Llebrez, Pedro

    2015-01-01

    In the present paper, we describe the facts that took place in the rat brain after a single injection of the enzyme neuraminidase from Clostridium perfringens into the right lateral ventricle. After injection, it diffused through the cerebrospinal fluid of the ipsilateral ventricle and the third ventricle, and about 400 μm into the periventricular brain parenchyma. The expression of ICAM1 in the endothelial cells of the periventricular vessels, IBA1 in microglia, and GFAP in astrocytes notably increased in the regions reached by the injected neuraminidase. The subependymal microglia and the ventricular macrophages begun to express IL1β and some appeared to cross the ependymal layer. After about 4 h of the injection, leukocytes migrated from large venules of the affected choroid plexus, the meninges and the local subependyma, and infiltrated the brain. The invading cells arrived orderly: first neutrophils, then macrophage-monocytes, and last CD8α-positive T-lymphocytes and B-lymphocytes. Leukocytes in the ventricles and the perivascular zones penetrated the brain parenchyma passing through the ependyma and the glia limitans. Thus, it is likely that a great part of the damage produced by microorganism invading the brain may be due to their neuraminidase content.

  4. Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Vandersickel, Nele; Panfilov, Alexander V.

    2017-01-01

    Managing lethal cardiac arrhythmias is one of the biggest challenges in modern cardiology, and hence it is very important to understand the factors underlying such arrhythmias. While early afterdepolarizations (EAD) of cardiac cells is known to be one such arrhythmogenic factor, the mechanisms underlying the emergence of tissue level arrhythmias from cellular level EADs is not fully understood. Another known arrhythmogenic condition is fibrosis of cardiac tissue that occurs both due to aging and in many types of heart diseases. In this paper we describe the results of a systematic in-silico study, using the TNNP model of human cardiac cells and MacCannell model for (myo)fibroblasts, on the possible effects of diffuse fibrosis on arrhythmias occurring via EADs. We find that depending on the resting potential of fibroblasts (VFR), M-F coupling can either increase or decrease the region of parameters showing EADs. Fibrosis increases the probability of occurrence of arrhythmias after a single focal stimulation and this effect increases with the strength of the M-F coupling. While in our simulations, arrhythmias occur due to fibrosis induced ectopic activity, we do not observe any specific fibrotic pattern that promotes the occurrence of these ectopic sources.

  5. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance

    PubMed Central

    Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín

    2015-01-01

    It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. PMID:25994124

  6. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance.

    PubMed

    Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín

    2015-06-01

    It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. © 2015 Anatomical Society.

  7. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  8. Ultrastructure of myocardial widened Z bands and endocardial cells in two teleostean species.

    PubMed

    Leknes, I L

    1981-01-01

    Widened myocardial Z bands and endocardial cells are described in two teleostean species Cichlasoma meeki and Corydoras aeneus. Widened Z bands containing mainly amorphous and electron-dense material were seen in a number of myocardial cells. Further, similar material may occur in large amounts beneath the sarcolemma and at intercellular junctions. Occasionally, we observed continuity between the latter material and that in expanded Z bands. In C. meeki the ventricular endocardial layer consists of two structurally different cell types, whereas in C. aeneus only one cell type was seen. The functional aspects of widened Z bands are discussed.

  9. Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

    PubMed Central

    Suzuki, Gen; Weil, Brian R.; Leiker, Merced M.; Ribbeck, Amanda E.; Young, Rebeccah F.; Cimato, Thomas R.; Canty, John M.

    2014-01-01

    Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair. PMID:25402428

  10. TexMi: Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis

    PubMed Central

    Moreira, Ricardo; Gesche, Valentine N.; Hurtado-Aguilar, Luis G.; Schmitz-Rode, Thomas; Frese, Julia

    2014-01-01

    Mitral valve regurgitation together with aortic stenosis is the most common valvular heart disease in Europe and North America. Mechanical and biological prostheses available for mitral valve replacement have significant limitations such as the need of a long-term anticoagulation therapy and failure by calcifications. Both types are unable to remodel, self-repair, and adapt to the changing hemodynamic conditions. Moreover, they are mostly designed for the aortic position and do not reproduce the native annular-ventricular continuity, resulting in suboptimal hemodynamics, limited durability, and gradually decreasing ventricular pumping efficiency. A tissue-engineered heart valve specifically designed for the mitral position has the potential to overcome the limitations of the commercially available substitutes. For this purpose, we developed the TexMi, a living textile-reinforced mitral valve, which recapitulates the key elements of the native one: annulus, asymmetric leaflets (anterior and posterior), and chordae tendineae to maintain the native annular-ventricular continuity. The tissue-engineered valve is based on a composite scaffold consisting of the fibrin gel as a cell carrier and a textile tubular structure with the twofold task of defining the gross three-dimensional (3D) geometry of the valve and conferring mechanical stability. The TexMi valves were molded with ovine umbilical vein cells and stimulated under dynamic conditions for 21 days in a custom-made bioreactor. Histological and immunohistological stainings showed remarkable tissue development with abundant aligned collagen fibers and elastin deposition. No cell-mediated tissue contraction occurred. This study presents the proof-of-principle for the realization of a tissue-engineered mitral valve with a simple and reliable injection molding process readily adaptable to the patient's anatomy and pathological situation by producing a patient-specific rapid prototyped mold. PMID:24665896

  11. Transcriptional alterations in the left ventricle of three hypertensive rat models.

    PubMed

    Cerutti, Catherine; Kurdi, Mazen; Bricca, Giampiero; Hodroj, Wassim; Paultre, Christian; Randon, Jacques; Gustin, Marie-Paule

    2006-11-27

    Left ventricular hypertrophy (LVH) is commonly associated with hypertension and represents an independent cardiovascular risk factor. The aim of this study was to test the hypothesis that the cardiac overload related to hypertension is associated to a specific gene expression pattern independently of genetic background. Gene expression levels were obtained with microarrays for 15,866 transcripts from RNA of left ventricles from 12-wk-old rats of three hypertensive models [spontaneously hypertensive rat (SHR), Lyon hypertensive rat (LH), and heterozygous TGR(mRen2)27 rat] and their respective controls. More than 60% of the detected transcripts displayed significant changes between the three groups of normotensive rats, showing large interstrain variability. Expression data were analyzed with respect to hypertension, LVH, and chromosomal distribution. Only four genes had significantly modified expression in the three hypertensive models among which a single gene, coding for sialyltransferase 7A, was consistently overexpressed. Correlation analysis between expression data and left ventricular mass index (LVMI) over all rats identified a larger set of genes whose expression was continuously related with LVMI, including known genes associated with cardiac remodeling. Positioning the detected transcripts along the chromosomes pointed out high-density regions mostly located within blood pressure and cardiac mass quantitative trait loci. Although our study could not detect a unique reprogramming of cardiac cells involving specific genes at early stage of LVH, it allowed the identification of some genes associated with LVH regardless of genetic background. This study thus provides a set of potentially important genes contained within restricted chromosomal regions involved in cardiovascular diseases.

  12. Impact on postoperative bleeding and cost of recombinant activated factor VII in patients undergoing heart transplantation.

    PubMed

    Hollis, Allison L; Lowery, Ashleigh V; Pajoumand, Mehrnaz; Pham, Si M; Slejko, Julia F; Tanaka, Kenichi A; Mazzeffi, Michael

    2016-01-01

    Cardiac transplantation can be complicated by refractory hemorrhage particularly in cases where explantation of a ventricular assist device is necessary. Recombinant activated factor VII (rFVIIa) has been used to treat refractory bleeding in cardiac surgery patients, but little information is available on its efficacy or cost in heart transplant patients. Patients who had orthotopic heart transplantation between January 2009 and December 2014 at a single center were reviewed. Postoperative bleeding and the total costs of hemostatic therapies were compared between patients who received rFVIIa and those who did not. Propensity scores were created and used to control for the likelihood of receiving rFVIIa in order to reduce bias in our risk estimates. Seventy-six patients underwent heart transplantation during the study period. Twenty-one patients (27.6%) received rFVIIa for refractory intraoperative bleeding. There was no difference in postoperative red blood cell transfusion, chest tube output, or surgical re-exploration between patients who received rFVIIa and those who did not, even after adjusting with the propensity score (P = 0.94, P = 0.60, and P = 0.10, respectively). The total cost for hemostatic therapies was significantly higher in the rFVIIa group (median $10,819 vs. $1,985; P < 0.0001). Subgroup analysis of patients who underwent redo-sternotomy with left ventricular assist device explantation did not show any benefit for rFVIIa either. In this relatively small cohort, rFVIIa use was not associated with decreased postoperative bleeding in patients undergoing heart transplantation; however, it led to significantly higher cost.

  13. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media

    NASA Technical Reports Server (NTRS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-01-01

    The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.

  14. Functional requirements of a mathematical model of the heart.

    PubMed

    Palladino, Joseph L; Noordergraaf, Abraham

    2009-01-01

    Functional descriptions of the heart, especially the left ventricle, are often based on the measured variables pressure and ventricular outflow, embodied as a time-varying elastance. The fundamental difficulty of describing the mechanical properties of the heart with a time-varying elastance function that is set a priori is described. As an alternative, a new functional model of the heart is presented, which characterizes the ventricle's contractile state with parameters, rather than variables. Each chamber is treated as a pressure generator that is time and volume dependent. The heart's complex dynamics develop from a single equation based on the formation and relaxation of crossbridge bonds. This equation permits the calculation of ventricular elastance via E(v) = partial differentialp(v)/ partial differentialV(v). This heart model is defined independently from load properties, and ventricular elastance is dynamic and reflects changing numbers of crossbridge bonds. In this paper, the functionality of this new heart model is presented via computed work loops that demonstrate the Frank-Starling mechanism and the effects of preload, the effects of afterload, inotropic changes, and varied heart rate, as well as the interdependence of these effects. Results suggest the origin of the equivalent of Hill's force-velocity relation in the ventricle.

  15. Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ

    PubMed Central

    Winslow, R. L.; Scollan, D. F.; Holmes, A.; Yung, C. K.; Zhang, J.; Jafri, M. S.

    2005-01-01

    Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers. PMID:11701509

  16. Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance

    PubMed Central

    van Geuns, Robert‐Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J.G.M.

    2017-01-01

    Abstract Aims Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast‐enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. Methods and results We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast‐enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non‐invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P < 0.001). Right ventricular enhancement correlated with systolic ventricular dysfunction (P < 0.001), hypertrophy (P = 0.001), and dilation (P < 0.001). Conclusions Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. PMID:29154434

  17. Computerized mapping of fibrillation in normal ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Sheng; Garfinkel, Alan; Weiss, James N.; Karagueuzian, Hrayr S.

    1998-03-01

    It is well known that the ability to fibrillate is intrinsic to a normal ventricle that exceeds a critical mass. The questions we address are how is ventricular fibrillation (VF) initiated and perpetuated in normal myocardium, and why is VF not seen more often in the general population if all ventricles have the ability to fibrillate. To study the mechanisms of VF, we used computerized mapping techniques with up to 512 channels of simultaneous multisite recordings for data acquisition. The data were then processed for dynamic display of the activation patterns and for mathematical analyses of the activation intervals. The results show that in normal ventricles, VF can be initiated by a single strong premature stimulus given during the vulnerable period of the cardiac cycle. The initial activations form a figure-eight pattern. Afterward, VF will perpetuate itself without any outside help. The self-perpetuation itself is due to at least two factors. One is that single wave fronts spontaneously break up into two or more wavelets. The second is that when two wavelets intersect perpendicular to each other, the second wavelet is broken by the residual refractoriness left over from the first wavelet. Mathematical analyses of the patterns of activation during VF revealed that VF is a form of chaos, and that transition from ventricular tachycardia (VT) to VF occurs via the quasiperiodic route. In separate experiments, we found that we can convert VF to VT by tissue size reduction. The physiological mechanism associated with the latter transition appears to be the reduction of the number of reentrant wave fronts and wandering wavelets. Based on these findings, we propose that the reentrant wave fronts and the wandering wavelets serve as the physiological equivalent of coupled oscillators. A minimal number of oscillators is needed for VF to perpetuate itself, and to generate chaotic dynamics; hence a critical mass is required to perpetuate VF. We conclude that VF in normal myocardium is a form of reentrant cardiac arrhythmia. A strong electrical stimulus initiates single or dual reentrant wave fronts that break up into multiple wavelets. Sometimes short-lived reentry is also generated during the course of VF. These organized reentrant and broken wavelets serve as coupled oscillators that perpetuate VF and maintain chaos. Although the ability to support these oscillators exists in a normal ventricle, the triggers required to generate them are nonexistent in the normal heart. Therefore, VF and sudden death do not happen to most people with normal ventricular myocardium.

  18. Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome

    PubMed Central

    McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.

    2013-01-01

    Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313

  19. Temporary epicardial cardiac resynchronisation versus conventional right ventricular pacing after cardiac surgery: study protocol for a randomised control trial.

    PubMed

    Russell, Stuart J; Tan, Christine; O'Keefe, Peter; Ashraf, Saeed; Zaidi, Afzal; Fraser, Alan G; Yousef, Zaheer R

    2012-02-20

    Heart failure patients with stable angina, acute coronary syndromes and valvular heart disease may benefit from revascularisation and/or valve surgery. However, the mortality rate is increased- 5-30%. Biventricular pacing using temporary epicardial wires after surgery is a potential mechanism to improve cardiac function and clinical endpoints. A multi-centred, prospective, randomised, single-blinded, intervention-control trial of temporary biventricular pacing versus standard pacing. Patients with ischaemic cardiomyopathy, valvular heart disease or both, an ejection fraction ≤ 35% and a conventional indication for cardiac surgery will be recruited from 2 cardiac centres. Baseline investigations will include: an electrocardiogram to confirm sinus rhythm and measure QRS duration; echocardiogram to evaluate left ventricular function and markers of mechanical dyssynchrony; dobutamine echocardiogram for viability and blood tests for renal function and biomarkers of myocardial injury- troponin T and brain naturetic peptide. Blood tests will be repeated at 18, 48 and 72 hours. The principal exclusions will be subjects with permanent atrial arrhythmias, permanent pacemakers, infective endocarditis or end-stage renal disease.After surgery, temporary pacing wires will be attached to the postero-lateral wall of the left ventricle, the right atrium and right ventricle and connected to a triple chamber temporary pacemaker. Subjects will be randomised to receive either temporary biventricular pacing or standard pacing (atrial inhibited pacing or atrial-synchronous right ventricular pacing) for 48 hours.The primary endpoint will be the duration of level 3 care. In brief, this is the requirement for invasive ventilation, multi-organ support or more than one inotrope/vasoconstrictor. Haemodynamic studies will be performed at baseline, 6, 18 and 24 hours after surgery using a pulmonary arterial catheter. Measurements will be taken in the following pacing modes: atrial inhibited; right ventricular only; atrial synchronous-right ventricular; atrial synchronous-left ventricular and biventricular pacing. Optimisation of the atrioventricular and interventricular delay will be performed in the biventricular pacing group at 18 hours. The effect of biventricular pacing on myocardial injury, post operative arrhythmias and renal function will also be quantified. ClinicalTrials.gov: NCT01027299.

  20. Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies.

    PubMed

    Axell, Richard G; Giblett, Joel P; White, Paul A; Klein, Andrew; Hampton-Til, James; O'Sullivan, Michael; Braganza, Denise; Davies, William R; West, Nick E J; Densem, Cameron G; Hoole, Stephen P

    2017-06-06

    We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P <0.001) and BO (end-diastolic pressure [mm Hg]: 8.1 ± 4.0 versus 8.7±4.0, P =0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P <0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P <0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P =0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P <0.01). RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Scar Homogenization Versus Limited-Substrate Ablation in Patients With Nonischemic Cardiomyopathy and Ventricular Tachycardia.

    PubMed

    Gökoğlan, Yalçın; Mohanty, Sanghamitra; Gianni, Carola; Santangeli, Pasquale; Trivedi, Chintan; Güneş, Mahmut F; Bai, Rong; Al-Ahmad, Amin; Gallinghouse, G Joseph; Horton, Rodney; Hranitzky, Patrick M; Sanchez, Javier E; Beheiry, Salwa; Hongo, Richard; Lakkireddy, Dhanunjaya; Reddy, Madhu; Schweikert, Robert A; Dello Russo, Antonio; Casella, Michela; Tondo, Claudio; Burkhardt, J David; Themistoclakis, Sakis; Di Biase, Luigi; Natale, Andrea

    2016-11-01

    Scar homogenization improves long-term ventricular arrhythmia-free survival compared with standard limited-substrate ablation in patients with post-infarction ventricular tachycardia (VT). Whether such benefit extends to patients with nonischemic cardiomyopathy and scar-related VT is unclear. The aim of this study was to assess the long-term efficacy of an endoepicardial scar homogenization approach compared with standard ablation in this population. Consecutive patients with dilated nonischemic cardiomyopathy (n = 93), scar-related VTs, and evidence of low-voltage regions on the basis of pre-defined criteria on electroanatomic mapping (i.e., bipolar voltage <1.5 mV) underwent either standard VT ablation (group 1 [n = 57]) or endoepicardial ablation of all abnormal potentials within the electroanatomic scar (group 2 [n = 36]). Acute procedural success was defined as noninducibility of any VT at the end of the procedure; long-term success was defined as freedom from any ventricular arrhythmia at follow-up. Acute procedural success rates were 69.4% and 42.1% after scar homogenization and standard ablation, respectively (p = 0.01). During a mean follow-up period of 14 ± 2 months, single-procedure success rates were 63.9% after scar homogenization and 38.6% after standard ablation (p = 0.031). After multivariate analysis, scar homogenization and left ventricular ejection fraction were predictors of long-term success. During follow-up, the rehospitalization rate was significantly lower in the scar homogenization group (p = 0.035). In patients with dilated nonischemic cardiomyopathy, scar-related VT, and evidence of low-voltage regions on electroanatomic mapping, endoepicardial homogenization of the scar significantly increased freedom from any recurrent ventricular arrhythmia compared with a standard limited-substrate ablation. However, the success rate with this approach appeared to be lower than previously reported with ischemic cardiomyopathy, presumably because of the septal and midmyocardial distribution of the scar in some patients. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.

  3. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart

    PubMed Central

    Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548

  4. Does Late Gadolinium Enhancement still have Value? Right Ventricular Internal Mechanical Work, Ea/Emax and Late Gadolinium Enhancement as Prognostic Markers in Patients with Advanced Pulmonary Hypertension via Cardiac MRI.

    PubMed

    Abouelnour, Amr Ei; Doyle, Mark; Thompson, Diane V; Yamrozik, June; Williams, Ronald B; Shah, Moneal B; Soma, Siva Kr; Murali, Srinivas; Benza, Raymond L; Biederman, Robert Ww

    2017-01-01

    Investigate the impact of Right Ventricular (RV) Internal Work (IW), ratio of arterial to ventricular end-systolic elastance (E a /E max ), and RV Insertion Point (IP) Late Gadolinium Enhancement (LGE) on outcome in Pulmonary Hypertension (PH) patients. LGE is well known to be present within the RVIPs and Inter Ventricular Septum (IVS) in PH patients, but its prognostic role remains complex and potentially overestimated via 2D qualitative relative to the 3D quantitative measures now available. However, E a /E max , a measure of ventricular-arterial coupling and IW, when added to external cardiac work i.e. the P-V loop area as correlates to the heart's energy demands, might fundamentally improve measures of prognosis as they interrogate physiology beyond just the RV. Cardiac Magnetic Resonance Imaging (CMR) of 124 PH patients (age = 60±13, 85F) referred to a large tertiary PH center, was retrospectively examined for RV volumetric and functional indices and RVIP LGE%. Right Heart Catheterizations (RHC) performed within 1±2 months of the CMR were reviewed. E a /E max was derived as RV End-Systolic Volume (ESV/RVSV). IW was estimated as RVESV ×(RV end-systolic pressure-RV diastolic pressure). Patients were followed from date of CMR for up to 5 years for MACE (death, hospitalized RV failure, initiation of parenteral prostacyclin, sustained ventricular arrhythmia or referral for lung transplantation). MACE was high; 48/124 (39%) patients had MACE by 1.6±1.3 years. Neither RVIP nor IVS LGE using visual assessment or even 3D quantization predicted MACE. The strongest predictor of MACE was RVIW (OR=1.00013, p<0.002), vs. mPAP, RV mass, RV EF and IP LGE. Surprisingly, neither a single time-point RVIP nor whole IVS LGE% can predict outcome in the largest cohort of PH patients studied to date when compared with conventional or contemporary metrics of disease progression. CMR-LGE appears to lose its' prognostic value in PH patients in stark contradistinction to all other left and right-sided human myocardial pathologies.

  5. Comparison of pressure-volume loop and echocardiographic measures of diastolic function in patients with a single-ventricle physiology.

    PubMed

    Chowdhury, Shahryar M; Butts, Ryan J; Buckley, Jason; Hlavacek, Anthony M; Hsia, Tain-Yen; Khambadkone, Sachin; Baker, G Hamilton

    2014-08-01

    Echocardiographic measurements of diastolic function have not been validated against invasive pressure-volume loop (PVL) analysis in the single-ventricle population. The authors hypothesized that echocardiographic measures of diastolic function would correlate with PVL indices of diastolic function in patients with a single-ventricle physiology. The conductance-derived PVL measures of diastolic function included the isovolumic relaxation time constant (τ), the maximum rate of ventricular pressure decline (peak -dP/dt), and a measure of passive diastolic stiffness (μ). The echocardiographic measures included Doppler inflow patterns of the dominant atrioventricular valve (DAVV), tissue Doppler velocities (TDI) at the lateral (ventricular free wall) component of the DAVV annulus, and the TDI-derived isovolumic relaxation time (IVRT'). The correlation between PVL and echocardiographic measures was examined. The study enrolled 13 patients at various stages of surgical palliation. The median age of the patients was 3 years (range 3 months to 19 years). τ correlated well with Doppler E:A (r = 0.832; p = 0.005), lateral E:E' (r = 0.747; p = 0.033), and IVRT' (r = 0.831; p = 0.001). Peak -dP/dt also was correlated with IVRT' (r = 0.609; p = 0.036), and μ also was correlated with IVRT' (r = 0.884; p = 0.001). This study represents the first-ever comparison of diastolic echocardiographic and PVL indices in a single-ventricle population. The findings show that Doppler E:A, lateral E:E', and IVRT' correlate well with PVL measures of diastolic function. This study supports further validation of echocardiographic measures of diastolic function versus PVL measures of diastolic function in the single-ventricle population.

  6. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  7. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution.

    PubMed

    Remus, Timothy P; Zima, Aleksey V; Bossuyt, Julie; Bare, Dan J; Martin, Jody L; Blatter, Lothar A; Bers, Donald M; Mignery, Gregory A

    2006-01-06

    Phosphoinositides participate in many signaling cascades via phospholipase C stimulation, which hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). Destructive chemical approaches required to measure [InsP3] limit spatiotemporal understanding of subcellular InsP3 signaling. We constructed novel fluorescence resonance energy transfer-based InsP3 biosensors called FIRE (fluorescent InsP3-responsive element) by fusing plasmids encoding the InsP3-binding domain of InsP3 receptors (types 1-3) between cyan fluorescent protein and yellow fluorescent protein sequences. FIRE was expressed and characterized in COS-1 cells, cultured neonatal cardiac myocytes, and incorporated into an adenoviral vector for expression in adult cardiac ventricular myocytes. FIRE-1 exhibits an approximately 11% increase in the fluorescence ratio (F530/F480) at saturating [InsP3] (apparent K(d) = 31.3 +/- 6.7 nm InsP3). In COS-1 cells, neonatal rat cardiac myocytes and adult cat ventricular myocytes FIRE-1 exhibited comparable dynamic range and a 10% increase in donor (cyan fluorescent protein) fluorescence upon bleach of yellow fluorescent protein, indicative of fluorescence resonance energy transfer. In FIRE-1 expressing ventricular myocytes endothelin-1, phenylephrine, and angiotensin II all produced rapid and spatially resolved increases in [InsP3] using confocal microscopy (with free [InsP3] rising to approximately 30 nm). Local entry of intracellular InsP3 via membrane rupture by a patch pipette (containing InsP3)in myocytes expressing FIRE-1 allowed detailed spatiotemporal monitoring of intracellular InsP3 diffusion. Both endothelin-1-induced and direct InsP3 application (via pipette rupture) revealed that InsP3 diffusion into the nucleus occurs with a delay and blunted rise of [InsP3] versus cytosolic [InsP3]. These new biosensors allow studying InsP3 dynamics at high temporal and spatial resolution that will be powerful in under-standing InsP3 signaling in intact cells.

  8. Role of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline in the Antifibrotic and Anti-Inflammatory Effects of the Angiotensin-Converting Enzyme Inhibitor Captopril in Hypertension

    PubMed Central

    Peng, Hongmei; Carretero, Oscar A.; Liao, Tang-Dong; Peterson, Edward L.; Rhaleb, Nour-Eddine

    2012-01-01

    Angiotensin-converting enzyme inhibitors (ACEis) are known to have antifibrotic effects on the heart and kidney in both animal models and humans. N-acetyl-seryl-aspartyl-lysyl-proline is a natural inhibitor of proliferation of hematopoietic stem cells and a natural substrate of ACEi that was reported to prevent cardiac and renal fibrosis in vivo. However, it is not clear whether N-acetyl-seryl-aspartyl-lysyl-proline participates in the antifibrotic effects of ACEi. To clarify this issue, we used a model of aldosterone-salt–induced hypertension in rats treated with the ACEi captopril either alone or combined with an anti-N-acetyl-seryl-aspartyl-lysyl-proline monoclonal antibody. These hypertensive rats had the following: (1) left ventricular and renal hypertrophy, as well as increased collagen deposition in the left ventricular and the kidney; (2) glomerular matrix expansion; and (3) increased ED1-positive cells and enhanced phosphorylated-p42/44 mitogen-activated protein kinase in the left ventricle and kidney. The ACEi alone significantly lowered systolic blood pressure (P=0.008) with no effect on organ hypertrophy; it significantly lowered left ventricular collagen content, and this effect was blocked by the monoclonal antibody as confirmed by the histological data. As expected, the ACEi significantly decreased renal collagen deposition and glomerular matrix expansion, and these effects were attenuated by the monoclonal antibody. Likewise, the ACEi significantly decreased ED1-positive cells and inhibited p42/44 mitogen-activated protein kinase phosphorylation in the left ventricle and kidney, and these effects were blocked by the monoclonal antibody. We concluded that in aldosterone-salt–induced hypertension, the antifibrotic effect of ACEi on the heart and kidney, is partially mediated by N-acetyl-seryl-aspartyl-lysyl-proline, resulting in decreased inflammatory cell infiltration and p42/44 mitogen-activated protein kinase activation. PMID:17283252

  9. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.

    PubMed

    Frentzou, Georgia A; Drinkhill, Mark J; Turner, Neil A; Ball, Stephen G; Ainscough, Justin F X

    2015-08-01

    Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. © 2015. Published by The Company of Biologists Ltd.

  10. [Effect of 2,3-butanedione monoxime on calcium paradox-induced heart injury in rats].

    PubMed

    Kong, Ling-Heng; Gu, Xiao-Ming; Su, Xing-Li; Sun, Na; Wei, Ming; Zhu, Juan-Xia; Chang, Pan; Zhou, Jing-Jun

    2016-05-01

    To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms. Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c. Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (P<0.01), an increased myocardial apoptosis index (P<0.01), and up-regulated expressions of cleaved caspase-3 and cytochrome c (P<0.01). BDM (20 mmol/L) significantly attenuated these effects induced by calcium paradox, and markedly down-regulated the levels of LVEDP and LDH (P<0.01), lowered myocardial apoptosis index, decreased the content of cleaved caspase-3 and cytochrome c (P<0.01), increased LVDP, and reduced the infarct size (P<0.01). BDM suppresses cell apoptosis and contracture and improves heart function and cell survival in rat hearts exposed to calcium paradox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.

  11. Mutation-linked, excessively tight interaction between the calmodulin binding domain and the C-terminal domain of the cardiac ryanodine receptor as a novel cause of catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Nishimura, Shigehiko; Yamamoto, Takeshi; Nakamura, Yoshihide; Kohno, Michiaki; Hamada, Yoriomi; Sufu, Yoko; Fukui, Go; Nanno, Takuma; Ishiguchi, Hironori; Kato, Takayoshi; Xu, Xiaojuan; Ono, Makoto; Oda, Tetsuro; Okuda, Shinichi; Kobayashi, Shigeki; Yano, Masafumi

    2018-06-01

    Ryanodine receptor (RyR2) is known to be a causal gene of catecholaminergic polymorphic ventricular tachycardia (CPVT), an important inherited disease. Some of the human CPVT-associated mutations have been found in a domain (4026-4172) that has EF hand motifs, the so-called calmodulin (CaM)-like domain (CaMLD). The purpose of this study was to investigate the underlying mechanism by which CPVT is induced by a mutation at CaMLD. A new N4103K/+ knock-in (KI) mice model was generated. Sustained ventricular tachycardia was frequently observed after infusion of caffeine plus epinephrine in KI mice. Endogenous CaM bound to RyR2 decreased even at baseline in isolated KI cardiomyocytes. Ca 2+ spark frequency (CaSpF) was much higher in KI cells than in wild-type cells. Addition of GSH-CaM (higher affinity CaM to RyR2) significantly decreased CaSpF. In response to isoproterenol, spontaneous Ca 2+ transient (SCaT) was frequently observed in intact KI cells. Incorporation of GSH-CaM into intact KI cells using a protein delivery kit decreased SCaT significantly. An assay using a quartz crystal microbalance technique revealed that mutated CaMLD peptide showed higher binding affinity to CaM binding domain (CaMBD) peptide. In the N4103K mutant, CaM binding affinity to RyR2 was significantly reduced regardless of beta-adrenergic stimulation. We found that this was caused by an abnormally tight interaction between CaMBD and mutated CaM-like domain (N4103K-CaMBD). Thus, CaMBD-CaMLD interaction may be a novel therapeutic target for treatment of lethal arrhythmia. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage.

    PubMed

    McAllister, James P; Guerra, Maria Montserrat; Ruiz, Leandro Castaneyra; Jimenez, Antonio J; Dominguez-Pinos, Dolores; Sival, Deborah; den Dunnen, Wilfred; Morales, Diego M; Schmidt, Robert E; Rodriguez, Esteban M; Limbrick, David D

    2017-05-01

    To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  14. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.

    PubMed

    Han, Kim; Hassanzadeh, Shahin; Singh, Komudi; Menazza, Sara; Nguyen, Tiffany T; Stevens, Mark V; Nguyen, An; San, Hong; Anderson, Stasia A; Lin, Yongshun; Zou, Jizhong; Murphy, Elizabeth; Sack, Michael N

    2017-05-18

    The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.

  15. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]).

    PubMed

    Bartolucci, Jorge; Verdugo, Fernando J; González, Paz L; Larrea, Ricardo E; Abarzua, Ema; Goset, Carlos; Rojo, Pamela; Palma, Ivan; Lamich, Ruben; Pedreros, Pablo A; Valdivia, Gloria; Lopez, Valentina M; Nazzal, Carolina; Alcayaga-Miranda, Francisca; Cuenca, Jimena; Brobeck, Matthew J; Patel, Amit N; Figueroa, Fernando E; Khoury, Maroun

    2017-10-27

    Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental models of cardiovascular disease. Although bone marrow-derived mesenchymal stem cells have been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection fraction, no clinical trial has evaluated intravenous infusion of UC-MSCs in these patients. Evaluate the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic stable heart failure and reduced ejection fraction. Patients with heart failure and reduced ejection fraction under optimal medical treatment were randomized to intravenous infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile; 1×10 6 cells/kg) or placebo (n=15 per group). UC-MSCs in vitro, compared with bone marrow-derived mesenchymal stem cells, displayed a 55-fold increase in the expression of hepatocyte growth factor, known to be involved in myogenesis, cell migration, and immunoregulation. UC-MSC-treated patients presented no adverse events related to the cell infusion, and none of the patients tested at 0, 15, and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the UC-MSC-treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6, and 12 months of follow-up assessed both through transthoracic echocardiography ( P =0.0167 versus baseline) and cardiac MRI ( P =0.025 versus baseline). Echocardiographic left ventricular ejection fraction change from baseline to month 12 differed significantly between groups (+7.07±6.22% versus +1.85±5.60%; P =0.028). In addition, at all follow-up time points, UC-MSC-treated patients displayed improvements of New York Heart Association functional class ( P =0.0167 versus baseline) and Minnesota Living with Heart Failure Questionnaire ( P <0.05 versus baseline). At study completion, groups did not differ in mortality, heart failure admissions, arrhythmias, or incident malignancy. Intravenous infusion of UC-MSC was safe in this group of patients with stable heart failure and reduced ejection fraction under optimal medical treatment. Improvements in left ventricular function, functional status, and quality of life were observed in patients treated with UC-MSCs. URL: https://www.clinicaltrials.gov/ct2/show/NCT01739777. Unique identifier: NCT01739777. © 2017 The Authors.

  16. Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias

    ClinicalTrials.gov

    2017-08-10

    Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects

  17. Erythropoietin Activates Mitochondrial Biogenesis and Couples Red Cell Mass to Mitochondrial Mass in the Heart

    EPA Science Inventory

    RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...

  18. Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance.

    PubMed

    Smedema, Jan-Peter; van Geuns, Robert-Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J G M

    2017-11-01

    Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast-enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast-enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non-invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P < 0.001). Right ventricular enhancement correlated with systolic ventricular dysfunction (P < 0.001), hypertrophy (P = 0.001), and dilation (P < 0.001). Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  19. The overloaded right heart and ventricular interdependence.

    PubMed

    Naeije, Robert; Badagliacca, Roberto

    2017-10-01

    The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  20. Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization

    PubMed Central

    Zhang, Shan-Shan; Shaw, Robin M.

    2016-01-01

    With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell – cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes. PMID:24460200

  1. Pathogenesis of Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Kleber, Andre G.; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease. It is characterized by frequent ventricular arrhythmias and increased risk of sudden cardiac death typically arising as an early manifestation before the onset of significant myocardial remodeling. Myocardial degeneration, often confined to the right ventricular free wall, with replacement by fibrofatty scar tissue, develops in many patients. ACM is a familial disease but genetic penetrance can be low and disease expression is highly variable. Inflammation may promote disease progression. It also appears that exercise increases disease penetrance and accelerates its development. More than 60% of probands harbor mutations in genes encoding desmosomal proteins, which has raised the possibility that defective cell-cell adhesion may play a role in disease pathogenesis. Recent advances have implicated changes in the canonical Wnt/β-catenin and Hippo signaling pathways and defects in forwarding trafficking of ion channels and other proteins to the intercalated disk in cardiac myocytes. This review summarizes current understanding of the pathogenesis of ACM and highlights future research directions. PMID:26199027

  2. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  3. Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan.

    PubMed

    Haggerty, Christopher M; Fynn-Thompson, Francis; McElhinney, Doff B; Valente, Anne Marie; Saikrishnan, Neelakantan; Del Nido, Pedro J; Yoganathan, Ajit P

    2012-09-01

    This study sought to evaluate the performance of microaxial ventricular assist devices for the purposes of supporting failing Fontan physiology by decreasing central venous pressure. Three Abiomed Impella pumps (Abiomed, Inc, Danvers, Mass) were evaluated in a mock circulatory system of the Fontan circuit. The local response of pressures and flows to pump function was assessed as a function of pump speed and pulmonary vascular resistance at a high baseline central venous pressure. For one device, subsequent modeling studies were conducted using a lumped parameter model of the single ventricle circuit. The left ventricular devices (Impella 2.5, 5.0) were shown to be suboptimal as single device solutions for cavopulmonary support. The small area of these devices relative to vessel diameter led to significant flow recirculation without an obstructive separator in place. Furthermore, downstream pressure augmentation adversely affected the pressure in the superior vena cava. The use of 2 devices would be mandatory for successful support. The right-sided device (Impella RP), whose outflow was positioned in the left pulmonary artery, demonstrated decreased flow recirculation and did not impede superior caval venous flow. Although static pressure is still required to drive flow through the opposite lung, numeric modeling demonstrated the potential for modest but significant improvements in lowering the central venous pressure (2-8 mm Hg). Left-sided microaxial pumps are not well suited for cavopulmonary support because of severe flow recirculation and the need for multiple devices. The right-ventricular Impella device provides improved performance by directing flow into the pulmonary artery, resulting in modest decreases in central venous pressure. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Assessment of Myocardial Infarct Size by Three-Dimensional and Two-Dimensional Speckle Tracking Echocardiography: A Comparative Study to Single Photon Emission Computed Tomography.

    PubMed

    Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang

    2015-10-01

    To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.

  5. Left ventricular mass predicted by a single reading of ambulatory blood pressure in essential hypertension.

    PubMed

    Ohmori, S; Matsumura, K; Kajioka, T; Fukuhara, M; Abe, I; Fujishima, M

    2000-07-01

    The spectral power of heart rate variability has been shown to be negatively correlated with left ventricular mass (LVM), suggesting the contribution of left ventricular hypertrophy to autonomic dysfunction in essential hypertension. However, a simultaneous assessment of autonomic function and ambulatory blood pressure in relation to LVM has not been carried out. The objective of the present study was to elucidate the synergistic effects of ambulatory blood pressure and autonomic nerve activity on the heart. We enrolled 25 ambulant patients with untreated essential hypertension (9 men and 16 women; mean age 50.6 +/- 2.0 years). The ambulatory blood pressure and heart rate variability were simultaneously monitored every 30 min for 24 h. The spectral power of high-frequency (HF: 0.15 to 0.4 Hz) and low-frequency (LF: 0.05 to 0.15 Hz) bands were measured, and the ratio of LF to HF (LF/HF) was calculated. LF/HF and HF were used as indexes of sympathetic and parasympathetic activities, respectively. LVM was determined by echocardiography. Both the average daytime and nighttime systolic ambulatory blood pressures significantly correlated with the LVM index (r= 0.644, p< 0.001; and r= 0.428, p< 0.05; respectively), although there was no such correlation with the clinic blood pressures. In contrast, a single reading of ambulatory systolic blood pressure measured when LF/HF reached a maximum value was significantly correlated with the LVM index independently of age and sex (partial r= 0.484, p< 0.05). These results suggest that the ambulatory systolic blood pressure during increases in the activity of the sympathetic nervous system is able to infer LVM in essential hypertension.

  6. Optimising the dichotomy limit for left ventricular ejection fraction in selecting patients for defibrillator therapy after myocardial infarction.

    PubMed

    Yap, Yee Guan; Duong, Trinh; Bland, J Martin; Malik, Marek; Torp-Pedersen, Christian; Køber, Lars; Gallagher, Mark M; Camm, A John

    2007-07-01

    The selection of patients for prophylactic implantable cardioverter-defibrilator (ICD) treatment after myocardial infarction (MI) remains controversial. To determine the optimum left ventricular ejection fraction (LVEF) dichotomy limit for ICD treatment in patients with a history of MI. Data from the placebo arms of four randomised trials were pooled to create a cohort of 2828 patients (2206 men, mean (SD) age 65 (11) years) with reduced left ventricular function after MI. The median LVEF was 33% (range 6-40%). LVEF significantly predicted mortality. Each 10% reduction in LVEF <40% conferred a 42% increase in all-cause mortality, a 39% increase in arrhythmic cardiac mortality and a 49% increase in non-arrhythmic cardiac mortality over the 2-year period of follow-up (p<0.001 for all modes of mortality). As the LVEF progressively decreased from < or =40% to < or =10%, the data show a U-shaped relationship between the dichotomy limit for LVEF used and the number of patients who must be treated to prevent one arrhythmic death in 2 years. At an LVEF of 16-20%, more patients are likely to die from arrhythmic than non-arrhythmic cardiac deaths, whereas in those with LVEF < or =10% all deaths were non-arrhythmic. However, the total number of deaths substantially decreased with lower LVEF. A trade-off exists between the sensitivity and positive predictive accuracy across a range of LVEF, and no single dichotomy limit is completely satisfactory. In patients with LVEF < or =10% ICD treatment was not beneficial as all patients in this subgroup died from non-arrhythmic causes. The use of a single dichotomy limit for LVEF alone is not sufficient in selecting patients for ICD treatment in the primary prevention of cardiac arrest.

  7. Outcomes after surgical pulmonary embolectomy for acute submassive and massive pulmonary embolism: A single-center experience.

    PubMed

    Pasrija, Chetan; Kronfli, Anthony; Rouse, Michael; Raithel, Maxwell; Bittle, Gregory J; Pousatis, Sheelagh; Ghoreishi, Mehrdad; Gammie, James S; Griffith, Bartley P; Sanchez, Pablo G; Kon, Zachary N

    2018-03-01

    Ideal treatment strategies for submassive and massive pulmonary embolism remain unclear. Recent reports of surgical pulmonary embolectomy have demonstrated improved outcomes, but surgical technique and postoperative outcomes continue to be refined. The aim of this study is to describe in-hospital survival and right ventricular function after surgical pulmonary embolectomy for submassive and massive pulmonary embolism with excessive predicted mortality (≥5%). All patients undergoing surgical pulmonary embolectomy (2011-2015) were retrospectively reviewed. Patients with pulmonary embolism were stratified as submassive, massive without arrest, and massive with arrest. Submassive was defined as normotensive with right ventricular dysfunction. Massive was defined as prolonged hypotension due to the pulmonary embolism. Preoperative demographics, intraoperative variables, and postoperative outcomes were compared. A total of 55 patients were identified: 28 as submassive, 18 as massive without arrest, and 9 as massive with arrest. All patients had a right ventricle/left ventricle ratio greater than 1.0. Right ventricular dysfunction decreased from moderate preoperatively to none before discharge (P < .001). In-hospital and 1-year survival were 93% and 91%, respectively, with 100% survival in the submassive group. No patients developed renal failure requiring hemodialysis at discharge or had a postoperative stroke. In this single institution experience, surgical pulmonary embolectomy is a safe and effective therapy to treat patients with a submassive or massive pulmonary embolism. Although survival in this study is higher than previously reported for patients treated with medical therapy alone, a prospective trial comparing surgical therapy with medical therapy is necessary to further elucidate the role of surgical pulmonary embolectomy in the treatment of pulmonary embolism. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  8. Effects of Frequent Hemodialysis on Ventricular Volumes and Left Ventricular Remodeling

    PubMed Central

    Greene, Tom; Chertow, Glenn M.; Kliger, Alan S.; Stokes, John B.; Beck, Gerald J.; Daugirdas, John T.; Kotanko, Peter; Larive, Brett; Levin, Nathan W.; Mehta, Ravindra L.; Rocco, Michael; Sanz, Javier; Yang, Phillip C.; Rajagopalan, Sanjay

    2013-01-01

    Summary Background and objectives Higher left ventricular volume is associated with death in patients with ESRD. This work investigated the effects of frequent hemodialysis on ventricular volumes and left ventricular remodeling. Design, setting, participants, & measurements The Frequent Hemodialysis Network daily trial randomized 245 patients to 12 months of six times per week versus three times per week in-center hemodialysis; the Frequent Hemodialysis Network nocturnal trial randomized 87 patients to 12 months of six times per week nocturnal hemodialysis versus three times per week predominantly home-based hemodialysis. Left and right ventricular end systolic and diastolic volumes, left ventricular mass, and ejection fraction at baseline and end of the study were ascertained by cardiac magnetic resonance imaging. The ratio of left ventricular mass/left ventricular end diastolic volume was used as a surrogate marker of left ventricular remodeling. In each trial, the effect of frequent dialysis on left or right ventricular end diastolic volume was tested between predefined subgroups. Results In the daily trial, frequent hemodialysis resulted in significant reductions in left ventricular end diastolic volume (−11.0% [95% confidence interval, −16.1% to −5.5%]), left ventricular end systolic volume (−14.8% [−22.7% to −6.2%]), right ventricular end diastolic volume (−11.6% [−19.0% to −3.6%]), and a trend for right ventricular end systolic volume (−11.3% [−21.4% to 0.1%]) compared with conventional therapy. The magnitude of reduction in left and right ventricular end diastolic volumes with frequent hemodialysis was accentuated among patients with residual urine output<100 ml/d (P value [interaction]=0.02). In the nocturnal trial, there were no significant changes in left or right ventricular volumes. The frequent dialysis interventions had no substantial effect on the ratio of left ventricular mass/left ventricular end diastolic volume in either trial. Conclusions Frequent in-center hemodialysis reduces left and right ventricular end systolic and diastolic ventricular volumes as well as left ventricular mass, but it does not affect left ventricular remodeling. PMID:23970131

  9. Maintenance of ventricular fibrillation in heterogeneous ventricle.

    PubMed

    Arevalo, Hamenegild J; Trayanova, Natalia A

    2006-01-01

    Although ventricular fibrillation (VF) is the prevalent cause of sudden cardiac death, the mechanisms that underlie VF remain elusive. One possible explanation is that VF is driven by a single robust rotor that is the source of wavefronts that break-up due to functional heterogeneities. Previous 2D computer simulations have proposed that a heterogeneity in background potassium current (IK1) can serve as the substrate for the formation of mother rotor activity. This study incorporates IK1 heterogeneity between the left and right ventricle in a realistic 3D rabbit ventricle model to examine its effects on the organization of VF. Computer simulations show that the IK1 heterogeneity contributes to the initiation and maintenance of VF by providing regions of different refractoriness which serves as sites of wave break and rotor formation. A single rotor that drives the fibrillatory activity in the ventricle is not found in this study. Instead, multiple sites of reentry are recorded throughout the ventricle. Calculation of dominant frequencies for each myocardial node yields no significant difference between the dominant frequency of the LV and the RV. The 3D computer simulations suggest that IK1 spatial heterogeneity alone can not lead to the formation of a stable rotor.

  10. Evaluation of heart rhythm variability and arrhythmia in children with systemic and localized scleroderma.

    PubMed

    Wozniak, Jacek; Dabrowski, Rafal; Luczak, Dariusz; Kwiatkowska, Malgorzata; Musiej-Nowakowska, Elzbieta; Kowalik, Ilona; Szwed, Hanna

    2009-01-01

    To evaluate possible disturbances in autonomic regulation and cardiac arrhythmias in children with localized and systemic scleroderma. There were 40 children included in the study: 20 with systemic and 20 with localized scleroderma. The control group comprised 20 healthy children. In 24-hour Holter recording, the average rate of sinus rhythm was significantly higher in the groups with systemic and localized scleroderma than in the control group, but there was no significant difference between them. The variability of heart rhythm in both groups was significantly decreased. In the group with systemic scleroderma, single supraventricular ectopic beats were observed in 20% and runs were seen in 40% of patients. In the group with localized scleroderma, supraventricular single ectopic beats occurred in 35% of patients and runs in 45% of those studied. Ventricular arrhythmia occurred in 2 children with systemic scleroderma, but in 1 child, it was complex. The most frequent cardiac arrhythmias in both types of scleroderma in children were of supraventricular origin, whereas ventricular arrhythmias did not occur very often. There were no significant differences in autonomic disturbances manifesting as a higher heart rate and decreased heart rate variability between localized and systemic scleroderma.

  11. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2005-10-04

    The goal of this study was to modify mesenchymal stem cells (MSCs) cells with a hypoxia-regulated heme oxygenase-1 (HO-1) plasmid to enhance the survival of MSCs in acute myocardial infarction (MI) heart. Although stem cells are being tested clinically for cardiac repair, graft cells die in the ischemic heart because of the effects of hypoxia/reoxygenation, inflammatory cytokines, and proapoptotic factors. Heme oxygenase-1 is a key component in inhibiting most of these factors. Mesenchymal stem cells from bone marrow were transfected with either HO-1 or LacZ plasmids. Cell apoptosis was assayed in vitro after hypoxia-reoxygen treatment. In vivo, 1 x 10(6) of male MSC(HO-1), MSC(LacZ), MSCs, or medium was injected into mouse hearts 1 h after MI (n = 16/group). Cell survival was assessed in a gender-mismatched transplantation model. Apoptosis, left ventricular remodeling, and cardiac function were tested in a gender-matched model. In the ischemic myocardium, the MSC(HO-1) group had greater expression of HO-1 and a 2-fold reduction in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling-positive cells compared with the MSC(LacZ) group. At seven days after implantation, the survival MSC(HO-1) was five-fold greater than the MSC(LacZ) group; MSC(HO-1) also attenuated left ventricular remodeling and enhanced the functional recovery of infarcted hearts two weeks after MI. A hypoxia-regulated HO-1 vector modification of MSCs enhances the tolerance of engrafted MSCs to hypoxia-reoxygen injury in vitro and improves their viability in ischemic hearts. This demonstration is the first showing that a physiologically inducible vector expressing of HO-1 genes improves the survival of stem cells in myocardial ischemia.

  12. Combined perventricular septal defect closure and patent ductus arteriosus ligation via the lower ministernotomy approach.

    PubMed

    Voitov, Alexey; Omelchenko, Alexander; Gorbatykh, Yuriy; Bogachev-Prokophiev, Alexander; Karaskov, Alexander

    2018-02-01

    Over the past decade, minimally invasive approaches have been advocated for surgical correction of congenital defects to reduce costs related to hospitalization and for improved cosmesis. Minimal skin incisions and partial sternotomy reduce surgical trauma, however these techniques might not be successful in treating a number of congenital pathological conditions, particularly for combined congenital defects. We focused on cases with a combined presentation of ventricular septal defect and patent ductus arteriosus. We studied 12 infants who successfully underwent surgical treatment for a combined single-stage ventricular septal defect and patent ductus arteriosus closure through a lower ministernotomy without using cardiopulmonary bypass and X-rays. No intraoperative and early postoperative complications or mortality were noted. Postoperative echocardiography did not reveal residual shunts. The proposed technique is safe and reproducible in infants. © Crown copyright 2017.

  13. Single-Coil Defibrillator Leads Yield Satisfactory Defibrillation Safety Margin in Hypertrophic Cardiomyopathy.

    PubMed

    Okamura, Hideo; Friedman, Paul A; Inoue, Yuko; Noda, Takashi; Aiba, Takeshi; Yasuda, Satoshi; Ogawa, Hisao; Kamakura, Shiro; Kusano, Kengo; Espinosa, Raul E

    2016-09-23

    Single-coil defibrillator leads have gained favor because of their potential ease of extraction. However, a high defibrillation threshold remains a concern in patients with hypertrophic cardiomyopathy (HCM), and in many cases, dual-coil leads have been used for this patient group. There is little data on using single-coil leads for HCM patients. We evaluated 20 patients with HCM who received an implantable cardioverter-defibrillator (ICD) on the left side in combination with a dual-coil lead. Two sets of defibrillation tests were performed in each patient, one with the superior vena cava (SVC) coil "on" and one with the SVC coil "off". ICDs were programmed to deliver 25 joules (J) for the first attempt followed by maximum energy (35 J or 40 J). Shock impedance and shock pulse width at 25 J in each setting as well as the results of the shock were analyzed. All 25-J shocks in both settings successfully terminated ventricular fibrillation. However, shock impedance and pulse width increased substantially with the SVC coil programmed "off" compared with "on" (66.4±6.1 ohm and 14.0±1.3 ms "off" vs. 41.9±5.0 ohm and 9.3±0.8 ms "on", P<0.0001 respectively). Biphasic 25-J shocks with the SVC coil 'off' successfully terminated ventricular fibrillation in HCM patients, indicating a satisfactory safety margin for 35-J devices. Single-coil leads appear appropriate for left-sided implantation in this patient group. (Circ J 2016; 80: 2199-2203).

  14. Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols.

    PubMed

    Carro, Jesús; Rodríguez-Matas, José F; Monasterio, Violeta; Pueyo, Esther

    2017-10-01

    Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (AP)-derived markers. Although this procedure reduces the uncertainty in the calculation of conductances, many studies evaluate electrophysiological AP-derived markers from single cell simulations, whereas experimental measurements are obtained from tissue preparations. In this work, we explore the limitations of these approaches to estimate ion channel dynamics and maximum current conductances and how they could be overcome by using multiscale simulations of experimental protocols. Four human ventricular cell models, namely ten Tusscher and Panfilov (2006), Grandi et al. (2010), O'Hara et al. (2011), and Carro et al. (2011), were used. Two problems involving scales from ion channels to tissue were investigated: 1) characterization of L-type calcium voltage-dependent inactivation I Ca,L ; 2) identification of major ionic conductance contributors to steady-state AP markers, including APD 90 , APD 75 , APD 50 , APD 25 , Triangulation and maximal and minimal values of V and dV/dt during the AP (V max , V min , dV/dt max , dV/dt min ). Our results show that: 1) I Ca,L inactivation characteristics differed significantly when calculated from model equations and from simulations reproducing the experimental protocols. 2) Large differences were found in the ionic currents contributors to APD 25 , Triangulation, V max , dV/dt max and dV/dt min between single cells and 1D-tissue. When proposing any new model formulation, or evaluating an existing model, consistency between simulated and experimental data should be verified considering all involved effects and scales. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Electrophysiological Effects of Qiliqiangxin on Cardiac Ventricular Myocytes of Rats

    PubMed Central

    Wei, Yidong; Liu, Xiaoyu; Wei, Haidong; Hou, Lei; Che, Wenliang; The, Erlinda; Li, Gang; Jhummon, Muktanand Vikash; Wei, Wanlin

    2013-01-01

    Qiliqiangxin, a Chinese herb, represents the affection in Ca channel function of cardiac myocytes. It is unknown whether Qiliqiangxin has an effect on Na current and K current because the pharmacological actions of this herb's compound are very complex. We investigated the rational usage of Qiliqiangxin on cardiac ventricular myocytes of rats. Ventricular myocytes were exposed acutely to 1, 10, and 50 mg/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the acute effects of Qiliqiangxin on Sodium current (I Na), outward currents delayed rectifier outward K+ current (I K), slowly activating delayed rectifier outward K+ current (I Ks), transient outward K+ current (I to), and inward rectifier K+ current (I K1). Qiliqiangxin can decrease I Na by 28.53% ± 5.98%, and its IC50 was 9.2 mg/L. 10 and 50 mg/L Qiliqiangxin decreased by 37.2% ± 6.4% and 55.9% ± 5.5% summit current density of I to. 10 and 50 mg/L Qiliqiangxin decreased I Ks by 15.51% ± 4.03% and 21.6% ± 5.6%. Qiliqiangxin represented a multifaceted pharmacological profile. The effects of Qiliqiangxin on Na and K currents of ventricular myocytes were more profitable in antiarrhythmic therapy in the clinic. We concluded that the relative efficacy of Qiliqiangxin was another choice for the existing antiarrhythmic therapy. PMID:24250713

  16. Increased Response to β2-Adrenoreceptor Stimulation Augments Inhibition of IKr in Heart Failure Ventricular Myocytes

    PubMed Central

    Wang, Hegui; Chen, Yanhong; Zhu, Hongjun; Wang, Sen; Zhang, Xiwen; Xu, Dongjie; Cao, Kejiang; Zou, Jiangang

    2012-01-01

    Background Increasing evidence indicates that the rapid component of delayed rectifier potassium current (IKr) is modulated by α- and β-adrenergic stimulation. However, the role and mechanism regulating IKr through β2-adrenoreceptor (β-AR) stimulation in heart failure (HF) are unclear. Methodology/Principal Findings In the present study, we investigated the effects of fenoterol, a highly selective β2-AR agonist, on IKr in left ventricular myocytes obtained from control and guinea pigs with HF induced by descending aortic banding. IKr was measured by using whole cell patch clamp technique. In control myocytes, superfusion of fenoterol (10 µM) caused a 17% decrease in IKr. In HF myocytes, the same concentration of fenoterol produced a significantly greater decrease (33%) in IKr. These effects were not modified by the incubation of myocytes with CGP-20712A, a β1-AR antagonist, but were abolished by pretreatment of myocytes with ICI-118551, a β2-AR antagonist. An inhibitory cAMP analog, Rp-cAMPS and PKA inhibitor significantly attenuated fenoterol-induced inhibition of IKr in HF myocytes. Moreover, fenoterol markedly prolonged action potential durations at 90% (APD90) repolarization in HF ventricular myocytes. Conclusions The results indicate that inhibition of IKr induced by β2-AR stimulation is increased in HF. The inhibitory effect is likely to be mediated through a cAMP/PKA pathway in HF ventricular myocytes. PMID:23029432

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropp, J.; Heck, I.; Reske, S.N.

    In aortic insufficiency (AI) the inhibition of the stimulated Renin-Angiotensin-System (RAS) by Captopril (C) reduced afterload and leads consequently to a diminished regurgitation fraction (RF). In 17 patients (pts) with pure severe AI RF, left ventricular ejection fraction (LVEFE) and heart rate were determined before (1) and 1 hr after (2) administration of 25 mg of C.Long term dosis was 3 x 25 mg of C and follow up time was 3-11 months (medium:6). The values were determined by gated radionuclide ventriculography using red blood cells labeled in vivo with 15 mCi Tc-99mROI's were selected over both ventricles in enddiastolicmore » and endsystolic frames. Ventricular boundaries were defined by a fourier phase image overlay. RF was calculated by the background corrected count rate ratio of left and right ventricular ROI. Systolic and diastolic blood pressure (BPs,BPd), plasma levels of angiotensin I,II(A1,A2) and the activity of angiotensin converting enzyme (ACE) were determined before and 1 hr after C administration. After C there is a decrease in RF which persists in the long term follow period in up to to now 8 pts. The authors conclude: inhibition of ACE reduces significantly aortic regurgitation in patients with AI and has thus a beneficial effect on left ventricular performance. This effect persists in long term treatment and therefore seems beneficial to delay the point of operation.« less

  18. Left ventricular remodeling in preclinical experimental mitral regurgitation of dogs.

    PubMed

    Dillon, A Ray; Dell'Italia, Louis J; Tillson, Michael; Killingsworth, Cheryl; Denney, Thomas; Hathcock, John; Botzman, Logan

    2012-03-01

    Dogs with experimental mitral regurgitation (MR) provide insights into the left ventricular remodeling in preclinical MR. The early preclinical left ventricular (LV) changes after mitral regurgitation represent progressive dysfunctional remodeling, in that no compensatory response returns the functional stroke volume (SV) to normal even as total SV increases. The gradual disease progression leads to mitral annulus stretch and enlargement of the regurgitant orifice, further increasing the regurgitant volume. Remodeling with loss of collagen weave and extracellular matrix (ECM) is accompanied by stretching and hypertrophy of the cross-sectional area and length of the cardiomyocyte. Isolated ventricular cardiomyocytes demonstrate dysfunction based on decreased cell shortening and reduced intracellular calcium transients before chamber enlargement or decreases in contractility in the whole heart can be clinically appreciated. The genetic response to increased end-diastolic pressure is down-regulation of genes associated with support of the collagen and ECM and up-regulation of genes associated with matrix remodeling. Experiments have not demonstrated any beneficial effects on remodeling from treatments that decrease afterload via blocking the renin-angiotensin system (RAS). Beta-1 receptor blockade and chymase inhibition have altered the progression of the LV remodeling and have supported cardiomyocyte function. The geometry of the LV during the remodeling provides insight into the importance of regional differences in responses to wall stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Myocyte repolarization modulates myocardial function in aging dogs

    PubMed Central

    Sorrentino, Andrea; Signore, Sergio; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A.; Wunimenghe, Oriyanhan; Michler, Robert E.; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G.; Anversa, Piero; Hintze, Thomas H.

    2016-01-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307

  20. Effect of 10-Week Supervised Moderate-Intensity Intermittent vs. Continuous Aerobic Exercise Programs on Vascular Adhesion Molecules in Patients with Heart Failure.

    PubMed

    Aksoy, Sibel; Findikoglu, Gulin; Ardic, Fusun; Rota, Simin; Dursunoglu, Dursun

    2015-10-01

    Abnormal expression of cellular adhesion molecules may be related to endothelial dysfunction, a key feature in chronic heart failure. This study compares the effects of 10-wk supervised moderate-intensity continuous aerobic exercise (CAE) and intermittent aerobic exercise (IAE) programs on markers of endothelial damage, disease severity, functional and metabolic status, and quality-of-life in chronic heart failure patients. Fifty-seven patients between 41 and 81 yrs with New York Heart Association class II-III chronic heart failure and with a left ventricular ejection fraction of 35%-55% were randomized into three groups: nonexercising control, CAE, and IAE, which exercised three times a week for 10 wks. Endothelial damage was assessed by serum markers of vascular cell adhesion molecule-1, serum intercellular adhesion molecule-1, and nitric oxide; disease severity was measured by left ventricular ejection fraction and N-terminal probrain natriuretic peptide; metabolic status was evaluated by body composition analysis and lipid profile levels; functional status was evaluated by cardiorespiratory exercise stress test and 6-min walking distance; quality-of-life was assessed with Left Ventricular Dysfunction-36 and Short-Form 36 questionnaires at the baseline and at the end of the 10th week. Significant decreases in serum vascular cell adhesion molecule-1 or serum intercellular adhesion molecule-1 in IAE and CAE groups after training were found, respectively. Resting systolic and diastolic blood pressure, peak systolic and diastolic blood pressure, 6-min walking distance, and the mental health and vitality components of Short-Form 36 improved in the CAE group, whereas left ventricular ejection fraction and 6-min walking distance improved in the IAE group compared with the control group. Both moderate-intensity CAE and IAE programs significantly reduced serum markers of adhesion molecules and prevented the change in VO2 in patients with chronic heart failure.

Top